
	

	

Paper	Name:	Engineering	Mechanics	

Paper	Code:	ME101	

Module	
No.	

Syllabus	 Contact	
Hrs.	

1	 Importance	of	Mechanics	in	engineering;	Introduction	to	Statics;	Concept	
of	Particle	and	Rigid	Body;	Types	of	forces:	collinear,	concurrent,	parallel,	
concentrated,	distributed;	Vector	and	scalar	quantities;	Force	is	a	vector;	
Transmissibility	of	a	force	(sliding	vector).	

	

Introduction	 to	 Vector	 Algebra;	 Parallelogram	 law;	 Addition	 and	
subtraction	 of	 vectors;	 Lami’s	 theorem;	 Free	 vector;	 Bound	 vector;	
Representation	of	forces	in	terms	of	i,j,k;	Cross	product	and	Dot	product	
and	their	applications.	

	

Two	dimensional	force	system;	Resolution	of	forces;	Moment;	Varignon’s	
theorem;	Couple;	Resolution	of	a	coplanar	 force	by	 its	equivalent	 force-
couple	system;	Resultant	of	forces.	

10	

2	 Concept	and	Equilibrium	of	forces	in	two	dimensions;	Free	body	concept	
and	diagram;	Equations	of	equilibrium.	

	

Concept	of	Friction;	Laws	of	Coulomb	friction;	Angle	of	Repose;	Coefficient	
of	friction.	

6	

3	 Distributed	Force:	Centroid	and	Centre	of	Gravity;	Centroids	of	a	triangle,	
circular	sector,	quadralateral,	composite	areas	consisting	of	above	figures.	

	

Moments	of	inertia:	MI	of	plane	figure	with	respect	to	an	axis	in	its	plane,	
MI	of	plane	figure	with	respect	to	an	axis	perpendicular	to	the	plane	of	the	
figure;	 Parallel	 axis	 theorem;	 Mass	 moment	 of	 inertia	 of	 symmetrical	
bodies,	e.g.	cylinder,	sphere,	cone.	

7	

4	 Introduction	 to	 Dynamics:	 Kinematics	 and	 Kinetics;	 Newton’s	 laws	 of	
motion;	 Law	 of	 gravitation	 &	 acceleration	 due	 to	 gravity;	 Rectilinear	
motion	of	particles;	determination	of	position,	velocity	and	acceleration	
under	 uniform	 and	 non-uniformly	 accelerated	 rectilinear	 motion;	
construction	of	x-t,	v-t	and	a-t	graphs.	

5	

	

	

	

Plane	curvilinear	motion	of	particles:	Rectangular	components	(Projectile	
motion);	Normal	and	tangential	components	(circular	

motion).	

5	 Kinetics	 of	 particles:	 Newton’s	 second	 law;	 Equation	 of	 motion;	
D.Alembert’s	 principle	 and	 free	 body	 diagram;	 Principle	 of	 work	 and	
energy	;	Principle	of	conservation	of	energy;	Power	and	efficiency.	

5	

Recommended	Books:	

1.	Engineering	Mechanics	[Vol-I	&	II]by	Meriam	&	Kraige,	5th	ed.	–	Wiley	India	

2.	Engineering	Mechanics:	Statics	&	Dynamics	by	I.H.Shames,	4th	ed.	–	PHI	

3.	Engineering	Mechanics	by	Timoshenko	,	Young	and	Rao,	Revised	4th	ed.	–	TMH	

4.	Elements	of	Strength	of	Materials	by	Timoshenko	&	Young,	5th	ed.	–	E.W.P	

5.	Fundamentals	of	Engineering	Mechanics	by	Debabrata	Nag	&	Abhijit	Chanda–	

				Chhaya	Prakashani	

6.	Engineering	Mechanics	by	Basudeb	Bhattacharyya–	Oxford	University	Press.	

7.	Engineering	Mechanics:	Statics	&	Dynamics	by	Hibbeler	&	Gupta,	11th	ed.	–	Pearson	

	

	

	

Mathematics-I	
	M(ME)101	

	
Module	I	
	
Matrix:	 Determinant	 of	 a	 square	 matrix,	 Minors	 and	 Cofactors,	 Laplace’s	 method	 of	
expansion	of	a	determinant,	Product	of	two	determinants,	Adjoint	of	a	determinant,	Jacobi’s	
theorem	on	 adjoint	 determinant.	 Singular	 and	 non-singular	matrices,	 Adjoint	 of	 a	matrix,	
Inverse	of	a	non-singular	matrix	and	its	properties,	orthogonal	matrix	and	its	properties,	Trace	
of	 a	 matrix.	 Rank	 of	 a	 matrix	 and	 its	 determination	 using	 elementary	 row	 and	 column	
operations,	 Solution	 of	 simultaneous	 linear	 equations	 by	 matrix	 inversion	 method,	
Consistency	 and	 inconsistency	 of	 a	 system	 of	 homogeneous	 and	 inhomogeneous	 linear	
simultaneous	equations,	Eigen	values	and	eigen	vectors	of	a	square	matrix	(of	order	2	or	3),	
Eigen	values	of	APTP,	kA,	AP-1P,	Caley-Hamilton	theorem	and	its	applications.		
	
Module	II	
	
Successive	differentiation:	Higher	order	derivatives	of	a	function	of	single	variable,	Leibnitz’s	
theorem	(statement	only	and	its	application,	problems	of	the	type	of	recurrence	relations	in	
derivatives	of	different	orders	and	also	to	find	(n)0)	y	.	
Mean	Value	Theorems	&	Expansion	of	Functions:	Rolle’s	theorem	and	its	application,	Mean	
Value	theorems	–	Lagrange	&	Cauchy	and	their	application,	Taylor’s	theorem	with	Lagrange’s	
and	Cauchy’s	form	of	remainders	and	its	application,	Expansions	of	functions	by	Taylor’s	and	
Maclaurin’s	theorem,	Maclaurin’s	infinite	series	expansion	of	the	functions:	sin	,	cos	,	,	log(1	
),	()	,	x	n	x	x	e	+	x	a	+	x	n	being	an	integer	or	a	fraction	(assuming	that	the	remainder	0	as	n	R	
→	n→∞	in	each	case).		
Reduction	formula:	Reduction	formulae	both	for	indefinite	and	definite	integrals	of	types	
(2	2)	
sin	,	cos	,	sin	cos	,	cos	sin	,	,	,	n	n	m	n	m	
n	
dx	
x	x	x	x	x	nx	m	n	
x	+	a	
∫	∫	∫	∫	∫	are	positive	integers.	
	
Module	III	
	
Calculus	of	Functions	of	Several	Variables:	Introduction	to	functions	of	several	variables	with	
examples,	 Knowledge	 of	 limit	 and	 continuity,	 Partial	 derivatives	 and	 related	 problems,	
Homogeneous	 functions	and	Euler’s	 theorem	and	 related	problems	up	 to	 three	 variables,	
Chain	 rules,	 Differentiation	 of	 implicit	 functions,	 Total	 differentials	 and	 their	 related	
problems,	Jacobians	up	to	three	variables	and	related	problems,	Maxima,	minima	and	saddle	
points	 of	 functions	 and	 related	 problems,	 Concept	 of	 line	 integrals,	 Double	 and	 triple	
integrals.		
	
Module	IV	
	

	

	

Infinite	 Series:	 Preliminary	 ideas	 of	 sequence,	 Infinite	 series	 and	 their	
convergence/divergence,	Infinite	series	of	positive	terms,	Tests	for	convergence:	Comparison	
test,	Cauchy’s	Root	test,	D’	Alembert’s	Ratio	test	and	Raabe’s	test	(statements	and	related	
problems	on	these	tests),	Alternating	series,	Leibnitz’s	Test	(statement,	definition)	illustrated	
by	simple	example,	Absolute	convergence	and	Conditional	
convergence.		
	
Module-V	
	
Vector	Algebra	and	Vector	Calculus:	Scalar	and	vector	fields	–	definition	and	terminologies,	
dot	and	cross	products,	scalar	and	vector	triple	products	and	related	problems,	Equation	of	
straight	line,	plane	and	sphere,	Vector	function	of	a	scalar	variable,	Differentiation	of	a	vector	
function,	Scalar	and	vector	point	functions,	Gradient	of	a	scalar	point	function,	divergence	
and	curl	of	a	vector	point	function,	Directional	derivative.	Related	problems	on	these	topics.	
Green’s	theorem,	Gauss	Divergence	Theorem	and	Stoke’s	theorem	
(Statements	and	applications).	

	

[v r scosm(OF s o I JT I ON]

A > n De+enc=>i c m 1he J m km «)o ln p e r c e m e Co

u a

sf ' Cr n , ¬ S ° r s o l ñ e l v e v . -
\ Os t c BÐ ' -

V f s c o r m e +e r

m e+r uo

C OR Y .
D u L b Lo 1

'
n . e r r l a Q TI '

c B ¡ n t AJ n æ LL Ju • pCLî g
A T w h c m o A e y ,

ï t eacer enca 1 8 4 m¢ e i 7

d l o t AJ . t 1) M d 1k K r t u l 9 1n m V ï , 8 0 0 8 ; . N e m 4 >'
c B

*
e n c

o v r ' " · e c t 6 d + c Æ c

í m e ; c n & e n
' * o r c je þc T L i Jf i c 0 m e q u 1 r e Q

u t z c m t e a r u + re) C · Gt · S · S j s t e mn r
m / o m 2

.

=
P 1r

8 V

e eac. r men. ct q , r m i e T) q Vsmct l T h e r
d i eb. . o . R 4 (LI - Y V - >%e V G Co DH f r - c
e r n (2 þ e v b (

s ° c o e " : v ' - m e Y rF o w h e s - e [" & n

iv o
s c o m d e T i ,

m e P/ r o s s u o o o

h U° * - d U r LL c m ¢LL - a l w n b
T 4 + J ()

m ()

A J · P , \ R T u s : .

 V : . c o me < er C o s t . DJ J
C a¬ hr T s

* s h p c h
1 P . + l e Cs r ml
1 b e a r e r

P « o c e o u 7 e &

S v . E v , 9 · c n t Y U n k n o u J +) 8 H m S o
g w þ l : e a < ·

o . r u i e q . O V e ¬o l u f o " c m : v e r B

o n ; c r t h e 5 4 m Æ + h e m e m
'

s c L Li h - m
e . W ipe r . E n - Q G 44 rc * 4 h# n + h . m . Rd . w g
 4 o u u J L 1 o u J e o Ð

e » . e þTDc e M n c e c m Y - e m e a r n
0 $ ï a E Æ s

n W . M a þT Dc B S S t u +h + S w Go t h '
o i r 1J

· . · e te 1 c

u J

BPr

r I o n m - 1¡ r ü1 B) e t a +t r r q . 355 °
c j ber L& · u J a de r z o g s # o & F

- 1At t]] D CT EJ HJ J T 1 0 o F D6 J S 1 T Y

V o l u m e o f
w l . N 1 c ï 11i 1r y 11 o t t 1c + s u g a r w t . O 1 s u g a r

s u g a r
u e n s 1 r y

M«t r l al b o t t l e s o l u t i o n s o l u t i o n
s o l u t i o n

(D = M / V)
m m u m g m m 0 w n mo

s \ \ h 1t 1o n
1 ß · t 1 l , 6 8 G S O · 9 9 6 4 2·

6 141 s w a >

s o l u t i o n
l G .

" B d ' ¢5 0 2 S ' 0 6 0 2 G 1 · 0 3 0 0 4

1 2 19o s t 1Ra r

S l l l u 1t o n
1 g , V · 8 5 8 6 S · 1 5 3 8 6 J · 0 3 0 6

t l n k n o w n

s ï 1g a ï 1 6 · ¥ 2 . ' 8 2 9 2 zS · L 2 9 5 1 · 0 2 5 8 4
s o l u t i o n

=V T S C O ST T Y O F W T E R = 0

-
p j

ß L ¬ l r b E T E 6 n i N T r o &) O F T r M E O F F L O IA I >

M 1t c r i a 1 1
"

l
A " Z ' "

c p

J 1

o n s t i g a r s o l u t i o n J ï S 1 J 4
j 1 2 1

)

3 % s t i g a r s o l u t i o n 1 1 9

J 1 ¥
J £L S

6 % s u g a r s o l u t i o n À 2 1

j 9 3

1 2 % s u ga r s o l u t i o n < s q

J q 1

1 3 4
U n k n o w n s u g a r

s o l u t i o n
1 3 5

1 3

1 1 8 0 · 9 2 8 2

J

J + 3 · 0 3 ¥

J 5 4- 0 · 9 ¬ 4 3

c dc eL. i c r n - v '
. LOSh : - >

' L · Vf

= P, 1 x o · 1 9 8
0 · 9 9 4 0 & X 1 j ' 1

C 8 / . J = O · 9 9 8 4 92 x 1 J g

0 · 9 9 1 0 0 X l l ' l
K O · 4 9 8 = 0 · %2 8 2 C P

1 · o s o o q x t z g

0 · S a q o & X 1 1 1
O · 9 p O · g 9 0

L K o · 4 3 8 = 1 · o 3 4
O · g g q o K t t q

YLu n K m m n) 1 · 0 2 5 8 1 x t a q x o o 9 8 = 0 · 9 6
O · s g q o G x l 1

E c A u T 1 o r s

T K e 'V r s e JD m q l e r m w be c l e c r F) ì 8 1r m e d ,

y í s o me l e r SLo{ 1l d. b e a l c r m þJe Y 4 6 1 O V . t h e o &po s 1h ' Br n 8 ? l s W hy n » w c W & r » m (TU mr L &c m
E j c a c Y S a m V o l Ar m e

c l o ï n þe o ·

S h Ð L b e m e e t ,

o e w D & q Y
V) r D

e ï e Que M e w u m m e ï q q H r r t e o l . L t) ·

Qr S C u s s l

/ m . M e . • Lu e d l a M e r l r u '

> _ U n k o (o n)
l. e r ' " +H , S . r ô o l a n Km w t ; o M » e

V . " s o = Ä e r .

B¥ - .
'

, * - A ' + h)

A N e m e u n k r =o m p " " " +He m m = ; h 1

COCL u ï o J V

 e U n k m L' " r J h c T ce r ' ' c ùoknml '
o F) ol

U /

[CON D U CT OM E T RI C TI TRt l 10N]

. . . .
' - Oe ; e r m n . t i o n . e H . U . km w n 5 + . ' +h 4 H C I

S o l e n bj 5 +c m d o , d . J a o + t S . l . J ; m LU : n c l . . h

m £ +r
'

. M . 4 TLo . 1

T Eo R Y : ' Cnn c l &om<r ; c u / r m c m b e ca e d 4 - 0 . c

e n . l p " 4r a1i Dn c Ac c t e a l e J . & m H. • íß

. , m . d D n r f o s ua qme Af q . . . : . m , e d L J.
' t r d o o ·

T F c o n d u c >c m c c v a r
' e b - o n a B e l . c +r j . A /

c o n d . C g e a s o l u t i o n d L . n d ALÞ. °) m m be i r

e. m Þ n e n a n Q m . í ' ' " c m Dbr lÆ e Ë ·

ru h e n e o n . +c m . e V a b g p l ° H " l %' " A V o l u m

oJ : n , r . . + i m L r Æ ü' " e n p o .

m L O. . On , U ' • s o t_ B m g Gm +e a n # a <?j m

o e æo a B+ e T s u c c e s s , . A d o l r ï e$ a d d s o l _ H m c H c I J .

+ in t H + t a n s · e n a . 1
' N o o n s o t t 1B: a rï , m H + t

°

o o r @

b c f e j ·

w h e n n e ALt r n1 . ° t i o n 48 c n m þl e t . . 1u r l h e r a c l du + e n

JJ u OH t r l c o Lu A E A o n d u c +o n q e M i m ? e a £e h e x c g s s

q L t dy n o b l e o H o m , T KA C o n , l a n c e u l t . 8

b ° r i m u ha e . h u a ' a e a r n c e

v a l m - þ l a ++e J - - c v o lu m e a N a o H a c tó J ,

c u r v 4 b e x y z C' VJ Shec l) & a h < , Þ o Yn +
: n +c r s . c o n (; · e p o ; n t Y J e o r ir Æ Þ. n ó t o

A p p U S ?

 ß u re t t e

 P . p

e / B ec - L o «r» l j

 D Z BQ9 c D n c h ' v
î ?y r r) et er ß o n o t uc h ' .

 b æl l

R E A G, E N T S >

 U n k mD u J n H c l S o l o n

. S + c r ï , c lQ r c Lt m c t N o o H C N / 1 o) S Ol « m =s u tþþl i'

e o lJ

R O c E D u R E

[<J s +a n d a T c ; - N o o n CrJ / o) S Ol ¡ r) Us sþn' eo l
P] U n k r H c l s o l u f i m s [u LþN Li e o [

[3 J R n e h Co n c c i v F c u ï l +h c or LI cLd
in J Ä e r ,

4] PYl 5 e O t At 1 0 c e H c l S o l L L h t m r) l 0 Ý H L p l mc
be - a r) o l c1 d dA u g a +e r T ì e c e s g a Cl · S o + h a 1 b o + h

e l e c + D g a w iL j D m þl d e Qy m m e r s e c B t +hr ¢1
So l o r r) · T 0 .

0
40 ; HL C h m n c L u c B

d m i e Ä u m m n c vF1 v e w

l a o o l o) o r m c L e ++e 1 o L o fs e

Cþ v D&l mq 3 d Bo tJ S) ,

9&] m e c l s q + @ ó m n db1 e t o n c @ ó b o l Ä t
o t } V i e a

a d c & l h '
¡ ðn o B 8 d i o p- o . o H a m o r l & ij 5 44 '

+ h mn o l At c '
y 1 ; Y c m · R e p e a Y þ ar o e e æ u ° l

J o L _ ll a v e l e r nc U w þ - Ym Bs by°ncJ e n Y
Þ « i ·

[1 1 0 r a t o c L C u r hy p \ o B4 l r g c n c l u c + o m

m · q d r o p s ¢ A - A / n Y e n Y
c d c u

: J

DR o p S OF Ñ t r& -

=D . . h . $. N u o n s . t u H o n v e o n c c ¢ mc e c f T . 1 h

F l . . t r D ly H c conducl . B S a m e a g u T c f 1 t m Ä l h · $
cL So l o ¥) \ ° e a " Y e h . f. c c u r r e n . S O l o n d me

 fe+ t o n c t L :. k c M e l . . +. . '
c
 c u r t e - b j ta" O n . n &

U n : . el u e n c e q c > . ; . F, e[C[. L 1m o r ñ t _ rí ,
'

.

L o n d u >û r , d o \, e d o h . rs . a . E l c e þ t o n t o + h i . Ra n g

e o n L . c po r s í . v e r s ld þTo þ e T\ - o n

 Bh m o · ·
E /

B- m c @ C R) g o þ le r n T ^ e -

h o . f h r ? >h
'" g c m s « s e . H - o r g eL "

. ' S Y v q n

w h e æ P g Ao r a ; m > 8 W e ' d g 0 ï B n a . T a m ' a L A b ìr
I ; 8 K t 1o u) n m Sp. d' . '

. B. " . a r
'
w n + e l n þe ï . t u ï o ,

m i ì d A. û <i V ' Y ¢ ° n u þ crn +ha b e e . N g
þ r me n 8 h . r L o n c e n B a n ·

r aæi f i Ëd

R E S U LT

T A e L E T l - Ar a n . H e l U ' % N o On : -

SE R 1A L N O N O O F D R O p S OF N a O H CO N D U CT A N CE

(1) 0 0 · 3 3

{2 » 3 0 · 3 6

13 } G O 1 3 1

(4 } 9 0 · 2 1
(5 } 1 2 0 1 2 1

 II . I ö · 8

17 } 1 8 . 0 e Lq

{8 } 2 1 O 1 < q /

{9 } 2 9 0 1 < +

Q 0 2 0 · 2 1

{ 1 1) 3 0 0 1 Z S

n F 5 3 0 · 2 8

n F m o · 3 3

C A L C U L A T 1 o J4 >

V I = V o l u m e N o o H b o l m c J 8 / 14
m l

Y z = V o l u m e o H c l S o t- o 1r) · 1 o m l

5 1 e h a O S o l u O · Q ()
3 E s + r q +h H C F S o l Ä '

m

J t d t r Dþ · ° e N o o n eo n >c u n £ J r m l ° e S a l '

m)

.

'

,
1 8 % r») " J . 1 8 l r m j h q)

: 1 ' OS 1n l S o l t L hT

cr 1\

O N C S t o j ·

T Fr e u n k m u DBF s + tF¬ w + h f H c l i s c l l e i r n r u i

c l ' * " a9 Co r } c l L A c l Bv ' : b e r r A
. .

1 .

S + r T q l r h H c l 68 0 · 6 C J 1 /

J Ct L Kt mm(OF Wj Ct T E R S P L E

M - D e r f ロ c n a . 1 a 8 . e n c e r

Sa m þl e ·

T H ¬ o R Y - Al Kr " U. l i s h m hw e ° c q a
u

c} R r j) n j e r c m d a Æe c k h o m f o 1 u c h '

c l ; t r e d
C h " > e PH . T fm - m o u g e r ·

a r 11 t o

h e n c e o e al rDl UdU. î e) o H c a r b o n a k °
o tn 6 c . o 3

2)
a r rd b ?c a r b o n d e

°
o n (. H O) · n e m & o w 3 u ¬ h a v e

r >Un J O m n c e e rm þþ° d k 8 o n g .

T n Jî r s 8 +e þ , m u o r s Q m þ 1e ¥8 ; ° Ar c d e J h
d m f 1% Ph e ml p h l B» n (O l a E r · cÐ l ou

c h a " W CFnK c o l Ð r ïe s s) n c E c neL t at LI 1aT1

r ï 2

C C B H C (

F o T + h a L b OV E þï o m s pmol pMat Q1 ; u s e a t Æ
'

n c ü c a po q-

.

e

P l = . .

n Cd s + n t . N p O + C

Fo r + h c . A¡ / ¬ p c s m e v l O F c r r y (. ,
'

. M e a # : n d l i c a]o r .

u p ' " b ; r y c o m h r n c Lt i m \ cd . n t
"

. ' " " J ° . ;
: : 1 U J ° Æ e r C rw ,

. : ì o w
'

, -
. · 0 3

°
c f m 'a , n c 7 · n Ed

/ 5 O H -

c m d CO"
, m 3

°
(w J l cD3- W L

V 4 T % P m . : b l d [H t r n c B H C DÌ , û ~g 3 , Æ
v E r d r c m H e s n c b h A1 c o m l] he A b . Tm
CÛ " c . .

O H + H c a . 0 0 3
2

+ I . D

P R o c r n u x e

/ 1 î B,
- e ï ' " L . . . M r e c m c B F l f h 1 ., u r e H e + h

N / s D HJ S O+ · . LÞJ ' e J ,

/ s N c Lï h L o H i r c + b . 4 . r . J u J a J e r c n n a
c J ct 1 o m l · c5 S omm þ le S . l o n C b G

23 3 d d
.
l . . c ¢m þs o - y r C1 W ' " c u c o in r , T A

s o t : en u Ji ï l æc q t a e L o í o w ,

" * ï m a '

& h l J m ++e a n c / S A
l l n u la "

"

m 0 rm A c h D p e %q a
e l l o t D t o I { n ·

/ s 3 R e , a l n o 3 r e ° . " ; n + h o L . e + v o) m l e ,

/ É . Re b e c j t o N a + l e a s A dt i t e c o n m d - i W

+ l
/ w

R ¬ し 8 -

T A G L E O ¬ Te R f n J N n ' f1 a N o r L K T J\ I T I v o l ' N R =

B U R ET T E C n C O)
v u L u m c R EA D IN G V O L O F A L K A L I N IT 1AC O

O F
H 2 S0 4

C O N C O RD Y O F C O N C E N T R A
W A T E R

C O N S U M
A N T S T R E N G T H W A T E R T IO N

S A M p L E
E D

R E A D IN G O F S A M p L E 1N W A T E R
T A K E N

mY m H z SO p p m s A M L E

1 0 0 Z · 2 2 ' 9b

J o q . 4 2 , 3 2 ' 3
/

A L C U L 0

< 0 0 0 m \ ° À 9 H N Hr s o s o l 1 0 0 0 ¢T) ere I (N j
C c Bc o , g o l J)

= S o 1k C c t COB

e n c Q.

À m J ° 1 (M) H . s o + S o l t L h '

ü ð) - q ' " d C a CÐ ß

 K
 40 0 0 - o C&C o,

 3

. S O r m 1 ° e C a COd

2 m ° Y N l s o H × So 4 So l h '

o tn · 2 ° 2 X T " a m eets

 2 * 2 m a ° Ca C Ð8

C J

. Lo m l m a J e T s e m bl e ü o n Bæ
' 12 · m } f c a c q a

j m l . " " " " " o ° a co

Ä 0 0 m l / n *) " 7 1 o o o o W d e a oB

. Ä - m
'

C ; n LeTi r ° e C a 0 3 J = J 0 0) 2 · þþom

= 2 L o þ þom

5 C U 0

Ne AL / Ta l Aer m c m" p ï ?Dc e e dh r) a l es .

+ P r a t s c t o m v e a g { eT) m- b H C O m

C r D a Q i ' m c m o A p e L Dl p h + h r l (M e p k n U
g . 6 [h o u " W en t o u r a T We f m + h ø pB - oæ Ð g g · G

A o 1 o · 6 3 S L u I t oLb l e
-

t m c 11
'
c æ b ir · 4 n S e c o n o l Ae

PR E C A J T I D N - >

f o r e 1 m m n ð BBc Q o m n (L 1 A

e e x L m ß ' Be j l o r a r & ¢ h n + h - d 1
'

¢w u JI' l l m c

Tf
, . B+. ?r ` Ho L L b c c D e 1e a T Le£ + td +h ö Ai s w j l e c r

L o e 1 - þm' er1r t o e TLÞe F i ön Qm + , T $ · c f m l d o o mi r ?

î A m & L+ 5 0 h o +þ ¬?>) a + 1
'
m þu T ,

· ' e pei r => 14n L

Cl ear nct m M l l e ? r pH cr° iÐ a e r ï s L

o m d ° ,

' : Q m þ g u t t a s t u o e m c u d æ ' n b e e q n d [cG 8 o
°
c

C O C S Î 0

e X ' "

.
9

.

H A N D B O O K O F G R A P H T H E O R Y F O R F R E S H E R ' S

Introduction to Graph Theory

Prem Sankar C
M Tech Technology Management

Dept of Futures Studies ,Kerala University

Outline

1. History of Graph Theory
2. Basic Concepts of Graph Theory
3. Graph Representations
4. Graph Terminologies
5. Different Type of Graphs

Why Graph Theory ?

� Graphs used to model pair wise relations between
objects

� Generally a network can be represented by a graph
� Many practical problems can be easily represented

in terms of graph theory

Graph Theory - History

The origin of graph theory can be traced back to Euler's work on the
Konigsberg bridges problem (1735), which led to the concept of an
Eulerian graph. The study of cycles on polyhedra by the Thomas P.
Kirkman (1806 - 95) and William R. Hamilton (1805-65) led to the
concept of a Hamiltonian graph.

Graph Theory - History

� Begun in 1735
� Mentioned in Leonhard Euler's

paper on “Seven Bridges of
Konigsberg ” .

Problem : Walk all 7 bridges
without crossing a bridge twice

Graph Theory – History…….

Cycles in Polyhedra - polyhedron with no Hamiltonian cycle

Thomas P. Kirkman William R. Hamilton

Hamiltonian cycles in Platonic graphs

Graph Theory – History…..

Gustav Kirchhoff

Trees in Electric Circuits

Basic Concepts of Graph Theory

Definition: Graph

� A graph is a collection of nodes and edges
� Denoted by G = (V, E).

V = nodes (vertices, points).
E = edges (links, arcs) between pairs of nodes.
Graph size parameters: n = |V|, m = |E|.

�

Vertex & Edge

� Vertex /Node
¡ Basic Element
¡ Drawn as a node or a dot.
¡ Vertex set of G is usually denoted by V(G), or V or VG

� Edge /Arcs
¡ A set of two elements
¡ Drawn as a line connecting two vertices, called end vertices, or

endpoints.
¡ The edge set of G is usually denoted by E(G), or E or EG

� Neighborhood
¡ For any node v, the set of nodes it is connected to via an edge is

called its neighborhood and is represented as N(v)

Graph :Example

� n:= 6 , m:=7
� Vertices (V) :={1,2,3,4,5,6}
� Edge (E) := {1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}
� N(4) := Neighborhood (4) ={6,5,3}

Edge types:

¡ Undirected;
¡ E.g., distance between two cities, friendships…

¡ Directed; ordered pairs of nodes.
¡ E.g ,…
¡ Directed edges have a source (head, origin) and target (tail,

destination) vertices

¡ Weighted ; usually weight is associated .

Empty Graph / Edgeless graph

� No edge

� Null graph
¡ No nodes
¡ Obviously no edge

Simple Graph (Undirected)

� Simple Graph are undirected graphs without loop or
multiple edges

� A = AT

For simple graphs, deg(v Ei
v Vi

) | |
Î
å = 2

Directed graph : (digraph)

� Edges have directions
� A !=AT

loop

node

multiple arc

arc

Weighted graph

� is a graph for which each edge has an associated weight

1 2 3

4 5 6

.5

1.2

.2

.5

1.5.3

1

4 5 6

2 3
2

1
35

Bipartite Graph

V can be partitioned into 2 sets V1 and V2
such that (u,v)ÎE implies

either u ÎV1 and v ÎV2
OR v ÎV1 and uÎV2.

Trees

� An undirected graph is a tree if it is connected and does not
contain a cycle (Connected Acyclic Graph)

� Two nodes have exactly one path between them

Subgraph

� Vertex and edge sets are subsets of those of G
¡ a supergraph of a graph G is a graph that contains G as a

subgraph.

Graph Representations

1. Adjacency Matrix

� n-by-n matrix with Auv = 1 if (u, v) is an edge.
¡ Diagonal Entries are self-links or loops
¡ Symmetric matrix for undirected graphs

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

2. Incidence Matrix

¡ V x E
¡ [vertex, edges] contains the edge's data

10000006
01010105
11100004
00101003
00011012
00000111
6,45,44,35,23,25,12,1

3. Adjacency List

� Edge List

� Adjacency List (node list)

Edge List
1 2
1 2
2 3
2 5
3 3
4 3
4 5
5 3
5 4

Node List
1 2 2
2 3 5
3 3
4 3 5
5 3 4

Edge Lists for Weighted Graphs

Edge List
1 2 1.2
2 4 0.2
4 5 0.3
4 1 0.5
5 4 0.5
6 3 1.5

Graph Terminologies

Classification of Graph Terms

n Global terms refer to a whole graph
n Local terms refer to a single node in a graph

Connected and Isolated vertex

� Two vertices are connected if there is a path
between them

� Isolated vertex – not connected

1

4 5 6

2 3

isolated vertex

Adjacent nodes

� Adjacent nodes -Two nodes are adjacent if they
are connected via an edge.
� If edge e={u,v} ∈ E(G), we say that u and v are adjacent or neigbors

� An edge where the two end vertices are the same is called a
loop, or a self-loop

Degree (Un Directed Graphs)

� Number of edges incident on a node

The degree of 5 is 3

Degree (Directed Graphs)

¡ In-degree: Number of edges entering

¡ Out-degree: Number of edges leaving

¡ Degree = indeg + outdeg outdeg(1)=2
indeg(1)=0

outdeg(2)=2
indeg(2)=2

outdeg(3)=1
indeg(3)=4

Walk

� trail: no edge can be repeat
a-b-c-d-e-b-d

� walk: a path in which edges/nodes
can be repeated.

a-b-d-a-b-c

� A walk is closed is a=c

Paths

� Path: is a sequence P of nodes v1, v2, …, vk-1, vk

� No vertex can be repeated
� A closed path is called a cycle
� The length of a path or cycle is the number of edges visited in the path

or cycle

Walks and Paths
1,2,5,2,3,4 1,2,5,2,3,2,1 1,2,3,4,6

walk of length 5 CW of length 6 path of length 4

Cycle

� Cycle - closed path: cycle (a-b-c-d-a) , closed if x=y
� Cycles denoted by Ck, where k is the number of nodes in the

cycle

C3 C4 C5

Shortest Path

� Shortest Path is the path between two nodes
that has the shortest length

� Length – number of edges.
� Distance between u and v is the length of a shortest

path between them
� The diameter of a graph is the length of the longest

shortest path between any pairs of nodes in the
graph

THANK YOU

Prem Sankar C
M Tech Technology Management

Dept of Futures Studies

Kerala University

Prem Sankar C - Dept of Futures Studies

3: Nodal Analysis

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 1 / 12

Aim of Nodal Analysis

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 2 / 12

The aim of nodal analysis is to determine the voltage at each node relative
to the reference node (or ground). Once you have done this you can easily
work out anything else you need.

Aim of Nodal Analysis

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 2 / 12

The aim of nodal analysis is to determine the voltage at each node relative
to the reference node (or ground). Once you have done this you can easily
work out anything else you need.
There are two ways to do this:
(1) Nodal Analysis - systematic; always works
(2) Circuit Manipulation - ad hoc; but can be less work and clearer

Aim of Nodal Analysis

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 2 / 12

The aim of nodal analysis is to determine the voltage at each node relative
to the reference node (or ground). Once you have done this you can easily
work out anything else you need.
There are two ways to do this:
(1) Nodal Analysis - systematic; always works
(2) Circuit Manipulation - ad hoc; but can be less work and clearer

Reminders:
A node is all the points in a circuit
that are directly interconnected.
We assume the interconnections
have zero resistance so all points
within a node have the same
voltage. Five nodes: A, · · · , E.

Aim of Nodal Analysis

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 2 / 12

The aim of nodal analysis is to determine the voltage at each node relative
to the reference node (or ground). Once you have done this you can easily
work out anything else you need.
There are two ways to do this:
(1) Nodal Analysis - systematic; always works
(2) Circuit Manipulation - ad hoc; but can be less work and clearer

Reminders:
A node is all the points in a circuit
that are directly interconnected.
We assume the interconnections
have zero resistance so all points
within a node have the same
voltage. Five nodes: A, · · · , E.

Ohm’s Law: VBD = IR5

Aim of Nodal Analysis

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 2 / 12

The aim of nodal analysis is to determine the voltage at each node relative
to the reference node (or ground). Once you have done this you can easily
work out anything else you need.
There are two ways to do this:
(1) Nodal Analysis - systematic; always works
(2) Circuit Manipulation - ad hoc; but can be less work and clearer

Reminders:
A node is all the points in a circuit
that are directly interconnected.
We assume the interconnections
have zero resistance so all points
within a node have the same
voltage. Five nodes: A, · · · , E.

Ohm’s Law: VBD = IR5

KVL: VBD = VB − VD

Aim of Nodal Analysis

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 2 / 12

The aim of nodal analysis is to determine the voltage at each node relative
to the reference node (or ground). Once you have done this you can easily
work out anything else you need.
There are two ways to do this:
(1) Nodal Analysis - systematic; always works
(2) Circuit Manipulation - ad hoc; but can be less work and clearer

Reminders:
A node is all the points in a circuit
that are directly interconnected.
We assume the interconnections
have zero resistance so all points
within a node have the same
voltage. Five nodes: A, · · · , E.

Ohm’s Law: VBD = IR5

KVL: VBD = VB − VD

KCL: Total current exiting any closed region is zero.

Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 3 / 12

To find the voltage at each node, the first
step is to label each node with its voltage
as follows

(1) Pick any node as the voltage reference. Label its voltage as 0 V.
(2) If any fixed voltage sources are connected to a labelled node, label their
other ends by adding the value of the source onto the voltage of the
labelled end.
(3) Pick an unlabelled node and label it with X, Y, . . ., then go back to
step (2) until all nodes are labelled.

Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 3 / 12

To find the voltage at each node, the first
step is to label each node with its voltage
as follows

(1) Pick any node as the voltage reference. Label its voltage as 0 V.
(2) If any fixed voltage sources are connected to a labelled node, label their
other ends by adding the value of the source onto the voltage of the
labelled end.
(3) Pick an unlabelled node and label it with X, Y, . . ., then go back to
step (2) until all nodes are labelled.

Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 3 / 12

To find the voltage at each node, the first
step is to label each node with its voltage
as follows

(1) Pick any node as the voltage reference. Label its voltage as 0 V.
(2) If any fixed voltage sources are connected to a labelled node, label their
other ends by adding the value of the source onto the voltage of the
labelled end.
(3) Pick an unlabelled node and label it with X, Y, . . ., then go back to
step (2) until all nodes are labelled.

Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 3 / 12

To find the voltage at each node, the first
step is to label each node with its voltage
as follows

(1) Pick any node as the voltage reference. Label its voltage as 0 V.
(2) If any fixed voltage sources are connected to a labelled node, label their
other ends by adding the value of the source onto the voltage of the
labelled end.
(3) Pick an unlabelled node and label it with X, Y, . . ., then go back to
step (2) until all nodes are labelled.

Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 3 / 12

To find the voltage at each node, the first
step is to label each node with its voltage
as follows

(1) Pick any node as the voltage reference. Label its voltage as 0 V.
(2) If any fixed voltage sources are connected to a labelled node, label their
other ends by adding the value of the source onto the voltage of the
labelled end.
(3) Pick an unlabelled node and label it with X, Y, . . ., then go back to
step (2) until all nodes are labelled.

Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 3 / 12

To find the voltage at each node, the first
step is to label each node with its voltage
as follows

(1) Pick any node as the voltage reference. Label its voltage as 0 V.
(2) If any fixed voltage sources are connected to a labelled node, label their
other ends by adding the value of the source onto the voltage of the
labelled end.
(3) Pick an unlabelled node and label it with X, Y, . . ., then go back to
step (2) until all nodes are labelled.

Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 3 / 12

To find the voltage at each node, the first
step is to label each node with its voltage
as follows

(1) Pick any node as the voltage reference. Label its voltage as 0 V.
(2) If any fixed voltage sources are connected to a labelled node, label their
other ends by adding the value of the source onto the voltage of the
labelled end.
(3) Pick an unlabelled node and label it with X, Y, . . ., then go back to
step (2) until all nodes are labelled.

Nodal Analysis Stage 2: KCL Equations

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 4 / 12

The second step is to write down a KCL equation for each node labelled
with a variable by setting the total current flowing out of the node to zero.
For a circuit with N nodes and S voltage sources you will have N − S − 1
simultaneous equations to solve.

Nodal Analysis Stage 2: KCL Equations

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 4 / 12

The second step is to write down a KCL equation for each node labelled
with a variable by setting the total current flowing out of the node to zero.
For a circuit with N nodes and S voltage sources you will have N − S − 1
simultaneous equations to solve.

We only have one variable:

X−8
1 k + X−0

2 k + X−(−2)
3 k = 0

Nodal Analysis Stage 2: KCL Equations

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 4 / 12

The second step is to write down a KCL equation for each node labelled
with a variable by setting the total current flowing out of the node to zero.
For a circuit with N nodes and S voltage sources you will have N − S − 1
simultaneous equations to solve.

We only have one variable:

X−8
1 k + X−0

2 k + X−(−2)
3 k = 0

Numerator for a resistor is always of the form X − VN where VN is the
voltage on the other side of the resistor.

Nodal Analysis Stage 2: KCL Equations

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 4 / 12

The second step is to write down a KCL equation for each node labelled
with a variable by setting the total current flowing out of the node to zero.
For a circuit with N nodes and S voltage sources you will have N − S − 1
simultaneous equations to solve.

We only have one variable:

X−8
1 k + X−0

2 k + X−(−2)
3 k = 0 ⇒ (6X − 48) + 3X + (2X + 4) = 0

Numerator for a resistor is always of the form X − VN where VN is the
voltage on the other side of the resistor.

Nodal Analysis Stage 2: KCL Equations

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 4 / 12

The second step is to write down a KCL equation for each node labelled
with a variable by setting the total current flowing out of the node to zero.
For a circuit with N nodes and S voltage sources you will have N − S − 1
simultaneous equations to solve.

We only have one variable:

X−8
1 k + X−0

2 k + X−(−2)
3 k = 0 ⇒ (6X − 48) + 3X + (2X + 4) = 0

11X = 44 ⇒ X = 4

Numerator for a resistor is always of the form X − VN where VN is the
voltage on the other side of the resistor.

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8, X

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8, X and Y .

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8, X and Y .

(3) Write equations

X−8
1 + X

2 + X−Y

3 = 0

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8, X and Y .

(3) Write equations

X−8
1 + X

2 + X−Y

3 = 0

Y−X

3 + (−1) = 0

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8, X and Y .

(3) Write equations

X−8
1 + X

2 + X−Y

3 = 0

Y−X

3 + (−1) = 0

Ohm’s law works OK if all resistors are in kΩ and all currents in mA.

Current Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 5 / 12

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8, X and Y .

(3) Write equations

X−8
1 + X

2 + X−Y

3 = 0

Y−X

3 + (−1) = 0

Ohm’s law works OK if all resistors are in kΩ and all currents in mA.
(4) Solve the equations: X = 6, Y = 9

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

(1) Pick reference node.

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

(1) Pick reference node.

(2) Label nodes: 8

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

(1) Pick reference node.

(2) Label nodes: 8, X

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

(1) Pick reference node.

(2) Label nodes: 8, X and X + 2 since it
is joined to X via a voltage source.

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

(1) Pick reference node.

(2) Label nodes: 8, X and X + 2 since it
is joined to X via a voltage source.

(3) Write KCL equations but count all the
nodes connected via floating voltage
sources as a single “super-node” giving
one equation

X−8
1 + X

2 + (X+2)−0
3 = 0

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

(1) Pick reference node.

(2) Label nodes: 8, X and X + 2 since it
is joined to X via a voltage source.

(3) Write KCL equations but count all the
nodes connected via floating voltage
sources as a single “super-node” giving
one equation

X−8
1 + X

2 + (X+2)−0
3 = 0

Ohm’s law always involves the difference between the voltages at either
end of a resistor. (Obvious but easily forgotten)

Floating Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 6 / 12

Floating voltage sources have neither end connected to a known fixed
voltage. We have to change how we form the KCL equations slightly.

(1) Pick reference node.

(2) Label nodes: 8, X and X + 2 since it
is joined to X via a voltage source.

(3) Write KCL equations but count all the
nodes connected via floating voltage
sources as a single “super-node” giving
one equation

X−8
1 + X

2 + (X+2)−0
3 = 0

(4) Solve the equations: X = 4

Ohm’s law always involves the difference between the voltages at either
end of a resistor. (Obvious but easily forgotten)

Weighted Average Circuit

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 7 / 12

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

Weighted Average Circuit

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 7 / 12

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

KCL equation for node X :

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Weighted Average Circuit

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 7 / 12

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

KCL equation for node X :

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Or using conductances:

(X − V1)G1 + (X − V2)G2 + (X − V3)G3 = 0

Weighted Average Circuit

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 7 / 12

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

KCL equation for node X :

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Or using conductances:

(X − V1)G1 + (X − V2)G2 + (X − V3)G3 = 0

X(G1 +G2 +G3) = V1G1 + V2G2 + V3G3

Weighted Average Circuit

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 7 / 12

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

KCL equation for node X :

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Or using conductances:

(X − V1)G1 + (X − V2)G2 + (X − V3)G3 = 0

X(G1 +G2 +G3) = V1G1 + V2G2 + V3G3

X = V1G1+V2G2+V3G3

G1+G2+G3

=

∑
ViGi∑
Gi

Weighted Average Circuit

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 7 / 12

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

KCL equation for node X :

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Or using conductances:

(X − V1)G1 + (X − V2)G2 + (X − V3)G3 = 0

X(G1 +G2 +G3) = V1G1 + V2G2 + V3G3

X = V1G1+V2G2+V3G3

G1+G2+G3

=

∑
ViGi∑
Gi

Voltage X is the average of V1, V2, V3 weighted by the conductances.

Weighted Average Circuit

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 7 / 12

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

KCL equation for node X :

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Still works if V3 = 0.

Or using conductances:

(X − V1)G1 + (X − V2)G2 + (X − V3)G3 = 0

X(G1 +G2 +G3) = V1G1 + V2G2 + V3G3

X = V1G1+V2G2+V3G3

G1+G2+G3

=

∑
ViGi∑
Gi

Voltage X is the average of V1, V2, V3 weighted by the conductances.

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal.

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to control the switches which determine whether Vi = 5 V
or Vi = 0 V. Thus Vi = 5bi. Switches shown for b = 6.

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to control the switches which determine whether Vi = 5 V
or Vi = 0 V. Thus Vi = 5bi. Switches shown for b = 6.

X =
1

2
V2+

1

4
V1+

1

8
V0

1

2
+ 1

4
+ 1

8

G2 = 1
R2

= 1
2 k

= 1
2mS, . . .

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to control the switches which determine whether Vi = 5 V
or Vi = 0 V. Thus Vi = 5bi. Switches shown for b = 6.

X =
1

2
V2+

1

4
V1+

1

8
V0

1

2
+ 1

4
+ 1

8

= 1
7 (4V2 + 2V1 + V0)

G2 = 1
R2

= 1
2 k

= 1
2mS, . . .

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to control the switches which determine whether Vi = 5 V
or Vi = 0 V. Thus Vi = 5bi. Switches shown for b = 6.

X =
1

2
V2+

1

4
V1+

1

8
V0

1

2
+ 1

4
+ 1

8

= 1
7 (4V2 + 2V1 + V0)

but Vi = 5× bi since it connects to
either 0V or 5V

G2 = 1
R2

= 1
2 k

= 1
2mS, . . .

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to control the switches which determine whether Vi = 5 V
or Vi = 0 V. Thus Vi = 5bi. Switches shown for b = 6.

X =
1

2
V2+

1

4
V1+

1

8
V0

1

2
+ 1

4
+ 1

8

= 1
7 (4V2 + 2V1 + V0)

but Vi = 5× bi since it connects to
either 0V or 5V

= 5
7 (4b2 + 2b1 + b0) =

5
7b G2 = 1

R2

= 1
2 k

= 1
2mS, . . .

Digital-to-Analog Converter

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 8 / 12

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to control the switches which determine whether Vi = 5 V
or Vi = 0 V. Thus Vi = 5bi. Switches shown for b = 6.

X =
1

2
V2+

1

4
V1+

1

8
V0

1

2
+ 1

4
+ 1

8

= 1
7 (4V2 + 2V1 + V0)

but Vi = 5× bi since it connects to
either 0V or 5V

= 5
7 (4b2 + 2b1 + b0) =

5
7b G2 = 1

R2

= 1
2 k

= 1
2mS, . . .

So we have made a circuit in which X is proportional to a binary number b.

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U , X and Y .

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent
source, IS , in terms of node voltages:

IS = 0.2 (U −X)

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent
source, IS , in terms of node voltages:

IS = 0.2 (U −X)

(4) Write KCL equations:

X−U

10 + X

10 + X−Y

20 = 0

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent
source, IS , in terms of node voltages:

IS = 0.2 (U −X)

(4) Write KCL equations:

X−U

10 + X

10 + X−Y

20 = 0 Y−X

20 + IS + Y

15 = 0

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent
source, IS , in terms of node voltages:

IS = 0.2 (U −X)

(4) Write KCL equations:

X−U

10 + X

10 + X−Y

20 = 0 Y−X

20 + IS + Y

15 = 0

(5) Solve all three equations to find X , Y and IS in terms of U :

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent
source, IS , in terms of node voltages:

IS = 0.2 (U −X)

(4) Write KCL equations:

X−U

10 + X

10 + X−Y

20 = 0 Y−X

20 + IS + Y

15 = 0

(5) Solve all three equations to find X , Y and IS in terms of U :
X = 0.1U, Y = −1.5U, IS = 0.18U

Dependent Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 9 / 12

A dependent voltage or current source is one whose value is determined
by voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: IS = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent
source, IS , in terms of node voltages:

IS = 0.2 (U −X)

(4) Write KCL equations:

X−U

10 + X

10 + X−Y

20 = 0 Y−X

20 + IS + Y

15 = 0

(5) Solve all three equations to find X , Y and IS in terms of U :
X = 0.1U, Y = −1.5U, IS = 0.18U

Note that the value of U is assumed to be known.

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

(2) Label nodes: 0, 5

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

(2) Label nodes: 0, 5, X, X + 3

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

(2) Label nodes: 0, 5, X, X + 3 and
X + VS .

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

(2) Label nodes: 0, 5, X, X + 3 and
X + VS .

(3) Write equation for the dependent
source, VS , in terms of node voltages:

VS = 10J = 10× X+VS−5
40 ⇒ 3VS = X − 5

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

(2) Label nodes: 0, 5, X, X + 3 and
X + VS .

(3) Write equation for the dependent
source, VS , in terms of node voltages:

VS = 10J = 10× X+VS−5
40 ⇒ 3VS = X − 5

(4) Write KCL equations: all nodes connected by floating voltage sources
and all components connecting these nodes are in the same “super-node”

X+VS−5
40 + X

5 + X+3
5 = 0

Dependent Voltage Sources

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 10 / 12

The value of the highlighted dependent voltage source is VS = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

(2) Label nodes: 0, 5, X, X + 3 and
X + VS .

(3) Write equation for the dependent
source, VS , in terms of node voltages:

VS = 10J = 10× X+VS−5
40 ⇒ 3VS = X − 5

(4) Write KCL equations: all nodes connected by floating voltage sources
and all components connecting these nodes are in the same “super-node”

X+VS−5
40 + X

5 + X+3
5 = 0

(5) Solve the two equations: X = −1 and VS = −2

Universal Nodal Analysis Algorithm

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 11 / 12

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with VS , IS ,

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, . . ., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal” node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

Universal Nodal Analysis Algorithm

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 11 / 12

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with VS , IS ,

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, . . ., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal” node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

Universal Nodal Analysis Algorithm

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 11 / 12

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with VS , IS ,

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, . . ., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal” node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

Universal Nodal Analysis Algorithm

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 11 / 12

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with VS , IS ,

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, . . ., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal” node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

Universal Nodal Analysis Algorithm

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 11 / 12

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with VS , IS ,

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, . . ., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal” node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

Universal Nodal Analysis Algorithm

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 11 / 12

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with VS , IS ,

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, . . ., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal” node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

Universal Nodal Analysis Algorithm

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 11 / 12

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with VS , IS ,

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, . . ., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal” node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

Summary

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 12 / 12

• Nodal Analysis

◦ Simple Circuits (no floating or dependent voltage sources)

Summary

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 12 / 12

• Nodal Analysis

◦ Simple Circuits (no floating or dependent voltage sources)

◦ Floating Voltage Sources
⊲ use supernodes: all the nodes connected by floating voltage

sources (independent or dependent)

Summary

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 12 / 12

• Nodal Analysis

◦ Simple Circuits (no floating or dependent voltage sources)

◦ Floating Voltage Sources
⊲ use supernodes: all the nodes connected by floating voltage

sources (independent or dependent)

◦ Dependent Voltage and Current Sources
⊲ Label each source with a variable
⊲ Write extra equations expressing the source values in terms of

node voltages
⊲ Write down the KCL equations as before

Summary

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 12 / 12

• Nodal Analysis

◦ Simple Circuits (no floating or dependent voltage sources)

◦ Floating Voltage Sources
⊲ use supernodes: all the nodes connected by floating voltage

sources (independent or dependent)

◦ Dependent Voltage and Current Sources
⊲ Label each source with a variable
⊲ Write extra equations expressing the source values in terms of

node voltages
⊲ Write down the KCL equations as before

• Mesh Analysis (in most textbooks)

◦ Alternative to nodal analysis but doesn’t work for all circuits

◦ No significant benefits ⇒ ignore it

Summary

3: Nodal Analysis

• Aim of Nodal Analysis

• Nodal Analysis Stage 1:
Label Nodes
• Nodal Analysis Stage 2:
KCL Equations

• Current Sources

• Floating Voltage Sources

• Weighted Average Circuit

• Digital-to-Analog
Converter

• Dependent Sources

• Dependent Voltage
Sources
• Universal Nodal Analysis
Algorithm

• Summary

E1.1 Analysis of Circuits (2016-8834) Nodal Analysis: 3 – 12 / 12

• Nodal Analysis

◦ Simple Circuits (no floating or dependent voltage sources)

◦ Floating Voltage Sources
⊲ use supernodes: all the nodes connected by floating voltage

sources (independent or dependent)

◦ Dependent Voltage and Current Sources
⊲ Label each source with a variable
⊲ Write extra equations expressing the source values in terms of

node voltages
⊲ Write down the KCL equations as before

• Mesh Analysis (in most textbooks)

◦ Alternative to nodal analysis but doesn’t work for all circuits

◦ No significant benefits ⇒ ignore it

For further details see Hayt et al. Chapter 4.

Electricity flows in two ways: either in an alternating current (AC) or in a direct
current (DC). Electricity or "current" is nothing but the movement of electrons
through a conductor, like a wire. The difference between AC and DC lies in the
direction in which the electrons flow. In DC, the electrons flow steadily in a single
direction, or "forward." In AC, electrons keep switching directions, sometimes going
"forward" and then going "backward."

Alternating current is the best way to transmit electricity over large distances.

Comparison chart
 Alternating Current Direct Current
Amount of
energy that can
be carried

Safe to transfer over longer
city distances and can provide
more power.

Voltage of DC cannot
travel very far until it
begins to lose energy.

Cause of the
direction of
flow of
electrons

Rotating magnet along the
wire.

Steady magnetism along
the wire.

Frequency
The frequency of alternating
current is 50Hz or 60Hz
depending upon the country.

The frequency of direct
current is zero.

Direction It reverses its direction while
flowing in a circuit.

It flows in one direction
in the circuit.

Current It is the current of magnitude
varying with time

It is the current of
constant magnitude.

Flow of
Electrons

Electrons keep switching
directions ­ forward and
backward.

Electrons move steadily
in one direction or
'forward'.

Obtained from A.C Generator and mains. Cell or Battery.
Passive
Parameters Impedance. Resistance only

Power Factor Lies between 0 & 1. It is always 1.

Types Sinusoidal, Trapezoidal,
Triangular, Square. Pure and pulsating.

1.1 Electric Circuit

An electric circuit is a closed conducting path through which an electric current either flows or is

intended to flow. The basic electric circuit consists of
a) Source of energy

b) Two conductors connecting the source and the load to transfer the energy.

 Fig.1.1 Electric circuit with resistive load

Network:

Component of circuit elements are resistor, inductor and capacitor, voltage source and current source.

An interconnection of circuit elements is called a network.

Linear Circuit:

The parameters of linear element remains constant i.e the parameters do not change with current or
voltage applied to the element(i.e R,L,C).The linear element shows linear characteristics of voltage

vs. current (for constant temperature and frequency).

Fig. 1.2

Non Linear Circuit:

In a non linear electric circuit is an electrical element which does not have a linear relationship

between current and voltage. Examples are diode, transistors and semiconductor devices. The

current I through a diode is a non-linear function.

https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Electrical_element
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Semiconductor

Fig. 1.3

Bilateral circuit:

Bilateral circuit is one whose properties and characteristics are same in either direction. For example,

a resistor , if it is connected right to left or left to right whose properties and characteristics are same.

Unilateral Circuit:

Unilateral circuit is the circuit where properties and characteristics change with the direction of
operation (direction current). Diode rectifier is the best example of unilateral circuit.

1.2 Electrical Sources
There are two types of electrical sources.

 Independent Sources and

 Dependent sources.

Independent Sources:

The strength of voltage or current is not changed by any variation in the connected network the source

is said to be either independent voltage or independent current source. In this, the value of voltage or

current is fixed and is not adjustable.

a) Independent Voltage Source Symbol b) Independent Current Source Symbol

 Fig.1.4

Dependent Sources:

The output voltage or current of a dependent source is determined by one of the parameters associated

with another component in the circuit.

Dependent Sources are classified as:

i) Voltage controlled voltage source ii) Current controlled voltage source

iii) Voltage controlled current source iv) Current controlled current source

 Fig.1.5

Node: A node is the point of connection between two or more branches. A node is a point where two

or more circuit elements meet.

Branch: A branch represents a single element such as a voltage source or a resistor.

 Active Element: The active elements generate energy. Batteries, generators, operational amplifiers
etc are active elements.

Passive Element: A passive element is an electrical component that does not generate power, but

instead dissipates, stores, and/or releases it. Passive elements include resistances, capacitors and

inductors.

Loop: A loop is a closed path in a circuit where two nodes are not traversed twice except the initial

point.

Mesh: A mesh is a closed path in a circuit with no other paths inside it, in other words, a loop with

no other loops inside it.

Fig.1.6

In the above fig.1.6, we find that the circuit has 2 nodes and 3 meshes (independent loops)

1.3 Kirchoff’s Laws

There are some simple relationships between currents and voltages of different branches of an

electrical circuit.

Kirchhoff’s Current Law (KCL):

If we consider all the currents enter in the junction are considered as positive sign, then convention of

all the branch currents leaving the junction are negative.

Fig.1.7

Mathematically we can write, i1 + (-i2) + i3 + i4 + (-i5) = 0

Kirchhoff’s Voltage Law (KVL):

This law deals with the voltage drops at various branches.

Fig.1.8

Mathematically we can write, E1+ V1-V2-E2 =0

Sign of Battery

Fig.1.9

For a battery, the polarity is usually indicated on the battery with “+" or “-” near one of the terminals.

Sign of Resistor Voltage Drop Polarity

Fig.1.10

The direction of current flow through a resistor determines the polarity of resistors

1.4 Source Equivalence and Conversion

Source transformation is simplifying a circuit solution by transforming a voltage into a current source,

and vice versa.

Conversion of voltage source to current source

 Convert the constant voltage source shown in figure 1.11 to constant current source.

Fig.1.11

Conversion of current source to voltage source

 Convert the constant current source shown in figure 1.12 to voltage source.

Fig.1.12

We have to do same inverse procedure.

https://en.wikipedia.org/wiki/Electric_current

Norton’s Theorem

Statement:

Procedure to solve any network using Norton’s Theorem:

Step-I:

To find ISC:

Fig.1.18

 Calculation:

 =

Step-II: To find RN:

Fig.1.19

Calculation:

Norton’s Equivalent Circuit:

Fig.1.20

Calculation:

Maximum Power Transfer Theorem:

This theorem is used to value of load resistance for which maximum power will be transfer

from source to load.

 Statements of Maximum Power Transfer Theorem:

A resistive load abstracts maximum power from a network when the load resistance equals to

the internal resistance of the network as viewed back to the network from output terminals,

with all energy sources removed, leaving behind their internal resistances.

Fig.1.25

Proof of Maximum Power Transfer Theorem:

A variable resistance RL is connected to a dc source network. The aim is to determine the

value of RL such that it receives maximum power from the dc source.

IL = V0/ (Ri + RL) ………(i)

The power delivered to the resistive load is given by

 PL = IL2 RL = [V0/ (Ri + RL)]
2
 RL ………..(ii) [substituting IL from equation (i)]

For PL to be maximum,

dPL / dRL = 0

Ri = RL

Hence, it has been prove that the power transfer from a dc source network to a resistive load

is maximum when the internal resistance of the dc source network is equal to the load

resistance.

Pmax = = V0
2
 / 4 Rth

The maximum power transfer theorem defines the condition under which the maximum

power is transferred to the load in a circuit.

Star – Delta Conversion:

A Star connected network which has the symbol of the letter, Υ (wye) and a Delta connected network

which has the symbol of a triangle, Δ (delta).

Star Delta Transformations allow us to convert impedances connected together in a 3-phase

configuration from one type of connection to another. These circuit transformations allow us to

change the three connected resistances (or impedances) by their equivalents measured between the

terminals 1-2, 1-3 or 2-3 for either a star or delta connected circuit

 Fig.1.21 Star Connection Fig.1.22 Delta Connection

From fig. (1) and fig. (2)

 Resistance between terminal 1 and 2 for Star network = resistance between terminal 1 and 2 for Delta

network

R1 + R2 = R12 || (R23 + R31)

 = R12 (R23 + R31) / (R12 +R23 + R31) ………(i)

Similarly ,

 R2 + R3 = R23 (R31 + R12) / (R12 +R23 + R31) ……..(ii)

 R3 + R1 = R31 (R12 + R23) / (R12 +R23 + R31) ……..(iii)

Equations for the transformation from Δ to Y :

Fig.1.23

Adding the equation (i) , (ii) and (iii)

(R1 + R2 + R3) = (R12 R23 + R23 R31 + R31 R12) / (R12 +R23 + R31) ……….(iv)

Subtraction of equation (ii) from equation (iv)

R1 = R12 R31 / (R12 +R23 + R31) ……………….. (v)

Similarly ,

 R2 = R12 R23 / (R12 +R23 + R31) ………………….(vi)

 R3 = R23 R31 / (R12 +R23 + R31) …………………..(vii)

Equations for the transformation from Y to Δ :

Fig.1.24

From the equation (v) , (vi) and (vii)

We gate,

R1 R2 + R2 R3 + R3 R1 = R12 R23 R31 / (R12 +R23 + R31) ……………………….(viii)

Division of equation (viii) by equation (viii) ,

 R12 = (R1 R2 + R2 R3 + R3 R1) / R3

Similarly ,

 R23 = (R1 R2 + R2 R3 + R3 R1) / R1

 R31= (R1 R2 + R2 R3 + R3 R1) / R2

3.1 Concept of magnetic circuit:

Magnetic field

Magnetic fields can be created due to the permanent magnet and current passes through in a solenoid.

Magnetic field is represented by lines of force for static electric field. This static electric field

produced by dc current or permanent magnet.

Fig.3.1

A magnetic circuit is created by one or more closed loop paths containing a magnetic flux. The

magnetic flux is analogous to the electric current.

Magnetic flux = Ф

Fig.3.2

3.2 B-H curve

Magnetic Hysteresis Curves commonly is known as B-H Curves. Magnetic hysteresis is an

important phenomenon of the magnetization and demagnetization process of material.

This curve is commonly formed by ac supply on the material.

The magnetic flux density = B = Ф/ A, B = µ H, where H is called magnetic field intensity and M is

called magnetization and µ is the permeability of the medium.

http://www.electrical4u.com/static-electric-field/
https://www.britannica.com/science/electric-current

 Fig.3.3 (B-H curve)

3.3 Analogous quantities in magnetic and electric circuits

Differences:

Electric field Magnetic field

1.Magnetic field is produced by a moving charge.

1.Electric field is produced by a charge whether

at rest or in motion

2.The total electric flux through any closed

surface is equal to the net charge enclosed by the

surface.

2.The total magnetic flux through any closed

surface is always zero,(Ф =0)

1. Electric field lines are discontinuous.
They have start from point (+ charge)

and an ending point (- charge).

 3. Magnetic field lines are continuous, they
always make closed loops.

Similarities:

Both are attractive as well as repulsive (Like poles repel, like charges repel; unlike poles attract,

unlike charges attract)

 Fig.3. 4 force between like and unlike charges

3.4 Iron losses

Hysteresis loss and eddy current loss consists of iron loss or core loss.

Hysteresis loss in transformer is ,

Eddy current loss in transformer is ,

Where, Kh = Hysteresis constant. Ke = Eddy current constant. Kf = form constant, Bm = Maximum

flux density

Fig.3.5

In this above figure (Fig.5) E1 ,E2 , N1 and N2 are the primary induced emf, secondary induced emf,

primary number of turn and secondary number of turn respectively.

Eddy currents are currents induced in conductors to oppose the change in flux that generated them. It

is caused when a conductor is exposed to a changing magnetic field due to relative motion of the field

source and conductor; or due to field variation with time. This cause circulation of current, within

the body of the conductor.

Eddy currents can o be minimized by using laminated thin plates of conductor .

3.5 Hysteresis loss

During each A.C. cycle, current flowing in the forward and reverse directions magnetizes and

demagnetizes the core alternatively. Energy is lost in each hysteresis cycle within the magnetic core.

Energy loss is dependent on the properties (e.g. coercively) of particular core material and is

proportional to the area of the hysteresis loop (B-H curve).

3.6 Faraday’s law

This law explains the working principle of the electrical motors, generators, transformers and

inductors. According to Faraday’s law “magnitude of induced emf is proportional rate of change

of magnetic flux.”
 Vind = - N dФ / dt , where N is number of turn of coil

Magnet and coil are required to perform the Faraday’s law.

3.7 Lenz's Law

http://www.electrical4u.com/hysteresis-eddy-current-iron-or-core-losses-and-copper-loss-in-transformer/
http://www.electrical4u.com/electric-current-and-theory-of-electricity/
http://www.electrical4u.com/electric-current-and-theory-of-electricity/
http://electrical-engineering-portal.com/electrical-wire-how-its-made
http://www.electrical4u.com/electrical-motor-types-classification-and-history-of-motor/
http://www.electrical4u.com/what-is-transformer-definition-working-principle-of-transformer/
http://www.electrical4u.com/what-is-inductor-and-inductance-theory-of-inductor/

Lenz law states that the polarity of the induced emf generated in a coil by a changing magnetic flux is

such that it produces a current whose magnetic field oppose the cause of its production.

3.8 Self Inductance

The property of self-inductance is a particular form of electromagnetic induction. Self inductance is

defined as the induction of a voltage in a current-carrying wire when the current in the wire itself is

changing. This current generates a magnetic flux density which gives rise to a magnetic flux

 linking the circuit. We expect the flux to be directly proportional to the current i.

Mathematically,

Ф ∞ i

Ф = L i , where is the magnetic flux , i is current and proportionality constant L is called self

inductance.

 Induced emf (Ɛ) = L di/dt.

Fig.3.6

3.9 Mutual Inductance

If two coils of wire are brought into close proximity with each other so the magnetic field from one

links with the other, a voltage will be generated in the second coil as a result changing flux of first

coil. This is called mutual inductance.

Fig.3.7

In this above figure (Fig.7) ip ,is, Lp and Ls are primary current, secondary current ,primary self –

inductance and secondary self inductance.

The time rate of change of magnetic flux Φ 12 in coil 2 is proportional to the time rate of change of the

current in coil 2.

N1 dФ12 /dt = M12 d Is /dt

M12 =

Similarly,

M21 =

M12 = M21 = M = mutual inductance

5.10 Energy stored in magnetic field of an inductor

Energy stored = E =

 =

 =

 =

LI

2
 , where P is the power.

Energy density = energy per unit volume =

 , where A is the area of the conductor and is

the length of the conductor.

Fig.3.8

Energy stored in a magnetic field, E = B
2
 / 2µ0 , where B is magnetic flux density and µ0 is

permeability of the medium.

2.10 Complex Number:

Any phasor quantity can be represented in different forms.

i. Trigonomatric form, ii. Exponential form , iii. Polar form.

Trigonomatric form: V = V(cosΦ+sinΦ)

Polar form: V = V  +Φº

Rectangular form: V = a+jb

2.10.1 Mathematical Operation of Phasors:

 For addition and subtraction operation, rectangular forms are used. Such

operations can’t be performed in polar form.

 For multiplication and division operation, rectangular forms can be used, but

not preferred. Such operations are performed in polar form.

 Let, A = X +Φº & B = Y +αº

Then, A*B = XY +(Φº+ αº) ; A/B = X/Y +(Φº- αº)

 Let, A = a+jb & C = c+jd

Then, A+C = (a+c) + j(b+d)

2.10.2 Conversion of POLAR form into RECTANGULAR form

Let, v = v +Φº = v(cosΦ + j sinΦ) = a+jb

Where, a = vcosΦ b= vsinΦ

2.10.3 Conversion of RECTANGULAR form into POLAR form

Let, A = a+jb

Magnitude of A , X = ; Angle of A, Φ =

2.11 Significance of j operator:

 Fig. 12

Hence, if X is multiplied by j twice, the quantity will be rotated through 180º in

anticlockwise direction. if X is multiplied by j once, the quantity will be rotated through

90º in anticlockwise direction. if X is multiplied by j thrice, the quantity will be rotated

through 270º in anticlockwise direction.

 Let, Z = R+jX, this indicates R and X are 90º apart and X leads R.

 Z = R-jX, this indicates R and X are 90º apart and X lags behind R.

EXAMPLE I: An alternating voltage is given by the equation v = 10 sin (628 t +

)

.Find the Rms value ,(b) frequency, (c)time period (d) form factor (e) peak factor (f)

average value.

We know,

By comparison, Vm = 10 V; ω= 2πf = 628; θ =

So, (a) Vrms =

 = 7.07 V (f) Vav = 0.637* Vm = 6.37 V (b) f =

 = 100Hz

 ,

(c) T =

 = 0.01 secs (d) FF =

 = 1.11 (e) Peak factor =

=1.414

KEY POINTS:

 DC has no frequency, constant magnitude.

 AC has specific frequency, changing magnitude.

 Average value of a sinusoidal ac signal should be calculated over a half cycle.

 RMS value of a sinusoidal ac signal should be calculated over a full cycle.

 All electrical machines, devices operate at 50Hz signal in India and rated in RMS value.

 For a better quality waveform, FF should be close to unity.

 Phasor addition & subtraction is not possible in polar form. Hence, POLAR to

RECTANGULAR form conversion is necessary.

 Phasor multiplication and division is possible in rectangular form. But it is preferred to

perform such operations in rectangular form. Hence, RECTANGULAR to POLAR

form conversion is necessary.

 To rotate any quantity by 90º in anticlockwise direction, multiply that quantity by j.

Multiple Choice Type Questions:

1. The peak value of a sine wave is 100V. The average and RMS values

are…………………. Respectively.

(i) 63.7 V & 70.7 V (ii) 6.37 V & 7.07 V (iii) 0.637 V & 0.707 V (iv)

none

2. Two alternating waveforms A & B have 10 secs & 20 secs time period. A

has………………. Than B.

(i) Less (ii) more (iii) equal (iv) none of these

Long Questions:

1. An alternating voltage is given by the equation v = 100 sin (314 t +

) .Find the

(a) Rms value ,(b) frequency, (c)time period (d) form factor (e) peak factor (f) average value

2. A = 10 30º & B = 20 60º. Find A+B.

3. An alternating voltage has amplitude of 100V at 50 Hz frequency. Write down equation

of instantaneous voltage. Also find the magnitude of voltage at0.01 sec.

2.6 Average value or Mean value of a Sinusoidal waveform:

It is the amount of steady or direct current of an alternating current that transfer same

amount of charge as transferred by that alternating current during same time.

Mathematically,

 Average value =

Average value of alternating wave is calculated over full cycle for unsymmetrical waves.

For symmetrical waves average value is zero over a full cycle. Hence, for such waves it
should be calculated over positive half cycle / negative half cycle.

The average value of sinusoidal alternating current is given by:

Iav =

 [Substitute, i=ImSinwt]………………………….(v)

2.9 RMS value or Effective value of a Sinusoidal waveform

It is the steady or direct current of an alternating quantity which produces same heat

when passed through a circuit for certain period of time as produced by the alternating

quantity.

Let, direct current I current passes through R resistance for t time and produces H1 heat.

Alternating current iac passes through the same circuit for same time and produces H2

heat.

If, H1 = H2, then I is the RMS value of iac.

Fig 8

Fig. 9

Fig. 10 AC waveform

I = Irms =

 =

 =

 = 0.707 Im [Substitute i= Im Sinwt]…….

(vi)

RMS value for any wave (symmetrical/ Unsymmetrical) is calculated over a full cycle.

Although for the sinusoidal wave shown in above figure has zero average value over a

full cycle, but rms value will have a positive value (As for RMS value we need to find

squared values of area covered in a full cycle)

Form Factor: Ratio of RMS value and average value of an alternating quantity.

Form Factor(FF) =

 =1.11(For sine wave)

More closer the FF to unity (1), better is waveform quality.

Crest Factor/ Peak Factor: Ratio of peak value and RMS value of an alternating

quantity.

 Crest Factor(CF) =

 =1.414

Phase Difference of a Sinusoidal Waveform

The generalized mathematical expression to define these two sinusoidal quantities will be

written as:

From above two equations, it is found that phase difference between v & is θ and –ve

sign indicates lags behind v.

Phasor Diagram representing above equations:

 Similarly, if current i leads voltage v, the phasor diagram can be written as:

Fig. 11 Phase difference between voltage & current

 AC through Electric Circuit

2.12 Purely resistive circuit (R only)

Let, a pure sinusoidal voltage v is applied to a purely resistive circuit having resistance

R.

i =

 =

 t……….......... (vii)

Where, Instantaneous supply voltage,

v = ………………..(viii)

Im=

Im and Vm are the maximum values of current and voltage respectively.

V & I are RMS values of voltage & current respectively.

 From equation (vii) & (viii), it is observed that phase angle between voltage (V) &

current (I) is,Φ = 0º. In other words, V & I are in same phase.

 Hence, power factor, cosΦ = 1 (Unity).

2.13 Purely inductive circuit (L only)

If pure sinusoidal alternating voltage is applied to the circuit, the instantaneous voltage is

given by,

v = ………………(ix)

As we know, v = L

,

i=

Sol

 i=

 º) = Im Sin (wt-90º) …………..(x)

Where Im =

Fig. 13 (a) Purely resistive circuit with ac voltage

 (b) voltage & current waveforms

 (c) Phasor Diagram

 Fig . 14 Purely Inductive circuit Fig 15 . Phasor Diagram

For purely inductive circuit, the term inductive reactance, XL= wL = 2∏fL offers opposition to

the flow of current. Its unit is ohm.
 For DC voltage source as frequency is zero, inductor behaves as a short circuit.

 From equation (ix) & (x), it is observed that phase angle between voltage (V) & current (I) is,Φ

= 90º. (-ve) sign indicates current is lagging. Hence, power factor, cosΦ = 0.

2.14 Purely capacitive circuit (C only)

If pure sinusoidal alternating voltage is applied to the circuit, the instantaneous voltage is

given by,

v = ………………(xi)

As we know, i =

Solving this equation, we get ;

i=

 º) = Im Sin (wt+90º) …………..(xii)

Where, Im =

 =

For purely capacitive circuit, the term inductive reactance, Xc=

 =

 offers opposition to the

flow of current. Its unit is ohm.

 Capacitive reactance decreases with increasing frequency.

 For DC voltage source as frequency is zero, capacitor behaves as an open circuit.

 From equation (xi) & (xii), it is observed that phase angle between voltage (V) & current

(I) is,

Φ = 90º. (+ve) sign indicates current is leading voltage by 90 degree.

 Hence, power factor, cosΦ = 0.

Fig. 16 Voltage & Current Waveforms

 Fig. 17 Purely capacitive circuit Fig. 18 Phasor Diagram

Fig. 19 Voltage & current waveforms

Advantages of Three Phase System over Single Phase

System

Presently 3-ø AC system is very popular and being used worldwide for power generation,

power transmission, distribution and for electric motors.

Three phase system has the following advantages as compare to single phase system:

1. Power to weight ratio of 3-ø alternator is high as compared to 1-ø alternator. That means

for generation for same amount of Electric Power, the size of 3-ø alternator is small as

compare to 1-ø Alternator. Hence, the overall cost of alternator is reduced for generation of

same amount of power. Moreover, due to reduction in weight, transportation and

installation of alternator become convenient and less space is required to accommodate the

alternator in power houses.

2. For electric power transmission and distribution of same amount of power, the requirement

of conductor material is less in 3-ø system as compare to 1-ø system. Hence, the 3-ø

transmission and distribution system is economical as compare 1-ø system.

3. Let us consider the power produced by single phase supply and 3-phase supply at unity

power factor. Wave form of power produce due 1-phase supply at unity power factor is

shown in figure (A) and Wave form of power produced due to 3-phase supply is shown in

figure (B) below.

Figure (A)

Figure (B)

4. From power wave forms shown in figure (A) and (B) above it is clear that in 3-phase

system, the instantaneous power is always constant over the cycle results in smooth and

vibration free operation of machine. Whereas in 1-ø system the instantaneous power is

pulsating hence change over the cycle, which leads to vibrations in machines.

5. Power to weight ratio of three phase induction motor is high as compare to single phase

induction motor. Means for same amount of Mechanical Power, the size of three phase

induction motor is small as compare to single phase induction motor. Hence, the overall

cost of induction motor is reduced. Moreover, due to reduction in weight, transportation

and installation of induction motor become convenient and less space is required to

accommodate the Induction motor.

6. 3-phase induction motor is self-started as the magnetic flux produced by 3-phase supply is

rotating in nature with constant magnitude. Whereas 1-ø induction motor is not self-started

as the magnetic flux produced by 1-ø supply is pulsating in nature. Hence, we have to

make some arrangement to make the 1-ø induction motor self-started which further

increases the cost of 1-ø induction motor.

7. 3-phase motor is having better power factor and efficiency as compare to 1-ø motor.

8. Power to weight ratio of 3-phase transformer is high as compare to 1-ø transformer. Means

for same amount of Electric Power, the size of 3-phase transformer is small as compared to

1-ø transformer. Hence, the overall cost of transformer is reduced. Moreover, due to

reduction in weight, transportation and installation of transformer become convenient and

less space is required to accommodate the transformer.

9. If fault occurs in any winding of 3-phase transformer, the rest of two winding can be used

in open delta to serve the 3-phase load which is not possible in 1-ø transformer. This ability

of 3-phase transformer further increases the reliability of 3-phase transformer.

10. A 3-phase system can be used to feed a 1-ø load, whereas vice-versa is not possible.

11. DC rectified from 3-phase supply is having the ripple factor 4% and DC rectified from 1-ø

supply is having the ripple factor 48.2 %. Mean DC rectified from 3-ø supply contains less

ripples as compare to DC rectified from 1-ø supply. Hence the requirement of filter is

reduced for DC rectified from 3-phase supply. Which reduce the overall cost of converter.

12. From above it is clear the 3-phase system is more economical, efficient, reliable and

convenient as compared to 1-ø system.

Three Phase Circuit | Star and Delta System

There are two types of system available in electric circuit, single phase and three phase system.

In single phase circuit, there will be only one phase, i.e the current will flow through only one

wire and there will be one return path called neutral line to complete the circuit. So in single

phase minimum amount of power can be transported. Here the generating station and load station

will also be single phase. This is an old system using from previous time.In 1882, new invention

has been done on polyphase system, that more than one phase can be used for generating,

transmitting and for load system. Three phase circuit is the polyphase system where three

phases are send together from the generator to the load. Each phase are having a phase difference

of 120°, i.e. 120° angle electrically. So from the total of 360°, three phases are equally divided

into 120° each. The power in three phase system is continuous as all the three phases are

involved in generating the total power. The sinusoidal waves for 3 phase system is shown below-

The three phases can be used as single phase each. So if the load is single phase, then one phase

can be taken from the three phase circuit and the neutral can be used as ground to complete the

circuit.

Why Three Phase is preferred Over Single Phase?

There are various reasons for this question because there are numbers of advantages over single

phase circuit. The three phase system can be used as three single phase line so it can act as three

single phase system. The three phase generation and single phase generation is same in the

generator except the arrangement of coil in the generator to get 120° phase difference. The

conductor needed in three phase circuit is 75% that of conductor needed in single phase circuit.

And also the instantaneous power in single phase system falls down to zero as in single phase we

can see from the sinusoidal curve but in three phase system the net power from all the phases

gives a continuous power to the load.

Till now we can say that there are three voltage source connected together to form a three phase

circuit and actually it is inside the generator. The generator is having three voltage sources which

are acting together in 120° phase difference. If we can arrange three single phase circuit with

120° phase difference, then it will become a three phase circuit. So 120° phase difference is must

otherwise the circuit will not work, the three phase load will not be able to get active and it may

also cause damage to the system. The size or metal quantity of three phase devices is not having

much difference. Now if we consider the transformer, it will be almost same size for both single

phase and three phase because transformer will make only the linkage of flux. So the three phase

system will have higher efficiency compared to single phase because for the same or little

difference in mass of transformer, three phase line will be out whereas in single phase it will be

only one. And losses will be minimum in three phase circuit. So overall in conclusion the three

phase system will have better and higher efficiency compared to the single phase system. In three

phase circuit, connections can be given in two types:

1. Star connection

2. Delta connection

1. Star Connection

In star connection, there is four wire, three wires are phase wire and fourth is neutral which is

taken from the star point. Star connection is preferred for long distance power transmission

because it is having the neutral point. In this we need to come to the concept of balanced and

unbalanced current in power system.

When equal current will flow through all the three phases, then it is called as balanced current.

And when the current will not be equal in any of the phase, then it is unbalanced current. In this

case, during balanced condition there will be no current flowing through the neutral line and

hence there is no use of the neutral terminal. But when there will be unbalanced current flowing

in the three phase circuit, neutral is having a vital role. It will take the unbalanced current

through to the ground and protect the transformer. Unbalanced current affects transformer and it

may also cause damage to the transformer and for this star connection is preferred for long

distance transmission. The star connection is shown below- In star connection, the line voltage is

√3 times of phase voltage. Line voltage is the voltage between two phases in three phase circuit

and phase voltage is the voltage between one phase to the neutral line. And the current is same

for both line and phase. It is shown as expression below

2. Delta Connection

In delta connection, there is three wires alone and no neutral terminal is taken. Normally delta

connection is preferred for short distance due to the problem of unbalanced current in the circuit.

The figure is shown below for delta connection. In the load station, ground can be used as neutral

path if required.

In delta connection, the line voltage is same with that of phase voltage. And the line current is √3

times of phase current. It is shown as expression below,

In three phase circuit, star and delta connection can be arranged in four different ways-

1. Star-Star connection

2. Star-Delta connection

3. Delta-Star connection

4. Delta-Delta connection

But the power is independent of the circuit arrangement of the three phase system. The net power

in the circuit will be same in both star and delta connection. The power in three phase circuit can

be calculated from the equation below,

Since, there is three phases, so the multiple of 3 is made in the normal power equation and the PF

is power factor. Power factor is a very important factor in three phase system and sometimes due

to certain error; it is corrected by using capacitors.

Relationship of Line and Phase Voltages and Currents in a Star

Connected System

To derive the relations between line and phase currents and voltages of a star connected

system, we have first to draw a balanced star connected system.

Suppose due to load impedance the current lags the applied voltage in each phase of the system

by an angle ϕ. As we have considered that the system is perfectly balanced, the magnitude of

current and voltage of each phase is the same. Let us say, the magnitude of the voltage across the

red phase i.e. magnitude of the voltage between neutral point (N) and red phase terminal (R) is

VR.

Similarly, the magnitude of the voltage across yellow phase is VY and the magnitude of the

voltage across blue phase is VB. In the balanced star system, magnitude of phase voltage in each

phase is Vph. ∴ VR = VY = VB = Vph

We know in the star connection, line current is same as phase current. The magnitude of this

current is same in all three phases and say it is IL. ∴ IR = IY = IB = IL, Where, IR is line current of

R phase, IY is line current of Y phase and IB is line current of B phase. Again, phase current, Iph

of each phase is same as line current IL in star connected system. ∴ IR = IY = IB = IL = Iph.

Now, let us say, the voltage across R and Y terminal of the star connected circuit is VRY. The

voltage across Y and B terminal of the star connected circuit is VYB. The voltage across B and R

terminal of the star connected circuit is VBR. From the diagram, it is found that VRY = VR + (−

VY) Similarly, VYB = VY + (− VB) And, VBR = VB + (− VR) Now, as angle between VR and VY

is 120°(electrical), the angle between VR and – VY is 180° – 120° = 60°(electrical)

Thus, for the star-connected system line voltage = √3 × phase voltage. Line current = Phase

current as, the angle between voltage and current per phase is φ, the electric power per phase is

So the total power of three phase system is

Delta Connection (Δ)
In this system of interconnection, the starting ends of the three phases or coils are connected to

the finishing ends of the coil. Or the starting end of the first coil is connected to the finishing end

of the second coil and so on (for all three coils) and it looks like a closed mesh or circuit as

shown in fig (1).

In more clear words, all three coils are connected in series to form a close mesh or circuit. Three

wires are taken out from three junctions and the all outgoing currents from junction assumed to

be positive.

In Delta connection, the three windings interconnection looks like a short circuit, but this is not

true, if the system is balanced, then the value of the algebraic sum of all voltages around the

mesh is zero.

When a terminal is open, then there is no chance of flowing currents with basic frequency around

the closed mesh.

Good to Remember: at any instant, the EMF value of one phase is equal to the resultant of the

other two phases EMF values but in the opposite direction.

Delta or Mesh Connection System is also called Three Phase Three Wire System (3-Phase 3

Wire) and it is the best and suitable system for AC Power Transmission.

Fig 1:Delta Connection (Δ): 3 Phase Power, Voltage & Current Values

Voltage, Current and Power Values in Delta Connection (Δ)

1. Line Voltages and Phase Voltages in Delta Connection

It is seen from fig 2 that there is only one phase winding between two terminals (i.e. there is one

phase winding between two wires). Therefore, in Delta Connection, the voltage between (any

pair of) two lines is equal to the phase voltage of the phase winding which is connected between

two lines. Since the phase sequence is R → Y → B, therefore, the direction of voltage from R

phase towards Y phase is positive (+),and the voltage of R phase is leading by 120°from Y phase

voltage. Likewise, the voltage of Y phase is leading by 120° from the phase voltage of B and its

direction is positive from Y towards B.

If the line voltage between;

Line 1 and Line 2 = VRY

Line 2 and Line 3 = VYB

Line 3 and Line 1 = VBR

Then, we see that VRY leads VYB by 120° and VYB leads VBR by 120°.

Let’s suppose,

VRY = VYB = VBR = VL …………… (Line Voltage)

Then

VL = VPH

I.e. in Delta connection, the Line Voltage is equal to the Phase Voltage.

2. Line Currents and Phase Currents in Delta Connection

It will be noted from the below (fig-2) that the total current of each Line is equal to the vector

difference between two phase currents flowing through that line. i.e.;

Current in Line 1= I1 = IR – IB

Current in Line 2 =I2 = IY – IR

Current in Line 3 =I3 = IB – IY

{Vector Difference}

Fig 2: Line & Phase Current and Line & Phase Voltage in Delta (Δ) Connection

The current of Line 1 can be found by determining the vector difference between IR and IB and

we can do that by increasing the IB Vector in reverse, so that, IR and IB makes a parallelogram.

The diagonal of that parallelogram shows the vector difference of IR and IB which is equal to

Current in Line 1= I1. Moreover,

by reversing the vector of IB, it may indicate as (-IB), therefore, the angle between IR and -IB (IB,

when reversed = -IB) is 60°. If,

IR = IY = IB = IPH …. The phase currents

Then;

The current flowing in Line 1 would be;

IL or I1 = 2 × IPH × Cos (60°/2)

= 2 × IPH × Cos 30°

= 2 × IPH × (√3/2) …… Since Cos 30° = √3/2= √3 IPH

i.e. In Delta Connection, The Line current is √3 times of Phase Current.

Similarly, we can find the reaming two Line currents as same as above. i.e.,

I2 = IY – IR … Vector Difference = √3 IPH

I3 = IB – IY … Vector difference = √3 IPH

As, all the Line current are equal in magnitude i.e.

I1 = I2 = I3 = IL

Hence

IL = √3 IPH

It is seen from the fig above that;

The Line Currents are 120° apart from each other

Line currents are lagging by 30° from their corresponding Phase Currents

The angle Ф between line currents and respective line voltages is (30°+Ф), i.e. each line current

is lagging by (30°+Ф) from the corresponding line voltage.

3. Power in Delta Connection

We know that the power of each phase

Power / Phase = VPH × IPH × CosФ

And the total power of three phases;

Total Power = P = 3 × VPH × IPH × CosФ ….. (1)

We know that the values of Phase Current and Phase Voltage in Delta Connection;

IPH = IL / √3 ….. (From IL = √3 IPH)

VPH = VL

Putting these values in power eqn……. (1)

P = 3 × VL × (IL/√3) × CosФ …… (IPH = IL / /√3)

P = √3 ×√3 × VL × (IL/√3) × CosФ …{ 3 = √3×√3 }

P = √3 × VL× IL × CosФ …

Hence proved;

Power in Delta Connection,

P = 3 × VPH × IPH × CosФ …. or

P = √3 × VL × IL × CosФ

Good to Know: Where Cos Φ = Power factor = the phase angle between Phase Voltage and

Phase Current and not between Line current and line voltage.

Good to Remember:

In both Star and Delta Connections, The total power on balanced load is same.

I.e. total power in a Three Phase System = P = √3 x VL x IL x CosФ

Good to know:

Balanced System is a system where:

 All three phase voltages are equal in magnitude.

 All phase voltages are in phase by each other i.e. 360°/3 = 120°.

 All three phase Currents are equal in magnitude.

 All phase Currents are in phase by each other i.e. 360°/3 = 120°.

 A three phase balanced load is a system in which the load connected across three phases

are identical.

1.5 Network Theorem

 Superposition Theorem:

Superposition theorem states that, “In a network of linear resistances containing more than one source

of e.m.f., the current which flows at any point is the sum of all the currents which would flow at that

point if each source of e.m.f where considered separately and all the other source of e.m.f replaced for

the time being by resistances equal to their internal resistances.”

 Fig.1.13

 Replace all other independent voltage sources with a short circuit and current sources with

an open circuit.

 Once voltage drops and/or currents have been determined for each individual source working

separately, the values are added algebraically to find the actual voltage drops/currents with all

sources active.

Step 1 : To find I1

Fig.1.14

 Step 2 : To find I2

https://en.wikipedia.org/wiki/Voltage_source
https://en.wikipedia.org/wiki/Short_circuit
https://en.wikipedia.org/wiki/Current_source
https://en.wiktionary.org/wiki/open_circuit

Fig.1.15

Step 3 : Total current I = I1 + I2

Thevenin’s Theorem

Statement: The current flowing through a load resistance RL connected across any two terminals X

and Y of a bilateral, linear network is given by

 , where is the open circuit voltage and

 is the Thevenin’s resistance of the network as viewed back into the open circuited network from

terminals XY deactivating all the independent sources.

Procedure to solve any network using Thevenin’s Theorem:

Step-I:

To find :

Fig.1.16

Calculation:

 = ... (i)

Where, I =

 ……………………………….……………..…… (ii)

 =

 …………………………………………………… (iii)

Step-II:

To find RTH:

Calculation:

 =

 ……….........……………………….………………….. (iv)

Step-III:

To find IL:

Thevnin’s Equivalent Circuit:

Fig.1.17

Calculation:

ELECTRICAL TECHNOLOGY
(EE-101F)

SECTION A : DC NETWORK LAWS
AND THEOREMS

DCE,Gurgaon

Section A

Part A
• Ohm’s Law
• Kirchhoff’s Laws:

KVL and KCL
• Nodal and Loop

methods of analysis,
• Star to Delta and

Delta to Star
transformations

Part B
Thevenin’s Theorem
Norton’s Theorem
Superposition Theorem
Maximum Power
Transfer Theorem
Milman’s Theorem

DCE,Gurgaon

Circuit Elements

DCE,Gurgaon

Overview of this Part

In this part, we will cover the following
topics:

• What a circuit element is
• Independent and dependent voltage

sources and current sources
• Resistors and Ohm’s Law

DCE,Gurgaon

Circuit Elements

• In circuits, we think about basic circuit
elements that are the “building blocks”
of our circuits. This is similar to what
we do in Chemistry with chemical
elements like oxygen or nitrogen.

• A circuit element cannot be broken
down or subdivided into other circuit
elements.

• A circuit element can be defined in
terms of the behavior of the voltage
and current at its terminals.

DCE,Gurgaon

The 5 Basic Circuit Elements

There are 5 basic circuit elements:
1. Voltage sources
2. Current sources
3. Resistors
4. Inductors
5. Capacitors

DCE,Gurgaon Voltage Sources

• A voltage source is a two-terminal
circuit element that maintains a
voltage across its terminals.

• The value of the voltage is the defining
characteristic of a voltage source.

• Any value of the current can go
through the voltage source, in any
direction. The current can also be
zero. The voltage source does not
“care about” current. It “cares” only
about voltage.

DCE,Gurgaon
Voltage Sources –
Ideal and Practical

• A voltage source maintains a voltage across its
terminals no matter what you connect to those
terminals.

• We often think of a battery as being a voltage
source. For many situations, this is fine. Other times
it is not a good model. A real battery will have
different voltages across its terminals in some cases,
such as when it is supplying a large amount of
current. As we have said, a voltage source should
not change its voltage as the current changes.

• We sometimes use the term ideal voltage source for
our circuit elements, and the term practical voltage
source for things like batteries. We will find that a
more accurate model for a battery is an ideal voltage
source in series with a resistor. More on that later.

DCE,Gurgaon

Voltage Sources – 2 kinds

There are 2 kinds of voltage sources:
1. Independent voltage sources
2. Dependent voltage sources, of which

there are 2 forms:
i. Voltage-dependent voltage sources
ii. Current-dependent voltage sources

DCE,Gurgaon Voltage Sources – Schematic
Symbol for Independent Sources

The schematic
symbol that we use
for independent
voltage sources is
shown here.

Independent
voltage
source

+

-

vS=
#[V]

This is intended to indicate that the schematic
symbol can be labeled either with a variable,
like vS, or a value, with some number, and
units. An example might be 1.5[V]. It could
also be labeled with both.

DCE,Gurgaon Voltage Sources – Schematic
Symbols for Dependent Voltage Sources

The schematic symbols that
we use for dependent
voltage sources are
shown here, of which
there are 2 forms:

i. Voltage-dependent
voltage sources

ii. Current-dependent
voltage sources

Voltage-
dependent

voltage
source

+vS=
vX -

Current-
dependent

voltage
source

+vS=
 iX -

DCE,Gurgaon

Voltage-
dependent

voltage
source

+vS=
vX -

Notes on Schematic
Symbols for Dependent Voltage Sources

The schematic symbols that we use for
dependent voltage sources are
shown here, of which there are 2
forms:

i. Voltage-dependent voltage
sources

ii. Current-dependent voltage
sources

The symbol m is the coefficient of the
voltage vX. It is dimensionless. For
example, it might be 4.3 vX. The vX is a
voltage somewhere in the circuit.

Current-
dependent

voltage
source

+vS=
 iX -The symbol r is the coefficient of the current iX.

It has dimensions of [voltage/current]. For
example, it might be 4.3[V/A] iX. The iX is a
current somewhere in the circuit.

DCE,Gurgaon

Current Sources

• A current source is a two-terminal circuit
element that maintains a current through
its terminals.

• The value of the current is the defining
characteristic of the current source.

• Any voltage can be across the current
source, in either polarity. It can also be
zero. The current source does not “care
about” voltage. It “cares” only about
current.

DCE,Gurgaon

Current Sources - Ideal

• A current source maintains a current
through its terminals no matter what
you connect to those terminals.

• While there will be devices that
reasonably model current sources,
these devices are not as familiar as
batteries.

• We sometimes use the term ideal
current source for our circuit elements,
and the term practical current source
for actual devices. We will find that a
good model for these devices is an
ideal current source in parallel with a
resistor. More on that later.

DCE,Gurgaon

Current Sources – 2 kinds

There are 2 kinds of current sources:
1. Independent current sources
2. Dependent current sources, of which

there are 2 forms:
i. Voltage-dependent current sources
ii. Current-dependent current sources

DCE,Gurgaon

Independent
current
source

iS=
#[A]

Current Sources – Schematic
Symbol for Independent Sources

The schematic symbols
that we use for
current sources are
shown here.

This is intended to indicate that the schematic symbol can
be labeled either with a variable, like iS, or a value, with
some number, and units. An example might be 0.2[A]. It
could also be labeled with both.

DCE,Gurgaon

Current Sources – Schematic
Symbols for Dependent Current Sources

The schematic symbols that
we use for dependent
current sources are
shown here, of which
there are 2 forms:

i. Voltage-dependent
current sources

ii. Current-dependent
current sources

Voltage-
dependent

current
source

iS=
gvX

Current-
dependent

current
source

iS=
iX

DCE,Gurgaon

Current-
dependent

current
source

iS=
iX

Voltage-
dependent

current
source

iS=
gvX

Notes on Schematic
Symbols for Dependent Current Sources

The schematic symbols that we use for
dependent current sources are
shown here, of which there are 2
forms:

i. Voltage-dependent current
sources

ii. Current-dependent current
sources

The symbol g is the coefficient of
the voltage vX. It has dimensions
of [current/voltage]. For example,
it might be 16[A/V] vX. The vX is a
voltage somewhere in the circuit.

The symbol b is the coefficient of the
current iX. It is dimensionless. For
example, it might be 53.7 iX. The iX is a
current somewhere in the circuit.

DCE,Gurgaon Voltage and Current Polarities

• Previously, we have
emphasized the importance of
reference polarities of currents
and voltages.

• Notice that the schematic
symbols for the voltage sources
and current sources indicate
these polarities.

• The voltage sources have a “+”
and a “–” to show the voltage
reference polarity. The current
sources have an arrow to show
the current reference polarity.

DCE,Gurgaon Dependent Voltage and
Current Sources – Coefficients

• Some textbooks use symbols other than the ones we
have used here (m, b, r, and g). There are no firm
standards. We hope this is not confusing!!!

DCE,Gurgaon
UPPERCASE vs lowercase – Part 1

In this course, we use UPPERCASE
variables for quantities that do not
change with time. For example,
resistance, capacitance, and inductance
are assumed to be constant in this
course, and so are represented as
UPPERCASE variables.

•For example, we will have things such as
RX = 120[W] and C23 = 4.76[F].

DCE,Gurgaon
UPPERCASE vs lowercase – Part 2

In this course, we use lowercase variables
for quantities that do change with time.
For example, voltage, current, energy,
and power are assumed to be able to
change with time, and so are
represented as lowercase variables, with
UPPERCASE subscripts.

•For example, we will have things such as
vX = 120[V] and pABS,TRUCK = 4.76[W].

DCE,Gurgaon
Why do we have

these dependent sources?

• Students who are new to circuits often question why
dependent sources are included. Some students find
these to be confusing, and they do add to the
complexity of our solution techniques.

• However, there is no way around them. We need
dependent sources to be able to model amplifiers,
and amplifier-like devices. Amplifiers are crucial in
electronics. Therefore, we simply need to
understand and be able to work with dependent
sources.

DCE,Gurgaon

Resistors

• A resistor is a two terminal
circuit element that has a
constant ratio of the voltage
across its terminals to the
current through its terminals.

• The value of the ratio of
voltage to current is the
defining characteristic of the
resistor.

In many cases a
light bulb can be
modeled with a
resistor.

DCE,Gurgaon
Resistors – Definition and Units

• A resistor obeys the expression

where R is the resistance.
• If something obeys this

expression, we can think of it, and
model it, as a resistor.

• This expression is called Ohm’s
Law. The unit ([Ohm] or [W]) is
named for Ohm, and is equal to a
[Volt/Ampere].

• IMPORTANT: use Ohm’s Law only
on resistors. It does not hold for
sources.

To a first-order approximation,
the body can modeled as a
resistor. Our goal will be to
avoid applying large voltages
across our bodies, because it
results in large currents
through our body. This is not
good.

R

R

vR
i


+

R

v
iR -

DCE,Gurgaon

RX=
#[]

vX

iX

-+

Schematic Symbol for Resistors

The schematic symbols that we use for
resistors are shown here.

This is intended to indicate that the schematic symbol
can be labeled either with a variable, like RX, or a
value, with some number, and units. An example
might be 390[W]. It could also be labeled with both.

X
X

X

vR
i



DCE,Gurgaon Resistor Polarities

• Previously, we have
emphasized the important of
reference polarities of current
sources and voltages sources.
There is no corresponding
polarity to a resistor. You can
flip it end-for-end, and it will
behave the same way.

• However, even in a resistor,
direction matters in one sense;
we need to have defined the
voltage and current in the
passive sign convention to use
the Ohm’s Law equation the
way we have it listed here.

DCE,Gurgaon

If the reference current is in the
direction of the reference voltage
drop (Passive Sign Convention),
then…

RX=
#[]

vX

iX

-+

Getting the Sign Right with Ohm’s Law

X
X

X

vR
i



If the reference current is in the
direction of the reference voltage
rise (Active Sign Convention),
then…

RX=
#[]

vX

iX

-+

X
X

X

vR
i

 

DCE,Gurgaon Why do we have to worry
about the sign in Everything?

• This is one of the central themes in circuit analysis. The polarity,
and the sign that goes with that polarity, matters. The key is to
find a way to get the sign correct every time.

• This is why we need to define reference polarities for every
voltage and current.

• This is why we need to take care about what relationship we have
used to assign reference polarities (passive sign convention and
active sign convention).

An analogy: Suppose I was going to give you $10,000. This
would probably be fine with you. However, it will matter a
great deal which direction the money flows. You will care a
great deal about the sign of the $10,000 in this transaction.
If I give you -$10,000, it means that you are giving $10,000
to me. This would probably not be fine with you!

DCE,Gurgaon

Series and Parallel Circuits

• In series circuits, current can only take
one path.

• The amount of current is the same at all
points in a series circuit.

DCE,Gurgaon

DCE,Gurgaon

Adding resistances in series

• Each resistance in a
series circuit adds to
the total resistance of
the circuit.

Rtotal = R1 + R2 + R3...
Total

resistance
(ohms)

Individual resistances
(W)

DCE,Gurgaon

DCE,Gurgaon

Total resistance in a series circuit

• Light bulbs, resistors, motors, and heaters usually have
much greater resistance than wires and batteries.

DCE,Gurgaon

Series Resistors Equivalent Circuits
Two series

resistors, R1 and
R2, can be replaced
with an equivalent
circuit with a single
resistor REQ, as
long as

1 2.EQR R R 

REQ

R1

R2

Rest
of the
Circuit

Rest
of the
Circuit

DCE,Gurgaon

More than 2 Series Resistors
This rule can

be extended to
more than two
series resistors.
In this case, for
N series
resistors, we
have

1 2EQ NR R R R   

REQ

R1

R2

Rest
of the
Circuit

Rest
of the
Circuit

DCE,Gurgaon

Series Resistors Equivalent
Circuits: A Reminder

Two series
resistors, R1 and R2,
can be replaced with an
equivalent circuit with a
single resistor REQ, as
long as

1 2.EQR R R  REQ

R1

R2

Rest
of the
Circuit

Rest
of the
Circuit

Remember that these two
equivalent circuits are
equivalent only with respect
to the circuit connected to
them. (In yellow here.)

DCE,Gurgaon

Series Resistors Equivalent
Circuits: Another Reminder

Resistors R1 and R2
can be replaced with a
single resistor REQ, as
long as

1 2.EQR R R 
Remember that these two
equivalent circuits are
equivalent only with respect to
the circuit connected to them.
(In yellow here.) The voltage
vR2 does not exist in the
right hand equivalent.

REQ

R1

R2

Rest
of the
Circuit

Rest
of the
Circuit

vR2

+

-

DCE,Gurgaon

The Resistors Must be in Series
Resistors R1 and R2 can

be replaced with a single
resistor REQ, as long as

1 2.EQR R R 
Remember also that these
two equivalent circuits are
equivalent only when R1 and
R2 are in series. If there is
something connected to the
node between them, and it
carries current, (iX  0) then
this does not work.

REQ

R1

R2

Rest
of the
Circuit

Rest
of the
Circuit

vR2

+

-

iX

R1 and R2 are not in
series here.

DCE,Gurgaon Parallel Resistors
Equivalent Circuits

Two parallel
resistors, R1 and R2,
can be replaced with an
equivalent circuit with a
single resistor REQ, as
long as

1 2

1 1 1 .
EQR R R

 

REQR1R2

Rest
of the
Circuit

Rest
of the
Circuit

DCE,Gurgaon

More than 2 Parallel Resistors

This rule can be
extended to more than
two parallel resistors.
In this case, for N
parallel resistors, we
have

1 2

1 1 1 1... .
EQ NR R R R

   

REQR1R2

Rest
of the
Circuit

Rest
of the
Circuit

DCE,Gurgaon
Parallel Resistors

Notation
We have a special

notation for this
operation. When two
things, Thing1 and
Thing2, are in parallel,
we write
Thing1||Thing2
to indicate this. So, we
can say that

1 2

1 2

1 1 1if ,

then || .
EQ

EQ

R R R
R R R

 



REQR1R2

Rest
of the
Circuit

Rest
of the
Circuit

DCE,Gurgaon

Parallel Resistor Rule for 2 Resistors
When there are

only two resistors, then
you can perform the
algebra, and find that

1 2
1 2

1 2

|| .EQ
R RR R R

R R
 


REQR1R2

Rest
of the
Circuit

Rest
of the
Circuit

This is called the product-
over-sum rule for parallel
resistors. Remember that
the product-over-sum rule
only works for two
resistors, not for three or
more.

DCE,Gurgaon Parallel Resistors
Equivalent Circuits: A

Reminder
Two parallel

resistors, R1 and R2,
can be replaced with a
single resistor REQ, as
long as

1 2

1 1 1 .
EQR R R

  REQR1R2

Rest
of the
Circuit

Rest
of the
Circuit

Remember that these two
equivalent circuits are
equivalent only with
respect to the circuit
connected to them. (In
yellow here.)

DCE,Gurgaon

REQR1R2

Rest
of the
Circuit

Rest
of the
Circuit

iR2

Parallel Resistors
Equivalent Circuits: Another Reminder

Two parallel
resistors, R1 and R2,
can be replaced with
REQ, as long as

1 2

1 1 1 .
EQR R R

 

Remember that these two
equivalent circuits are
equivalent only with respect
to the circuit connected to
them. (In yellow here.) The
current iR2 does not exist
in the right hand
equivalent.

DCE,Gurgaon The Resistors
Must be in Parallel

Two parallel
resistors, R1 and R2,
can be replaced with
REQ, as long as

1 2

1 1 1 .
EQR R R

 

Remember also that these
two equivalent circuits are
equivalent only when R1
and R2 are in parallel. If
the two terminals of the
resistors are not connected
together, then this does not
work.

REQR1R2

Rest
of the
Circuit

Rest
of the
Circuit

iR2

R1 and R2 are not in
parallel here.

Go back to
Overview

slide.

DCE,Gurgaon
Why are we doing this?

Isn’t all this obvious?
• This is a good question.
• Indeed, most students come to the study of

engineering circuit analysis with a little
background in circuits. Among the things that
they believe that they do know is the concept
of series and parallel.

• However, once complicated circuits are
encountered, the simple rules that some
students have used to identify
series and parallel combinations
can fail. We need rules that will
always work.

DCE,Gurgaon

Why It Isn’t Obvious
• The problems for students in many cases that they

identify series and parallel by the orientation and
position of the resistors, and not by the way they are
connected.

• In the case of parallel resistors, the resistors do not
have to be drawn “parallel”, that is, along lines with the
same slope. The angle does not matter. Only the
nature of the connection matters.

• In the case of series resistors, they do not have to be
drawn along a single line. The alignment does not
matter. Only the nature of the connection matters.

DCE,Gurgaon
Examples (Parallel)

• Some examples are given here.

R1 R2
Rest of
Circuit

R1 and R2 are in parallel

Rest of
Circuit

R1 and R2 are not in parallel

RX

R1
R2

DCE,Gurgaon
Examples (Series)

• Some more examples are given here.

R1

R2

Rest of
Circuit

R1 and R2 are in series R1 and R2 are not in series

R1

R2

Rest of
Circuit

DCE,Gurgaon

How do we use equivalent circuits?
• This is yet another good question.

• We will use these equivalents to simplify circuits, making them
easier to solve. Sometimes, equivalent circuits are used in other
ways. In some cases, one equivalent circuit is not simpler than
another; rather one of them fits the needs of the particular circuit
better.

• The key point is this: Equivalent circuits are used throughout
circuits and electronics. We need to use them
correctly. Equivalent circuits are equivalent
only with respect to the circuit outside them.

DCE,Gurgaon

Calculate Current

• How much current flows in a circuit with a 1.5-volt
battery and three 1 ohm resistances (bulbs) in series?

DCE,Gurgaon

DCE,Gurgaon

Voltage in a series circuit

• Each separate resistance creates
a voltage drop as the current
passes through.

• As current flows along a series
circuit, each type of resistor
transforms some of the electrical
energy into another form of
energy

• Ohm’s law is used to calculate the
voltage drop across each resistor.

DCE,Gurgaon

DCE,Gurgaon

Series and Parallel Circuits

• In parallel circuits the current can take more than one
path.

• Because there are multiple branches, the current is not
the same at all points in a parallel circuit.

DCE,Gurgaon

DCE,Gurgaon

Series and Parallel Circuits

• Sometimes these paths are called branches.

• The current through a branch is also called the branch
current.

• When analyzing a parallel circuit, remember that the
current always has to go somewhere.

• The total current in the circuit is the sum of the currents in
all the branches.

• At every branch point the current flowing out must equal
the current flowing in.

• This rule is known as Kirchhoff’s current law.

DCE,Gurgaon

DCE,Gurgaon

Voltage and current in a parallel circuit

• In a parallel circuit the voltage is the
same across each branch because
each branch has a low resistance path
back to the battery.

• The amount of current in each branch in
a parallel circuit is not necessarily the
same.

• The resistance in each branch
determines the current in that branch.

DCE,Gurgaon20.1 Advantages of parallel
circuits

Parallel circuits have two big advantages
over series circuits:
1. Each device in the circuit sees the full
battery voltage.
2. Each device in the circuit may be
turned off independently without
stopping the current flowing to other
devices in the circuit.

DCE,Gurgaon

Short circuit

• A short circuit is a parallel path in a circuit with zero or
very low resistance.

• Short circuits can be made accidentally by connecting a
wire between two other wires at different voltages.

• Short circuits are dangerous because they can draw
huge amounts of current.

DCE,Gurgaon

Resistance in parallel circuits

• Adding resistance in parallel provides
another path for current, and more
current flows.

• When more current flows for the same
voltage, the total resistance of the circuit
decreases.

• This happens because every new path
in a parallel circuit allows more current
to flow for the same voltage.

DCE,Gurgaon

DCE,Gurgaon

Adding resistance in parallel
circuits

• A circuit contains a 2 ohm resistor and a 4 ohm
resistor in parallel.

• Calculate the total resistance of the circuit.

DCE,Gurgaon

Analysis of Circuits

Key Question:
How do we analyze

network circuits?

DCE,Gurgaon

Analysis of Circuits

• All circuits work by manipulating
currents and voltages.

• The process of circuit analysis means
figuring out what the currents and
voltages in a circuit are, and also how
they are affected by each other.

• Three basic laws are the foundation of
circuit analysis.

DCE,Gurgaon

Three circuit laws

DCE,Gurgaon

Delta-to-Wye Transformations

• The transformations, or equivalent circuits,
that we cover next are called delta-to-wye, or
wye-to-delta transformations. They are also
sometimes called pi-to-tee or tee-to-pi
transformations.

• These are equivalent circuit pairs. They apply
for parts of circuits that have three terminals.
Each version of the equivalent circuit has three
resistors.

DCE,Gurgaon
Delta-to-Wye Transformations

Three resistors in a part of a circuit with three terminals can be
replaced with another version, also with three resistors. The two versions
are shown here. Note that none of these resistors is in series with any
other resistor, nor in parallel with any other resistor. The three terminals in
this example are labeled A, B, and C.

RC

RARB

A

C

B
R2

R3

R1

A B

C

Rest of CircuitRest of Circuit

DCE,Gurgaon
Delta-to-Wye Transformations

(Notes on Names)
The version on the left hand side is called the delta connection, for the

Greek letter D. The version on the right hand side is called the wye
connection, for the letter Y. The delta connection is also called the pi (p)
connection, and the wye interconnection is also called the tee (T)
connection. All these names come from the shapes of the drawings.

RC

RARB

A

C

B
R2

R3

R1

A B

C

Rest of CircuitRest of Circuit

DCE,Gurgaon
Delta-to-Wye Transformations (More

Notes)
When we go from the delta connection (on the left) to the wye

connection (on the right), we call this the delta-to-wye transformation.
Going in the other direction is called the wye-to-delta transformation. One
can go in either direction, as needed. These are equivalent circuits.

RC

RARB

A

C

B
R2

R3

R1

A B

C

Rest of CircuitRest of Circuit

DCE,Gurgaon

Delta-to-Wye Transformation Equations
When we perform the delta-to-wye transformation

(going from left to right) we use the equations given
below.

RC

RARB

A

C

B
R2

R3

R1

A B

C

Rest of CircuitRest of Circuit

1

2

3

B C

A B C

A C

A B C

A B

A B C

R RR
R R R

R RR
R R R

R RR
R R R


 


 


 

DCE,Gurgaon

Wye-to-Delta Transformation Equations
When we perform the wye-to-delta transformation

(going from right to left) we use the equations given
below.

RC

RARB

A

C

B
R2

R3

R1

A B

C

Rest of CircuitRest of Circuit

1 2 2 3 1 3

1

1 2 2 3 1 3

2

1 2 2 3 1 3

3

A

B

C

R R R R R RR
R

R R R R R RR
R

R R R R R RR
R

 


 


 


DCE,Gurgaon
Deriving the Equations

While these equivalent circuits are useful, perhaps the most important
insight is gained from asking where these useful equations come from.
How were these equations derived?

The answer is that they were derived using the fundamental rule for
equivalent circuits. These two equivalent circuits have to behave the same
way no matter what circuit is connected to them. So, we can choose
specific circuits to connect to the equivalents. We make the derivation by
solving for equivalent resistances, using our series and parallel rules, under
different, specific conditions.

RC

RARB

A

C

B
R2

R3

R1

A B

C

Rest of CircuitRest of Circuit

1 2 2 3 1 3

1

1 2 2 3 1 3

2

1 2 2 3 1 3

3

A

B

C

R R R R R RR
R

R R R R R RR
R

R R R R R RR
R

 


 


 


1

2

3

B C

A B C

A C

A B C

A B

A B C

R RR
R R R

R RR
R R R

R RR
R R R


 


 


 

DCE,Gurgaon
Equation 1

We can calculate the equivalent resistance between terminals A and B,
when C is not connected anywhere. The two cases are shown below. This
is the same as connecting an ohmmeter, which measures resistance,
between terminals A and B, while terminal C is left disconnected.

1 2 1 2

1 2

Ohmmeter #1 reads || (). Ohmmeter #2 reads .
These must read the same value, so || () .

EQ C A B EQ

C A B

R R R R R R R
R R R R R

   

  

RC

RARB

A

C

B
R2

R3

R1

A B

C

Ohmmeter #1 Ohmmeter #2

DCE,Gurgaon
Equations 2 and 3

So, the equation that results from the first situation is

1 2|| () .C A BR R R R R  

RC

RARB

A

C

B
R2

R3

R1

A B

C

Ohmmeter #1 Ohmmeter #2

We can make this measurement two other ways, and get two more equations.
Specifically, we can measure the resistance between A and C, with B left open,
and we can measure the resistance between B and C, with A left open.

DCE,Gurgaon
All Three Equations

The three equations we can obtain are

1 2

1 3

2 3

|| () ,
|| () , and
|| () .

C A B

B A C

A B C

R R R R R
R R R R R
R R R R R

  
  
  

This is all that we need. These three equations can be
manipulated algebraically to obtain either the set of equations
for the delta-to-wye transformation (by solving for R1, R2 , and
R3), or the set of equations for the wye-to-delta transformation
(by solving for RA, RB , and RC).

DCE,Gurgaon
Why Are Delta-to-Wye

Transformations Needed?
• This is a good question. In fact, it should be pointed

out that these transformations are not necessary.
Rather, they are like many other aspects of circuit
analysis in that they allow us to solve circuits more
quickly and more easily. They are used in cases
where the resistors are neither in series nor parallel,
so to simplify the circuit requires something more.

• One key in applying these equivalents is to get the
proper resistors in the proper place in the equivalents
and equations. We recommend that you
name the terminals each time, on the
circuit diagrams, to help you get these
things in the right places.

DCE,Gurgaon

Voltage Divider and Current
Divider Rules

DCE,Gurgaon Overview of this Part
Series, Parallel, and other

Resistance Equivalent Circuits

In this part, we will cover the following
topics:

• Voltage Divider Rule
• Current Divider Rule
• Signs in the Voltage Divider Rule
• Signs in the Current Divider Rule

DCE,Gurgaon

Voltage Divider Rule –
Our First Circuit Analysis Tool

The Voltage Divider Rule (VDR)
is the first of long list of tools that we
are going to develop to make circuit
analysis quicker and easier. The
idea is this: if the same situation
occurs often, we can derive the
solution once, and use it whenever it
applies. As with any tools, the keys
are:
1. Recognizing when the tool works
and when it doesn’t work.
2. Using the tool properly.

DCE,Gurgaon Voltage Divider Rule –
Setting up the Derivation

The Voltage Divider Rule involves
the voltages across series resistors.
Let’s take the case where we have two
resistors in series. Assume for the
moment that the voltage across these
two resistors, vTOTAL, is known.
Assume that we want the voltage
across one of the resistors, shown here
as vR1. Let’s find it.

R2

R1

vTOTAL

+

-

vR1

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

DCE,Gurgaon Voltage Divider Rule –
Derivation Step 1

The current through both of these
resistors is the same, since the
resistors are in series. The current, iX,
is R2

R1

vTOTAL

+

-

vR1

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

iX

1 2

.TOTAL
X

vi
R R




DCE,Gurgaon Voltage Divider Rule –
Derivation Step 2

The current through resistor R1
is the same current. The current,
iX, is

R2

R1

vTOTAL

+

-

vR1

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

iX

1

1

.R
X

vi
R



DCE,Gurgaon Voltage Divider Rule –
Derivation Step 3

These are two expressions for the
same current, so they must be equal to
each other. Therefore, we can write

R2

R1

vTOTAL

+

-

vR1

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

iX

1
1

1 1 2

1
1

1 2

. Solving for , we get

.

TOTALR
R

R TOTAL

vv v
R R R

Rv v
R R







DCE,Gurgaon

The Voltage Divider Rule

This is the expression we
wanted. We call this the Voltage
Divider Rule (VDR). R2

R1

vTOTAL

+

-

vR1

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

iX

1
1

1 2

.R TOTAL
Rv v

R R




DCE,Gurgaon Voltage Divider Rule –
For Each Resistor

This is easy enough to remember that
most people just memorize it.
Remember that it only works for
resistors that are in series. Of course,
there is a similar rule for the other
resistor. For the voltage across one
resistor, we put
that resistor value
in the numerator.

1
1

1 2

.R TOTAL
Rv v

R R




R2

R1

vTOTAL

+

-

vR1

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

iX

vR2

+

-

2
2

1 2

.R TOTAL
Rv v

R R




Go back to
Overview

slide.

DCE,Gurgaon

Current Divider Rule –
Our Second Circuit Analysis Tool
The Current Divider Rule (CDR)

is the first of long list of tools that we
are going to develop to make circuit
analysis quicker and easier. Again,
if the same situation occurs often,
we can derive the solution once, and
use it whenever it applies. As with
any tools, the keys are:
1. Recognizing when the tool works
and when it doesn’t work.
2. Using the tool properly.

DCE,Gurgaon

Current Divider Rule –
Setting up the Derivation

The Current Divider Rule involves
the currents through parallel resistors.
Let’s take the case where we have two
resistors in parallel. Assume for the
moment that the current feeding these
two resistors, iTOTAL, is known.
Assume that we want the current
through one of the resistors, shown
here as iR1. Let’s find it. R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iR1

iTOTAL

DCE,Gurgaon

Current Divider Rule –
Derivation Step 1

The voltage across both of these
resistors is the same, since the
resistors are in parallel. The voltage,
vX, is the current multiplied by the
equivalent parallel resistance,

 1 2

1 2

1 2

|| , or

.

X TOTAL

X TOTAL

v i R R

R Rv i
R R



 
   

R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iR1

iTOTAL

+

-

vX

DCE,Gurgaon

Current Divider Rule –
Derivation Step 2

The voltage across resistor
R1 is the same voltage, vX.
The voltage, vX, is

1 1.X Rv i R
R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iR1

iTOTAL

+

-

vX

DCE,Gurgaon

Current Divider Rule –
Derivation Step 3

These are two expressions for
the same voltage, so they must be
equal to each other. Therefore,
we can write

1 2
1 1 1

1 2

2
1

1 2

. Solve for ;

.

R TOTAL R

R TOTAL

R Ri R i i
R R
Ri i

R R







R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iR1

iTOTAL

+

-

vX

DCE,Gurgaon

The Current Divider Rule

This is the expression we
wanted. We call this the
Current Divider Rule (CDR).

2
1

1 2

.R TOTAL
Ri i

R R


 R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iR1

iTOTAL

+

-

vX

DCE,Gurgaon

Current Divider Rule –
For Each Resistor

Most people just memorize this.
Remember that it only works for
resistors that are in parallel. Of course,
there is a similar rule for the other
resistor. For the current through one
resistor, we put the opposite resistor
value in the numerator.

2
1

1 2

.R TOTAL
Ri i

R R




1
2

1 2

.R TOTAL
Ri i

R R




R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iR1

iTOTAL

+

-

vX
iR2

Go back to
Overview

slide.

DCE,Gurgaon

Signs in the Voltage Divider Rule

As in most equations we write, we
need to be careful about the sign in the
Voltage Divider Rule (VDR). Notice
that when we wrote this expression,
there is a positive sign. This is
because the voltage vTOTAL is in the
same relative polarity as vR1.

R2

R1

vTOTAL

+

-

vR1

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

1
1

1 2

.R TOTAL
Rv v

R R
 



DCE,Gurgaon

Negative Signs in the Voltage Divider Rule

If, instead, we had solved for vQ,
we would need to change the sign
in the equation. This is because
the voltage vTOTAL is in the
opposite relative polarity from vQ.

R2

R1

vTOTAL

+

-
vQ

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

1

1 2

.Q TOTAL
Rv v

R R
 



DCE,Gurgaon

Check for Signs in the Voltage Divider Rule

The rule for proper use of this
tool, then, is to check the relative
polarity of the voltage across the
series resistors, and the voltage
across one of the resistors.

R2

R1

vTOTAL

+

-
vQ

+

-

Other Parts
of the Circuit

Other Parts of
the Circuit

1

1 2

.Q TOTAL
Rv v

R R
 



Go back to
Overview

slide.

DCE,Gurgaon

Signs in the Current Divider Rule
As in every equations we write,

we need to be careful about the
sign in the Current Divider Rule
(CDR). Notice that when we
wrote this expression, there is a
positive sign. This is because the
current iTOTAL is in the same
relative polarity as iR1.

2
1

1 2

.R TOTAL
Ri i

R R
 


R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iR1

iTOTAL

+

-

vX

DCE,Gurgaon

Negative Signs in the Current Divider
Rule

If, instead, we had solved
for iQ, we would need to
change the sign in the
equation. This is because the
current iTOTAL is in the opposite
relative polarity from iQ.

2

1 2

.Q TOTAL
Ri i

R R
 



R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iQ

iTOTAL

DCE,Gurgaon

Check for Signs in the Current Divider
Rule

The rule for proper use of
this tool, then, is to check the
relative polarity of the current
through the parallel resistors,
and the current through one of
the resistors.

2

1 2

.Q TOTAL
Ri i

R R
 


R2R1

Other Parts
of the Circuit

Other Parts of
the Circuit

iQ

iTOTAL

Go back to
Overview

slide.

DCE,Gurgaon
Do We Always Need to

Worry About Signs?

• Unfortunately, the answer to this
question is: YES! There is almost
always a question of what the sign
should be in a given circuits equation.
The key is to learn how to get the sign
right every time. As mentioned earlier,
this is the key purpose in introducing
reference polarities.

DCE,Gurgaon

Solving circuit problems

1. Identify what the problem is asking you to
find. Assign variables to the unknown
quantities.

2. Make a large clear diagram of the circuit.
Label all of the known resistances,
currents, and voltages. Use the variables
you defined to label the unknowns.

3. You may need to combine resistances to
find the total circuit resistance. Use
multiple steps to combine series and

DCE,Gurgaon

Solving circuit problems

4. If you know the total resistance and
current, use Ohm’s law as V = IR to
calculate voltages or voltage drops. If you
know the resistance and voltage, use
Ohm’s law as I = V ÷ R to calculate the
current.

5. An unknown resistance can be found
using Ohm’s law as R = V ÷ I, if you know
the current and the voltage drop through
the resistor.

DCE,Gurgaon

Network circuits

• In many circuits, resistors are connected
both in series and in parallel.

• Such a circuit is called a network circuit.
• There is no single formula for adding

resistors in a network circuit.
• For very complex circuits, electrical

engineers use computer programs that can
rapidly solve equations for the circuit using
Kirchhoff’s laws.

DCE,Gurgaon

Kirchhoff’s Laws in Detail

DCE,Gurgaon

Overview of this Part

In this part of the module, we will cover
the following topics:

• Some Basic Assumptions
• Kirchhoff’s Current Law (KCL)
• Kirchhoff’s Voltage Law (KVL)

DCE,Gurgaon Some Fundamental
Assumptions – Wires

• Although you may not have stated it, or
thought about it, when you have drawn
circuit schematics, you have connected
components or devices with wires, and
shown this with lines.

• Wires can be modeled pretty well as
resistors. However, their resistance is
usually negligibly small.

• We will think of wires as connections
with zero resistance. Note that this is
equivalent to having a zero-valued
voltage source.

This picture shows wires
used to connect electrical
components. This particular
way of connecting
components is called
wirewrapping, since the ends
of the wires are wrapped
around posts.

DCE,Gurgaon Some Fundamental
Assumptions – Nodes

• A node is defined as a place
where two or more
components are connected.

• The key thing to remember is
that we connect components
with wires. It doesn’t matter
how many wires are being
used; it only matters how
many components are
connected together.

+

-
vA

RC

RD

iB
RF

RE

DCE,Gurgaon

How Many Nodes?

• To test our
understanding of
nodes, let’s look at
the example circuit
schematic given
here.

• How many nodes are
there in this circuit?

+

-
vA

RC

RD

iB
RF

RE

DCE,Gurgaon How Many Nodes – Correct Answer

• In this schematic, there
are three nodes. These
nodes are shown in
dark blue here.

• Some students count
more than three nodes
in a circuit like this.
When they do, it is
usually because they
have considered two
points connected by a
wire to be two nodes.

+

-

vA

RC

RD

iB
RF

RE

DCE,Gurgaon How Many Nodes – Wrong Answer

• In the example circuit
schematic given here, the
two red nodes are really
the same node. There
are not four nodes.

• Remember, two nodes
connected by a wire were
really only one node in
the first place.

+

-

vA

RC

RD

iB
RF

RE

Wire connecting two
nodes means that
these are really a
single node.

DCE,Gurgaon
Some Fundamental

Assumptions – Closed Loops
• A closed loop can be

defined in this way: Start at
any node and go in any
direction and end up where
you start. This is a closed
loop.

• Note that this loop does not
have to follow components.
It can jump across open
space. Most of the time we
will follow components, but
we will also have situations
where we need to jump
between nodes that have no
connections.

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

DCE,Gurgaon

How Many Closed Loops
• To test our

understanding of
closed loops, let’s
look at the
example circuit
schematic given
here.

• How many closed
loops are there in
this circuit?

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

DCE,Gurgaon

How Many Closed Loops –
An Answer

• There are several closed
loops that are possible here.
We will show a few of them,
and allow you to find the
others.

• The total number of simple
closed loops in this circuit is
13.

• Finding the number will not
turn out to be important.
What is important is to
recognize closed loops
when you see them.

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

Closed Loops – Loop #1
• Here is a loop we will

call Loop #1. The
path is shown in red.

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

• Here is Loop #2.
The path is shown in
red.

Closed Loops – Loop #2

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

Closed Loops – Loop #3
• Here is Loop #3.

The path is shown in
red.

• Note that this path is
a closed loop that
jumps across the
voltage labeled vX.
This is still a closed
loop.

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

Closed Loops – Loop #4
• Here is Loop #4. The

path is shown in red.
• Note that this path is a

closed loop that jumps
across the voltage
labeled vX. This is still
a closed loop. The
loop also crossed the
current source.
Remember that a
current source can
have a voltage across
it.

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

A Not-Closed Loop
• The path is shown in

red here is not
closed.

• Note that this path
does not end where
it started.

DCE,Gurgaon

Kirchhoff’s Current Law (KCL)

• With these definitions, we are
prepared to state Kirchhoff’s
Current Law:
The algebraic (or
signed) summation of
currents through a
closed surface must
equal zero.

DCE,Gurgaon Kirchhoff’s Current Law
(KCL) – Some notes.

The algebraic (or signed)
summation of currents
through any closed surface
must equal zero.

This definition is often stated as applying to nodes. It applies to any closed
surface. For any closed surface, the charge that enters must leave
somewhere else. A node is just a small closed surface. A node is the
closed surface that we use most often. But, we can use any closed
surface, and sometimes it is really necessary to use closed surfaces that
are not nodes.

This definition essentially means that charge does not build up at a
connection point, and that charge is conserved.

DCE,Gurgaon Current Polarities

Again, the issue of the
sign, or polarity, or direction,
of the current arises. When
we write a Kirchhoff Current
Law equation, we attach a
sign to each reference
current polarity, depending
on whether the reference
current is entering or leaving
the closed surface. This can
be done in different ways.

DCE,Gurgaon Kirchhoff’s Current Law (KCL)
– a Systematic Approach

The algebraic (or signed) summation of
currents through any closed surface must
equal zero.

For this set of material, we will always assign a positive sign to a
term that refers to a reference current that leaves a closed surface,
and a negative sign to a term that refers to a reference current that
enters a closed surface.

For most students, it is a good idea to choose one way to write KCL
equations, and just do it that way every time. The idea is this: If you
always do it the same way, you are less likely to get confused about
which way you were doing it in a certain equation.

DCE,Gurgaon

Kirchhoff’s Current Law (KCL)
– an Example

• For this set of material, we will
always assign a positive sign
to a term that refers to a
current that leaves a closed
surface, and a negative sign
to a term that refers to a
current that enters a closed
surface.

• In this example, we have
already assigned reference
polarities for all of the currents
for the nodes indicated in
darker blue.

• For this circuit, and using my
rule, we have the following
equation:

+

-

vA

RC

RD

iB
RF

RE

iA

iB

iC

iE

iD

0A C D E Bi i i i i     

DCE,Gurgaon Kirchhoff’s Current Law (KCL)
– Example Done Another Way

• Some prefer to write this
same equation in a different
way; they say that the current
entering the closed surface
must equal the current leaving
the closed surface. Thus,
they write :

+

-

vA

RC

RD

iB
RF

RE

iA

iB

iC

iE

iD

0A C D E Bi i i i i     

A D B C Ei i i i i   
• Compare this to the
equation that we wrote in the
last slide:

• These are the same
equation. Use either method.

DCE,Gurgaon

Kirchhoff’s Voltage Law (KVL)

• Now, we are prepared to state
Kirchhoff’s Voltage Law:

The algebraic (or
signed) summation
of voltages around
a closed loop must
equal zero.

DCE,Gurgaon Kirchhoff’s Voltage Law
(KVL) – Some notes.

The algebraic (or signed)
summation of voltages
around a closed loop must
equal zero.

This applies to all closed loops. While we usually write equations for
closed loops that follow components, we do not need to. The only
thing that we need to do is end up where we started.

This definition essentially means that energy is conserved. If we
move around, wherever we move, if we end up in the place we
started, we cannot have changed the potential at that point.

DCE,Gurgaon Voltage Polarities

Again, the issue of the
sign, or polarity, or direction,
of the voltage arises. When
we write a Kirchhoff Voltage
Law equation, we attach a
sign to each reference
voltage polarity, depending
on whether the reference
voltage is a rise or a drop.
This can be done in different
ways.

DCE,Gurgaon Kirchhoff’s Voltage Law
(KVL) – a Systematic Approach

The algebraic (or signed) summation of
voltages around a closed loop must equal
zero.

For this set of material, we will always go around loops clockwise. We will
assign a positive sign to a term that refers to a reference voltage drop,
and a negative sign to a term that refers to a reference voltage rise.

For most students, it is a good idea to choose one way to write KVL
equations, and just do it that way every time. The idea is this: If you
always do it the same way, you are less likely to get confused about
which way you were doing it in a certain equation.

(At least we will do this for planar circuits. For nonplanar circuits,
clockwise does not mean anything. If this is confusing, ignore it for now.)

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

vF

+

-

vE
- +

Kirchhoff’s Voltage Law
(KVL) – an Example

• For this set of material, we will
always go around loops
clockwise. We will assign a
positive sign to a term that
refers to a voltage drop, and a
negative sign to a term that
refers to a voltage rise.

• In this example, we have
already assigned reference
polarities for all of the voltages
for the loop indicated in red.

• For this circuit, and using our
rule, starting at the bottom, we
have the following equation:

0A X E Fv v v v    

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

vF

+

-

vE
- +

Kirchhoff’s Voltage
Law (KVL) – Notes

• For this set of material, we will
always go around loops
clockwise. We will assign a
positive sign to a term that
refers to a voltage drop, and a
negative sign to a term that
refers to a voltage rise.

• Some students like to use the
following handy mnemonic
device: Use the sign of the
voltage that is on the side of
the voltage that you enter.
This amounts to the same
thing.

0A X E Fv v v v    

As we go up through the
voltage source, we enter the
negative sign first. Thus, vA
has a negative sign in the
equation.

DCE,Gurgaon

+

-

vA

RC

RD

iB
RF

RE

vX

+

-

vF

+

-

vE
- +

Kirchhoff’s Voltage Law
(KVL) – Example Done Another Way

• Some textbooks, and some
students, prefer to write this
same equation in a different
way; they say that the voltage
drops must equal the voltage
rises. Thus, they write the
following equation:

0A X E Fv v v v    

X F A Ev v v v  
Compare this to the equation that
we wrote in the last slide:

These are the same equation.
Use either method.

DCE,Gurgaon

• This is a very important question. In general, it boils down to
the old rule that you need the same number of equations as
you have unknowns.

• Speaking more carefully, we would say that to have a single
solution, we need to have the same number of independent
equations as we have variables.

• At this point, we are not going to introduce you to the way to
know how many equations you will need,
or which ones to write. It is assumed that
you will be able to judge whether you have
what you need because the circuits will be
fairly simple. Later we will develop
methods to answer this question specifically and efficiently.

How many of these equations
do I need to write?

DCE,Gurgaon
How many more laws

are we going to learn?

• This is another very important question. Until, we get
to inductors and capacitors, the answer is, none.

• Speaking more carefully, we would say that most of
the rules that follow until we introduce the other basic
elements, can be derived from these laws.

• At this point, you have the tools to solve many, many
circuits problems. Specifically, you have Ohm’s Law,
and Kirchhoff’s Laws. However, we need to be able to
use these laws efficiently and accurately.
We will spend some time in ECE 2300
learning techniques, concepts and
approaches that help us to
do just that.

DCE,Gurgaon
How many f’s and h’s

are there in Kirchhoff?

• This is another not-important question. But, we might
as well learn how to spell Kirchhoff. Our approach
might be to double almost everything, but we might
end up with something like Kirrcchhooff.

• We suspect that this is one reason why people
typically abbreviate these laws as KCL and KVL. This
is pretty safe, and seems like a pretty good idea to us.

DCE,Gurgaon

Example

• Let’s do an
example to test
out our new found
skills.

• In the circuit
shown here, find
the voltage vX and
the current iX.

R4=
20[]

R3=
100[]

vS1=
3[V]

+

-
vX

+

-

iX

DCE,Gurgaon

Example – Step 1

• The first step in
solving is to define
variables we
need.

• In the circuit
shown here, we
will define v4 and
i3.

R4=
20[]

R3=
100[]

vS1=
3[V]

+

-
vX

+

-

iX

v4+ -

i3

DCE,Gurgaon

Example – Step 2

• The second step in
solving is to write
some equations.
Let’s start with KVL.

1 4

4

0, or
3[V] 0.

S X

X

v v v
v v

   
   

R4=
20[]

R3=
100[]

vS1=
3[V]

+

-
vX

+

-

iX

v4+ -

i3

DCE,Gurgaon

Example – Step 3

• Now let’s write
Ohm’s Law for the
resistors.

4 4

3 3

, and
.

X

X

v i R
v i R
 


Notice that there is a sign in
Ohm’s Law.

R4=
20[]

R3=
100[]

vS1=
3[V]

+

-
vX

+

-

iX

v4+ -

i3

DCE,Gurgaon

Example – Step 4

• Next, let’s write KCL
for the node marked
in violet.

3

3

0, or
.

X

X

i i
i i
 
 

Notice that we can write KCL
for a node, or any other closed
surface.

R4=
20[]

R3=
100[]

vS1=
3[V]

+

-
vX

+

-

iX

v4+ -

i3

DCE,Gurgaon

Example – Step 5

• We are ready to
solve.

We have substituted into our
KVL equation from other
equations.

3[V] 20[] 100[] 0, or
3[V] 25[mA].

120[]

X X

X

i i

i

     
  



R4=
20[]

R3=
100[]

vS1=
3[V]

+

-
vX

+

-

iX

v4+ -

i3

DCE,Gurgaon

Example – Step 6

• Next, for the other
requested solution.

We have substituted into
Ohm’s Law, using our solution
for iX.

 
3 3 3, or

25[mA] 100[] 2.5[V].
X X

X

v i R i R
v

  

    

R4=
20[]

R3=
100[]

vS1=
3[V]

+

-
vX

+

-

iX

v4+ -

i3

C Program to Illustrate Pass by Value

This C Program illustrates pass by value. This program is used to explain how pass by value function works.
Pass by Value: In this method, the value of each of the actual arguments in the calling function is copied into
corresponding formal arguments of the called function. In pass by value, the changes made to formal arguments
in the called function have no effect on the values of actual arguments in the calling function.

Here is source code of the C Program to illustrate pass by value. The C program is successfully
compiled and run on a Linux system. The program output is also shown below.

Output:
$ cc pgm43.c
$ a.out
Before swapping num1 = 10 num2 = 20
After swapping num1 = 20 num2 = 10

1. /*
2. * C Program to Illustrate Pass by Value.
3. */
4. #include <stdio.h>
5.
6. void swap(int a, int b)
7. {
8. int temp;
9. temp = a;
10. a = b;
11. b = temp;
12. }
13.
14. int main()
15. {
16. int num1 = 10, num2 = 20;
17.
18. printf("Before swapping num1 = %d num2 = %d\n", num1, num2);
19. swap(num1, num2);
20. printf("After swapping num1 = %d num2 = %d \n", num2, num1);
21. return 0;
22. }

C Program to accept Sorted Array and do Search using Binary Search

This C Program accepts the sorted array and does search using Binary search. Binary search is an
algorithm for locating the position of an item in a sorted array. A search of sorted data, in which the
middle position is examined first. Search continues with either the left or the right portion of the data,
thus eliminating half of the remaining search space. In other words, a search which can be applied to
an ordered linear list to progressively divide the possible scope of a search in half until the search
object is found.

Here is source code of the C program to accept the sorted array and do Search using Binary Search.
The C program is successfully compiled and run on a Linux system. The program output is also shown
below.

1. /*
2. * C program to accept N numbers sorted in ascending order
3. * and to search for a given number using binary search.
4. * Report success or failure.
5. */
6. #include <stdio.h>
7.
8. void main()
9. {
10. int array[10];
11. int i, j, num, temp, keynum;
12. int low, mid, high;
13.
14. printf("Enter the value of num \n");
15. scanf("%d", &num);
16. printf("Enter the elements one by one \n");
17. for (i = 0; i < num; i++)
18. {
19. scanf("%d", &array[i]);
20. }
21. printf("Input array elements \n");
22. for (i = 0; i < num; i++)
23. {
24. printf("%d\n", array[i]);
25. }
26. /* Bubble sorting begins */
27. for (i = 0; i < num; i++)
28. {
29. for (j = 0; j < (num - i - 1); j++)
30. {
31. if (array[j] > array[j + 1])
32. {
33. temp = array[j];
34. array[j] = array[j + 1];
35. array[j + 1] = temp;
36. }
37. }

$ cc pgm22.c
$ a.out
Enter the value of num
5
Enter the elements one by one
23
90
56
15
58
Input array elements
23
90
56
15
58
Sorted array is...
15
23
56
58
90
Enter the element to be searched
58

39. printf("Sorted array is...\n");
40. for (i = 0; i < num; i++)
41. {
42. printf("%d\n", array[i]);
43. }
44. printf("Enter the element to be searched \n");
45. scanf("%d", &keynum);
46. /* Binary searching begins */
47. low = 1;
48. high = num;
49. do
50. {
51. mid = (low + high) / 2;
52. if (keynum < array[mid])
53. high = mid - 1;
54. else if (keynum > array[mid])
55. low = mid + 1;
56. } while (keynum != array[mid] && low <= high);
57. if (keynum == array[mid])
58. {
59. printf("SEARCH SUCCESSFUL \n");
60. }
61. else
62. {
63. printf("SEARCH FAILED \n");
64. }
65. }

$ a.out
Enter the value of num
4
Enter the elements one by one
1
98
65
45
Input array elements
1
98
65
45
Sorted array is...
1
45
65
98
Enter the element to be searched
6
SEARCH FAILED

C Program to Accepts two Strings & Compare them

This C Program accepts two strings & compares them. The program accepts two strings say string1 and string2.
If both the strings are equal then it display both strings are equal. If string1 > string2 then display a appropriate
message and so on.

Here is source code of the C program to accepts two strings & compare them. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

1. /*
2. * C Program to accepts two strings and compare them. Display
3. * the result whether both are equal, or first string is greater
4. * than the second or the first string is less than the second string
5. */
6. #include <stdio.h>
7.
8. void main()
9. {
10. int count1 = 0, count2 = 0, flag = 0, i;
11. char string1[10], string2[10];
12.
13. printf("Enter a string:");
14. gets(string1);
15. printf("Enter another string:");
16. gets(string2);
17. /* Count the number of characters in string1 */
18. while (string1[count1] != '\0')
19. count1++;
20. /* Count the number of characters in string2 */
21. while (string2[count2] != '\0')
22. count2++;
23. i = 0;
24.
25. while ((i < count1) && (i < count2))
26. {
27. if (string1[i] == string2[i])
28. {
29. i++;
30. continue;
31. }
32. if (string1[i] < string2[i])
33. {
34. flag = -1;
35. break;
36. }
37. if (string1[i] > string2[i])
38. {
39. flag = 1;
40. break;
41. }
42. }

 if (flag == 0)

$ cc pgm50.c
/$ a.out
Enter a string: hello
Enter another string: world
String1 is less than string2

$ a.out
Enter a string:object
Enter another string:class
String1 is greater than string2

$ a.out
Enter a string:object
Enter another string:object
Both strings are equal

44. printf("Both strings are equal \n");
45. if (flag == 1)
46. printf("String1 is greater than string2 \n", string1, string2);
47. if (flag == -1)
48. printf("String1 is less than string2 \n", string1, string2);
49. }

C Program to Calculate the Simple Interest

This C Program calculates the simple interest given the principal amount, rate of interest and time. The formula
to calculate the simple interest is: simple_interest = (p * t * r) / 100 where p is principal amount, t is time & r is
rate of interest.

Here is source code of the C program to calculate the simple interest. The C program is successfully
compiled and run on a Linux system. The program output is also shown below.

$ cc pgm3.c
$ a.out
Enter the values of principal_amt, rate and time
12
10
5
Amount = Rs. 12.00
Rate = Rs. 10.00%
Time = 5 years
Simple interest = 6.00

1. /*
2. * C program to find the simple interest, given principal,
3. * rate of interest and time.
4. */
5. #include <stdio.h>
6.
7. void main()
8. {
9. float principal_amt, rate, simple_interest;
10. int time;
11.
12. printf("Enter the values of principal_amt, rate and time \n");
13. scanf("%f %f %d", &principal_amt, &rate, &time);
14. simple_interest = (principal_amt * rate * time) / 100.0;
15. printf("Amount = Rs. %5.2f\n", principal_amt);
16. printf("Rate = Rs. %5.2f%\n", rate);
17. printf("Time = %d years\n", time);
18. printf("Simple interest = %5.2f\n", simple_interest);
19. }

C Program to Calculate the Sum & Difference of the Matrices

This C Program calculates the sum & difference of the matrices. The program first reads 2 matrices and then
performs both addition and subtraction of matrices

Here is source code of the C program to calculates the sum & difference of the matrices. The C
program is successfully compiled and run on a Linux system. The program output is also shown below.

1. /*
2. * C program to accept two matrices and find the sum
3. * and difference of the matrices
4. */
5. #include <stdio.h>
6. #include <stdlib.h>
7.
8. void readmatA();
9. void printmatA();
10. void readmatB();
11. void printmatB();
12. void sum();
13. void diff();
14.
15. int a[10][10], b[10][10], sumarray[10][10], arraydiff[10][10];
16. int i, j, row1, column1, row2, column2;
17.
18. void main()
19. {
20. printf("Enter the order of the matrix A \n");
21. scanf("%d %d", &row1, &column1);
22. printf("Enter the order of the matrix B \n");
23. scanf("%d %d", &row2, &column2);
24. if (row1 != row2 && column1 != column2)
25. {
26. printf("Addition and subtraction are possible \n");
27. exit(1);
28. }
29. else
30. {
31. printf("Enter the elements of matrix A \n");
32. readmatA();
33. printf("MATRIX A is \n");
34. printmatA();
35. printf("Enter the elements of matrix B \n");
36. readmatB();
37. printf("MATRIX B is \n");
38. printmatB();
39. sum();
40. diff();
41. }
42. }
43. /* Function to read a matrix A */

45. {
46. for (i = 0; i < row1; i++)
47. {
48. for (j = 0; j < column1; j++)
49. {
50. scanf("%d", &a[i][j]);
51. }
52. }
53. return;
54. }
55. /* Function to read a matrix B */
56. void readmatB()
57. {
58. for (i = 0; i < row2; i++)
59. {
60. for (j = 0; j < column2; j++)
61. {
62. scanf("%d", &b[i][j]);
63. }
64. }
65. }
66. /* Function to print a matrix A */
67. void printmatA()
68. {
69. for (i = 0; i < row1; i++)
70. {
71. for (j = 0; j < column1; j++)
72. {
73. printf("%3d", a[i][j]);
74. }
75. printf("\n");
76. }
77. }
78. /* Function to print a matrix B */
79. void printmatB()
80. {
81. for (i = 0; i < row2; i++)
82. {
83. for (j = 0; j < column2; j++)
84. {
85. printf("%3d", b[i][j]);
86. }
87. printf("\n");
88. }
89. }
90. /* Function to do the sum of elements of matrix A and Matrix B */
91. void sum()
92. {
93. for (i = 0; i < row1; i++)
94. {
95. for (j = 0; j < column2; j++)
96. {
97. sumarray[i][j] = a[i][j] + b[i][j];

$ cc pgm56.c
$ a.out
Enter the order of the matrix A
3 3
Enter the order of the matrix B
3 3
Enter the elements of matrix A
1 4 5
6 7 8
4 8 9
MATRIX A is
 1 4 5
 6 7 8
 4 8 9
Enter the elements of matrix B
3 6 7
8 4 2
1 5 3

99. }
100. printf("Sum matrix is \n");
101. for (i = 0; i < row1; i++)
102. {
103. for (j = 0; j < column2; j++)
104. {
105. printf("%3d", sumarray[i][j]) ;
106. }
107. printf("\n");
108. }
109. return;
110. }
111. /* Function to do the difference of elements of matrix A and Matrix B */
112. void diff()
113. {
114. for (i = 0; i < row1; i++)
115. {
116. for (j = 0; j < column2; j++)
117. {
118. arraydiff[i][j] = a[i][j] - b[i][j];
119. }
120. }
121. printf("Difference matrix is \n");
122. for (i = 0; i < row1; i++)
123. {
124. for (j = 0; j < column2; j++)
125. {
126. printf("%3d", arraydiff[i][j]);
127. }
128. printf("\n");
129. }
130. return;
131. }

 3 6 7
 8 4 2
 1 5 3
Sum matrix is
 4 10 12
 14 11 10
 5 13 12
Difference matrix is
 -2 -2 -2
 -2 3 6
 3 3 6

C Program to Check if a given Integer is Odd or Even

This C Program checks if a given integer is odd or even. Here if a given number is divisible by 2 with the
remainder 0 then the number is even number. If the number is not divisible by 2 then that number will be odd
number.

Here is source code of the C program which checks a given integer is odd or even. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm4.c
$ a.out
Enter an integer : 100
100 is an even integer

$ a.out
Enter an integer : 105
105 is an odd integer

1. /*
2. * C program to check whether a given integer is odd or even
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. int ival, remainder;
9.
10. printf("Enter an integer : ");
11. scanf("%d", &ival);
12. remainder = ival % 2;
13. if (remainder == 0)
14. printf("%d is an even integer\n", ival);
15. else
16. printf("%d is an odd integer\n", ival);
17. }

C Program to Check if a given Matrix is an Identity Matrix

This C Program checks a given Matrix is an Identity Matrix. Identity matrix is a square matrix with 1’s along the
diagonal from upper left to lower right and 0’s in all other positions. If it satisfies the structure as explained before
then the matrix is called as identity matrix.

Here is source code of the C program to check a given Matrix is an Identity Matrix. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

1. /*
2. * C Program to check if a given matrix is an identity matrix
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. int a[10][10];
9. int i, j, row, column, flag = 1;
10.
11. printf("Enter the order of the matrix A \n");
12. scanf("%d %d", &row, &column);
13. printf("Enter the elements of matrix A \n");
14. for (i = 0; i < row; i++)
15. {
16. for (j = 0; j < column; j++)
17. {
18. scanf("%d", &a[i][j]);
19. }
20. }
21. printf("MATRIX A is \n");
22. for (i = 0; i < row; i++)
23. {
24. for (j = 0; j < column; j++)
25. {
26. printf("%3d", a[i][j]);
27. }
28. printf("\n");
29. }
30. /* Check for unit (or identity) matrix */
31. for (i = 0; i < row; i++)
32. {
33. for (j = 0; j < column; j++)
34. {
35. if (a[i][j] != 1 && a[j][i] != 0)
36. {
37. flag = 0;
38. break;
39. }
40. }
41. }
42. if (flag == 1)

 printf("It is identity matrix \n");

$ cc pgm58.c
$ a.out
Enter the order of the matrix A
3 3
Enter the elements of matrix A
1 2 3
5 1 8
6 4 1
MATRIX A is
 1 2 3
 5 1 8
 6 4 1
It is not a identity matrix

$ a.out
Enter the order of the matrix A
3 3
Enter the elements of matrix A
 1 0 0
 0 1 0
 0 0 1
MATRIX A is
 1 0 0
 0 1 0
 0 0 1
It is identity matrix

44. else
45. printf("It is not a identity matrix \n");
46. }

C Program to Check if a given Number is Prime number

This C Program checks if a given number is prime. If a given number that has no other factor than that of the
given number itself and 1, then that number is called as prime number.

Here is source code of the C program to check if a given number is prime. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm16.c
$ a.out
Enter a number
23
23 is a prime number

$ a.out
Enter a number

1. /*
2. * C program to check whether a given number is prime or not
3. * and output the given number with suitable message.
4. */
5. #include <stdio.h>
6. #include <stdlib.h>
7.
8. void main()
9. {
10. int num, j, flag;
11.
12. printf("Enter a number \n");
13. scanf("%d", &num);
14.
15. if (num <= 1)
16. {
17. printf("%d is not a prime numbers \n", num);
18. exit(1);
19. }
20. flag = 0;
21. for (j = 2; j <= num / 2; j++)
22. {
23. if ((num % j) == 0)
24. {
25. flag = 1;
26. break;
27. }
28. }
29. if (flag == 0)
30. printf("%d is a prime number \n", num);
31. else
32. printf("%d is not a prime number \n", num);
33. }

15
15 is not a prime number

C Program to Check if a given String is Palindrome

This C Program checks if a given string is palindrome. This program first performs reverse of a string. Then it
checks whether the given string is equivalent to the reversed string. If they are equal then the string is called as
palindrome.

Here is source code of the C program to check a given string is palindrome. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

1. /*
2. * C program to read a string and check if it's a palindrome, without
3. * using library functions. Display the result.
4. */
5. #include <stdio.h>
6. #include <string.h>
7.
8. void main()
9. {
10. char string[25], reverse_string[25] = {'\0'};
11. int i, length = 0, flag = 0;
12.
13. fflush(stdin);
14. printf("Enter a string \n");
15. gets(string);
16. /* keep going through each character of the string till its end */
17. for (i = 0; string[i] != '\0'; i++)
18. {
19. length++;
20. }
21. for (i = length - 1; i >= 0; i--)
22. {
23. reverse_string[length - i - 1] = string[i];
24. }
25. /*
26. * Compare the input string and its reverse. If both are equal
27. * then the input string is palindrome.
28. */
29. for (i = 0; i < length; i++)
30. {
31. if (reverse_string[i] == string[i])
32. flag = 1;
33. else
34. flag = 0;
35. }
36. if (flag == 1)
37. printf("%s is a palindrome \n", string);
38. else
39. printf("%s is not a palindrome \n", string);
40. }

$ cc pgm28.c
$ a.out
Enter a string
sanfoundry
sanfoundry is not a palindrome

$ a.out
Enter a string
malayalam
malayalam is a palindrome

C Program to Check whether a given Number is Armstrong

This C Program checks whether a given number is armstrong number. An Armstrong number is an n­digit base b
number such that the sum of its (base b) digits raised to the power n is the number itself. Hence 153 because
1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153.

Here is source code of the C Program to check whether a given number is armstrong number.
The C program is successfully compiled and run on a Linux system. The program output is also shown
below.

Output:
$ cc pgm41.c -lm
$ a.out
enter a number370
The given no is armstrong no

$ a.out
enter a number1500
The given no is not a armstrong no

1. /*
2. * C Program to Check whether a given Number is Armstrong
3. */
4. #include <stdio.h>
5. #include <math.h>
6.
7. void main()
8. {
9. int number, sum = 0, rem = 0, cube = 0, temp;
10.
11. printf ("enter a number");
12. scanf("%d", &number);
13. temp = number;
14. while (number != 0)
15. {
16. rem = number % 10;
17. cube = pow(rem, 3);
18. sum = sum + cube;
19. number = number / 10;
20. }
21. if (sum == temp)
22. printf ("The given no is armstrong no");
23. else
24. printf ("The given no is not a armstrong no");
25. }

C Program to Compute the Product of Two Matrices

This C Program computes the product of two matrices. This program accepts the 2 matrices and then find the
product of 2 matrices.

Here is source code of the C program to compute the product of two matrices. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

1. /*
2. * Develop functions to read a matrix, display a matrix and compute
3. * product of two matrices.
4. * Use these functions to read two MxN matrices and compute their
5. * product & display the result
6. */
7. #include <stdio.h>
8. #define MAXROWS 10
9. #define MAXCOLS 10
10.
11. void readMatrix(int arr[][MAXCOLS], int m, int n);
12. void printMatrix(int arr[][MAXCOLS], int m, int n);
13. void productMatrix(int array1[][MAXCOLS], int array2[][MAXCOLS],
14. int array3[][MAXCOLS], int m, int n);
15.
16. void main()
17. {
18. int array1[MAXROWS][MAXCOLS], array2[MAXROWS][MAXCOLS],
19. array3[MAXROWS][MAXCOLS];
20. int m, n;
21.
22. printf("Enter the value of m and n \n");
23. scanf("%d %d", &m, &n);
24. printf("Enter Matrix array1 \n");
25. readMatrix(array1, m, n);
26. printf("Matrix array1 \n");
27. printMatrix(array1, m, n);
28. printf("Enter Matrix array2 \n");
29. readMatrix(array2, m, n);
30. printf("Matrix B \n");
31. printMatrix(array2, m, n);
32. productMatrix(array1, array2, array3, m, n);
33. printf("The product matrix is \n");
34. printMatrix(array3, m, n);
35. }
36. /* Input Matrix array1 */
37. void readMatrix(int arr[][MAXCOLS], int m, int n)
38. {
39. int i, j;
40. for (i = 0; i < m; i++)
41. {
42. for (j = 0; j < n; j++)
43. {

$ cc pgm34.c
$ a.out
Enter the value of m and n
3 3
Enter matrix array1
4 5 6
1 2 3
3 7 8
Matrix array1
 4 5 6
 1 2 3
 3 7 8
Enter matrix array2
5 6 9
8 5 3
2 9 1
Matrix array2
 5 6 9

45. }
46. }
47. }
48. void printMatrix(int arr[][MAXCOLS], int m, int n)
49. {
50. int i, j;
51. for (i = 0; i < m; i++)
52. {
53. for (j = 0; j < n; j++)
54. {
55. printf("%3d", arr[i][j]);
56. }
57. printf("\n");
58. }
59. }
60. /* Multiplication of matrices */
61. void productMatrix(int array1[][MAXCOLS], int array2[][MAXCOLS],
62. int array3[][MAXCOLS], int m, int n)
63. {
64. int i, j, k;
65. for (i = 0; i < m; i++)
66. {
67. for (j = 0; j < n; j++)
68. {
69. array3[i][j] = 0;
70. for (k = 0; k < n; k++)
71. {
72. array3[i][j] = array3[i][j] + array1[i][k] *
73. array2[k][j];
74. }
75. }
76. }
77. }

 2 9 1
The product matrix is
 72103 57
 27 43 18
 87125 56

C Program to Compute the Sum of Digits in a given Integer

This C Program computes the sum of digits in a given integer. This program m accepts integer. Then adds all the
digits of a given integer, that becomes the sum of digits of integer.

Here is source code of the C program to compute the sum of digits in a given integer. The C program
is successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm81.c
$ a.out
Enter the number
300
Given number = 300
Sum of the digits 300 = 3

$ a.out
Enter the number
16789
Given number = 16789
Sum of the digits 16789 = 31

1. /*
2. * C program to accept an integer & find the sum of its digits
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. long num, temp, digit, sum = 0;
9.
10. printf("Enter the number \n");
11. scanf("%ld", &num);
12. temp = num;
13. while (num > 0)
14. {
15. digit = num % 10;
16. sum = sum + digit;
17. num /= 10;
18. }
19. printf("Given number = %ld\n", temp);
20. printf("Sum of the digits %ld = %ld\n", temp, sum);
21. }

C Program to Find out the Roots of a Quadratic Equation

This C Program calculates the roots of a quadratic equation. First it finds discriminant using the formula : disc = b
* b – 4 * a * c. There are 3 types of roots. They are complex, distinct & equal roots. We have to find the given
equation belongs to which type of root.

Here is source code of the C program to calculate the roots of a quadratic equation. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

1. /*
2. * C program to find out the roots of a quadratic equation
3. * for non-zero coefficients. In case of errors the program
4. * should report suitable error message.
5. */
6. #include <stdio.h>
7. #include <stdlib.h>
8. #include <math.h>
9.
10. void main()
11. {
12. float a, b, c, root1, root2;
13. float realp, imagp, disc;
14.
15. printf("Enter the values of a, b and c \n");
16. scanf("%f %f %f", &a, &b, &c);
17. /* If a = 0, it is not a quadratic equation */
18. if (a == 0 || b == 0 || c == 0)
19. {
20. printf("Error: Roots cannot be determined \n");
21. exit(1);
22. }
23. else
24. {
25. disc = b * b - 4.0 * a * c;
26. if (disc < 0)
27. {
28. printf("Imaginary Roots\n");
29. realp = -b / (2.0 * a) ;
30. imagp = sqrt(abs(disc)) / (2.0 * a);
31. printf("Root1 = %f +i %f\n", realp, imagp);
32. printf("Root2 = %f -i %f\n", realp, imagp);
33. }
34. else if (disc == 0)
35. {
36. printf("Roots are real and equal\n");
37. root1 = -b / (2.0 * a);
38. root2 = root1;
39. printf("Root1 = %f\n", root1);
40. printf("Root2 = %f\n", root2);
41. }
42. else if (disc > 0)

 {

$ cc pgm7.c -lm
$ a.out
Enter the values of a, b and c
45 50 65
Imaginary Roots
Root1 = -0.555556 +i 1.065740
Root2 = -0.555556 -i 1.065740

44. printf("Roots are real and distinct \n");
45. root1 =(-b + sqrt(disc)) / (2.0 * a);
46. root2 =(-b - sqrt(disc)) / (2.0 * a);
47. printf("Root1 = %f \n", root1);
48. printf("Root2 = %f \n", root2);
49. }
50. }
51. }

C Program to find Reverse of a Number using Recursion

The following C program using recursion reverses the digits of the number and displays it on the output of the
terminal.Eg: 123 becomes 321.

Here is the source code of the C program to find the reverse of a number. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm34.c
$ a.out
Enter an integer number to reverse: 1234
The reverse of 1234 is 4321.

1. /*
2. * C program to find the reverse of a number using recursion
3. */
4. #include <stdio.h>
5. #include <math.h>
6.
7. int rev(int, int);
8.
9. int main()
10. {
11. int num, result;
12. int length = 0, temp;
13.
14. printf("Enter an integer number to reverse: ");
15. scanf("%d", &num);
16. temp = num;
17. while (temp != 0)
18. {
19. length++;
20. temp = temp / 10;
21. }
22. result = rev(num, length);
23. printf("The reverse of %d is %d.\n", num, result);
24. return 0;
25. }
26.
27. int rev(int num, int len)
28. {
29. if (len == 1)
30. {
31. return num;
32. }
33. else
34. {
35. return (((num % 10) * pow(10, len - 1)) + rev(num / 10, --len));
36. }
37. }

C Program to Find Sum of Digits of a Number using Recursion

The following C program, using recursion, finds the sum of its digits.

Here is the source code of the C program to find an element in a linked list. The C Program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm25.c
$ a.out
Enter the number: 2345
Sum of digits in 2345 is 14

1. /*
2. * C Program to find Sum of Digits of a Number using Recursion
3. */
4. #include <stdio.h>
5.
6. int sum (int a);
7.
8. int main()
9. {
10. int num, result;
11.
12. printf("Enter the number: ");
13. scanf("%d", &num);
14. result = sum(num);
15. printf("Sum of digits in %d is %d\n", num, result);
16. return 0;
17. }
18.
19. int sum (int num)
20. {
21. if (num != 0)
22. {
23. return (num % 10 + sum (num / 10));
24. }
25. else
26. {
27. return 0;
28. }
29. }

C Program to Find the Biggest of 3 Numbers

This C Program calculates the biggest of 3 numbers.The program assumes 3 numbers as a, b, c. First it
compares any 2 numbers check which is bigger. After that it compares the biggest element with the remaining
number. Now the number which is greater becomes your biggest of 3 numbers.

Here is source code of the C program to calculate the biggest of 3 numbers. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm6.c
$ a.out
Enter the values of num1, num2 and num3
6 8 10
num1 = 6 num2 = 8 num3 = 10
num3 is the greatest among three

1. /*
2. * C program to find the biggest of three numbers
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. int num1, num2, num3;
9.
10. printf("Enter the values of num1, num2 and num3\n");
11. scanf("%d %d %d", &num1, &num2, &num3);
12. printf("num1 = %d\tnum2 = %d\tnum3 = %d\n", num1, num2, num3);
13. if (num1 > num2)
14. {
15. if (num1 > num3)
16. {
17. printf("num1 is the greatest among three \n");
18. }
19. else
20. {
21. printf("num3 is the greatest among three \n");
22. }
23. }
24. else if (num2 > num3)
25. printf("num2 is the greatest among three \n");
26. else
27. printf("num3 is the greatest among three \n");
28. }

C Program to Find the Largest Number in an Array

This C Program finds the largest number in an array

Here is source code of the C Program to find the largest number in an array. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm73.c
$ a.out

Enter the size of the array: 5

Enter 5 elements of the array: 12
56
34
78
100

largest element present in the given array is : 100

1. /*
2. * C Program to Find the Largest Number in an Array
3. */
4. #include <stdio.h>
5.
6. int main()
7. {
8. int array[50], size, i, largest;
9. printf("\n Enter the size of the array: ");
10. scanf("%d", &size);
11. printf("\n Enter %d elements of the array: ", size);
12. for (i = 0; i < size; i++)
13. scanf("%d", &array[i]);
14. largest = array[0];
15. for (i = 1; i < size; i++)
16. {
17. if (largest < array[i])
18. largest = array[i];
19. }
20. printf("\n largest element present in the given array is : %d", largest);
21. return 0;
22. }

C Program to Find the Nth Fibonacci Number using Recursion

This C Program prints the fibonacci of a given number using recursion. In fibonacci series, each number is the
sum of the two preceding numbers. Eg: 0, 1, 1, 2, 3, 5, 8, …
The following program returns the nth number entered by user residing in the fibonacci series.

Here is the source code of the C program to print the nth number of a fibonacci number. The C
program is successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm9.c

1. /*
2. * C Program to find the nth number in Fibonacci series using recursion
3. */
4. #include <stdio.h>
5. int fibo(int);
6.
7. int main()
8. {
9. int num;
10. int result;
11.
12. printf("Enter the nth number in fibonacci series: ");
13. scanf("%d", &num);
14. if (num < 0)
15. {
16. printf("Fibonacci of negative number is not possible.\n");
17. }
18. else
19. {
20. result = fibo(num);
21. printf("The %d number in fibonacci series is %d\n", num, result);
22. }
23. return 0;
24. }
25. int fibo(int num)
26. {
27. if (num == 0)
28. {
29. return 0;
30. }
31. else if (num == 1)
32. {
33. return 1;
34. }
35. else
36. {
37. return(fibo(num - 1) + fibo(num - 2));
38. }
39. }

Enter the nth number in fibonacci series: 8
The 8 number in fibonacci series is 21

$ a.out
Enter the nth number in fibonacci series: 12
The 12 number in fibonacci series is 144

C Program to Find the Transpose of a given Matrix

This C Program finds the transpose of a given matrix. The transpose of a given matrix is formed by interchanging
the rows and columns of a matrix.

Here is source code of the C program to find the transpose of a given matrix .The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm85.c
$ a.out

1. /*
2. * C program to accept a matrix of order MxN and find its transpose
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. static int array[10][10];
9. int i, j, m, n;
10.
11. printf("Enter the order of the matrix \n");
12. scanf("%d %d", &m, &n);
13. printf("Enter the coefiicients of the matrix\n");
14. for (i = 0; i < m; ++i)
15. {
16. for (j = 0; j < n; ++j)
17. {
18. scanf("%d", &array[i][j]);
19. }
20. }
21. printf("The given matrix is \n");
22. for (i = 0; i < m; ++i)
23. {
24. for (j = 0; j < n; ++j)
25. {
26. printf(" %d", array[i][j]);
27. }
28. printf("\n");
29. }
30. printf("Transpose of matrix is \n");
31. for (j = 0; j < n; ++j)
32. {
33. for (i = 0; i < m; ++i)
34. {
35. printf(" %d", array[i][j]);
36. }
37. printf("\n");
38. }
39. }

3 3
Enter the coefiicients of the matrix
3 7 9
2 7 5
6 3 4
The given matrix is
 3 7 9
 2 7 5
 6 3 4
Transpose of matrix is
 3 2 6
 7 7 3
 9 5 4

C Program to Generate Fibonacci Series

This C Program generates fibonacci series. In fibonacci series the first two numbers in the Fibonacci sequence
are 0 and 1 and each subsequent number is the sum of the previous two. For example fibonacci series is 0, 1, 1,
2, 3, 5, 8,13, 21…………

Here is source code of the C program to generate fibonacci series. The C program is successfully
compiled and run on a Linux system. The program output is also shown below.

$ cc pgm40.c
$ a.out
Enter the limit to generate the Fibonacci Series
6
Fibonacci Series is ...
0
1
1
2
3
5

1. /*
2. * C program to generate Fibonacci Series. Fibonacci Series
3. * is 0 1 1 2 3 5 8 13 21 ...
4. */
5. #include <stdio.h>
6.
7. void main()
8. {
9. int fib1 = 0, fib2 = 1, fib3, limit, count = 0;
10.
11. printf("Enter the limit to generate the Fibonacci Series \n");
12. scanf("%d", &limit);
13. printf("Fibonacci Series is ...\n");
14. printf("%d\n", fib1);
15. printf("%d\n", fib2);
16. count = 2;
17. while (count < limit)
18. {
19. fib3 = fib1 + fib2;
20. count++;
21. printf("%d\n", fib3);
22. fib1 = fib2;
23. fib2 = fib3;
24. }
25. }

C Program to Illustrate Pass by Reference

This C Program illustrates pass by reference. This program is used to explain how pass by reference function
works.In pass by reference method, the function will operate on the original variable itself. It doesn’t work on a
copy of the argument but works on the argument itself.

Here is source code of the C Program to illustrate pass by reference. The C program is successfully
compiled and run on a Linux system. The program output is also shown below.

$ cc pgm49.c
$ a.out
Enter file name: pgm2.c
There are 43 lines in pgm2.c in a file

1. /*
2. * C Program to Illustrate Pass by Reference
3. */
4. #include <stdio.h>
5.
6. void cube(int *x);
7.
8. int main()
9. {
10. int num = 10;
11.
12. cube(&num);
13. printf("the cube of the given number is %d", num);
14. return 0;
15. }
16.
17. void cube(int *x)
18. {
19. *x = (*x) * (*x) * (*x);
20. }

C Program to Merge the Elements of 2 Sorted Array

This C Program merge the elements of 2 sorted array.

Here is source code of the C Program to merge the elements of 2 sorted array . The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

1. /*
2. * C Program to Merge the Elements of 2 Sorted Array
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. int array1[50], array2[50], array3[100], m, n, i, j, k = 0;
9.
10. printf("\n Enter size of array Array 1: ");
11. scanf("%d", &m);
12. printf("\n Enter sorted elements of array 1: \n");
13. for (i = 0; i < m; i++)
14. {
15. scanf("%d", &array1[i]);
16. }
17. printf("\n Enter size of array 2: ");
18. scanf("%d", &n);
19. printf("\n Enter sorted elements of array 2: \n");
20. for (i = 0; i < n; i++)
21. {
22. scanf("%d", &array2[i]);
23. }
24. i = 0;
25. j = 0;
26. while (i < m && j < n)
27. {
28. if (array1[i] < array2[j])
29. {
30. array3[k] = array1[i];
31. i++;
32. }
33. else
34. {
35. array3[k] = array2[j];
36. j++;
37. }
38. k++;
39. }
40. if (i >= m)
41. {
42. while (j < n)
43. {
44. array3[k] = array2[j];

$ cc pgm81.c
$ a.out

Enter size of array Array 1: 4

Enter sorted elements of array 1:
12
18
40
60

Enter size of array 2: 4

Enter sorted elements of array 2:
47
56
89
90

After merging:

12
18
40
47
56
60
89
90

46. k++;
47. }
48. }
49. if (j >= n)
50. {
51. while (i < m)
52. {
53. array3[k] = array1[i];
54. i++;
55. k++;
56. }
57. }
58. printf("\n After merging: \n");
59. for (i = 0; i < m + n; i++)
60. {
61. printf("\n%d", array3[i]);
62. }
63. }

C Program to Print Diamond Pattern

This C Program prints diamond pattern.

Here is source code of the C Program to print diamond pattern. The C program is successfully
compiled and run on a Linux system. The program output is also shown below.

$ cc pgm60.c
$ a.out
Enter number of rows
5
 *

1. /*
2. * C Program to Print Diamond Pattern
3. */
4. #include <stdio.h>
5.
6. int main()
7. {
8. int number, i, k, count = 1;
9.
10. printf("Enter number of rows\n");
11. scanf("%d", &number);
12. count = number - 1;
13. for (k = 1; k <= number; k++)
14. {
15. for (i = 1; i <= count; i++)
16. printf(" ");
17. count--;
18. for (i = 1; i <= 2 * k - 1; i++)
19. printf("*");
20. printf("\n");
21. }
22. count = 1;
23. for (k = 1; k <= number - 1; k++)
24. {
25. for (i = 1; i <= count; i++)
26. printf(" ");
27. count++;
28. for (i = 1 ; i <= 2 *(number - k)- 1; i++)
29. printf("*");
30. printf("\n");
31. }
32. return 0;
33. }

 *
$ a.out
Enter number of rows
2
 *

 *

C Program to Read an Array and Search for an Element

This C Program reads an array and searches for an element.

Here is source code of the C program to read an array and search for an element. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm97.c
$ a.out
Enter the size of an array

1. /*
2. * C program accept an array of N elements and a key to search.
3. * If the search is successful, it displays "SUCCESSFUL SEARCH".
4. * Otherwise, a message "UNSUCCESSFUL SEARCH" is displayed.
5. */
6. #include <stdio.h>
7.
8. void main()
9. {
10. int array[20];
11. int i, low, mid, high, key, size;
12.
13. printf("Enter the size of an array\n");
14. scanf("%d", &size);
15. printf("Enter the array elements\n");
16. for (i = 0; i < size; i++)
17. {
18. scanf("%d", &array[i]);
19. }
20. printf("Enter the key\n");
21. scanf("%d", &key);
22. /* search begins */
23. low = 0;
24. high = (size - 1);
25. while (low <= high)
26. {
27. mid = (low + high) / 2;
28. if (key == array[mid])
29. {
30. printf("SUCCESSFUL SEARCH\n");
31. return;
32. }
33. if (key < array[mid])
34. high = mid - 1;
35. else
36. low = mid + 1;
37. }
38. printf("UNSUCCESSFUL SEARCH\n");
39. }

Enter the array elements
90
560
300
390
Enter the key
90
SUCCESSFUL SEARCH

$ a.out
Enter the size of an array
4
Enter the array elements
100
500
580
470
Enter the key
300
UNSUCCESSFUL SEARCH

C Program to Read Two Integers M and N & Swap their Values

This C Program reads two integers & swap their values.

Here is source code of the C program to read two integers & swap their values. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm36.c
$ a.out
Enter the values of M and N
2 3
Before Swapping:M = 2.00 N = 3.00
After Swapping:M = 3.00 N = 2.00

1. /*
2. * C program to read two integers M and N and to swap their values.
3. * Use a user-defined function for swapping. Output the values of M
4. * and N before and after swapping.
5. */
6. #include <stdio.h>
7. void swap(float *ptr1, float *ptr2);
8.
9. void main()
10. {
11. float m, n;
12.
13. printf("Enter the values of M and N \n");
14. scanf("%f %f", &m, &n);
15. printf("Before Swapping:M = %5.2ftN = %5.2f\n", m, n);
16. swap(&m, &n);
17. printf("After Swapping:M = %5.2ftN = %5.2f\n", m, n);
18. }
19. /* Function swap - to interchanges the contents of two items */
20. void swap(float *ptr1, float *ptr2)
21. {
22. float temp;
23.
24. temp = *ptr1;
25. *ptr1 = *ptr2;
26. *ptr2 = temp;
27. }

C Program to read two Strings & Concatenate the Strings

This C Program reads the two strings & concatenate the strings without using string library functions. This
program first reads the 2 strings using scanf(), then joins the one string with another. Later it reads and prints it
as a single string.

Here is source code of the C program to read two strings & concatenate the strings. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm29.c
$ a.out

1. /*
2. * C program to read two strings and concatenate them, without using
3. * library functions. Display the concatenated string.
4. */
5. #include <stdio.h>
6. #include <string.h>
7.
8. void main()
9. {
10. char string1[20], string2[20];
11. int i, j, pos;
12.
13. /* Initialize the string to NULL values */
14. memset(string1, 0, 20);
15. memset(string2, 0, 20);
16.
17. printf("Enter the first string : ");
18. scanf("%s", string1);
19. printf("Enter the second string: ");
20. scanf("%s", string2);
21. printf("First string = %s\n", string1);
22. printf("Second string = %s\n", string2);
23.
24. /* Concate the second string to the end of the first string */
25. for (i = 0; string1[i] != '\0'; i++)
26. {
27. /* null statement: simply traversing the string1 */
28. ;
29. }
30. pos = i;
31. for (j = 0; string2[j] != '\0'; i++)
32. {
33. string1[i] = string2[j++];
34. }
35. /* set the last character of string1 to NULL */
36. string1[i] = '\0';
37. printf("Concatenated string = %s\n", string1);
38. }

Enter the second string: foundry
First string = San
Second string = foundry
Concatenated string = Sanfoundry

C Program to Reverse a Given Number

This C Program reverses a given number by using modulo operation.

Here is source code of the C program to reverse a given number. The C program is successfully
compiled and run on a Linux system. The program output is also shown below.

$ cc pgm42.c
$ a.out
Enter the number
567865
Given number = 567865
Its reverse is = 568765

1. /*
2. * C program to accept an integer and reverse it
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. long num, reverse = 0, temp, remainder;
9.
10. printf("Enter the number\n");
11. scanf("%ld", &num);
12. temp = num;
13. while (num > 0)
14. {
15. remainder = num % 10;
16. reverse = reverse * 10 + remainder;
17. num /= 10;
18. }
19. printf("Given number = %ld\n", temp);
20. printf("Its reverse is = %ld\n", reverse);
21. }

C Program to Reverse a Number & Check if it is a Palindrome

This C Program reverses a number & checks if it is a palindrome or not. First it reverses a number. Then it
checks if given number and reversed numbers are equal. If they are equal, then its a palindrome.

Here is source code of the C program to reverse a number & checks it is a palindrome or not. The C
program is successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm13.c
$ a.out
Enter an integer
6789
Given number is = 6789
Its reverse is = 9876
Number is not a palindrome

$ a.out
Enter an integer
58085
Given number is = 58085
Its reverse is = 58085

1. /*
2. * C program to reverse a given integer number and check
3. * whether it is a palindrome. Display the given number
4. * with appropriate message
5. */
6. #include <stdio.h>
7.
8. void main()
9. {
10. int num, temp, remainder, reverse = 0;
11.
12. printf("Enter an integer \n");
13. scanf("%d", &num);
14. /* original number is stored at temp */
15. temp = num;
16. while (num > 0)
17. {
18. remainder = num % 10;
19. reverse = reverse * 10 + remainder;
20. num /= 10;
21. }
22. printf("Given number is = %d\n", temp);
23. printf("Its reverse is = %d\n", reverse);
24. if (temp == reverse)
25. printf("Number is a palindrome \n");
26. else
27. printf("Number is not a palindrome \n");
28. }

C Program to Simulate a Simple Calculator

This C Program simulates a simple calculator. This program performs arithmatic operations like addtion,
subraction, multiplication & division. Assume that the 2 numbers a & b are given. For the given element we need
to perform addition, subtraction, multiplication & division.

Here is source code of the C program which simulates a simple calculator. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm.c
$ a.out8
Simulation of a Simple Calculator

Enter two numbers
2 3
Enter the operator [+,-,*,/]

1. /*
2. * C program to simulate a simple calculator to perform arithmetic
3. * operations like addition, subtraction, multiplication and division
4. */
5. #include <stdio.h>
6.
7. void main()
8. {
9. char operator;
10. float num1, num2, result;
11.
12. printf("Simulation of a Simple Calculator\n");
13. printf("*********************************\n");
14. printf("Enter two numbers \n");
15. scanf("%f %f", &num1, &num2);
16. fflush(stdin);
17. printf("Enter the operator [+,-,*,/] \n");
18. scanf("%s", &operator);
19. switch(operator)
20. {
21. case '+': result = num1 + num2;
22. break;
23. case '-': result = num1 - num2;
24. break;
25. case '*': result = num1 * num2;
26. break;
27. case '/': result = num1 / num2;
28. break;
29. default : printf("Error in operationn");
30. break;
31. }
32. printf("\n %5.2f %c %5.2f = %5.2f\n", num1, operator, num2, result);
33. }

2.00 + 3.00 = 5.00

$ a.out
Simulation of a Simple Calculator

Enter two numbers
50 40
Enter the operator [+,-,*,/]
*

50.00 * 40.00 = 2000.00

$ a.out
Simulation of a Simple Calculator

Enter two numbers
500 17
Enter the operator [+,-,*,/]
/

500.00 / 17.00 = 29.41

$ a.out
Simulation of a Simple Calculator

Enter two numbers
65000 4700
Enter the operator [+,-,*,/]
-

65000.00 - 4700.00 = 60300.00

C Program to Sort the Array in an Ascending Order

This C Program sorts array in an ascending order.

Here is source code of the C program to sort the array in an ascending order. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm66.c
$ a.out
Enter the value of N
6
Enter the numbers
3
78
90
456
780
200
The numbers arranged in ascending order are given below

1. /*
2. * C program to accept N numbers and arrange them in an ascending order
3. */
4. #include <stdio.h>
5.
6. void main()
7. {
8. int i, j, a, n, number[30];
9.
10. printf("Enter the value of N \n");
11. scanf("%d", &n);
12. printf("Enter the numbers \n");
13. for (i = 0; i < n; ++i)
14. scanf("%d", &number[i]);
15. for (i = 0; i < n; ++i)
16. {
17. for (j = i + 1; j < n; ++j)
18. {
19. if (number[i] > number[j])
20. {
21. a = number[i];
22. number[i] = number[j];
23. number[j] = a;
24. }
25. }
26. }
27. printf("The numbers arranged in ascending order are given below \n");
28. for (i = 0; i < n; ++i)
29. printf("%d\n", number[i]);
30. }

78
90
200
456
780

C Program to Sort the Array in Descending Order

This C Program sorts array in an descending order.

Here is source code of the C program to sort the array in an descending order. The C program is
successfully compiled and run on a Linux system. The program output is also shown below.

$ cc pgm67.c
$ a.out
Enter the value of N
5
Enter the numbers
234
780

1. /*
2. * C program to accept a set of numbers and arrange them
3. * in a descending order
4. */
5. #include <stdio.h>
6.
7. void main ()
8. {
9. int number[30];
10. int i, j, a, n;
11.
12. printf("Enter the value of N\n");
13. scanf("%d", &n);
14. printf("Enter the numbers \n");
15. for (i = 0; i < n; ++i)
16. scanf("%d", &number[i]);
17. /* sorting begins ... */
18. for (i = 0; i < n; ++i)
19. {
20. for (j = i + 1; j < n; ++j)
21. {
22. if (number[i] < number[j])
23. {
24. a = number[i];
25. number[i] = number[j];
26. number[j] = a;
27. }
28. }
29. }
30. printf("The numbers arranged in descending order are given below\n");
31. for (i = 0; i < n; ++i)
32. {
33. printf("%d\n", number[i]);
34. }
35. }

56
90
The numbers arranged in descending order are given below
780
234
130
90
56

C Programming

en.wikibooks.org

November 24, 2013

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia
projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A
URI to this license is given in the list of figures on page 273. If this document is a derived work
from the contents of one of these projects and the content was still licensed by the project under
this license at the time of derivation this document has to be licensed under the same, a similar or a
compatible license, as stated in section 4b of the license. The list of contributors is included in chapter
Contributors on page 265. The licenses GPL, LGPL and GFDL are included in chapter Licenses on
page 277, since this book and/or parts of it may or may not be licensed under one or more of these
licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 273. This PDF was generated by the LATEX typesetting software. The LATEX source
code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from
the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www.
pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save
the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.
To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX
source itself was generated by a program written by Dirk Hünniger, which is freely available under
an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Why learn C? 3

2 History 7

3 What you need before you can learn 9
3.1 Getting Started . 9
3.2 Footnotes . 12

4 Using a Compiler 13

5 A taste of C 19

6 Intro exercise 21
6.1 Introductory Exercises . 21

7 Beginning C 25

8 Preliminaries 27
8.1 Basic Concepts . 27
8.2 Block Structure, Statements, Whitespace, and Scope 27
8.3 Basics of Using Functions . 29
8.4 The Standard Library . 30

9 Compiling 31
9.1 Preprocessor . 31
9.2 Syntax Checking . 32
9.3 Object Code . 32
9.4 Linking . 32
9.5 Automation . 33

10 Structure and style 35
10.1 C Structure and Style . 35
10.2 Introduction . 35
10.3 Line Breaks and Indentation . 36
10.4 Comments . 38
10.5 Links . 41

11 Error handling 43
11.1 Preventing divide by zero errors . 44
11.2 Signals . 44
11.3 setjmp . 45

III

Contents

12 Variables 47
12.1 Declaring, Initializing, and Assigning Variables 47
12.2 Literals . 49
12.3 The Four Basic Data Types . 49
12.4 sizeof . 51
12.5 Data type modifiers . 52
12.6 const qualifier . 52
12.7 Magic numbers . 53
12.8 Scope . 54
12.9 Other Modifiers . 54

13 Simple Input and Output 59
13.1 Output using printf() . 59
13.2 Other output methods . 61
13.3 Input using scanf() . 62
13.4 Links . 63

14 Simple math 65
14.1 Operators and Assignments . 65

15 Further math 73
15.1 Trigonometric functions . 73
15.2 Hyperbolic functions . 74
15.3 Exponential and logarithmic functions . 75
15.4 Power functions . 77
15.5 Nearest integer, absolute value, and remainder functions 78
15.6 Error and gamma functions . 80
15.7 Further reading . 81

16 Control 83
16.1 Conditionals . 83
16.2 Loops . 90
16.3 One last thing: goto . 94
16.4 Examples . 96
16.5 Further reading . 96

17 Procedures and functions 97
17.1 More on functions . 98
17.2 Writing functions in C . 98
17.3 Using C functions . 101
17.4 Functions from the C Standard Library . 101
17.5 Variable-length argument lists . 106

18 Preprocessor 109
18.1 Directives . 109
18.2 Useful Preprocessor Macros for Debugging 118

19 Libraries 125
19.1 What to put in header files . 127

IV

Contents

19.2 Further reading . 128

20 Standard libraries 129
20.1 History . 129
20.2 Design . 130
20.3 ANSI Standard . 130
20.4 Common support libraries . 132
20.5 Compiler built-in functions . 133
20.6 POSIX standard library . 133

21 File IO 135
21.1 Introduction . 135
21.2 Streams . 135
21.3 Standard Streams . 136
21.4 FILE pointers . 137
21.5 Opening and Closing Files . 137
21.6 Other file access functions . 138
21.7 Functions that Modify the File Position Indicator 139
21.8 Error Handling Functions . 141
21.9 Other Operations on Files . 142
21.10 Reading from Files . 143
21.11 Writing to Files . 151
21.12 References . 159

22 Beginning exercises 161
22.1 Variables . 161
22.2 Simple I/O . 163
22.3 Program Flow . 165
22.4 Functions . 166
22.5 Math . 166
22.6 Recursion . 167

23 In-depth C ideas 179

24 Arrays 181
24.1 Arrays . 181
24.2 Strings . 183

25 Pointers and arrays 185
25.1 Declaring pointers . 186
25.2 Assigning values to pointers . 187
25.3 Pointer dereferencing . 188
25.4 Pointers and Arrays . 189
25.5 Pointers in Function Arguments . 191
25.6 Pointers and Text Strings . 192
25.7 Pointers to Functions . 192
25.8 Practical use of function pointers in C . 194
25.9 Examples of pointer constructs . 196
25.10 sizeof . 196

V

Contents

25.11 External Links . 199

26 Memory management 201
26.1 EXAMPLE . 201
26.2 The calloc function . 203
26.3 The realloc function . 203
26.4 The free function . 203
26.5 References . 204

27 Strings 205
27.1 Syntax . 205
27.2 The <string.h> Standard Header . 206
27.3 Examples . 219
27.4 Further reading . 220

28 Complex types 221
28.1 Data structures . 221
28.2 Type modifiers . 223

29 Networking in UNIX 225
29.1 A simple client . 225
29.2 A simple server . 227
29.3 Useful network functions . 228
29.4 FAQs . 228

30 Common practices 231
30.1 Dynamic multidimensional arrays . 231
30.2 Constructors and destructors . 233
30.3 Nulling freed pointers . 234
30.4 Macro conventions . 235
30.5 Further reading . 235

31 C and beyond 237

32 Language extensions 239
32.1 External links . 239

33 Mixing languages 241
33.1 Assembler . 241
33.2 Cg . 241
33.3 Java . 241
33.4 Perl . 242
33.5 Python . 242
33.6 For further reading . 242
33.7 References . 242

34 Code library 243

35 Computer Programming 245

VI

Contents

36 Statements 247

37 C Reference Tables 249

38 Reference Tables 251
38.1 List of Keywords . 251
38.2 List of Standard Headers . 251
38.3 Table of Operators . 253
38.4 Table of Data Types . 255

39 Compilers 263
39.1 Free (or with a free version) . 263
39.2 Commercial . 264

40 Contributors 265

List of Figures 273

41 Licenses 277
41.1 GNU GENERAL PUBLIC LICENSE . 277
41.2 GNU Free Documentation License . 278
41.3 GNU Lesser General Public License . 279

1

1 Why learn C?

C1 is the most commonly used programming language2 for writing operating systems3.
Unix4 was the first operating system written in C. Later Microsoft Windows5, Mac OS X6,
and GNU/Linux7 were all written in C. Not only is C the language of operating systems,
it is the precursor and inspiration for almost all of the most popular high-level languages
available today. In fact, Perl8, PHP9, and Python10 are all written in C.

By way of analogy, let's say that you were going to be learning Spanish, Italian, French, or
Portuguese. Do you think knowing Latin would be helpful? Just as Latin was the basis of
all of those languages, knowing C will enable you to understand and appreciate an entire
family of programming languages built upon the traditions of C. Knowledge of C enables
freedom.

1.0.1 Why C, and not assembly language?

While assembly language can provide speed and maximum control of the program, C pro-
vides portability.

Different processors are programmed using different Assembly languages and having to
choose and learn only one of them is too arbitrary. In fact, one of the main strengths of C
is that it combines universality and portability across various computer architectures while
retaining most of the control of the hardware provided by assembly language.

For example, C programs can be compiled and run on the HP 50g calculator (ARM pro-
cessor), the TI-89 calculator (68000 processor), Palm OS Cobalt smartphones (ARM pro-
cessor), the original iMac (PowerPC), the Arduino (Atmel AVR), and the Intel iMac (Intel
Core 2 Duo). Each of these devices has its own assembly language that is completely
incompatible with the assembly language of any other.

Assembly11, while extremely powerful, is simply too difficult to program large applications
and hard to read or interpret in a logical way. C is a compiled language, which creates fast
and efficient executable files. It is also a small "what you see is all you get" language: a

1 http://en.wikipedia.org/wiki/C%20%28programming%20language%29
2 http://en.wikipedia.org/wiki/programming%20language
3 http://en.wikipedia.org/wiki/operating%20systems
4 http://en.wikipedia.org/wiki/Unix
5 http://en.wikipedia.org/wiki/Microsoft%20Windows
6 http://en.wikipedia.org/wiki/Mac%20OS%20X
7 http://en.wikipedia.org/wiki/Linux
8 http://en.wikipedia.org/wiki/Perl
9 http://en.wikipedia.org/wiki/PHP
10 http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
11 http://en.wikipedia.org/wiki/Assembly%20language

3

http://en.wikipedia.org/wiki/C%20%28programming%20language%29
http://en.wikipedia.org/wiki/programming%20language
http://en.wikipedia.org/wiki/operating%20systems
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Assembly%20language

Why learn C?

C statement corresponds to at most a handful of assembly statements, everything else is
provided by library functions.

So is it any wonder that C is such a popular language?

Like toppling dominoes, the next generation of programs follows the trend of its ancestors.
Operating systems designed in C always have system libraries designed in C. Those system
libraries are in turn used to create higher-level libraries (like OpenGL12, or GTK13), and
the designers of those libraries often decide to use the language the system libraries used.
Application developers use the higher-level libraries to design word processors, games, media
players and the like. Many of them will choose to program in the language that the higher-
level library uses. And the pattern continues on and on and on......

1.0.2 Why C, and not another language?

The primary design of C is to produce portable code while maintaining performance and
minimizing footprint, as is the case for operating systems or other programs where a "high-
level" interface would affect performance. It is a stable and mature language whose features
are unlikely to disappear for a long time and has been ported to most, if not all, platforms.

For example, C programs can be compiled and run on the HP 50g calculator (ARM pro-
cessor), the TI-89 calculator (68000 processor), Palm OS Cobalt smartphones (ARM pro-
cessor), the original iMac (PowerPC), the Arduino (Atmel AVR), and the Intel iMac (Intel
Core 2 Duo). While nearly all popular programming languages will run on at least one of
these devices, C may be the only programming language that runs on more than 3 of these
devices.

One powerful reason is memory allocation. Unlike most computer languages, C allows the
programmer to write directly to memory. Key constructs in C such as structs, pointers
and arrays are designed to structure, and manipulate memory in an efficient, machine-
independent fashion. In particular, C gives control over the memory layout of data struc-
tures. Moreover dynamic memory allocation is under the control of the programmer, which
inevitably means that memory deallocation is the burden of the programmer. Languages
like Java14 and Perl shield the programmer from having to worry about memory allocation
and pointers. This is usually a good thing, since dealing with memory allocation when
building a high-level program is a highly error-prone process. However, when dealing with
low level code such as the part of the OS that controls a device, C provides a uniform, clean
interface. These capabilities just do not exist in other languages such as Java.

While Perl, PHP, Python and Ruby may be powerful and support many features not pro-
vided by default in C, they are not normally implemented in their own language. Rather,
most such languages initially relied on being written in C (or another high-performance pro-
gramming language), and would require their implementation be ported to a new platform
before they can be used.

12 http://en.wikipedia.org/wiki/OpenGL
13 http://en.wikipedia.org/wiki/GTK
14 http://en.wikipedia.org/wiki/Java%20%28programming%20language%29

4

http://en.wikipedia.org/wiki/OpenGL
http://en.wikipedia.org/wiki/GTK
http://en.wikipedia.org/wiki/Java%20%28programming%20language%29

Contents

As with all programming languages, whether you want to choose C over another high-level
language is a matter of opinion and both technical and business requirements.

5

2 History

The field of computing as we know it today started in 1947 with three scientists at Bell
Telephone Laboratories—William Shockley1, Walter Brattain2, and John Bardeen3—and
their groundbreaking invention: the transistor4. In 1956, the first fully transistor-based
computer, the TX-05, was completed at MIT. The first integrated circuit6 was created in
1958 by Jack Kilby7 at Texas Instruments, but the first high-level programming language
existed even before then.

"The Fortran8 project" was originally developed in 1954 by IBM. A shortening of "The
IBM Mathematical Formula Translating System", the project had the purpose of creating
and fostering development of a procedural, imperative programming language that was
especially suited to numeric computation and scientific computing. It was a breakthrough
in terms of productivity and programming ease (compared to assembly language) and speed
(Fortran programs ran nearly as fast as, and in some cases, just as fast as, programs written
in assembly). Furthermore, Fortran was written at a high-enough level (and thus was
machine independent enough) to become the first widely adopted programming language.
The Algorithmic Language (Algol 589) was derived from Fortran in 1958 and evolved into
Algol 6010 in 1960. The Combined Programming Language (CPL)11 was then created out
of Algol 60 in 1963. In 1967, it evolved into Basic CPL12, which was itself, the base for B13

in 1969. Finally, B was the root of C, created in 1971.

B was the first language in C's direct lineage. B was created by Ken Thompson14 at
Bell Labs and was an interpreted language15 used in early internal versions of the UNIX
operating system. Thompson and Dennis Ritchie16, also working at Bell Labs, improved
B and called the result NB. Further extensions to NB created its logical successor, C, a
compiled language17. Most of UNIX was rewritten in NB, and then C, which resulted in a
more portable operating system.

1 http://en.wikipedia.org/wiki/William%20Shockley
2 http://en.wikipedia.org/wiki/Walter%20Brattain
3 http://en.wikipedia.org/wiki/John%20Bardeen
4 http://en.wikipedia.org/wiki/transistor
5 http://en.wikipedia.org/wiki/TX-0
6 http://en.wikipedia.org/wiki/integrated%20circuit
7 http://en.wikipedia.org/wiki/Jack%20Kilby
8 http://en.wikipedia.org/wiki/Fortran
9 http://en.wikipedia.org/wiki/ALGOL%2058
10 http://en.wikipedia.org/wiki/ALGOL%2060
11 http://en.wikipedia.org/wiki/Combined%20Programming%20Language
12 http://en.wikipedia.org/wiki/BCPL
13 http://en.wikipedia.org/wiki/B%20%28programming%20language%29
14 http://en.wikipedia.org/wiki/Ken%20Thompson
15 http://en.wikipedia.org/wiki/interpreted%20language
16 http://en.wikipedia.org/wiki/Dennis%20Ritchie
17 http://en.wikipedia.org/wiki/compiled%20language

7

http://en.wikipedia.org/wiki/William%20Shockley
http://en.wikipedia.org/wiki/Walter%20Brattain
http://en.wikipedia.org/wiki/John%20Bardeen
http://en.wikipedia.org/wiki/transistor
http://en.wikipedia.org/wiki/TX-0
http://en.wikipedia.org/wiki/integrated%20circuit
http://en.wikipedia.org/wiki/Jack%20Kilby
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/ALGOL%2058
http://en.wikipedia.org/wiki/ALGOL%2060
http://en.wikipedia.org/wiki/Combined%20Programming%20Language
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/B%20%28programming%20language%29
http://en.wikipedia.org/wiki/Ken%20Thompson
http://en.wikipedia.org/wiki/interpreted%20language
http://en.wikipedia.org/wiki/Dennis%20Ritchie
http://en.wikipedia.org/wiki/compiled%20language

History

The portability of UNIX was the main reason for the initial popularity of both UNIX and C.
Rather than creating a new operating system for each new machine, system programmers
could simply write the few system-dependent parts required for the machine, and then write
a C compiler for the new system. Since most of the system utilities were thus written in C,
it simply made sense to also write new utilities in C.

The American National Standards Institute began work on standardizing the C language in
1983, and completed the standard in 1989. The standard, ANSI X3.159-1989 "Programming
Language C", served as the basis for all implementations of C compilers. The standards
were later updated in 1990 and 1999, allowing for features that were either in common use,
or were appearing in C++.

8

3 What you need before you can learn

3.1 Getting Started

The goal of this book is to introduce you to the C programming language. Basic computer
literacy is assumed, but no special knowledge is needed.

Before you can start programming in C, you will need a C compiler1. A compiler is a
program that converts C code into executable machine code2.3

Popular C compilers Include:

Name Website Platform License Details
Microsoft Visual
Studio Express4

Visual Studio5 Windows Free Version Powerful and
student-friendly
version of an
industry standard
compiler.

Tiny C Compiler
(TCC)6

tinycc7 GNU/Linux,
Windows

LGPL8 Small, fast and
simple compiler.

Clang9 clang10 GNU/Linux,
Windows, Unix,
OS X

University of
Illinois/NCSA
License11

A front-end
which compiles
(Objective)
C/C++ using
a LLVM backend.

GNU C Com-
piler12

gcc13 GNU/Linux,
MinGW(Windows)14,
Unix, OS X.

GPL15 The De facto
standard. Ships
with most Unix
systems.

1 http://en.wikipedia.org/wiki/Compiler
2 http://en.wikipedia.org/wiki/machine%20code
3 Actually, GCC's(GNU C Compiler) cc (C Compiler) translates the input .c file to the target cpu's

assembly, output is written to an .s file. Then as (assembler) generates a machine code file from the .s
file. Pre-processing is done by another sub-program cpp (C PreProcessor), which is not to be confused
with c++ the compiler.

4 http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
5 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
6 http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
7 http://www.tinycc.org
8 http://en.wikipedia.org/wiki/GNU%20Lesser%20General%20Public%20License
9 http://en.wikipedia.org/wiki/Clang
10 http://clang.llvm.org
11 http://opensource.org/licenses/UoI-NCSA.php
12 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
13 http://gcc.gnu.org
14 http://mingw.org
15 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

9

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/machine%20code
http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
http://www.tinycc.org
http://en.wikipedia.org/wiki/GNU%20Lesser%20General%20Public%20License
http://en.wikipedia.org/wiki/Clang
http://clang.llvm.org
http://opensource.org/licenses/UoI-NCSA.php
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://gcc.gnu.org
http://mingw.org
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

What you need before you can learn

The minimum software requirements to program in C is a text editor16, as opposed to a word
processor17. A plain text Notepad Editor can be used but it does not offer any advanced
capabilities such as code completion or debugging. There are many text editors (see List of
Text Editors18), among the most popular are Notepad++19 for Windows, Sublime Text20,
Vim21 and Emacs22 are also available cross-platform. These text editors come with syntax
highlighting23 and line numbers, which makes code easier to read at a glance, and to spot
syntax errors.

Though not absolutely needed, many programmers prefer and recommend using an In-
tegrated development environment24 (IDE) instead of a text editor. An IDE is a suite
of programs that developers need, combined into one convenient package, usually with a
graphical user interface. These programs include a text editor, linker, project management
and sometimes bundled with a compiler. They also typically include a debugger, a tool
that will preserve your C source code after compilation and enable you to do such things
as step through it manually, or alter data as an aid to finding and correcting programming
errors.

For beginners it is recommended not to use an IDE, since it hides most of what is going on.
Using the command line builds up familiarity with the toolchain. An IDE may be useful
to somebody with programming experience but knows how the IDE works. So as a general
guideline: Do not use an IDE unless you know what the IDE does!

Popular IDEs Include:

Name Website Platform License Details
Eclipse
CDT25

Eclipse26 Windows,
Mac OS X,
Linux

Open source Eclipse27
IDE for
C/C++ de-
velopement, a
popular open
source IDE.

Netbeans28 Netbeans29 Cross-
platform

CDDL30 and
GPL31 2.0

A Good com-
parable ma-
tured IDE to
Eclipse.

16 http://en.wikipedia.org/wiki/Text%20Editor
17 http://en.wikipedia.org/wiki/Word%20Processor
18 http://en.wikipedia.org/wiki/List%20of%20text%20editors
19 http://en.wikipedia.org/wiki/Notepad%2B%2B
20 http://en.wikipedia.org/wiki/Sublime%20Text
21 http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29
22 http://en.wikipedia.org/wiki/Emacs
23 http://en.wikipedia.org/wiki/syntax%20highlighting
24 http://en.wikipedia.org/wiki/Integrated%20development%20environment
25 http://en.wikipedia.org/wiki/Eclipse_%28software%29
26 http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junor
27 http://en.wikipedia.org/wiki/Eclipse%20%28software%29
28 http://en.wikipedia.org/wiki/Netbeans
29 http://netbeans.org
30 http://en.wikipedia.org/wiki/Common%20Development%20and%20Distribution%20License
31 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

10

http://en.wikipedia.org/wiki/Text%20Editor
http://en.wikipedia.org/wiki/Word%20Processor
http://en.wikipedia.org/wiki/List%20of%20text%20editors
http://en.wikipedia.org/wiki/Notepad%2B%2B
http://en.wikipedia.org/wiki/Sublime%20Text
http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/syntax%20highlighting
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junor
http://en.wikipedia.org/wiki/Eclipse%20%28software%29
http://en.wikipedia.org/wiki/Netbeans
http://netbeans.org
http://en.wikipedia.org/wiki/Common%20Development%20and%20Distribution%20License
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

Getting Started

Name Website Platform License Details
Anjuta32 Anjuta33 Linux GPL34 A GTK+2

IDE for the
GNOME35

desktop envi-
ronment.

Geany36 geany37 Cross-
platform

GPL38 A lightweight
cross-platform
GTK+
notepad based
on Scintilla,
with basic
IDE features.

Little C
Compiler
(LCC)39

lcc40 Windows Free for non-
commercial
use

Small open
source com-
piler.

Xcode41 Xcode42 Mac OS X Free Available for
free at Mac
App Store43.

Pelles C44 Pelles C45 Windows,
Pocket PC

Free A complete
C develop-
ment kit for
Windows.

Dev C++46 Dev C++47 Windows GPL48 Updated ver-
sion of the
formerly pop-
ular Blood-
shed Dev-
C++.

32 http://en.wikipedia.org/wiki/Anjuta
33 http://anjuta.org
34 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
35 http://en.wikipedia.org/wiki/GNOME
36 http://en.wikipedia.org/wiki/Geany
37 http://www.geany.org
38 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
39 http://en.wikipedia.org/wiki/LCC%20%28compiler%29
40 http://www.cs.virginia.edu/~lcc-win32
41 http://en.wikipedia.org/wiki/Xcode
42 https://developer.apple.com/xcode
43 https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
44 http://en.wikipedia.org/wiki/Pelles%20C
45 http://smorgasbordet.com/pellesc
46 http://en.wikipedia.org/wiki/Dev%20C%2B%2B%20
47 http://sourceforge.net/projects/orwelldevcpp/
48 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

11

http://en.wikipedia.org/wiki/Anjuta
http://anjuta.org
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/GNOME
http://en.wikipedia.org/wiki/Geany
http://www.geany.org
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/LCC%20%28compiler%29
http://www.cs.virginia.edu/~lcc-win32
http://en.wikipedia.org/wiki/Xcode
https://developer.apple.com/xcode
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
http://en.wikipedia.org/wiki/Pelles%20C
http://smorgasbordet.com/pellesc
http://en.wikipedia.org/wiki/Dev%20C%2B%2B%20
http://sourceforge.net/projects/orwelldevcpp/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

What you need before you can learn

Name Website Platform License Details
Microsoft
Visual Studio
Express49

Visual
C++50

Windows Free A powerful,
user friendly
version of an
industry stan-
dard com-
piler.

CodeLite51 CodeLite52 Cross-
platform

GPL53 2 Free IDE for
C/C++ de-
velopment.

Code::Blocks54 Code::Blocks55 Cross-
platform

GPL56 3.0 Built to meet
users' most
demanding
needs. Very
extensible and
fully config-
urable.

On GNU/Linux, GCC is almost always included automatically.

OnMicrosoft Windows, Dev-C++ is recommended for beginners because it is easy to use,
free, and simple to install. However, the official release of Dev-C++ hasn't been updated
since 22 February 2005.57 An unofficial58 version of Dev-C++ is being actively developed
however.59 An alternate option for those working only in the Windows environment is the
official Microsoft Visual Studio Express which is free and has an excellent debugger.

On Mac OS X, the Xcode IDE provides the compilers needed to compile various source
files. The newer versions do not not include the command line tools. They need to be
downloaded via Xcode->Preferences->Downloads.

3.2 Footnotes

pl:C/Czego potrzebujesz60

49 http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
50 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
51 http://en.wikipedia.org/wiki/CodeLite
52 http://codelite.org/
53 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
54 http://en.wikipedia.org/wiki/Code%3A%3ABlocks
55 http://codeblocks.org/
56 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
57 http://sourceforge.net/news/?group_id=10639
58 http://sourceforge.net/projects/orwelldevcpp/
59 http://orwelldevcpp.blogspot.com/
60 http://pl.wikibooks.org/wiki/C%2FCzego%20potrzebujesz

12

http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
http://en.wikipedia.org/wiki/CodeLite
http://codelite.org/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/Code%3A%3ABlocks
http://codeblocks.org/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://sourceforge.net/news/?group_id=10639
http://sourceforge.net/projects/orwelldevcpp/
http://orwelldevcpp.blogspot.com/
http://pl.wikibooks.org/wiki/C%2FCzego%20potrzebujesz

4 Using a Compiler

4.0.1 Dev-C++

Dev C++1 is an Integrated Development Environment(IDE) for the C++ programming
language, available from Bloodshed Software2. An updated version is available at Orwell
Dev-C++3.

C++ is a programming language which contains within itself, most of the C language,
plus extensions. Most C++ compilers will compile C programs, sometimes with a few
adjustments (like invoking them with a different name or command line switch). Therefore,
you can use Dev C++ for C development.

However, Dev C++ is not the compiler. It is designed to use the MinGW4 or Cygwin5
versions of GCC6 - both of which can be obtained as part of the Dev C++ package,
although they are completely different projects.

Dev C++ simply provides an editor, syntax highlighting, some facilities for the visualisation
of code (like class and package browsing) and a graphical interface to the chosen compiler.
Because Dev C++ analyses the error messages produced by the compiler and attempts to
distinguish the line numbers from the errors themselves, the use of other compiler software
is discouraged since the format of their error messages is likely to be different.

The latest version of Dev-C++ is a beta7 for version 5. However, it still has a significant
number of bugs. All the features are there, and it is quite usable. It is considered one of
the best free software C IDEs available for Windows.

A version of Dev C++ for Linux is in the pipeline. It is not quite usable yet, however.
Linux users already have a wealth of IDEs available. (e.g. KDevelop8 and Anjuta9.) Most
of the graphical text editors, and other common editors such as emacs and vi(m), support
syntax highlighting10.

1 http://en.wikipedia.org/wiki/Dev-C%20Plus%20Plus
2 http://www.bloodshed.net/
3 http://orwelldevcpp.blogspot.com/
4 http://en.wikipedia.org/wiki/MinGW
5 http://en.wikipedia.org/wiki/Cygwin
6 http://en.wikipedia.org/wiki/GCC
7 http://en.wikipedia.org/wiki/beta%20version
8 http://en.wikipedia.org/wiki/KDevelop
9 http://en.wikipedia.org/wiki/Anjuta
10 http://en.wikipedia.org/wiki/syntax%20highlighting

13

http://en.wikipedia.org/wiki/Dev-C%20Plus%20Plus
http://www.bloodshed.net/
http://orwelldevcpp.blogspot.com/
http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/Cygwin
http://en.wikipedia.org/wiki/GCC
http://en.wikipedia.org/wiki/beta%20version
http://en.wikipedia.org/wiki/KDevelop
http://en.wikipedia.org/wiki/Anjuta
http://en.wikipedia.org/wiki/syntax%20highlighting

Using a Compiler

4.0.2 GCC

The GNU Compiler Collection11 (GCC) is a free12 set of compilers developed by the Free
Software Foundation13.

Steps for Obtaining the GCC Compiler if You're on GNU/Linux

On GNU/Linux, Installing the GNU C Compiler can vary in method from distribution14
to distribution. (Type in cc -v to see if it is installed already.)

• For Redhat15, get a GCC RPM16, e.g. using Rpmfind and then install (as root) using
rpm -ivh gcc-version-release.arch.rpm

• For Fedora Core17, install the GCC compiler (as root) by using yum18 install gcc.
• For Mandrake19, install the GCC compiler (as root) by using urpmi20 gcc
• For Debian21, install the GCC compiler (as root) by using apt-get22 install gcc.
• For Ubuntu23, install the GCC compiler (along with other necessary tools) by using sudo

apt-get24 install build-essential, or by using Synaptic. You do not need Universe
enabled.

• For Slackware25, the package is available on their website26 - simply download, and type
installpkg gcc-xxxxx.tgz

• For Gentoo27, you should already have GCC installed as it will have been used when
you first installed. To update it run (as root) emerge -uav gcc.

• For Arch Linux28, install the GCC compiler (as root) by using pacman -S gcc.
• If you cannot become root, get the GCC tarball from ftp://ftp.gnu.org/ and follow the

instructions in it to compile and install in your home directory. Be warned though, you
need a C compiler to do that - yes, GCC itself is written in C.

• You can use some commercial C compiler/IDE.

Steps for Obtaining the GCC Compiler if You're on BSD Family Systems

11 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
12 http://en.wikipedia.org/wiki/free%20software
13 http://en.wikipedia.org/wiki/Free%20Software%20Foundation
14 http://en.wikipedia.org/wiki/Linux%20distribution
15 http://en.wikipedia.org/wiki/Redhat
16 http://en.wikipedia.org/wiki/RPM%20Package%20Manager
17 http://en.wikipedia.org/wiki/Fedora%20Core
18 http://en.wikipedia.org/wiki/yum
19 http://en.wikipedia.org/wiki/Mandrake
20 http://en.wikipedia.org/wiki/urpmi
21 http://en.wikipedia.org/wiki/Debian
22 http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
23 http://en.wikipedia.org/wiki/Ubuntu
24 http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
25 http://en.wikipedia.org/wiki/Slackware
26 http://www.slackware.com/pb/
27 http://en.wikipedia.org/wiki/Gentoo
28 http://en.wikipedia.org/wiki/Arch%20Linux

14

http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/free%20software
http://en.wikipedia.org/wiki/Free%20Software%20Foundation
http://en.wikipedia.org/wiki/Linux%20distribution
http://en.wikipedia.org/wiki/Redhat
http://en.wikipedia.org/wiki/RPM%20Package%20Manager
http://en.wikipedia.org/wiki/Fedora%20Core
http://en.wikipedia.org/wiki/yum
http://en.wikipedia.org/wiki/Mandrake
http://en.wikipedia.org/wiki/urpmi
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
http://en.wikipedia.org/wiki/Ubuntu
http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
http://en.wikipedia.org/wiki/Slackware
http://www.slackware.com/pb/
http://en.wikipedia.org/wiki/Gentoo
http://en.wikipedia.org/wiki/Arch%20Linux

Footnotes

• For Mac OS X29, FreeBSD30, NetBSD31, OpenBSD32, DragonFly BSD33, Darwin34 the
port of GNU gcc is available in the base system, or it could be obtained using the ports
collection or pkgsrc35.

Steps for Obtaining the GCC Compiler if You're on Windows

There are two ways to use GCC on Windows: Cygwin and MinGW. Applications compiled
with Cygwin will not run on any computer without Cygwin, so MinGW is recommended.
MinGW is simpler to install, and takes less disk space.

To get MinGW, do this:

1. Go to http://sourceforge.net/projects/mingw/ download and save this to your
hard drive.

2. Once the download is finished, open it and follow the instructions. You can also
choose to install additional compilers, or the tool Make, but these aren't necessary.

3. Now you need to set your PATH. Right-click on "My computer" and click "Properties".
Go to the "Advanced" tab and click on "Environment variables". Go to the "System
variables" section and scroll down until you see "Path". Click on it, then click "edit".
Add ";C:\mingw\bin\" (without the quotes) to the end.

4. To test if GCC works, open a command prompt and type "gcc". You should get the
message "gcc: no input files". If you get this message, GCC is installed correctly.

To get Cygwin, do this:

1. Go to http://www.cygwin.com and click on the "Install Cygwin Now" button in the
upper right corner of the page.

2. Click "run" in the window that pops up, and click "next" several times, accepting all
the default settings.

3. Choose any of the Download sites ("ftp.easynet.be", etc.) when that window comes
up; press "next" and the Cygwin installer should start downloading.

4. When the "Select Packages" window appears, scroll down to the heading "Devel" and
click on the "+" by it. In the list of packages that now displays, scroll down and
find the "gcc-core" package; this is the compiler. Click once on the word "Skip", and
it should change to some number like "3.4" etc. (the version number), and an "X"
will appear next to "gcc-core" and several other related packages that will now be
downloaded.

5. Click "next" and the compiler as well as the Cygwin tools should start downloading;
this could take a while. While you're waiting for the installation to finish, download
any text-editor designed for programming. While Cygwin does include some, you may
prefer doing a web search to find other alternatives. While using a stock text editor
is possible, it is not ideal.

6. Once the Cygwin downloads are finished and you have clicked "next", etc. to finish
the installation, double-click the Cygwin icon on your desktop to begin the Cygwin

29 http://en.wikipedia.org/wiki/Mac%20OS%20X
30 http://en.wikipedia.org/wiki/FreeBSD
31 http://en.wikipedia.org/wiki/NetBSD
32 http://en.wikipedia.org/wiki/OpenBSD
33 http://en.wikipedia.org/wiki/DragonFly%20BSD
34 http://en.wikipedia.org/wiki/Darwin
35 http://en.wikipedia.org/wiki/pkgsrc

15

http://sourceforge.net/projects/mingw/
http://www.cygwin.com
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/OpenBSD
http://en.wikipedia.org/wiki/DragonFly%20BSD
http://en.wikipedia.org/wiki/Darwin
http://en.wikipedia.org/wiki/pkgsrc

Using a Compiler

"command prompt". Your home directory will automatically be set up in the Cygwin
folder, which now should be at "C:\cygwin" (the Cygwin folder is in some ways like
a small unix/linux computer on your Windows machine -- not technically of course,
but it may be helpful to think of it that way).

7. Type "gcc" at the Cygwin prompt and press "enter"; if "gcc: no input files" or some-
thing like it appears you have succeeded and now have the gcc compiler on your
computer (and congratulations -- you have also just received your first error mes-
sage!).

The current stable (usable) version of GCC is 5.1.6 published on 2009-10-02, which supports
several platforms. In fact, GCC is not only a C compiler, but a family of compilers for several
languages, such as C++, Ada36, Java37, and Fortran38.

Once gcc is installed, it can be called with a list of c source files that have been written
but not yet compiled. eg. there is a main.c file that includes a some functions described in
myfun.h and implemented in myfun_a.c and myfun_b.c , then it is enough to write

gcc main.c myfun_a.c myfun_b.c

myfun.h is included in main.c , but if is in a separate header files directory , then that
directory can be listed after a "-I " switch.

In larger programs, Makefiles and gnu make program can compile c files into intermediate
files ending with suffix .o which can be linked by gcc.

How to compile each object file is usually described in the Makefile with the object file as
a label ending with a colon followed by two spaces (tabs are often bad characters) followed
by a list of other files that are dependencies, eg. .c files and .o files compiled in another
section, and on the next line, the invocation of gcc that is required. typing man make or
info make often gives the information needed to jog the memory on how to use make, and
the same goes for gcc, although gcc has a lot of option switches, the main ones being -g to
generate debugging for gdb to allow it to show source code during stepping through of the
machine code program. gdb has a 'h' command that shows what it can do, and is usually
started with 'gdb a.out' if a.out is the anonymous executable machine code file that was
compiled by gcc.

4.0.3 Embedded systems

• Most CPUs are microcontrollers in embedded systems, often programmed in C, but
most of the compilers mentioned above (except GCC) do not support such CPUs. For
specialized compilers that do support embedded systems, see Embedded Systems/C Pro-
gramming39.

36 http://en.wikibooks.org/wiki/Ada%20Programming
37 http://en.wikibooks.org/wiki/Java
38 http://en.wikibooks.org/wiki/Fortran
39 http://en.wikibooks.org/wiki/Embedded%20Systems%2FC%20Programming

16

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Java
http://en.wikibooks.org/wiki/Fortran
http://en.wikibooks.org/wiki/Embedded%20Systems%2FC%20Programming

Footnotes

pl:C/Używanie kompilatora40

40 http://pl.wikibooks.org/wiki/C%2FU%C5%BCywanie%20kompilatora

17

http://pl.wikibooks.org/wiki/C%2FU%C5%BCywanie%20kompilatora

5 A taste of C

As with nearly every other programming language learning book, we use the Hello world1

program to introduce you to C.

#include <stdio.h>

int main(void)
{

puts("Hello, world!");
return 0;

}

This program prints "Hello, world!" and then exits.

Enter this code into your text editor or IDE, and save it as "hello.c".

Then, presuming you are using GCC, type gcc -o hello hello.c. This tells gcc to com-
pile your hello.c program into a form the machine can execute. The '-o hello' tells it to call
the compiled program 'hello'.

If you have entered this correctly, you should now see a file called hello. This file is the
binary version of your program, and when run should display "Hello, world!"

Here is an example of how compiling and running looks when using a terminal on a unix
system. ls is a common unix command that will list the files in the current directory,
which in this case is the directory progs inside the home directory (represented with the
special tilde, ˜, symbol). After running the gcc command, ls will list a new file, hello in
green. Green is the standard color coding of ls for executable files.

˜/progs$ ls
hello.c
˜/progs$ gcc -o hello hello.c
˜/progs$ ls
hello hello.c
˜/progs$./hello
Hello, world!
˜/progs$

5.0.4 Part-by-part explanation

#include <stdio.h> tells the C compiler to find the standard header called <stdio.h>2

and add it to this program. In C, you often have to pull in extra optional components when

1 http://en.wikipedia.org/wiki/Hello%20world%20program
2 http://en.wikipedia.org/wiki/stdio.h

19

http://en.wikipedia.org/wiki/Hello%20world%20program
http://en.wikipedia.org/wiki/stdio.h

A taste of C

you need them. <stdio.h> contains descriptions of standard input/output functions which
you can use to send messages to a user, or to read input from a user.

int main(void) is something you'll find in every C program. Every program has a main
function. Generally, the main function is where a program begins. However, one C program
can be scattered across multiple files, so you won't always find a main function in every file.
The int at the beginning means that main will return an integer to the operating system
when it is finished.

puts("Hello, world!"); is the statement that actually puts the message to the screen.
puts is a string printing function that is declared in the file stdio.h (which is why you had
to #include that at the start of the program) puts automatically prints a newline at the
end of the string.

return 0; will return zero (which is the integer3 referred to on line 3) to the operating
system. When a program runs successfully its return value is zero (GCC4 complains if it
doesn't when compiling). A non-zero value is returned to indicate a warning or error.

The empty line is there because it is (at least on UNIX) considered good practice to end a
file with a new line. In gcc using the -Wall -pedantic -ansi options, if the file does not
end with a new line this message is displayed: "warning: no newline at end of file". (The
newline isn't shown on the example because MediaWiki automatically removes it)

3 http://en.wikipedia.org/wiki/Integer%20%28computer%20science%29

20

http://en.wikipedia.org/wiki/Integer%20%28computer%20science%29

6 Intro exercise

6.1 Introductory Exercises

6.1.1 On GCC

If you are using a Unix(-like) system, such as GNU/Linux1, Mac OS X2, or Solaris3, it will
probably have GCC installed. Type the hello world program into a file called first.c and
then compile it with gcc. Just type:

gcc first.c

Then run the program by typing:

./a.out

or, If you are using Cygwin.

a.exe

You should now see your very first C program.

There are a lot of options you can use with the gcc compiler. For example, if you want the
output to have a name other than a.out, you can use the -o option. The following shows a
few examples:

-c

indicates that the compiler is supposed to generate an object file, which can be later linked
to other files to form a final program.

-o

indicates that the next parameter is the name of the resulting program (or library). If
this option is not specified, the compiled program will, for historic reasons, end up in a
file called "a.out" or "a.exe" (for cygwin users).

-g3

1 http://en.wikipedia.org/wiki/GNU%2FLinux
2 http://en.wikipedia.org/wiki/Mac%20OS%20X
3 http://en.wikipedia.org/wiki/Solaris%20Operating%20Environment

21

http://en.wikipedia.org/wiki/GNU%2FLinux
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/Solaris%20Operating%20Environment

Intro exercise

indicates that debugging information should be added to the results of compilation.

-O2 -ffast-math

indicates that the compilation should be optimized.

-W -Wall -fno-common -Wcast-align -Wredundant-decls -Wbad-function-cast
-Wwrite-strings -Waggregate-return -Wstrict-prototypes
-Wmissing-prototypes

indicates that gcc should warn about many types of suspicious code that are likely to be
incorrect.

-E

indicates that gcc should only preprocess the code; this is useful when you are having
trouble understanding what gcc is doing with #include and #define, among other things.

All the options are well documented in the manual page4 for GCC.

the classical hello world program

The basic hello world program, from the K+R book on C, is often worth memorising, just
for the structure of the main function which accepts switches, just like gcc is a program
with a main function that accepts switches.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
printf("Hello WOrld! \n");
return 0;

}

The commented program below is basically the same, with some variations that have the
same effect. e.g. a " argv" , or "pointer to pointers" , is the same as *x[] or "array of pointers"
; and "exit(0)" does the same as "return 0" for the main function.

Note: It is a good chance to say that we usually return or exit a function with the 0 code
when all of the commands executed successfully. e.g. in our Hello World program, all the
commands before "return(0)", or "exit(0)" executed with no error. You will notice that this
convention is very common, especially in the main function.

/* Hello World */

/*
this gives include statement, brings in the header file stdio.h ,
located often on unix systems at the directory /usr/include/,
and includes the printf() function, as well as others, snprintf, scanf,
getchar, getline.

In C, functions that are exported have their "signatures" - function name and
parameter list -

4 http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Debugging-Options.html

22

http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Debugging-Options.html

Introductory Exercises

listed in header files for exporting, and then the same signatures are defined
in another file,

often of the same name, to be compiled once into an object file, and on unix
systems often reside

in /usr/lib/ with file names like stdlib.a or stdlib.so , often as soft links
to versioned files

e.g. stdlib.1.3.so ,
*/
#include <stdio.h>

/*
this gives the standard library, which has functions
such as rand() random number generation (e.g. for games)
malloc() and free() for dynamic heap memory allocation as opposed to stack

memory allocation.
stack memory can be allocated by declaring variables and arrays at the start

of a function , including
the main function, and will be destroyed when the function exits.

*/

#include <stdlib.h>

/*
the next line is the standard expected function name "main" and argument list
of the first function
to be executed for this program when the compiled program is executed.
the first argument is the number of arguments, and the second argument is an
array of pointers to
arrays of characters (strings) which contain arguments .e.g. "-?" , "-v" ,
"-c"

*/

int main(int n_args, char* args[]) {

printf("Hello World!"); // outputs a string without formatting.

exit(0); // stdlib.h function to exit with a code, if executed from say a
bash shell script, 0 will be

// returned , which can be used inside a shell conditional if
statement.
}

6.1.2 On IDEs

If you are using a commercial IDE you may have to select console project, and to compile
you just select build from the menu or the toolbar. The executable will appear inside the
project folder, but you should have a menu button so you can just run the executable from
the IDE.

One can also find opensource IDE's like Eclipse5, Netbeans6 or Qt Creator7. The process
will be the same as a commercial IDE.

5 http://en.wikipedia.org/wiki/Eclipse_%28software%29
6 http://en.wikipedia.org/wiki/Netbeans
7 http://en.wikipedia.org/wiki/Qt_Creator

23

http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/Netbeans
http://en.wikipedia.org/wiki/Qt_Creator

7 Beginning C

25

8 Preliminaries

8.1 Basic Concepts

Before one gets too deep into learning C syntax and programming constructs, it is beneficial
to learn the meaning of a few key terms that are central to a thorough understanding of C.

8.2 Block Structure, Statements, Whitespace, and Scope

Now we discuss the basic structure of a C program. If you're familiar with PASCAL1,
you may have heard it referred to as a block-structured language. C does not have
complete block structure (and you'll find out why when you go over functions in detail) but
it is still very important to understand what blocks are and how to use them.

So what is in a block? Generally, a block consists of executable statements.

Before we say what a block is, what's a statement? One way to put it is that statements
are text the compiler will attempt to turn into executable instructions, and the whitespace
that surrounds them. An easier way to put it is that statements are bits of code that do
things, like this:

int i = 6; /* this declares a variable 'i', and sets it to equal 6 */

You might have noticed the semicolon at the end of the statement. Statements in C always
end with a semicolon (;) character. Leaving off the semicolon is a common mistake that a
lot of people make, beginners and experts alike! So until it becomes second nature, be sure
to double check your statements!

Since C is a "free-format" language, several statements can share a single line in the source
file, like so:

/* this declares the variables 'i', 'test', 'foo', and 'bar'
note that ONLY 'bar' is set to six! */

int i, test, foo, bar = 6;

There are several kinds of statements, and you've seen some of them. Assignment (i =
6;), conditional and flow-control. A substantial portion of this book deals with statement
construction.

Now back to blocks. In C, blocks begin with an opening brace "{" and end with a closing
brace "}". Blocks can contain other blocks which can contain their own blocks, and so on.

1 http://en.wikipedia.org/wiki/Pascal%20%28programming%20language%29

27

http://en.wikipedia.org/wiki/Pascal%20%28programming%20language%29

Preliminaries

Let's show an example of blocks.

int main(void)
{

/* this is a 'block' */
int i = 5;

{
/* this is also a 'block,' separate from the last one */
int i = 6;

}

return 0;
}

Blocks come in handy with readability and scope. You'll learn a little more about scope in
a second.

Whitespace refers to the tab, space and newline/EOL (End Of Line) characters that
separate the text characters that make up source code lines. Like many things in life, it's
hard to appreciate whitespace until it's gone. To a C compiler, the source code

printf("Hello world"); return 0;

is the same as

printf("Hello world");
return 0;

which is the same as

printf (
"Hello world") ;

return 0;

The compiler simply skips over whitespace. However, it is common practice to use spaces
(and tabs) to organize source code for human readability. You can use blocks without a
conditional, loop, or other statement to organize your code.

In C, most of the time we do not want other functions or other programmer's routines2
accessing data that we are currently manipulating. This is why it is important to understand
the concept of scope.

Scope describes the level at which a piece of data or a function is visible. There are two
kinds of scope in C, local and global. When we speak of something being global, we
speak of something that can be seen or manipulated from anywhere in the program. When
we speak of something being local, we speak of something that can be seen or manipulated
only within the block it was declared.

2 http://en.wikipedia.org/wiki/Subroutine

28

http://en.wikipedia.org/wiki/Subroutine

Basics of Using Functions

Let's show some examples, to give a better picture of the idea of scope.

int i = 5; /* this is a 'global' variable, anywhere in the program can access it
*/

/* this is a function, all variables inside of it
are "local" to the function. */

int main(void)
{

int i = 6; /* 'i' now equals 6 */
printf("%d\n", i); /* prints a '6' to the screen, instead of the global

variable of 'i', which is 5 */

return 0;
}

That shows a decent example of local and global, but what about different scopes inside of
functions? (you'll learn more about functions later, for now, just focus on the "main" part.)

/* the main function */
int main(void)
{

/* this is the beginning of a 'block', you read about those above */

int i = 6; /* this is the first variable of this 'block', 'i' */

{
/* this is a new 'block', and because it's a different block, it has its

own scope */

/* this is also a variable called 'i', but in a different 'block',
because it's in a different 'block' then the old 'i', it doesn't

affect the old one! */
int i = 5;
printf("%d\n", i); /* prints a '5' onto the screen */

}
/* now we're back into the old block */

printf("%d\n", i); /* prints a '6' onto the screen */

return 0;
}

8.3 Basics of Using Functions

Functions are a big part of programming. A function is a special kind of block that
performs a well-defined task. If a function is well-designed, it can enable a programmer
to perform a task without knowing anything about how the function works. The act of
requesting a function to perform its task is called a function call. Many functions require
a caller to hand it certain pieces of data needed to perform its task; these are called ar-
guments. Many functions also return a value to the caller when they're finished; this is
called a return value (the return value in the above program is 0).

The things you need to know before calling a function are:

• What the function does
• The data type (discussed later) of the arguments and what they mean
• The data type of the return value and what it means

29

Preliminaries

All code other than global data definitions and declarations needs to be a part of a function.

Usually, you're free to call a function whatever you wish to. The only restriction is that
every executable program needs to have one, and only one, main function, which is where
the program begins executing.

We will discuss functions in more detail in a later chapter, C Programming/Procedures and
functions3.

8.4 The Standard Library

In 1983, when C was in the process of becoming standardized, the American National
Standards Institute4 (ANSI) formed a committee to establish a standard specification of C
known as "ANSI C". That standard specification created a basic set of functions common
to each implementation of C, which is referred to as the Standard Library5. The Standard
Library provides functions for tasks such as input/output, string manipulation, mathemat-
ics, files, and memory allocation. The Standard Library does not provide functions that are
dependent on specific hardware or operating systems, like graphics, sound, or networking.
In the "Hello, World", program, a Standard Library function is used printf which outputs
lines of text to the standard output6 stream.

pl:C/Podstawy7

3 Chapter 17 on page 97
4 http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute
5 http://en.wikipedia.org/wiki/C%20standard%20library
6 http://en.wikipedia.org/wiki/standard%20output
7 http://pl.wikibooks.org/wiki/C%2FPodstawy

30

http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute
http://en.wikipedia.org/wiki/C%20standard%20library
http://en.wikipedia.org/wiki/standard%20output
http://pl.wikibooks.org/wiki/C%2FPodstawy

9 Compiling

Having covered the basic concepts of C programming, we can now briefly discuss the process
of compilation.

Like any programming language, C by itself is completely incomprehensible to a micropro-
cessor1. Its purpose is to provide an intuitive way for humans to provide instructions that
can be easily converted into machine code that is comprehensible to a microprocessor. The
compiler is what takes this code, and translates it into the machine code.

To those new to programming, this seems fairly simple. A naive compiler might read in
every source file, translate everything into machine code, and write out an executable. This
could work, but has two serious problems. First, for a large project, the computer may not
have enough memory to read all of the source code at once. Second, if you make a change
to a single source file, you would rather not have to recompile the entire application.

To deal with these problems, compilers break their job down into steps; for each source
file (each .c file), the compiler reads the file, reads the files it references with #include,
and translates it to machine code. The result of this is an "object file" (.o). Once every
object file is made, a "linker" collects all of the object files and writes the actual program.
This way, if you change one source file, only that file needs to be recompiled and then the
application needs to be re-linked.

Without going into the painful details, it can be beneficial to have a superficial understand-
ing of the compilation process.

9.1 Preprocessor

The preprocessor provides the ability for the inclusion of header files, macro expansions,
conditional compilation, and line control. Many times you will need to give special instruc-
tions to your compiler. This is done by inserting preprocessor directives2 into your code.
When you begin compiling your code, a special program called the preprocessor scans the
source code and performs simple substitution of tokenized strings for others according to
predefined rules. The preprocessor is not a part of the C language.

In C language, all preprocessor directives begin with the pound character (#). You can see
one preprocessor directive in the Hello world program3 introduced in A taste of C4:

Example:

1 http://en.wikipedia.org/wiki/microprocessor
2 http://en.wikipedia.org/wiki/Preprocessor%20directives
3 http://en.wikibooks.org/wiki/Hello%20world%20program
4 Chapter 5 on page 19

31

http://en.wikipedia.org/wiki/microprocessor
http://en.wikipedia.org/wiki/Preprocessor%20directives
http://en.wikibooks.org/wiki/Hello%20world%20program

Compiling

#include <stdio.h>

This directive causes the header to be included into your program. Other directives such
as #pragma control compiler settings and macros. The result of the preprocessing stage is a
text string. You can think of the preprocessor as a non-interactive text editor that prepares
your code for the compilation step. The language of preprocessor directives is agnostic to
the grammar of C, so the C preprocessor can also be used independently to process other
kinds of text files.

9.2 Syntax Checking

This step ensures that the code is valid and will sequence into an executable program.
Under most compilers, you may get messages or warnings indicating potential issues with
your program (such as a statement always being true or false, etc.)

When an error is detected in the program, the compiler will normally report the file name
and line that is preventing compilation.

9.3 Object Code

The compiler produces a machine code equivalent of the source code that can then be
linked into the final program. The code itself can't be executed yet, as it has to complete
the linking stage.

It's important to note after discussing the basics that compilation is a "one way street".
That is, compiling a C source file into machine code is easy, but "decompiling" (turning
machine code into the C source that creates it) is not. Decompilers for C do exist, but they
rarely create useful code.

9.4 Linking

Linking combines the separate object codes into one complete program by integrating li-
braries and the code and producing either an executable program5 or a library6. Linking is
performed by a linker, which is often part of a compiler.

Common errors during this stage are either missing functions, or duplicate functions.

5 http://en.wikipedia.org/wiki/Executable
6 http://en.wikipedia.org/wiki/Library%20%28computing%29

32

http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Library%20%28computing%29

Automation

9.5 Automation

For large C projects, many programmers choose to automate compilation, both in order
to reduce user interaction requirements and to speed up the process by only recompiling
modified files.

Most integrated development environments have some kind of project management, which
makes such automation very easy. On UNIX-like systems, make7 and Makefiles are often
used to accomplish the same.

de:C-Programmierung: Kompilierung8 es:Programación_en_C/Compilar_un_programa9
et:Programmeerimiskeel C/Kompileerimine10 fr:Programmation C-C%2B%2B/Modularité
et compilation11 it:C/Compilatore e precompilatore/Compilatore12 pt:Programar em
C/Utilizando um compilador13

7 http://en.wikibooks.org/wiki/make
8 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kompilierung
9 http://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C%2FCompilar_un_programa
10 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKompileerimine

11 http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%C3%A9%20et%
20compilation

12 http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FCompilatore
13 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FUtilizando%20um%20compilador

33

http://en.wikibooks.org/wiki/make
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kompilierung
http://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C%2FCompilar_un_programa
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKompileerimine
http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%C3%A9%20et%20compilation
http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%C3%A9%20et%20compilation
http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FCompilatore
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FUtilizando%20um%20compilador

10 Structure and style

10.1 C Structure and Style

This is a basic introduction to good code style in the C Programming Language. It is
designed to provide information on how to effectively use indentation, comments, and other
elements that will make your C code more readable. It is not a tutorial on actually pro-
gramming in C.

As a beginning programmer, the point of creating structure in the programs' code might not
be clear, as the compiler doesn't care about the difference. However, as programs become
complex, chances are that writing the program has become a joint effort. (Or others might
want to see how it was accomplished.) Therefore, the code is no longer designed purely for
a compiler to read.

In the following sections, we will attempt to explain good programming practices that will
in turn make your programs clearer and more effective.

10.2 Introduction

In C, programs are composed of statements. These statements are terminated with a semi-
colon, and are collected in sections known as functions. By convention, a statement should
be kept on its own line, as shown in the example below:

#include <stdio.h>

int main(void)
{

printf("Hello, World!\n");
return 0;

}

The following block of code is essentially the same: while it contains exactly the same
code, and will compile and execute with the same result, the removal of spacing causes an
essential difference making it harder to read:

#include <stdio.h>
int main(void) {printf("Hello, World!\n");return 0;}

The simple use of indents and line breaks can greatly improve the readability of the code;
without making any impact whatsoever on how the code performs. By having readable
code, it is much easier to see where functions and procedures end, and which lines are part
of which loops and procedures.

35

Structure and style

This book is going to focus on the above piece of code, and how to improve it. Please note
that during the course of the tutorial, there will be many (apparently) redundant pieces
of code added. These are only added to provide examples of techniques that we will be
explaining, without breaking the overall flow of code that the program achieves.

10.3 Line Breaks and Indentation

The addition of white space inside your code is arguably the most important part of good
code structure. Effective use of white space can create a visual scale of how your code flows,
which can be very important when returning to your code when you want to maintain it.

10.3.1 Line Breaks

B Warning
Note that we have used line numbers here; they are not a part of the actual code.
They are only there for reference in this book.

With minimal line breaks, code is barely readable by humans, and may be hard to debug
or understand:

<source lang="c" line>

1. include <stdio.h>

int main(void){ int i=0; printf("Hello, World!"); for (i=0; i<1; i++){ printf("\n"); break; }
return 0; } </source>

Rather than putting everything on one line, it is much more readable to break up long lines
so that each statement and declaration goes on its own line. After inserting line breaks, the
code will look like this:

<source lang="c" line>

1. include <stdio.h>

int main(void) { int i=0; printf("Hello, World!"); for (i=0; i<1; i++) { printf("\n"); break;
} return 0; } </source>

10.3.2 Blank Lines

Blank lines should be used to offset the main components of your code. Use them

• After precompiler declarations.
• After new variables are declared.

Based on these two rules, there should now be two line breaks added.

• After line 1, because line 1 has a preprocessor directive

36

Line Breaks and Indentation

• After line 4, because line 4 contains a variable declaration

This will make the code much more readable than it was before:

The following lines of code have line breaks between functions, but without indentation.

<source lang="c" line>

1. include <stdio.h>

int main(void) { int i=0;

printf("Hello, World!"); for (i=0; i<1; i++) { printf("\n"); break; } return 0; }

</source>

But this still isn't as readable as it can be.

10.3.3 Indentation

Note:
Many text editors automatically indent appropriately when you hit the enter/return key.

Although adding simple line breaks between key blocks of code can make code easier to
read, it provides no information about the block structure of the program. Using the tab
key can be very helpful now: indentation visually separates paths of execution by moving
their starting points to a new column in the line. This simple practice will make it much
easier to read and understand code. Indentation follows a fairly simple rule:

• All code inside a new block should be indented by one tab1

2 more than the code in the previous path.

Based on the code from the previous section, there are two blocks requiring indentation:

• Lines 5 to 13
• Lines 10 and 11

<source lang="c" line>

1. include <stdio.h>

int main(void) {

1
2

Several programmers recommend "use spaces for indentation. Do not use tabs in your code. You should
set your editor to emit spaces when you hit the tab key." http://google-styleguide.googlecode.
com/svn/trunk/cppguide.xml http://www.jwz.org/doc/tabs-vs-spaces.html
Other programmers disagree. http://web.archive.org/20080118165124/diagrammes-modernes.
blogspot.com/2006/04/tab-versus-spaces.html http://www.derkarl.org/why_to_tabs.html
Regardless of whether you prefer spaces or tabs, make sure you keep it consistent with projects you are
working on, because mixing tabs and spaces can cause code to become unreadable.

37

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://www.jwz.org/doc/tabs-vs-spaces.html
http://web.archive.org/20080118165124/diagrammes-modernes.blogspot.com/2006/04/tab-versus-spaces.html
http://web.archive.org/20080118165124/diagrammes-modernes.blogspot.com/2006/04/tab-versus-spaces.html
http://www.derkarl.org/why_to_tabs.html

Structure and style

int i=0;

printf("Hello, World!");
for (i=0; i<1; i++)
{

printf("\n");
break;

}
return 0;

}

</source>

It is now fairly obvious as to which parts of the program fit inside which blocks. You can
tell which parts of the program the coder has intended to loop, and which ones he has not.
Although it might not be immediately noticeable, once many nested loops and paths get
added to the structure of the program, the use of indentation can be very important. This
indentation makes the structure of your program clear.

Indentation was originally one tab character, or the equivalent of 8 spaces. Research since
the original indent size has shown that indents between 2 to 4 characters are easier to read3,
resulting in such tab sizes being used as default in modern IDEs. However, an indent of 8
characters may still be in use for some systems4.

10.4 Comments

Comments in code can be useful for a variety of purposes. They provide the easiest way to
set off specific parts of code (and their purpose); as well as providing a visual "split" between
various parts of your code. Having good comments throughout your code will make it much
easier to remember what specific parts of your code do.

Comments in modern flavors of C (and many other languages) can come in two forms:

//Single Line Comments (added by C99 standard, famously known as c++ style of
comments)

and

/*Multi-Line
Comments*/ (only form of comments supported by C89 standard)

Note that Single line comments are a fairly recent addition to C, so some compilers may
not support them. A recent version of GCC5 will have no problems supporting them.

This section is going to focus on the various uses of each form of commentary.

3 http://www.oualline.com/vim-cook.html#drawing
4 [http://lxr.linux.no/#linux+v2.6.31/Documentation/CodingStyle Linux Kernel coding standard
5 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

38

http://www.oualline.com/vim-cook.html#drawing
http://lxr.linux.no/#linux+v2.6.31/Documentation/CodingStyle
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

Comments

10.4.1 Single-line Comments

Single-line comments are most useful for simple 'side' notes that explain what certain parts
of the code do. The best places to put these comments are next to variable declarations,
and next to pieces of code that may need explanation.

Based on our previous program, there are two good places to place comments

• Line 5, to explain what 'int i' is going to do
• Line 11, to explain why there is a 'break' keyword.

This will make our program look something like

#include <stdio.h>

int main(void)
{

int i=0; // loop variable.

printf("Hello, World!");

for (i=0; i<1; i++) {
printf("\n");
break; //Exits 'for' loop.

}

return 0;
}

10.4.2 Multi-line Comments

Note:
Single-line comments are a new feature, so many C programmers only use multi-line comments.

Multi-line comments are most useful for long explanations of code. They can be used as
copyright/licensing notices, and they can also be used to explain the purpose of a block of
code. This can be useful for two reasons: They make your functions easier to understand,
and they make it easier to spot errors in code. If you know what a block is supposed to do,
then it is much easier to find the piece of code that is responsible if an error occurs.

As an example, suppose we had a program that was designed to print "Hello, World! " a
certain number of lines, a specified number of times. There would be many for loops in this
program. For this example, we shall call the number of lines i, and the number of strings
per line as j.

A good example of a multi-line comment that describes 'for' loop is purpose would be:

/* For Loop (int i)
Loops the following procedure i times (for number of lines). Performs 'for'

loop j on each loop,
and prints a new line at end of each loop.

*/

39

Structure and style

This provides a good explanation of what is purpose is, whilst not going into detail
of what jdoes. By going into detail over what the specific path does (and not
ones inside it), it will be easier to troubleshoot the path.

Similarly, you should always include a multi-line comment before each function, to explain
the role, preconditions and postconditions of each function. Always leave the technical
details to the individual blocks inside your program - this makes it easier to troubleshoot.

A function descriptor should look something like:

/* Function : int hworld (int i,int j)
Input : int i (Number of lines), int j (Number of instances per line)
Output : 0 (on success)
Procedure: Prints "Hello, World!" j times, and a new line to standard output

over i lines.
*/

This system allows for an at-a-glance explanation of what the function should do. You can
then go into detail over how each aspect of the program is achieved later on in the program.

Finally, if you like to have aesthetically-pleasing source code, the multi-line comment system
allows for the easy addition of comment boxes. These make the comments stand out much
more than they would without otherwise. They look like this.

/***************************************
* This is a multi line comment
* That is nearly surrounded by a
* Cool, starry border!
***************************************/

Applied to our original program, we can now include a much more descriptive and readable
source code:

#include <stdio.h>

int main(void)
{

/****
**

* Function: int main(void)
* Input : none
* Output : Returns 0 on success
* Procedure: Prints "Hello, World!" and a new line to standard output then

exits.

***/
int i=0; //Temporary variable used for 'for' loop.

printf("Hello, World!");

/* FOR LOOP (int i)
Prints a new line to standard output, and exits */

for (i=0; i<1; i++)
{

printf("\n");
break; //Exits 'for' loop.

}

return 0;
}

40

Links

This will allow any outside users of the program an easy way to comprehend what the
code functions are and how they operate. It also inhibits uncertainty with other like-named
functions.

A few programmers add a column of stars on the right side of a block comment:

/***************************************
* This is a multi line comment *
* that is completely surrounded by a *
* cool, starry border! *
***************************************/

But most programmers don't put any stars on the right side of a block comment. They feel
that aligning the right side is a waste of time.

Comments written in source files can be used for documenting source code automatically
by using popular tools like Doxygen67

10.5 Links

• Aladdin's C coding guidelines8 - A more definitive C coding guideline.
• C/C++ Programming Styles9 GNU Coding styles & Linux Kernel Coding style
• C Programming Tutorial10 C Programming Tutorial

et:Programmeerimiskeel C/Stiil11

6 "Coding Conventions for C++ and Java" ˆ{http://www.macadamian.com/index.php?option=com_
content&task=view&id=34&Itemid=37} "all the block comments illustrated in this document have no
pretty stars on the right side of the block comment. This deliberate choice was made because aligning
those pretty stars is a large waste of time and discourages the maintenance of in-line comments.",

7 wiki:BigBlocksOfAsterisks ˆ{http://en.wikibooks.org/wiki/wiki%3ABigBlocksOfAsterisks}
, "Code craft" ˆ{http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=
programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=
NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=
8&ct=result} by Pete Goodliffe page 82, Falvotech "C Programming Style Guide" ˆ{http:
//www.falvotech.com/content/publications/conventions/c/} , Fedora Directory Server Coding
Style ˆ{http://directory.fedoraproject.org/wiki/Coding_Style}

8 http://www.cs.wisc.edu/~ghost/doc/AFPL/6.01/C-style.htm
9 http://www.mycplus.com/c.asp?ID=12
10 http://www.studiesinn.com/learn/Programming-Languages/C-Language.html
11 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FStiil

41

http://www.macadamian.com/index.php?option=com_content&task=view&id=34&Itemid=37
http://www.macadamian.com/index.php?option=com_content&task=view&id=34&Itemid=37
http://en.wikibooks.org/wiki/wiki%3ABigBlocksOfAsterisks
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://www.falvotech.com/content/publications/conventions/c/
http://www.falvotech.com/content/publications/conventions/c/
http://directory.fedoraproject.org/wiki/Coding_Style
http://www.cs.wisc.edu/~ghost/doc/AFPL/6.01/C-style.htm
http://www.mycplus.com/c.asp?ID=12
http://www.studiesinn.com/learn/Programming-Languages/C-Language.html
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FStiil

11 Error handling

C does not provide direct support for error handling (also known as exception handling).
By convention, the programmer is expected to prevent errors from occurring in the first
place, and test return values from functions. For example, -1 and NULL are used in several
functions such as socket() (Unix socket programming) or malloc() respectively to indicate
problems that the programmer should be aware about. In a worst case scenario where there
is an unavoidable error and no way to recover from it, a C programmer usually tries to log
the error and "gracefully" terminate the program.

There is an external variable called "errno", accessible by the programs after including <er-
rno.h> - that file comes from the definition of the possible errors that can occur in some Op-
erating Systems (e.g. Linux - in this case, the definition is in include/asm-generic/errno.h)
when programs ask for resources. Such variable indexes error descriptions accessible by the
function 'strerror(errno)'.

The following code tests the return value from the library function malloc to see if dynamic
memory allocation completed properly:

#include <stdio.h> /* fprintf */
#include <errno.h> /* errno */
#include <stdlib.h> /* malloc, free, exit */
#include <string.h> /* strerror */

extern int errno;

int main(void)
{

/* pointer to char, requesting dynamic allocation of 2,000,000,000
* storage elements (declared as an integer constant of type
* unsigned long int). (If your system has less than 2GB of memory
* available, then this call to malloc will fail)
*/
char *ptr = malloc(2000000000UL);

if (ptr == NULL){
puts("malloc failed");
puts(strerror(errno));

}
else
{

/* the rest of the code hereafter can assume that 2,000,000,000
* chars were successfully allocated...
*/
free(ptr);

}

exit(EXIT_SUCCESS); /* exiting program */
}

43

Error handling

The code snippet above shows the use of the return value of the library function malloc to
check for errors. Many library functions have return values that flag errors, and thus should
be checked by the astute programmer. In the snippet above, a NULL pointer returned
from malloc signals an error in allocation, so the program exits. In more complicated
implementations, the program might try to handle the error and try to recover from the
failed memory allocation.

11.1 Preventing divide by zero errors

A common pitfall made by C programmers is not checking if a divisor is zero before a
division command. The following code will produce a runtime error and in most cases, exit.

int dividend = 50;
int divisor = 0;
int quotient;

quotient = (dividend/divisor); /* This will produce a runtime error! */

For reasons beyond the scope of this document, you must check or make sure that a divisor
is never zero. Alternatively, for *nix processes, you can stop the OS from terminating your
process by blocking the SIGFPE signal.

The code below fixes this by checking if the divisor is zero before dividing.

#include <stdio.h> /* for fprintf and stderr */
#include <stdlib.h> /* for exit */
int main(void)
{

int dividend = 50;
int divisor = 0;
int quotient;

if (divisor == 0) {
/* Example handling of this error. Writing a message to stderr, and
* exiting with failure.
*/
fprintf(stderr, "Division by zero! Aborting...\n");
exit(EXIT_FAILURE); /* indicate failure.*/

}

quotient = dividend / divisor;
exit(EXIT_SUCCESS); /* indicate success.*/

}

11.2 Signals

In some cases, the environment may respond to a programming error in C by raising a
signal. Signals are events raised by the host environment or operating system to indicate
that a specific error or critical event has occurred (e.g. a division by zero, interrupt, and
so on.) However, these signals are not meant to be used as a means of error catching; they
usually indicate a critical event that will interfere with normal program flow.

44

setjmp

To handle signals, a program needs to use the signal.h header file. A signal handler will
need to be defined, and the signal() function is then called to allow the given signal to be
handled. Some signals that are raised to an exception within your code (e.g. a division by
zero) are unlikely to allow your program to recover. These signal handlers will be required to
instead ensure that some resources are properly cleaned up before the program terminates.

This example creates a signal handler and raises the signal:

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

static void catch_function(int signal) {
puts("Interactive attention signal caught.");

}

int main(void) {
if (signal(SIGINT, catch_function) == SIG_ERR) {

fputs("An error occurred while setting a signal handler.\n", stderr);
return EXIT_FAILURE;

}
puts("Raising the interactive attention signal.");
if (raise(SIGINT) != 0) {

fputs("Error raising the signal.\n", stderr);
return EXIT_FAILURE;

}
puts("Exiting.");
return 0;

}

11.3 setjmp

The setjmp1 function can be used to emulate the exception handling feature of other pro-
gramming languages. The first call to setjmp provides a reference point to returning to a
given function, and is valid as long as the function containing setjmp() doesn't return or
exit. A call to longjmp causes the execution to return to the point of the associated setjmp
call.

#include <stdio.h>
#include <setjmp.h>

jmp_buf test1;

void tryjump()
{

longjmp(test1, 3);
}

int main (void)
{

if (setjmp(test1)==0) {
printf ("setjmp() returned 0.");
tryjump();

} else {
printf ("setjmp returned from a longjmp function call.");

1 http://en.wikibooks.org/wiki/C%20Programming%2FCoroutines%23setjmp

45

http://en.wikibooks.org/wiki/C%20Programming%2FCoroutines%23setjmp

Error handling

}
}

The values of non-volatile variables may be corrupted when setjmp returns from a longjmp
call.

While setjmp() and longjmp() may be used for error handling, it is generally preferred to
use the return value of a function to indicate an error, if possible.

46

12 Variables

Like most programming languages, C is able to use and process named variables and their
contents. Variables are simply names used to refer to some location in memory – a location
that holds a value with which we are working.

It may help to think of variables as a placeholder for a value. You can think of a variable
as being equivalent to its assigned value. So, if you have a variable i that is initialized (set
equal) to 4, then it follows that i+1 will equal 5.

Since C is a relatively low-level programming language, before a C program can utilize
memory to store a variable it must claim the memory needed to store the values for a
variable. This is done by declaring variables. Declaring variables is the way in which a
C program shows the number of variables it needs, what they are going to be named, and
how much memory they will need.

Within the C programming language, when managing and working with variables, it is
important to know the type of variables and the size of these types. Since C is a fairly
low-level programming language, these aspects of its working can be hardware specific –
that is, how the language is made to work on one type of machine can be different from
how it is made to work on another.

All variables in C are typed. That is, every variable declared must be assigned as a certain
type of variable.

12.1 Declaring, Initializing, and Assigning Variables

Here is an example of declaring an integer, which we've called some_number. (Note the
semicolon at the end of the line; that is how your compiler separates one program statement
from another.)

int some_number;

This statement means we're declaring some space for a variable called some_number, which
will be used to store integer data. Note that we must specify the type of data that a variable
will store. There are specific keywords to do this – we'll look at them in the next section.

Multiple variables can be declared with one statement, like this:

int anumber, anothernumber, yetanothernumber;

We can also declare and assign some content to a variable at the same time.

int some_number=3;

47

Variables

This is called initialization.

In early versions of C, variables had to be declared at the beginning of a block. In C99
it is allowed to mix declarations and statements arbitrarily – but doing so is not usual,
because it is rarely necessary, some compilers still don’t support C99 (portability), and it
may, because it is uncommon yet, irritate fellow programmers (maintainability).

After declaring variables, you can assign a value to a variable later on using a statement
like this:

some_number=3;

You can also assign a variable the value of another variable, like so:

anumber = anothernumber;

Or assign multiple variables the same value with one statement:

anumber = anothernumber = yetanothernumber = 3;

This is because the assignment x = y returns the value of the assignment. x = y = z is
really shorthand for x = (y = z).

12.1.1 Naming Variables

Variable names in C are made up of letters (upper and lower case) and digits. The under-
score character ("_") is also permitted. Names must not begin with a digit. Unlike some
languages (such as Perl1 and some BASIC2 dialects), C does not use any special prefix
characters on variable names.

Some examples of valid (but not very descriptive) C variable names:

foo
Bar
BAZ
foo_bar
_foo42
_
QuUx

Some examples of invalid C variable names:

2foo (must not begin with a digit)
my foo (spaces not allowed in names)
$foo ($ not allowed -- only letters, digits, and _)
while (language keywords cannot be used as names)

As the last example suggests, certain words are reserved as keywords in the language, and
these cannot be used as variable names.

1 http://en.wikipedia.org/wiki/Perl
2 http://en.wikipedia.org/wiki/BASIC%20programming%20language

48

http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/BASIC%20programming%20language

Literals

In addition there are certain sets of names that, while not language keywords, are reserved
for one reason or another. For example, a C compiler might use certain names "behind the
scenes", and this might cause problems for a program that attempts to use them. Also,
some names are reserved for possible future use in the C standard library. The rules for
determining exactly what names are reserved (and in what contexts they are reserved) are
too complicated to describe here, and as a beginner you don't need to worry about them
much anyway. For now, just avoid using names that begin with an underscore character.

The naming rules for C variables also apply to naming other language constructs such as
function names, struct tags, and macros, all of which will be covered later.

12.2 Literals

Anytime within a program in which you specify a value explicitly instead of referring to a
variable or some other form of data, that value is referred to as a literal. In the initialization
example above, 3 is a literal. Literals can either take a form defined by their type (more on
that soon), or one can use hexadecimal (hex) notation to directly insert data into a variable
regardless of its type. Hex numbers are always preceded with 0x. For now, though, you
probably shouldn't be too concerned with hex.

12.3 The Four Basic Data Types

In Standard C there are four basic data types. They are int, char, float, and double.

We will briefly describe them here, then go into more detail in C Programming/Types3.

12.3.1 The int type

The int type stores integers in the form of "whole numbers". An integer is typically the
size of one machine word, which on most modern home PCs is 32 bits (4 octets). Examples
of literals are whole numbers (integers) such as 1,2,3, 10, 100... When int is 32 bits (4
octets), it can store any whole number (integer) between -2147483648 and 2147483647. A
32 bit word (number) has the possibility of representing any one number out of 4294967296
possibilities (2 to the power of 32).

If you want to declare a new int variable, use the int keyword. For example:

int numberOfStudents, i, j=5;

In this declaration we declare 3 variables, numberOfStudents, i and j, j here is assigned the
literal 5.

3 http://en.wikibooks.org/wiki/C%20Programming%2FTypes

49

http://en.wikibooks.org/wiki/C%20Programming%2FTypes

Variables

12.3.2 The char type

The char type is capable of holding any member of the execution character set. It stores
the same kind of data as an int (i.e. integers), but typically has a size of one byte. The
size of a byte is specified by the macro CHAR_BIT which specifies the number of bits in a
char (byte). In standard C it never can be less than 8 bits. A variable of type char is most
often used to store character data, hence its name. Most implementations use the ASCII4
character set as the execution character set, but it's best not to know or care about that
unless the actual values are important.

Examples of character literals are 'a', 'b', '1', etc., as well as some special characters such
as '\0' (the null character) and '\n' (newline, recall "Hello, World"). Note that the char
value must be enclosed within single quotations.

When we initialize a character variable, we can do it two ways. One is preferred, the other
way is bad programming practice.

The first way is to write

char letter1 = 'a';

This is good programming practice in that it allows a person reading your code to understand
that letter1 is being initialized with the letter 'a' to start off with.

The second way, which should not be used when you are coding letter characters, is to write

char letter2 = 97; /* in ASCII, 97 = 'a' */

This is considered by some to be extremely bad practice, if we are using it to store a
character, not a small number, in that if someone reads your code, most readers are forced
to look up what character corresponds with the number 97 in the encoding scheme. In the
end, letter1 and letter2 store both the same thing – the letter 'a', but the first method
is clearer, easier to debug, and much more straightforward.

One important thing to mention is that characters for numerals are represented differently
from their corresponding number, i.e. '1' is not equal to 1. In short, any single entry that
is enclosed within 'single quotes'.

There is one more kind of literal that needs to be explained in connection with chars: the
string literal. A string is a series of characters, usually intended to be displayed. They
are surrounded by double quotations (" ", not ' '). An example of a string literal is the
"Hello, World!\n" in the "Hello, World" example.

The string literal is assigned to a character array, arrays are described later. Example:

const char MY_CONSTANT_PEDANTIC_ITCH[] = "learn the usage context.\n";
printf("Square brackets after a variable name means it is a pointer to a string
of memory blocks the size of the type of the array element.\n");

4 http://en.wikipedia.org/wiki/ASCII

50

http://en.wikipedia.org/wiki/ASCII

sizeof

12.3.3 The float type

float is short for floating point. It stores real numbers also, but is only one machine
word in size. Therefore, it is used when less precision than a double provides is required.
float literals must be suffixed with F or f, otherwise they will be interpreted as doubles.
Examples are: 3.1415926f, 4.0f, 6.022e+23f. float variables can be declared using the
float keyword.

12.3.4 The double type

The double and float types are very similar. The float type allows you to store single-
precision floating point numbers, while the double keyword allows you to store double-
precision floating point numbers – real numbers, in other words, both integer and non-
integer values. Its size is typically two machine words, or 8 bytes on most machines. Ex-
amples of double literals are 3.1415926535897932, 4.0, 6.022e+23 (scientific notation5). If
you use 4 instead of 4.0, the 4 will be interpreted as an int.

The distinction between floats and doubles was made because of the differing sizes of the
two types. When C was first used, space was at a minimum and so the judicious use
of a float instead of a double saved some memory. Nowadays, with memory more freely
available, you do not really need to conserve memory like this – it may be better to use
doubles consistently. Indeed, some C implementations use doubles instead of floats when
you declare a float variable.

If you want to use a double variable, use the double keyword.

12.4 sizeof

If you have any doubts as to the amount of memory actually used by any variable (and
this goes for types we'll discuss later, also), you can use the sizeof operator to find out for
sure. (For completeness, it is important to mention that sizeof is a unary operator6, not
a function.) Its syntax is:

sizeof object
sizeof(type)

The two expressions above return the size of the object and type specified, in bytes. The
return type is size_t (defined in the header <stddef.h>) which is an unsigned value.
Here's an example usage:

size_t size;
int i;
size = sizeof(i);

size will be set to 4, assuming CHAR_BIT is defined as 8, and an integer is 32 bits wide.
The value of sizeof's result is the number of bytes.

5 http://en.wikipedia.org/wiki/Scientific%20notation
6 http://en.wikipedia.org/wiki/Unary%20operation

51

http://en.wikipedia.org/wiki/Scientific%20notation
http://en.wikipedia.org/wiki/Unary%20operation

Variables

Note that when sizeof is applied to a char, the result is 1; that is:

sizeof(char)

always returns 1.

12.5 Data type modifiers

One can alter the data storage of any data type by preceding it with certain modifiers.

long and short are modifiers that make it possible for a data type to use either more or
less memory. The int keyword need not follow the short and long keywords. This is
most commonly the case. A short can be used where the values fall within a lesser range
than that of an int, typically -32768 to 32767. A long can be used to contain an extended
range of values. It is not guaranteed that a short uses less memory than an int, nor is
it guaranteed that a long takes up more memory than an int. It is only guaranteed that
sizeof(short) <= sizeof(int) <= sizeof(long). Typically a short is 2 bytes, an int is 4
bytes, and a long either 4 or 8 bytes. Modern C compilers also provide long long which
is typically an 8 byte integer.

In all of the types described above, one bit is used to indicate the sign (positive or negative)
of a value. If you decide that a variable will never hold a negative value, you may use the
unsigned modifier to use that one bit for storing other data, effectively doubling the range
of values while mandating that those values be positive. The unsigned specifier also may
be used without a trailing int, in which case the size defaults to that of an int. There is
also a signed modifier which is the opposite, but it is not necessary, except for certain uses
of char, and seldom used since all types (except char) are signed by default.

To use a modifier, just declare a variable with the data type and relevant modifiers:

unsigned short int usi; /* fully qualified -- unsigned short int */
short si; /* short int */
unsigned long uli; /* unsigned long int */

12.6 const qualifier

When the const qualifier is used, the declared variable must be initialized at declaration.
It is then not allowed to be changed.

While the idea of a variable that never changes may not seem useful, there are good reasons
to use const. For one thing, many compilers can perform some small optimizations on
data when it knows that data will never change. For example, if you need the value of π in
your calculations, you can declare a const variable of pi, so a program or another function
written by someone else cannot change the value of pi.

Note that a Standard conforming compiler must issue a warning if an attempt is made
to change a const variable - but after doing so the compiler is free to ignore the const
qualifier.

52

Magic numbers

12.7 Magic numbers

When you write C programs, you may be tempted to write code that will depend on
certain numbers. For example, you may be writing a program for a grocery store. This
complex program has thousands upon thousands of lines of code. The programmer decides
to represent the cost of a can of corn, currently 99 cents, as a literal throughout the code.
Now, assume the cost of a can of corn changes to 89 cents. The programmer must now
go in and manually change each entry of 99 cents to 89. While this is not that big of
a problem, considering the "global find-replace" function of many text editors, consider
another problem: the cost of a can of green beans is also initially 99 cents. To reliably
change the price, you have to look at every occurrence of the number 99.

C possesses certain functionality to avoid this. This functionality is approximately equiva-
lent, though one method can be useful in one circumstance, over another.

12.7.1 Using the const keyword

The const keyword helps eradicate magic numbers. By declaring a variable const corn
at the beginning of a block, a programmer can simply change that const and not have to
worry about setting the value elsewhere.

There is also another method for avoiding magic numbers. It is much more flexible than
const, and also much more problematic in many ways. It also involves the preprocessor,
as opposed to the compiler. Behold...

12.7.2 #define

When you write programs, you can create what is known as a macro, so when the computer
is reading your code, it will replace all instances of a word with the specified expression.

Here's an example. If you write

#define PRICE_OF_CORN 0.99

when you want to, for example, print the price of corn, you use the word PRICE_OF_CORN
instead of the number 0.99 – the preprocessor will replace all instances of PRICE_OF_CORN
with 0.99, which the compiler will interpret as the literal double 0.99. The preprocessor
performs substitution, that is, PRICE_OF_CORN is replaced by 0.99 so this means there is no
need for a semicolon.

It is important to note that #define has basically the same functionality as the "find-and-
replace" function in a lot of text editors/word processors.

For some purposes, #define can be harmfully used, and it is usually preferable to use const
if #define is unnecessary. It is possible, for instance, to #define, say, a macro DOG as the
number 3, but if you try to print the macro, thinking that DOG represents a string that you
can show on the screen, the program will have an error. #define also has no regard for
type. It disregards the structure of your program, replacing the text everywhere (in effect,

53

Variables

disregarding scope), which could be advantageous in some circumstances, but can be the
source of problematic bugs.

You will see further instances of the #define directive later in the text. It is good convention
to write #defined words in all capitals, so a programmer will know that this is not a variable
that you have declared but a #defined macro. It is not necessary to end a preprocessor
directive such as #define with a semicolon; in fact, some compilers may warn you about
unnecessary tokens in your code if you do.

12.8 Scope

In the Basic Concepts section, the concept of scope was introduced. It is important to
revisit the distinction between local types and global types, and how to declare variables of
each. To declare a local variable, you place the declaration at the beginning (i.e. before any
non-declarative statements) of the block to which the variable is intended to be local. To
declare a global variable, declare the variable outside of any block. If a variable is global,
it can be read, and written, from anywhere in your program.

Global variables are not considered good programming practice, and should be avoided
whenever possible. They inhibit code readability, create naming conflicts, waste memory,
and can create difficult-to-trace bugs. Excessive usage of globals is usually a sign of laziness
and/or poor design. However, if there is a situation where local variables may create more
obtuse and unreadable code, there's no shame in using globals.

12.9 Other Modifiers

Included here, for completeness, are more of the modifiers that standard C provides. For
the beginning programmer, static and extern may be useful. volatile is more of interest to
advanced programmers. register and auto are largely deprecated and are generally not of
interest to either beginning or advanced programmers.

12.9.1 static

static is sometimes a useful keyword. It is a common misbelief that the only purpose is
to make a variable stay in memory.

When you declare a function or global variable as static it will become internal. You
cannot access the function or variable through the extern (see below) keyword from other
files in your project.

When you declare a local variable as static, it is created just like any other variable.
However, when the variable goes out of scope (i.e. the block it was local to is finished)
the variable stays in memory, retaining its value. The variable stays in memory until the
program ends. While this behaviour resembles that of global variables, static variables still

54

Other Modifiers

obey scope rules and therefore cannot be accessed outside of their scope.

Variables declared static are initialized to zero (or for pointers, NULL) by default.

You can use static in (at least) two different ways. Consider this code, and imagine it is in
a file called jfile.c:

#include <stdio.h>

static int j = 0;

void up(void)
{

/* k is set to 0 when the program starts. The line is then "ignored"
* for the rest of the program (i.e. k is not set to 0 every time up()
* is called)
*/
static int k = 0;
j++;
k++;
printf("up() called. k= %2d, j= %2d\n", k , j);

}

void down(void)
{

static int k = 0;
j--;
k--;
printf("down() called. k= %2d, j= %2d\n", k , j);

}

int main(void)
{

int i;

/* call the up function 3 times, then the down function 2 times */
for (i= 0; i < 3; i++)

up();
for (i= 0; i < 2; i++)

down();

return 0;
}

The j var is accessible by both up and down and retains its value. The k vars also retain
their value, but they are two different variables, one in each of their scopes. Static vars are a
good way to implement encapsulation, a term from the object-oriented way of thinking that
effectively means not allowing changes to be made to a variable except through function
calls.

Running the program above will produce the following output:

up() called. k= 1, j= 1
up() called. k= 2, j= 2
up() called. k= 3, j= 3
down() called. k= -1, j= 2
down() called. k= -2, j= 1

Features of static variables :

55

Variables

1. Keyword used - static
2. Storage - Memory
3. Default value - Zero
4. Scope - Local to the block in which it is declared
5. Lifetime - Value persists between different function calls
6. Keyword optionality - Mandatory to use the keyword

12.9.2 extern

extern is used when a file needs to access a variable in another file that it may not have
#included directly. Therefore, extern does not actually carve out space for a new variable,
it just provides the compiler with sufficient information to access the remote variable.

Features of external variable :

1. Keyword used - extern
2. Storage - Memory
3. Default value - Zero
4. Scope - Global (all over the program)
5. Lifetime - Value persists till the program's execution comes

to an end
6. Keyword optionality - Optional if declared outside all the functions

12.9.3 volatile

volatile is a special type of modifier which informs the compiler that the value of the
variable may be changed by external entities other than the program itself. This is necessary
for certain programs compiled with optimizations – if a variable were not defined volatile
then the compiler may assume that certain operations involving the variable are safe to
optimize away when in fact they aren't. volatile is particularly relevant when working with
embedded systems (where a program may not have complete control of a variable) and
multi-threaded applications.

12.9.4 auto

auto is a modifier which specifies an "automatic" variable that is automatically created when
in scope and destroyed when out of scope. If you think this sounds like pretty much what
you've been doing all along when you declare a variable, you're right: all declared items
within a block are implicitly "automatic". For this reason, the auto keyword is more like
the answer to a trivia question than a useful modifier, and there are lots of very competent
programmers that are unaware of its existence.

Features of automatic variables :

1. Keyword used - auto
2. Storage - Memory
3. Default value - Garbage value (random value)

56

Other Modifiers

4. Scope - Local to the block in which it is defined
5. Lifetime - Value persists while the control remains within

the block
6. Keyword optionality - Optional

12.9.5 register

register is a hint to the compiler to attempt to optimize the storage of the given variable
by storing it in a register of the computer's CPU when the program is run. Most optimizing
compilers do this anyway, so use of this keyword is often unnecessary. In fact, ANSI C states
that a compiler can ignore this keyword if it so desires – and many do. Microsoft Visual
C++ is an example of an implementation that completely ignores the register keyword.

Features of register variables :

1. Keyword used - register
2. Storage - CPU registers (values can be retrieved faster than

from memory)
3. Default value - Garbage value
4. Scope - Local to the block in which it is defined
5. Lifetime - Value persists while the control remains within

the block
6. Keyword optionality - Mandatory to use the keyword

12.9.6 Concepts

• Variables7
• Types8
• Data Structures9
• Arrays10

12.9.7 In this section

• C variables11
• C types12
• C arrays13

7 http://en.wikibooks.org/wiki/Computer%20Programming%2FVariables
8 http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes
9 http://en.wikibooks.org/wiki/Data%20Structures
10 http://en.wikibooks.org/wiki/Data%20Structures%2FArrays
11 Chapter 12 on page 47
12 http://en.wikibooks.org/wiki/C%20Programming%2FTypes
13 Chapter 24 on page 181

57

http://en.wikibooks.org/wiki/Computer%20Programming%2FVariables
http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes
http://en.wikibooks.org/wiki/Data%20Structures
http://en.wikibooks.org/wiki/Data%20Structures%2FArrays
http://en.wikibooks.org/wiki/C%20Programming%2FTypes

Variables

et:Programmeerimiskeel C/Muutujad14 it:C/Variabili, operatori e costanti/Variabili15
pl:C/Zmienne16 fi:C/Muuttujat17

14 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMuutujad
15 http://it.wikibooks.org/wiki/C%2FVariabili%2C%20operatori%20e%20costanti%2FVariabili
16 http://pl.wikibooks.org/wiki/C%2FZmienne
17 http://fi.wikibooks.org/wiki/C%2FMuuttujat

58

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMuutujad
http://it.wikibooks.org/wiki/C%2FVariabili%2C%20operatori%20e%20costanti%2FVariabili
http://pl.wikibooks.org/wiki/C%2FZmienne
http://fi.wikibooks.org/wiki/C%2FMuuttujat

13 Simple Input and Output

When you take time to consider it, a computer would be pretty useless without some way
to talk to the people who use it. Just like we need information in order to accomplish tasks,
so do computers. And just as we supply information to others so that they can do tasks, so
do computers.

These supplies and returns of information to a computer are called input and output.
'Input' is information supplied to a computer or program. 'Output' is information provided
by a computer or program. Frequently, computer programmers will lump the discussion in
the more general term input/output or simply, I/O.

In C, there are many different ways for a program to communicate with the user. Amazingly,
the most simple methods usually taught to beginning programmers may also be the most
powerful. In the "Hello, World" example1 at the beginning of this text, we were introduced
to a Standard Library file stdio.h, and one of its functions, printf(). Here we discuss more
of the functions that stdio.h gives us.

13.1 Output using printf()

Recall from the beginning of this text the demonstration program duplicated below:

#include <stdio.h>

int main(void)
{

printf("Hello, world!\n");
return 0;

}

If you compile and run this program, you will see the sentence below show up on your
screen:

Hello, world!

This amazing accomplishment was achieved by using the function printf(). A function is
like a "black box" that does something for you without exposing the internals inside. We
can write functions ourselves in C, but we will cover that later.

You have seen that to use printf() one puts text, surrounded by quotes, in between the
parentheses. We call the text surrounded by quotes a literal string (or just a string), and
we call that string an argument to printf.

1 http://en.wikibooks.org/wiki/Programming%3AC%23A%20taste%20of%20C

59

http://en.wikibooks.org/wiki/Programming%3AC%23A%20taste%20of%20C

Simple Input and Output

As a note of explanation, it is sometimes convenient to include the open and closing paren-
theses after a function name to remind us that it is, indeed, a function. However usually
when the name of the function we are talking about is understood, it is not necessary.

As you can see in the example above, using printf() can be as simple as typing in some
text, surrounded by double quotes (note that these are double quotes and not two single
quotes). So, for example, you can print any string by placing it as an argument to the
printf() function:

printf("This sentence will print out exactly as you see it...");

And once it is contained in a proper main() function, it will show:

This sentence will print out exactly as you see it...

13.1.1 Printing numbers and escape sequences

Placeholder codes

The printf function is a powerful function, and is probably the most-used function in C
programs.

For example, let us look at a problem. Say we don't know what 19 + 31 is. Let's use C to
get the answer.

We start writing

#include "stdio.h" // this is important, since printf
// can't be used without this line

int main(void)
{

printf("19+31 is");

but here we are stuck! printf only prints strings! Thankfully, printf has methods for
printing numbers. What we do is put a placeholder format code in the string. We write:

printf("19+31 is %d", 19+31);

The placeholder %d literally "holds the place" for the actual number that is the result of
adding 19 to 31.

These placeholders are called format specifiers. Many other format specifiers work with
printf. If we have a floating-point number, we can use %f to print out a floating-point
number, decimal point and all. Other format specifiers are:

• %d - int (same as %i)
• %ld - long int (same as %li)
• %f - float

60

Other output methods

• %lf - double
• %c - char
• %s - string
• %x - hexadecimal

Tabs and newlines

What if, we want to achieve some output that will look like:

1905
312 +

printf will not put line breaks in at the end of each statement: we must do this ourselves.
But how?

What we can do is use the newline escape character. An escape character is a special
character that we can write but will do something special onscreen, such as make a beep,
write a tab, and so on. To write a newline we write \n. All escape characters start with a
backslash.

So to achieve the output above, we write

printf(" 1905\n312 +\n-----\n");

or to be a bit more clear, we can break this long printf statement over several lines. So our
program will be

#include <stdio.h>

int main(void)
{

printf(" 1905\n");
printf("312 +\n");
printf("-----\n");
printf("%d", 1905+312);
return 0;

}

There are other escape characters we can use. Another common one is to use \t to write a
tab. You can use \a to ring the computer's bell, but you should not use this very much in
your programs, as excessive use of sound is not very friendly to the user.

13.2 Other output methods

13.2.1 puts()

The puts() function is a very simple way to send a string to the screen when you have no
placeholders to be concerned about. It works very much like the printf() function we saw

61

Simple Input and Output

in the "Hello, World!" example:

puts("Print this string.");

will print to the screen:

Print this string.

followed by the newline character (as discussed above). (The puts function appends a
newline character to its output.)

#include<stdio.h>
f(int i,int j,int k)
{
printf("%d%d%d",i,j,k);

}
main()
{
int x=1,y=2,z=3;
f(x+y,y=x+z,z=x+y);

}

13.3 Input using scanf()

The scanf() function is the input method equivalent to the printf() output function - simple
yet powerful. In its simplest invocation, the scanf format string holds a single placeholder
representing the type of value that will be entered by the user. These placeholders are
exactly the same as the printf() function - %d for ints, %f for floats, and %lf for doubles.

There is, however, one variation to scanf() as compared to printf(). The scanf() function
requires the memory address of the variable to which you want to save the input value.
While pointers are possible here, this is a concept that won't be approached until later in
the text. Instead, the simple technique is to use the address-of operator, &. For now it
may be best to consider this "magic" before we discuss pointers.

A typical application might be like this:

#include "stdio.h"

int main(void)
{

int a;

printf("Please input an integer value: ");
scanf("%d", &a);
printf("You entered: %d\n", a);

return 0;
}

If you were to describe the effect of the scanf() function call above, it might read as: "Read
in an integer from the user and store it at the address of variable a ".

62

Links

If you are trying to input a string using scanf, you should not include the & operator. The
code below will not compile.

scanf("%s", &a);

The correct usage would be:

scanf("%s", a);

This is because, whenever you use a format specifier for a string (%s), the variable that you
use to store the value will be an array and, the array names (in this case - a) themselves
point out to their base address and hence, the address of operator is not required.

(Although, this is vulnerable to Buffer overflow2. fgets() is preferred to scanf()).

Note on inputs: When data is typed at a keyboard, the information does not go straight
to the program that is running. It is first stored in what is known as a buffer - a small
amount of memory reserved for the input source. Sometimes there will be data left in the
buffer when the program wants to read from the input source, and the scanf() function
will read this data instead of waiting for the user to type something. Some may suggest
you use the function fflush(stdin), which may work as desired on some computers, but isn't
considered good practice, as you will see later. Doing this has the downfall that if you
take your code to a different computer with a different compiler, your code may not work
properly.

13.4 Links

Back to contents: Beginning C3

et:Programmeerimiskeel C/IO4 pl:C/Podstawowe procedury wejścia i wyjścia5
pt:Programar em C/Entrada e saída simples6 7

2 http://en.wikipedia.org/wiki/Buffer%20overflow
3 http://en.wikibooks.org/wiki/C%20Programming%23Beginning%20C
4 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FIO

5 http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%C5%9Bcia%20i%20wyj%C5%
9Bcia

6 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FEntrada%20e%20sa%C3%ADda%20simples
7 http://en.wikibooks.org/wiki/Category%3AC%20Programming

63

http://en.wikipedia.org/wiki/Buffer%20overflow
http://en.wikibooks.org/wiki/C%20Programming%23Beginning%20C
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FIO
http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%C5%9Bcia%20i%20wyj%C5%9Bcia
http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%C5%9Bcia%20i%20wyj%C5%9Bcia
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FEntrada%20e%20sa%C3%ADda%20simples
http://en.wikibooks.org/wiki/Category%3AC%20Programming

14 Simple math

14.1 Operators and Assignments

C has a wide range of operators that make simple math easy to handle. The list of operators
grouped into precedence levels is as follows:

14.1.1 Primary expressions

An identifier is a primary expression, provided that it has been declared as designating an
object (in which case it is an lvalue [a value that can be used as the left side of an assignment
expression]) or a function (in which case it is a function designator).

A constant is a primary expression. Its type depends on its form and value.

A string literal is a primary expression.

A parenthesized expression is a primary expression. Its type and value are those of the
unparenthesized expression.

14.1.2 Postfix operators

First, a primary expression is also a postfix expression. The following expressions are also
postfix expressions:

A postfix expression followed by a left square bracket ([), an expression, and a right square
bracket (]) constitutes an invocation of the array subscript operator. One of the expressions
shall have type "pointer to object type" and the other shall have an integer type; the result
type is type. Successive array subscript operators designate an element of a multidimensional
array.

A postfix expression followed by parentheses or an optional parenthesized argument list
indicates an invocation of the function call operator.

A postfix expression followed by a dot (.) followed by an identifier selects a member from a
structure or union; a postfix expression followed by an arrow (->) followed by an identifier
selects a member from a structure or union who is pointed to by the pointer on the left-hand
side of the expression.

A postfix expression followed by the increment or decrement operators (++ or --) indicates
that the variable is to be incremented or decremented as a side effect. The value of the
expression is the value of the postfix expression before the increment or decrement.

65

Simple math

14.1.3 Unary expressions

First, a unary expression is a postfix expression. The following expressions are all postfix
expressions:

The increment or decrement operators followed by a unary expression is a unary expression.
The value of the expression is the value of the unary expression after the increment or
decrement.

The following operators followed by a cast expression are unary expressions:

Operator Meaning
======== =======

& Address-of; value is the location of the operand
* Contents-of; value is what is stored at the location
- Negation
+ Value-of operator
! Logical negation ((!E) is equivalent to (0==E))
˜ Bit-wise complement

The keyword sizeof followed by a unary expression is a unary expression. The value is the
size of the type of the expression in bytes. The expression is not evaluated.

The keyword sizeof followed by a parenthesized type name is a unary expression. The
value is the size of the type in bytes.

14.1.4 Cast operators

A cast expression is a unary expression.

A parenthesized type name followed by a cast expression is a cast expression. The paren-
thesized type name has the effect of forcing the cast expression into the type specified by
the type name in parentheses. For arithmetic types, this either does not change the value
of the expression, or truncates the value of the expression if the expression is an integer and
the new type is smaller than the previous type.

An example of casting a float as an int:

float pi = 3.141592;
int truncated_pi = (int)pi; // truncated_pi == 3

An example of casting a char as an int:

char my_char = 'A';
int my_int = (int)my_char; // my_int == 65, which is the ASCII value of 'A'

14.1.5 Multiplicative and additive operators

In C, simple math is very easy to handle. The following operators exist: + (addition),
- (subtraction), * (multiplication), / (division), and % (modulus); You likely know all of
them from your math classes - except, perhaps, modulus. It returns the remainder of a
division (e.g. 5 % 2 = 1).

66

Operators and Assignments

Care must be taken with the modulus, because it's not the equivalent of the mathematical
modulus: (-5) % 2 is not 1, but -1. Division of integers will return an integer, and the division
of a negative integer by a positive integer will round towards zero instead of rounding down
(e.g. (-5) / 3 = -1 instead of -2).

There is no inline operator to do the power (e.g. 5 ˆ 2 is not 25, and 5 ** 2 is an error),
but there is a power function1.

The mathematical order of operations does apply. For example (2 + 3) * 2 = 10 while 2 +
3 * 2 = 8. Multiplicative operators have precedence over additive operators.

#include <stdio.h>

int main()
{
int i = 0, j = 0;

/* while i is less than 5 AND j is less than 5, loop */
while((i < 5) && (j < 5))
{

/* postfix increment, i++
* the value of i is read and then incremented
*/
printf("i: %d\t", i++);

/*
* prefix increment, ++j
* the value of j is incremented and then read
*/
printf("j: %d\n", ++j);

}

printf("At the end they have both equal values:\ni: %d\tj: %d\n", i, j);

return 0;
}

will display the following:

i: 0 j: 1
i: 1 j: 2
i: 2 j: 3
i: 3 j: 4
i: 4 j: 5
At the end they have both equal values:
i: 5 j: 5

14.1.6 shift and rotate

Shift functions are often used in low-level I/O hardware interfacing. Shift and rotate func-
tions are heavily used in cryptography and software floating point emulation. Other than
that, shifts can be used in place of division or multiplication by a power of two. Many
processors have dedicated function blocks to make these operations fast -- see Micropro-
cessor Design/Shift and Rotate Blocks2. On processors which have such blocks, most C

1 Chapter 15.4 on page 77
2 http://en.wikibooks.org/wiki/Microprocessor%20Design%2FShift%20and%20Rotate%20Blocks

67

http://en.wikibooks.org/wiki/Microprocessor%20Design%2FShift%20and%20Rotate%20Blocks

Simple math

compilers compile shift and rotate operators to a single assembly-language instruction --
see X86 Assembly/Shift and Rotate3.

shift left

The << operator shifts the binary representation to the left, dropping the most significant
bits and appending it with zero bits. The result is equivalent to multiplying the integer by
a power of two.

unsigned shift right

The unsigned shift right operator, also sometimes called the logical right shift operator.
It shifts the binary representation to the right, dropping the least significant bits and
prepending it with zeros. The >> operator is equivalent to division by a power of two for
unsigned integers.

signed shift right

The signed shift right operator, also sometimes called the arithmetic right shift operator. It
shifts the binary representation to the right, dropping the least significant bit, but prepend-
ing it with copies of the original sign bit. The >> operator is not equivalent to division for
signed integers.

In C, the behavior of the >> operator depends on the data type it acts on. Therefore, a
signed and an unsigned right shift looks exactly the same, but produces a different result
in some cases.

rotate right

Contrary to popular belief, it is possible to write C code that compiles down to the "rotate"
assembly language instruction (on CPUs that have such an instruction).

Most compilers recognize this idiom:

unsigned int x;
unsigned int y;
/* ... */
y = (x >> shift) | (x << (32 - shift));

and compile it to a single 32 bit rotate instruction. 4 5

3 http://en.wikibooks.org/wiki/X86%20Assembly%2FShift%20and%20Rotate
4 GCC: "Optimize common rotate constructs" ˆ{http://gcc.gnu.org/ml/gcc-patches/2007-11/

msg01112.html}
5 "Cleanups in ROTL/ROTR DAG combiner code" ˆ{http://www.mail-archive.com/llvm-commits@

cs.uiuc.edu/msg17216.html} mentions that this code supports the "rotate" instruction in the CellSPU

68

http://en.wikibooks.org/wiki/X86%20Assembly%2FShift%20and%20Rotate
http://gcc.gnu.org/ml/gcc-patches/2007-11/msg01112.html
http://gcc.gnu.org/ml/gcc-patches/2007-11/msg01112.html
http://www.mail-archive.com/llvm-commits@cs.uiuc.edu/msg17216.html
http://www.mail-archive.com/llvm-commits@cs.uiuc.edu/msg17216.html

Operators and Assignments

On some systems, this may be "#define"ed as a macro or defined as an inline function called
something like "rightrotate32" or "rotr32" or "ror32" in a standard header file like "bitops.h".
6

rotate left

Most compilers recognize this idiom:

unsigned int x;
unsigned int y;
/* ... */
y = (x << shift) | (x >> (32 - shift));

and compile it to a single 32 bit rotate instruction.

On some systems, this may be "#define"ed as a macro or defined as an inline function called
something like "leftrotate32" or "rotl32" in a header file like "bitops.h".

14.1.7 Relational and equality operators

The relational binary operators < (less than), > (greater than), <= (less than or equal),
and >= (greater than or equal) operators return a value of 1 if the result of the operation
is true, 0 if false.

The equality binary operators == (equals) and != (not equals) operators are similar to the
relational operators except that their precedence is lower.

14.1.8 Bitwise operators

The bitwise operators are & (and), ˆ (exclusive or) and | (inclusive or). The & operator has
higher precedence than ˆ, which has higher precedence than |.

14.1.9 Logical operators

The logical operators are && (and), and || (or). Both of these operators produce 1 if the
relationship is true and 0 for false. Both of these operators short-circuit; if the result of the
expression can be determined from the first operand, the second is ignored.

&& is used to evaluate expressions left to right, and returns a 1 if both statements are true.

int x = 7;
int y = 5;
if(x == 7 && y == 5) {

...
}

6 "replace private copy of bit rotation routines" ˆ{http://kerneltrap.org/mailarchive/
linux-kernel/2008/4/15/1440064} -- recommends includeing "bitops.h" and using its rol32 and ror32
rather than copy-and-paste into a new program.

69

http://kerneltrap.org/mailarchive/linux-kernel/2008/4/15/1440064
http://kerneltrap.org/mailarchive/linux-kernel/2008/4/15/1440064

Simple math

Here, the && operator checks the left-most expression, then the expression to it's right.
Since both statements return true, the && operator returns true, and the code block is
executed.

if(x == 5 && y == 5) {
...

}

The && operator checks in the same way as before, and finds that the first expression is
false. The && operator stops evaluating as soon as it finds a statement to be false, and
returns a false.

|| is used to evaluate expressions left to right, and returns a 1 if either of the expressions
are true.

/* Use the same variables as before. */
if(x == 2 || y == 5) { // the || statement checks both expressions, finds

that the latter is true, and returns true
...

}

The || operator here checks the left-most expression, finds it false, but continues to evaluate
the next expression. It finds that the next expression returns true, stops, and returns a
1. Much how the && operator ceases when it finds an expression that returns false, the ||
operator ceases when it finds an expression that returns true.

It is worth noting that C does not have Boolean values (true and false) commonly found in
other languages. It instead interprets a 0 as false, and any nonzero value as true.

14.1.10 Conditional operators

The ternary ?: operator is the conditional operator. The expression (x ? y : z) has
the value of y if x is nonzero, z otherwise.

Example:

int x = 0;
int y;
y = (x ? 10:6);

The expression x evaluates to 0. The ternary operator then looks for the "if-false" value,
which in this case, is 6. It returns that, so y is equal to six. Had x been a non-zero, then
the expression would have returned a 10.

70

Operators and Assignments

14.1.11 Assignment operators

The assignment operators are =, *=, /=, %=, +=, -=, <<=, >>=, &=, ˆ=, and |= . The
= operator stores the value of the right operand into the location determined by the left
operand, which must be an lvalue7

For the others, x op= y is shorthand for x = x op (y) . Hence, the following expressions
are the same :

1. x += y - x = x+y
2. x -= y - x = x-y
3. x *= y - x = x*y
4. x /= y - x = x/y
5. x %= y - x = x%y

14.1.12 Comma operator

The operator with the least precedence is the comma operator. The value of the expression
x, y will evaluate both x and y, but provides the value of y.

This operator is useful for including multiple actions in one statement (e.g. within a for
loop conditional).

Here are some small examples of the comma operator:

int i, x; /* declares two ints, i and x, in one statement */

/* this loop initializes x and i to 0, then runs the loop */
for(x = 0, i = 0; i <= 6; i++) {

printf("x = %d, and i = %d\n", x, i);
}

pl:C/Operatory8

7 http://en.wikibooks.org/wiki/lvalue
8 http://pl.wikibooks.org/wiki/C%2FOperatory

71

http://en.wikibooks.org/wiki/lvalue
http://pl.wikibooks.org/wiki/C%2FOperatory

15 Further math

w:math.h1

The <math.h> header contains prototypes for several functions that deal with mathematics.
In the 1990 version of the ISO standard, only the double versions of the functions were
specified; the 1999 version added the float and long double versions. To use these math
functions, you must link your program with the math library. For some compilers (including
GCC), you must specify the additional parameter -lm.

The functions can be grouped into the following categories:

15.1 Trigonometric functions

15.1.1 The acos and asin functions

The acos functions return the arccosine of their arguments in radians, and the asin func-
tions return the arcsine of their arguments in radians. All functions expect the argument
in the range [-1,+1]. The arccosine returns a value in the range [0,π]; the arcsine returns a
value in the range [-π/2,+π/2].

#include <math.h>
float asinf(float x); /* C99 */
float acosf(float x); /* C99 */
double asin(double x);
double acos(double x);
long double asinl(long double x); /* C99 */
long double acosl(long double x); /* C99 */

15.1.2 The atan and atan2 functions

The atan functions return the arctangent of their arguments in radians, and the atan2
function return the arctangent of y/x in radians. The atan functions return a value in the
range [-π/2,+π/2] (the reason why ±π/2 are included in the range is because the floating-
point value may represent infinity, and atan(±∞) = ±π/2); the atan2 functions return a
value in the range [-π/2,+π/2]. For atan2, a domain error may occur if both arguments
are zero.

#include <math.h>
float atanf(float x); /* C99 */
float atan2f(float y, float x); /* C99 */

1 http://en.wikipedia.org/wiki/math.h

73

http://en.wikipedia.org/wiki/math.h

Further math

double atan(double x);
double atan2(double y, double x);
long double atanl(long double x); /* C99 */
long double atan2l(long double y, long double x); /* C99 */

15.1.3 The cos, sin, and tan functions

The cos, sin, and tan functions return the cosine, sine, and tangent of the argument,
expressed in radians.

#include <math.h>
float cosf(float x); /* C99 */
float sinf(float x); /* C99 */
float tanf(float x); /* C99 */
double cos(double x);
double sin(double x);
double tan(double x);
long double cosl(long double x); /* C99 */
long double sinl(long double x); /* C99 */
long double tanl(long double x); /* C99 */

15.2 Hyperbolic functions

The cosh, sinh and tanh functions compute the hyperbolic cosine, the hyperbolic sine,
and the hyperbolic tangent of the argument respectively. For the hyperbolic sine and
cosine functions, a range error occurs if the magnitude of the argument is too large.

The acosh functions compute the inverse hyperbolic cosine of the argument. A domain
error occurs for arguments less than 1.

The asinh functions compute the inverse hyperbolic sine of the argument.

The atanh functions compute the inverse hyperbolic tangent of the argument. A domain
error occurs if the argument is not in the interval [-1, +1]. A range error may occur if the
argument equals -1 or +1.

#include <math.h>
float coshf(float x); /* C99 */
float sinhf(float x); /* C99 */
float tanhf(float x); /* C99 */
double cosh(double x);
double sinh(double x);
double tanh(double x);
long double coshl(long double x); /* C99 */
long double sinhl(long double x); /* C99 */
long double tanhl(long double x); /* C99 */
float acoshf(float x); /* C99 */
float asinhf(float x); /* C99 */
float atanhf(float x); /* C99 */
double acosh(double x); /* C99 */
double asinh(double x); /* C99 */
double atanh(double x); /* C99 */
long double acoshl(long double x); /* C99 */
long double asinhl(long double x); /* C99 */
long double atanhl(long double x); /* C99 */

74

Exponential and logarithmic functions

15.3 Exponential and logarithmic functions

15.3.1 The exp, exp2, and expm1 functions

The exp functions compute the base-e exponential function of x (ex). A range error occurs
if the magnitude of x is too large.

The exp2 functions compute the base-2 exponential function of x (2x). A range error occurs
if the magnitude of x is too large.

The expm1 functions compute the base-e exponential function of the argument, minus 1. A
range error occurs in the magnitude of x is too large.

#include <math.h>
float expf(float x); /* C99 */
double exp(double x);
long double expl(long double x); /* C99 */
float exp2f(float x); /* C99 */
double exp2(double x); /* C99 */
long double exp2l(long double x); /* C99 */
float expm1f(float x); /* C99 */
double expm1(double x); /* C99 */
long double expm1l(long double x); /* C99 */

15.3.2 The frexp, ldexp, modf, scalbn, and scalbln functions

These functions are heavily used in software floating-point emulators, but are otherwise
rarely directly called.

Inside the computer, each floating point number is represented by two parts:

• The significand is either in the range [1/2, 1), or it equals zero.
• The exponent is an integer.

The value of a floating point number v is v = significand×2exponent.

The frexp functions break the argument floating point number value into those two parts,
the exponent and significand. After breaking it apart, it stores the exponent in the int
object pointed to by ex, and returns the significand. In other words, the value returned is
a copy of the given floating point number but with an exponent replaced by 0. If value is
zero, both parts of the result are zero.

The ldexp functions multiply a floating-point number by a integral power of 2 and return
the result. In other words, it returns copy of the given floating point number with the
exponent increased by ex. A range error may occur.

The modf functions break the argument value into integer and fraction parts, each of which
has the same sign as the argument. They store the integer part in the object pointed to
by *iptr and return the fraction part. The *iptr is a floating-point type, rather than an
"int" type, because it might be used to store an integer like 1 000 000 000 000 000 000 000
which is too big to fit in an int.

The scalbn and scalbln compute x × FLT_RADIXn. FLT_RADIX is the base of the floating-
point system; if it is 2, the functions are equivalent to ldexp.

75

Further math

#include <math.h>
float frexpf(float value, int *ex); /* C99 */
double frexp(double value, int *ex);
long double frexpl(long double value, int *ex); /* C99 */
float ldexpf(float x, int ex); /* C99 */
double ldexp(double x, int ex);
long double ldexpl(long double x, int ex); /* C99 */
float modff(float value, float *iptr); /* C99 */
double modf(double value, double *iptr);
long double modfl(long double value, long double *iptr); /* C99 */
float scalbnf(float x, int ex); /* C99 */
double scalbn(double x, int ex); /* C99 */
long double scalbnl(long double x, int ex); /* C99 */
float scalblnf(float x, long int ex); /* C99 */
double scalbln(double x, long int ex); /* C99 */
long double scalblnl(long double x, long int ex); /* C99 */

Most C floating point libraries also implement the IEEE754-recommended nextafter(),
nextUp(), and nextDown() functions. http://www.opengroup.org/onlinepubs/
009695399/functions/nextafter.html

15.3.3 The log, log2, log1p, and log10 functions

The log functions compute the base-e natural (not common) logarithm of the argument
and return the result. A domain error occurs if the argument is negative. A range error
may occur if the argument is zero.

The log1p functions compute the base-e natural (not common) logarithm of one plus the
argument and return the result. A domain error occurs if the argument is less than -1. A
range error may occur if the argument is -1.

The log10 functions compute the common (base-10) logarithm of the argument and return
the result. A domain error occurs if the argument is negative. A range error may occur if
the argument is zero.

The log2 functions compute the base-2 logarithm of the argument and return the result. A
domain error occurs if the argument is negative. A range error may occur if the argument
is zero.

#include <math.h>
float logf(float x); /* C99 */
double log(double x);
long double logl(long double x); /* C99 */
float log1pf(float x); /* C99 */
double log1p(double x); /* C99 */
long double log1pl(long double x); /* C99 */
float log10f(float x); /* C99 */
double log10(double x);
long double log10l(long double x); /* C99 */
float log2f(float x); /* C99 */
double log2(double x); /* C99 */
long double log2l(long double x); /* C99 */

76

http://www.opengroup.org/onlinepubs/009695399/functions/nextafter.html
http://www.opengroup.org/onlinepubs/009695399/functions/nextafter.html

Power functions

15.3.4 The ilogb and logb functions

The ilogb functions extract the exponent of x as a signed int value. If x is zero, they
return the value FP_ILOGB0; if x is infinite, they return the value INT_MAX; if x is not-a-
number they return the value FP_ILOGBNAN; otherwise, they are equivalent to calling the
corresponding logb function and casting the returned value to type int. A range error may
occur if x is zero. FP_ILOGB0 and FP_ILOGBNAN are macros defined in math.h; INT_MAX is
a macro defined in limits.h.

The logb functions extract the exponent of x as a signed integer value in floating-point
format. If x is subnormal, it is treated as if it were normalized; thus, for positive finite x, 1
≤ x × FLT_RADIX-logb(x) < FLT_RADIX . FLT_RADIX is the radix for floating-point numbers,
defined in the float.h header.

#include <math.h>
int ilogbf(float x); /* C99 */
int ilogb(double x); /* C99 */
int double ilogbl(long double x); /* C99 */
float logbf(float x); /* C99 */
double logb(double x); /* C99 */
long double logbl(long double x); /* C99 */

15.4 Power functions

15.4.1 The pow functions

The pow functions compute x raised to the power y and return the result. A domain error
occurs if x is negative and y is not an integral value. A domain error occurs if the result
cannot be represented when x is zero and y is less than or equal to zero. A range error may
occur.

#include <math.h>
float powf(float x, float y); /* C99 */
double pow(double x, double y);
long double powl(long double x, long double y); /* C99 */

15.4.2 The sqrt functions

The sqrt functions compute the positive square root of x and return the result. A domain
error occurs if the argument is negative.

#include <math.h>
float sqrtf(float x); /* C99 */
double sqrt(double x);
long double sqrtl(long double x); /* C99 */

15.4.3 The cbrt functions

The cbrt functions compute the cube root of x and return the result.

77

Further math

#include <math.h>
float cbrtf(float x); /* C99 */
double cbrt(double x); /* C99 */
long double cbrtl(long double x); /* C99 */

15.4.4 The hypot functions

The hypot functions compute the square root of the sums of the squares of x and y, without
overflow or underflow, and return the result.

#include <math.h>
float hypotf(float x, float y); /* C99 */
double hypot(double x, double y); /* C99 */
long double hypotl(long double x, long double y); /* C99 */

15.5 Nearest integer, absolute value, and remainder
functions

15.5.1 The ceil and floor functions

The ceil functions compute the smallest integral value not less than x and return the
result; the floor functions compute the largest integral value not greater than x and return
the result.

#include <math.h>
float ceilf(float x); /* C99 */
double ceil(double x);
long double ceill(long double x); /* C99 */
float floorf(float x); /* C99 */
double floor(double x);
long double floorl(long double x); /* C99 */

15.5.2 The fabs functions

The fabs functions compute the absolute value of a floating-point number x and return the
result.

#include <math.h>
float fabsf(float x); /* C99 */
double fabs(double x);
long double fabsl(long double x); /* C99 */

15.5.3 The fmod functions

The fmod functions compute the floating-point remainder of x/y and return the value x -
i * y, for some integer i such that, if y is nonzero, the result has the same sign as x and
magnitude less than the magnitude of y. If y is zero, whether a domain error occurs or the
fmod functions return zero is implementation-defined.

78

Nearest integer, absolute value, and remainder functions

#include <math.h>
float fmodf(float x, float y); /* C99 */
double fmod(double x, double y);
long double fmodl(long double x, long double y); /* C99 */

15.5.4 The nearbyint, rint, lrint, and llrint functions

The nearbyint functions round their argument to an integer value in floating-point for-
mat, using the current rounding direction and without raising the "inexact" floating-point
exception.

The rint functions are similar to the nearbyint functions except that they can raise the
"inexact" floating-point exception if the result differs in value from the argument.

The lrint and llrint functions round their arguments to the nearest integer value ac-
cording to the current rounding direction. If the result is outside the range of values of the
return type, the numeric result is undefined and a range error may occur if the magnitude
of the argument is too large.

#include <math.h>
float nearbyintf(float x); /* C99 */
double nearbyint(double x); /* C99 */
long double nearbyintl(long double x); /* C99 */
float rintf(float x); /* C99 */
double rint(double x); /* C99 */
long double rintl(long double x); /* C99 */
long int lrintf(float x); /* C99 */
long int lrint(double x); /* C99 */
long int lrintl(long double x); /* C99 */
long long int llrintf(float x); /* C99 */
long long int llrint(double x); /* C99 */
long long int llrintl(long double x); /* C99 */

15.5.5 The round, lround, and llround functions

The round functions round the argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding direction.

The lround and llround functions round the argument to the nearest integer value, round-
ing halfway cases away from zero, regardless of the current rounding direction. If the result
is outside the range of values of the return type, the numeric result is undefined and a range
error may occur if the magnitude of the argument is too large.

#include <math.h>
float roundf(float x); /* C99 */
double round(double x); /* C99 */
long double roundl(long double x); /* C99 */
long int lroundf(float x); /* C99 */
long int lround(double x); /* C99 */
long int lroundl(long double x); /* C99 */
long long int llroundf(float x); /* C99 */
long long int llround(double x); /* C99 */
long long int llroundl(long double x); /* C99 */

79

Further math

15.5.6 The trunc functions

The trunc functions round their argument to the integer value in floating-point format that
is nearest but no larger in magnitude than the argument.

#include <math.h>
float truncf(float x); /* C99 */
double trunc(double x); /* C99 */
long double truncl(long double x); /* C99 */

15.5.7 The remainder functions

The remainder functions compute the remainder x REM y as defined by IEC 60559. The
definition reads, "When y ≠ 0, the remainder r = x REM y is defined regardless of the
rounding mode by the mathematical reduction r = x - ny, where n is the integer nearest
the exact value of x/y; whenever |n - x/y| = 1

2 , then n is even. Thus, the remainder is
always exact. If r = 0, its sign shall be that of x." This definition is applicable for all
implementations.

#include <math.h>
float remainderf(float x, float y); /* C99 */
double remainder(double x, double y); /* C99 */
long double remainderl(long double x, long double y); /* C99 */

15.5.8 The remquo functions

The remquo functions return the same remainder as the remainder functions. In the object
pointed to by quo, they store a value whose sign is the sign of x/y and whose magnitude
is congruent modulo 2n to the magnitude of the integral quotient of x/y, where n is an
implementation-defined integer greater than or equal to 3.

#include <math.h>
float remquof(float x, float y, int *quo); /* C99 */
double remquo(double x, double y, int *quo); /* C99 */
long double remquol(long double x, long double y, int *quo); /* C99 */

15.6 Error and gamma functions

The erf functions compute the error function of the argument (2/(π 1
2) ∫0x e-t2 dt); the

erfc functions compute the complimentary error function of the argument (that is, 1 - erf
x). For the erfc functions, a range error may occur if the argument is too large.

The lgamma functions compute the natural logarithm of the absolute value of the gamma
of the argument (that is, loge|Γ(x)|). A range error may occur if the argument is a negative
integer or zero.

The tgamma functions compute the gamma of the argument (that is, Γ(x)). A domain error
occurs if the argument is a negative integer or if the result cannot be represented when the
argument is zero. A range error may occur.

80

Further reading

#include <math.h>
float erff(float x); /* C99 */
double erf(double x); /* C99 */
long double erfl(long double x); /* C99 */
float erfcf(float x); /* C99 */
double erfc(double x); /* C99 */
long double erfcl(long double x); /* C99 */
float lgammaf(float x); /* C99 */
double lgamma(double x); /* C99 */
long double lgammal(long double x); /* C99 */
float tgammaf(float x); /* C99 */
double tgamma(double x); /* C99 */
long double tgammal(long double x); /* C99 */

15.7 Further reading

w:circular shift2

pl:C/Zaawansowane operacje matematyczne3

2 http://en.wikipedia.org/wiki/circular%20shift
3 http://pl.wikibooks.org/wiki/C%2FZaawansowane%20operacje%20matematyczne

81

http://en.wikipedia.org/wiki/circular%20shift
http://pl.wikibooks.org/wiki/C%2FZaawansowane%20operacje%20matematyczne

16 Control

Very few programs follow exactly one control path and have each instruction stated explic-
itly. In order to program effectively, it is necessary to understand how one can alter the
steps taken by a program due to user input or other conditions, how some steps can be
executed many times with few lines of code, and how programs can appear to demonstrate a
rudimentary grasp of logic. C constructs known as conditionals and loops grant this power.

From this point forward, it is necessary to understand what is usually meant by the word
block. A block is a group of code statements that are associated and intended to be executed
as a unit. In C, the beginning of a block of code is denoted with { (left curly), and the
end of a block is denoted with }. It is not necessary to place a semicolon after the end of a
block. Blocks can be empty, as in {}. Blocks can also be nested; i.e. there can be blocks of
code within larger blocks.

16.1 Conditionals

There is likely no meaningful program written in which a computer does not demonstrate
basic decision-making skills. It can actually be argued that there is no meaningful human
activity in which some sort of decision-making, instinctual or otherwise, does not take place.
For example, when driving a car and approaching a traffic light, one does not think, "I will
continue driving through the intersection." Rather, one thinks, "I will stop if the light is
red, go if the light is green, and if yellow go only if I am traveling at a certain speed a
certain distance from the intersection." These kinds of processes can be simulated in C
using conditionals.

A conditional is a statement that instructs the computer to execute a certain block of code
or alter certain data only if a specific condition has been met. The most common conditional
is the If-Else statement, with conditional expressions and Switch-Case statements typically
used as more shorthanded methods.

Before one can understand conditional statements, it is first necessary to understand how C
expresses logical relations. C treats logic as being arithmetic. The value 0 (zero) represents
false, and all other values represent true. If you chose some particular value to represent
true and then compare values against it, sooner or later your code will fail when your
assumed value (often 1) turns out to be incorrect. Code written by people uncomfortable
with the C language can often be identified by the usage of #define to make a "TRUE"
value. 1

1 C FAQ ˆ{http://www.c-faq.com/bool/bool2.html}

83

http://www.c-faq.com/bool/bool2.html

Control

Because logic is arithmetic in C, arithmetic operators and logical operators are one and
the same. Nevertheless, there are a number of operators that are typically associated with
logic:

16.1.1 Relational and Equivalence Expressions:

a < b

1 if a is less than b, 0 otherwise.

a > b

1 if a is greater than b, 0 otherwise.

a <= b

1 if a is less than or equal to b, 0 otherwise.

a >= b

1 if a is greater than or equal to b, 0 otherwise.

a == b

1 if a is equal to b, 0 otherwise.

a != b

1 if a is not equal to b, 0 otherwise

New programmers should take special note of the fact that the "equal to" operator is ==,
not =. This is the cause of numerous coding mistakes and is often a difficult-to-find bug, as
the expression (a = b) sets a equal to b and subsequently evaluates to b; but the expression
(a == b), which is usually intended, checks if a is equal to b. It needs to be pointed out
that, if you confuse = with ==, your mistake will often not be brought to your attention
by the compiler. A statement such as if (c = 20) {} is considered perfectly valid by
the language, but will always assign 20 to c and evaluate as true. A simple technique to
avoid this kind of bug (in many, not all cases) is to put the constant first. This will cause
the compiler to issue an error, if == got misspelled with =.

Note that C does not have a dedicated boolean type as many other languages do. 0 means
false and anything else true. So the following are equivalent:

if (foo()) {
//do something

}

and

if (foo() != 0) {
//do something

}

Often #define TRUE 1 and #define FALSE 0 are used to work around the lack of a boolean
type. This is bad practice, since it makes assumptions that do not hold. It is a better idea

84

Conditionals

to indicate what you are actually expecting as a result from a function call, as there are
many different ways of indicating error conditions, depending on the situation.

if (strstr("foo", bar) >= 0) {
//bar contains "foo"

}

Here, strstr returns the index where the substring foo is found and -1 if it was not found.
Note that this would fail with the TRUE definition mentioned in the previous paragraph. It
would also not produce the expected results if we omitted the >= 0.

One other thing to note is that the relational expressions do not evaluate as they would
in mathematical texts. That is, an expression myMin < value < myMax does not evaluate
as you probably think it might. Mathematically, this would test whether or not value is
between myMin and myMax. But in C, what happens is that value is first compared with
myMin. This produces either a 0 or a 1. It is this value that is compared against myMax.
Example:

int value = 20;
/* ... */
if (0 < value < 10) { // don't do this! it always evaluates to "true"!

/* do some stuff */
}

Because value is greater than 0, the first comparison produces a value of 1. Now 1 is
compared to be less than 10, which is true, so the statements in the if are executed. This
probably is not what the programmer expected. The appropriate code would be

int value = 20;
/* ... */
if (0 < value && value < 10) { // the && means "and"
/* do some stuff */
}

16.1.2 Logical Expressions

a || b

when EITHER a or b is true (or both), the result is 1, otherwise the result is 0.

a && b

when BOTH a and b are true, the result is 1, otherwise the result is 0.

!a

when a is true, the result is 0, when a is 0, the result is 1.

Here's an example of a larger logical expression. In the statement:

e = ((a && b) || (c > d));

e is set equal to 1 if a and b are non-zero, or if c is greater than d. In all other cases, e is
set to 0.

85

Control

C uses short circuit evaluation of logical expressions. That is to say, once it is able to
determine the truth of a logical expression, it does no further evaluation. This is often
useful as in the following:

int myArray[12];
....
if (i < 12 && myArray[i] > 3) {
....

In the snippet of code, the comparison of i with 12 is done first. If it evaluates to 0 (false),
i would be out of bounds as an index to myArray. In this case, the program never
attempts to access myArray[i] since the truth of the expression is known to be false.
Hence we need not worry here about trying to access an out-of-bounds array element if
it is already known that i is greater than or equal to zero. A similar thing happens with
expressions involving the or || operator.

while(doThis() || doThat()) ...

doThat() is never called if doThis() returns a non-zero (true) value.

16.1.3 Bitwise Boolean Expressions

The bitwise operators work bit by bit on the operands. The operands must be of integral
type (one of the types used for integers). The six bitwise operators are & (AND), | (OR),
ˆ (exclusive OR, commonly called XOR), ˜ (NOT, which changes 1 to 0 and 0 to 1), <<
(shift left), and >> (shift right). The negation operator is a unary operator which precedes
the operand. The others are binary operators which lie between the two operands. The
precedence of these operators is lower than that of the relational and equivalence operators;
it is often required to parenthesize expressions involving bitwise operators.

For this section, recall that a number starting with 0x is hexadecimal, or hex for short.
Unlike the normal decimal system using powers of 10 and digits 0123456789, hex uses powers
of 16 and digits 0123456789abcdef. Hexadecimal is commonly used in C programs because
a programmer can quickly convert it to or from binary (powers of 2 and digits 01). C does
not directly support binary notation, which would be really verbose anyway.

a & b

bitwise boolean and of a and b

0xc & 0xa produces the value 0x8 (in binary, 1100 & 1010 produces 1000)

a | b

bitwise boolean or of a and b

0xc | 0xa produces the value 0xe (in binary, 1100 | 1010 produces 1110)

a ˆ b

bitwise xor of a and b

86

Conditionals

0xc ˆ 0xa produces the value 0x6 (in binary, 1100 ˆ 1010 produces 0110)

˜a

bitwise complement of a.

˜0xc produces the value -1-0xc (in binary, ˜1100 produces ...11110011 where "..." may be
many more 1 bits)

a << b

shift a left by b (multiply a by 2b)

0xc << 1 produces the value 0x18 (in binary, 1100 << 1 produces the value 11000)

a >> b

shift a right by b (divide a by 2b)

0xc >> 1 produces the value 0x6 (in binary, 1100 >> 1 produces the value 110)

16.1.4 The If-Else statement

If-Else provides a way to instruct the computer to execute a block of code only if certain
conditions have been met. The syntax of an If-Else construct is:

if (/* condition goes here */) {
/* if the condition is non-zero (true), this code will execute */

} else {
/* if the condition is 0 (false), this code will execute */

}

The first block of code executes if the condition in parentheses directly after the if evaluates
to non-zero (true); otherwise, the second block executes.

The else and following block of code are completely optional. If there is no need to execute
code if a condition is not true, leave it out.

Also, keep in mind that an if can directly follow an else statement. While this can occa-
sionally be useful, chaining more than two or three if-elses in this fashion is considered bad
programming practice. We can get around this with the Switch-Case construct described
later.

Two other general syntax notes need to be made that you will also see in other control
constructs: First, note that there is no semicolon after if or else. There could be, but the
block (code enclosed in { and }) takes the place of that. Second, if you only intend to
execute one statement as a result of an if or else, curly braces are not needed. However,
many programmers believe that inserting curly braces anyway in this case is good coding
practice.

The following code sets a variable c equal to the greater of two variables a and b, or 0 if a
and b are equal.

if(a > b) {
c = a;

} else if(b > a) {

87

Control

c = b;
} else {

c = 0;
}

Consider this question: why can't you just forget about else and write the code like:

if(a > b) {
c = a;

}

if(a < b) {
c = b;

}

if(a == b) {
c = 0;

}

There are several answers to this. Most importantly, if your conditionals are not mutually
exclusive, two cases could execute instead of only one. If the code was different and the value
of a or b changes somehow (e.g.: you reset the lesser of a and b to 0 after the comparison)
during one of the blocks? You could end up with multiple if statements being invoked,
which is not your intent. Also, evaluating if conditionals takes processor time. If you use
else to handle these situations, in the case above assuming (a > b) is non-zero (true), the
program is spared the expense of evaluating additional if statements. The bottom line is
that it is usually best to insert an else clause for all cases in which a conditional will not
evaluate to non-zero (true).

The conditional expression

A conditional expression is a way to set values conditionally in a more shorthand fashion
than If-Else. The syntax is:

(/* logical expression goes here */) ? (/* if non-zero (true) */) : (/* if 0
(false) */)

The logical expression is evaluated. If it is non-zero (true), the overall conditional
expression evaluates to the expression placed between the ? and :, otherwise, it evaluates
to the expression after the :. Therefore, the above example (changing its function slightly
such that c is set to b when a and b are equal) becomes:

c = (a > b) ? a : b;

Conditional expressions can sometimes clarify the intent of the code. Nesting the conditional
operator should usually be avoided. It's best to use conditional expressions only when the
expressions for a and b are simple. Also, contrary to a common beginner belief, conditional
expressions do not make for faster code. As tempting as it is to assume that fewer lines of
code result in faster execution times, there is no such correlation.

88

Conditionals

16.1.5 The Switch-Case statement

Say you write a program where the user inputs a number 1-5 (corresponding to student
grades, A(represented as 1)-D(4) and F(5)), stores it in a variable grade and the program
responds by printing to the screen the associated letter grade. If you implemented this
using If-Else, your code would look something like this:

if(grade == 1) {
printf("A\n");

} else if(grade == 2) {
printf("B\n");

} else if /* etc. etc. */

Having a long chain of if-else-if-else-if-else can be a pain, both for the programmer and
anyone reading the code. Fortunately, there's a solution: the Switch-Case construct, of
which the basic syntax is:

switch(/* integer or enum goes here */) {
case /* potential value of the aforementioned int or enum */ :

/* code */
case /* a different potential value */ :

/* different code */
/* insert additional cases as needed */
default:

/* more code */
}

The Switch-Case construct takes a variable, usually an int or an enum, placed after switch,
and compares it to the value following the case keyword. If the variable is equal to the
value specified after case, the construct "activates", or begins executing the code after the
case statement. Once the construct has "activated", there will be no further evaluation of
cases.

Switch-Case is syntactically "weird" in that no braces are required for code associated with
a case.

Very important: Typically, the last statement for each case is a break statement. This
causes program execution to jump to the statement following the closing bracket of the
switch statement, which is what one would normally want to happen. However if the break
statement is omitted, program execution continues with the first line of the next case, if any.
This is called a fall-through. When a programmer desires this action, a comment should be
placed at the end of the block of statements indicating the desire to fall through. Otherwise
another programmer maintaining the code could consider the omission of the 'break' to be
an error, and inadvertently 'correct' the problem. Here's an example:

switch (someVariable) {
case 1:

printf("This code handles case 1\n");
break;

case 2:
printf("This prints when someVariable is 2, along with...\n");
/* FALL THROUGH */

case 3:
printf("This prints when someVariable is either 2 or 3.\n");
break;

}

89

Control

If a default case is specified, the associated statements are executed if none of the other
cases match. A default case is optional. Here's a switch statement that corresponds to the
sequence of if - else if statements above.

Back to our example above. Here's what it would look like as Switch-Case:

switch (grade) {
case 1:

printf("A\n");
break;

case 2:
printf("B\n");
break;

case 3:
printf("C\n");
break;

case 4:
printf("D\n");
break;

default:
printf("F\n");
break;

}

A set of statements to execute can be grouped with more than one value of the variable
as in the following example. (the fall-through comment is not necessary here because the
intended behavior is obvious)

switch (something) {
case 2:
case 3:
case 4:

/* some statements to execute for 2, 3 or 4 */
break;

case 1:
default:

/* some statements to execute for 1 or other than 2,3,and 4 */
break;

}

Switch-Case constructs are particularly useful when used in conjunction with user defined
enum data types. Some compilers are capable of warning about an unhandled enum value,
which may be helpful for avoiding bugs.

16.2 Loops

Often in computer programming, it is necessary to perform a certain action a certain number
of times or until a certain condition is met. It is impractical and tedious to simply type a
certain statement or group of statements a large number of times, not to mention that this
approach is too inflexible and unintuitive to be counted on to stop when a certain event
has happened. As a real-world analogy, someone asks a dishwasher at a restaurant what he
did all night. He will respond, "I washed dishes all night long." He is not likely to respond,
"I washed a dish, then washed a dish, then washed a dish, then...". The constructs that
enable computers to perform certain repetitive tasks are called loops.

90

Loops

16.2.1 While loops

A while loop is the most basic type of loop. It will run as long as the condition is non-zero
(true). For example, if you try the following, the program will appear to lock up and you
will have to manually close the program down. A situation where the conditions for exiting
the loop will never become true is called an infinite loop.

int a=1;
while(42) {

a = a*2;
}

Here is another example of a while loop. It prints out all the powers of two less than 100.

int a=1;
while(a<100) {

printf("a is %d \n",a);
a = a*2;

}

The flow of all loops can also be controlled by break and continue statements. A break
statement will immediately exit the enclosing loop. A continue statement will skip the re-
mainder of the block and start at the controlling conditional statement again. For example:

int a=1;
while (42) { // loops until the break statement in the loop is executed

printf("a is %d ",a);
a = a*2;
if(a>100) {

break;
} else if(a==64) {

continue; // Immediately restarts at while, skips next step
}
printf("a is not 64\n");

}

In this example, the computer prints the value of a as usual, and prints a notice that a is
not 64 (unless it was skipped by the continue statement).

Similar to If above, braces for the block of code associated with a While loop can be omitted
if the code consists of only one statement, for example:

int a=1;
while(a < 100) a = a*2;

This will merely increase a until a is not less than 100.

When the computer reaches the end of the while loop, it always goes back to the while
statement at the top of the loop, where it re-evaluates the controlling condition. If that
condition is "true" at that instant -- even if it was temporarily 0 for a few statements
inside the loop -- then the computer begins executing the statements inside the loop again;
otherwise the computer exits the loop. The computer does not "continuously check" the
controlling condition of a while loop during the execution of that loop. It only "peeks" at
the controlling condition each time it reaches the while at the top of the loop.

It is very important to note, once the controlling condition of a While loop becomes 0 (false),
the loop will not terminate until the block of code is finished and it is time to reevaluate

91

Control

the conditional. If you need to terminate a While loop immediately upon reaching a certain
condition, consider using break.

A common idiom is to write:

int i = 5;
while(i--) {

printf("java and c# can't do this\n");
}

This executes the code in the while loop 5 times, with i having values that range from 4
down to 0 (inside the loop). Conveniently, these are the values needed to access every item
of an array containing 5 elements.

16.2.2 For loops

For loops generally look something like this:

for(initialization; test; increment) {
/* code */

}

The initialization statement is executed exactly once - before the first evaluation of the test
condition. Typically, it is used to assign an initial value to some variable, although this is
not strictly necessary. The initialization statement can also be used to declare and initialize
variables used in the loop.

The test expression is evaluated each time before the code in the for loop executes. If this
expression evaluates as 0 (false) when it is checked (i.e. if the expression is not true), the
loop is not (re)entered and execution continues normally at the code immediately following
the FOR-loop. If the expression is non-zero (true), the code within the braces of the loop
is executed.

After each iteration of the loop, the increment statement is executed. This often is used to
increment the loop index for the loop, the variable initialized in the initialization expression
and tested in the test expression. Following this statement execution, control returns to the
top of the loop, where the test action occurs. If a continue statement is executed within the
for loop, the increment statement would be the next one executed.

Each of these parts of the for statement is optional and may be omitted. Because of the
free-form nature of the for statement, some fairly fancy things can be done with it. Often
a for loop is used to loop through items in an array, processing each item at a time.

int myArray[12];
int ix;
for (ix = 0; ix<12; ix++) {

myArray[ix] = 5 * ix + 3;
}

The above for loop initializes each of the 12 elements of myArray. The loop index can start
from any value. In the following case it starts from 1.

92

Loops

for(ix = 1; ix <= 10; ix++) {
printf("%d ", ix);

}

which will print

1 2 3 4 5 6 7 8 9 10

You will most often use loop indexes that start from 0, since arrays are indexed at zero,
but you will sometimes use other values to initialize a loop index as well.

The increment action can do other things, such as decrement. So this kind of loop is
common:

for (i = 5; i > 0; i--) {
printf("%d ",i);

}

which yields

5 4 3 2 1

Here's an example where the test condition is simply a variable. If the variable has a value
of 0 or NULL, the loop exits, otherwise the statements in the body of the loop are executed.

for (t = list_head; t; t = NextItem(t)) {
/*body of loop */

}

A WHILE loop can be used to do the same thing as a FOR loop, however a FOR loop
is a more condensed way to perform a set number of repetitions since all of the necessary
information is in a one line statement.

A FOR loop can also be given no conditions, for example:

for(;;) {
/* block of statements */

}

This is called an infinite loop since it will loop forever unless there is a break statement
within the statements of the for loop. The empty test condition effectively evaluates as
true.

It is also common to use the comma operator in for loops to execute multiple statements.

int i, j, n = 10;
for(i = 0, j = 0; i <= n; i++,j+=2) {

printf("i = %d , j = %d \n",i,j);
}

Special care should be taken when designing or refactoring the conditional part, especially
whether using < or <= , whether start and stop should be corrected by 1, and in case of
prefix- and postfix-notations. (On a 100 yards promenade with a tree every 10 yards there
are 11 trees.)

93

Control

int i, n = 10;
for(i = 0; i < n; i++) printf("%d ",i); // processed n times => 0 1 2 3 ...
(n-1)
printf("\n");
for(i = 0; i <= n; i++) printf("%d ",i); // processed (n+1) times => 0 1 2 3
... n
printf("\n");
for(i = n; i--;) printf("%d ",i); // processed n times => (n-1) ...3 2 1 0
printf("\n");
for(i = n; --i;) printf("%d ",i); // processed (n-1) times => (n-1) ...4 3 2 1
printf("\n");

16.2.3 Do-While loops

A DO-WHILE loop is a post-check while loop, which means that it checks the condition
after each run. As a result, even if the condition is zero (false), it will run at least once. It
follows the form of:

do {
/* do stuff */

} while (condition);

Note the terminating semicolon. This is required for correct syntax. Since this is also a
type of while loop, break and continue statements within the loop function accordingly.
A continue statement causes a jump to the test of the condition and a break statement
exits the loop.

It is worth noting that Do-While and While are functionally almost identical, with one
important difference: Do-While loops are always guaranteed to execute at least once, but
While loops will not execute at all if their condition is 0 (false) on the first evaluation.

16.3 One last thing: goto

goto is a very simple and traditional control mechanism. It is a statement used to imme-
diately and unconditionally jump to another line of code. To use goto, you must place a
label at a point in your program. A label consists of a name followed by a colon (:) on a
line by itself. Then, you can type "goto label;" at the desired point in your program. The
code will then continue executing beginning with label. This looks like:

MyLabel:
/* some code */

goto MyLabel;

The ability to transfer the flow of control enabled by gotos is so powerful that, in addition
to the simple if, all other control constructs can be written using gotos instead. Here, we
can let "S" and "T" be any arbitrary statements:

if (''cond'') {
S;

} else {
T;

94

One last thing: goto

}
/* ... */

The same statement could be accomplished using two gotos and two labels:

if (''cond'') goto Label1;
T;
goto Label2;

Label1:
S;

Label2:
/* ... */

Here, the first goto is conditional on the value of "cond". The second goto is unconditional.
We can perform the same translation on a loop:

while (''cond1'') {
S;
if (''cond2'') break;
T;

}
/* ... */

Which can be written as:

Start:
if (!''cond1'') goto End;
S;
if (''cond2'') goto End;
T;
goto Start;

End:
/* ... */

As these cases demonstrate, often the structure of what your program is doing can usu-
ally be expressed without using gotos. Undisciplined use of gotos can create unreadable,
unmaintainable code when more idiomatic alternatives (such as if-elses, or for loops) can
better express your structure. Theoretically, the goto construct does not ever have to be
used, but there are cases when it can increase readability, avoid code duplication, or make
control variables unnecessary. You should consider first mastering the idiomatic solutions,
and use goto only when necessary. Keep in mind that many, if not most, C style guidelines
strictly forbid use of goto, with the only common exceptions being the following examples.

One use of goto is to break out of a deeply nested loop. Since break will not work (it can
only escape one loop), goto can be used to jump completely outside the loop. Breaking
outside of deeply nested loops without the use of the goto is always possible, but often
involves the creation and testing of extra variables that may make the resulting code far
less readable than it would be with goto. The use of goto makes it easy to undo actions
in an orderly fashion, typically to avoid failing to free memory that had been allocated.

Another accepted use is the creation of a state machine. This is a fairly advanced topic
though, and not commonly needed.

95

Control

16.4 Examples

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int years;

printf("Enter your age in years : ");
fflush(stdout);
errno = 0;
if(scanf("%d", &years) != 1 || errno)

return EXIT_FAILURE;
printf("Your age in days is %d\n", years * 365);
return 0;

}

16.5 Further reading

de:C-Programmierung: Kontrollstrukturen2 et:Programmeerimiskeel C/Keelestruktuurid3
pl:C/Instrukcje sterujące4 pt:Programar em C/Controle de fluxo5 fi:C/Ohjausrakenteet6

2 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kontrollstrukturen
3 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKeelestruktuurid
4 http://pl.wikibooks.org/wiki/C%2FInstrukcje%20steruj%C4%85ce
5 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FControle%20de%20fluxo
6 http://fi.wikibooks.org/wiki/C%2FOhjausrakenteet

96

http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kontrollstrukturen
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKeelestruktuurid
http://pl.wikibooks.org/wiki/C%2FInstrukcje%20steruj%C4%85ce
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FControle%20de%20fluxo
http://fi.wikibooks.org/wiki/C%2FOhjausrakenteet

17 Procedures and functions

In C programming, all executable code resides within a function. A function is a named
block of code that performs a task and then returns control to a caller. Note that other
programming languages may distinguish between a "function", "subroutine", "subprogram",
"procedure", or "method" -- in C, these are all functions.

A function is often executed (called) several times, from several different places, during a
single execution of the program. After finishing a subroutine, the program will branch back
(return) to the point after the call.

Functions are a powerful programming tool.

As a basic example, suppose you are writing code to print out the first 5 squares of numbers,
do some intermediate processing, then print the first 5 squares again. We could write it like
this:

#include <stdio.h>

int main(void)
{
int i;
for(i=1; i <= 5; i++)
{

printf("%d ", i*i);
}
for(i=1; i <= 5; i++)
{

printf("%d ", i*i);
}
return 0;

}

We have to write the same loop twice. We may want to somehow put this code in a separate
place and simply jump to this code when we want to use it. This would look like:

#include <stdio.h>

void Print_Squares(void)
{
int i;
for(i=1; i <=5; i++)
{
printf("%d ", i*i);

}
}

int main(void)
{
Print_Squares();
Print_Squares();
return 0;

}

97

Procedures and functions

This is precisely what functions are for.

17.1 More on functions

A function is like a black box. It takes in input, does something with it, then spits out an
answer.

Note that a function may not take any inputs at all, or it may not return anything at all.
In the above example, if we were to make a function of that loop, we may not need any
inputs, and we aren't returning anything at all (Text output doesn't count - when we speak
of returning we mean to say meaningful data that the program can use).

We have some terminology to refer to functions:

• A function, call it f, that uses another function g, is said to call g. For example, f calls g
to print the squares of ten numbers.

• A function's inputs are known as its arguments
• A function g that gives some kind of answer back to f is said to return that answer. For

example, g returns the sum of its arguments.

17.2 Writing functions in C

It's always good to learn by example. Let's write a function that will return the square of
a number.

int square(int x)
{

int square_of_x;
square_of_x = x * x;
return square_of_x;

}

To understand how to write such a function like this, it may help to look at what this
function does as a whole. It takes in an int, x, and squares it, storing it in the variable
square_of_x. Now this value is returned.

The first int at the beginning of the function declaration is the type of data that the function
returns. In this case when we square an integer we get an integer, and we are returning this
integer, and so we write int as the return type.

Next is the name of the function. It is good practice to use meaningful and descriptive
names for functions you may write. It may help to name the function after what it is
written to do. In this case we name the function "square", because that's what it does - it
squares a number.

Next is the function's first and only argument, an int, which will be referred to in the
function as x. This is the function's input.

In between the braces is the actual guts of the function. It declares an integer variable
called square_of_x that will be used to hold the value of the square of x. Note that the

98

Writing functions in C

variable square_of_x can only be used within this function, and not outside. We'll learn
more about this sort of thing later, and we will see that this property is very useful.

We then assign x multiplied by x, or x squared, to the variable square_of_x, which is what
this function is all about. Following this is a return statement. We want to return the value
of the square of x, so we must say that this function returns the contents of the variable
square_of_x.

Our brace to close, and we have finished the declaration.

Written in a more concise manner, this code performs exactly the same function as the
above:

int square(int x)
{

return x * x;
}

Note this should look familiar - you have been writing functions already, in fact - main is a
function that is always written.

17.2.1 In general

In general, if we want to declare a function, we write

type name(type1 arg1, type2 arg2, ...)
{
/* code */

}

We've previously said that a function can take no arguments, or can return nothing, or
both. What do we write if we want the function to return nothing? We use C's void
keyword. void basically means "nothing" - so if we want to write a function that returns
nothing, for example, we write

void sayhello(int number_of_times)
{
int i;
for(i=1; i <= number_of_times; i++) {

printf("Hello!\n'''");
}
}

Notice that there is no return statement in the function above. Since there's none, we
write void as the return type. (Actually, one can use the return keyword in a procedure
to return to the caller before the end of the procedure, but one cannot return a value as if
it were a function.)

What about a function that takes no arguments? If we want to do this, we can write for
example

float calculate_number(void)
{
float to_return=1;

99

Procedures and functions

int i;
for(i=0; i < 100; i++) {

to_return += 1;
to_return = 1/to_return;

}
return to_return;

}

Notice this function doesn't take any inputs, but merely returns a number calculated by
this function.

Naturally, you can combine both void return and void in arguments together to get a valid
function, also.

17.2.2 Recursion

Here's a simple function that does an infinite loop. It prints a line and calls itself, which
again prints a line and calls itself again, and this continues until the stack overflows and the
program crashes. A function calling itself is called recursion, and normally you will have a
conditional that would stop the recursion after a small, finite number of steps.

// don't run this!
void infinite_recursion()
{

printf("Infinite loop!\n");
infinite_recursion();

}

A simple check can be done like this. Note that ++depth is used so the increment will take
place before the value is passed into the function. Alternatively you can increment on a
separate line before the recursion call. If you say print_me(3,0); the function will print the
line Recursion 3 times.

void print_me(int j, int depth)
{

if(depth < j) {
printf("Recursion! depth = %d j = %d\n",depth,j); //j keeps its value
print_me(j, ++depth);

}
}

Recursion is most often used for jobs such as directory tree scans, seeking for the end of
a linked list, parsing a tree structure in a database and factorising numbers (and finding
primes) among other things.

17.2.3 Static functions

If a function is to be called only from within the file in which it is declared, it is appropriate
to declare it as a static function. When a function is declared static, the compiler will now
compile to an object file in a way that prevents the function from being called from code
in other files. Example:

static int compare(int a, int b)
{

100

Using C functions

return (a+4 < b)? a : b;
}

17.3 Using C functions

We can now write functions, but how do we use them? When we write main, we place the
function outside the braces that encompass main.

When we want to use that function, say, using our calculate_number function above, we
can write something like

float f;
f = calculate_number();

If a function takes in arguments, we can write something like

int square_of_10;
square_of_10 = square(10);

If a function doesn't return anything, we can just say

say_hello();

since we don't need a variable to catch its return value.

17.4 Functions from the C Standard Library

While the C language doesn't itself contain functions, it is usually linked with the C Stan-
dard Library. To use this library, you need to add an #include directive at the top of the
C file, which may be one of the following:

101

Procedures and functions

• <assert.h>1
• <ctype.h>2
• <errno.h>3
• <float.h>4

• <limits.h>5
• <locale.h>6
• <math.h>7
• <setjmp.h>8

• <signal.h>9
• <stdarg.h>10
• <stddef.h>11
• <stdio.h>12

• <stdlib.h>13
• <string.h>14
• <time.h>15
•

<complex.h>16

The functions available are:

<assert.h> <limits.h> <signal.h> <stdlib.h>

1 http://en.wikipedia.org/wiki/Assert.h
2 http://en.wikipedia.org/wiki/Ctype.h
3 http://en.wikipedia.org/wiki/Errno.h
4 http://en.wikipedia.org/wiki/Float.h
5 http://en.wikipedia.org/wiki/Limits.h
6 http://en.wikipedia.org/wiki/Locale.h
7 http://en.wikipedia.org/wiki/Math.h
8 http://en.wikipedia.org/wiki/Setjmp.h
9 http://en.wikipedia.org/wiki/Signal.h
10 http://en.wikipedia.org/wiki/Stdarg.h
11 http://en.wikipedia.org/wiki/Stddef.h
12 http://en.wikipedia.org/wiki/Stdio.h
13 http://en.wikipedia.org/wiki/Stdlib.h
14 http://en.wikipedia.org/wiki/String.h
15 http://en.wikipedia.org/wiki/Time.h
16 http://en.wikipedia.org/wiki/Complex.h

102

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Complex.h

Functions from the C Standard Library

<assert.h> <limits.h> <signal.h> <stdlib.h>

• assert(int) • (constants
only)

• int raise(int
sig). This

• void* sig-
nal(int sig, void
(*func)(int))

• atof(char*),
atoi(char*),
atol(char*)

• strtod(char *
str, char **
endptr), str-
tol(char *str,
char **endptr),
strtoul(char
*str, char
**endptr)

• rand(), srand()
• malloc(size_t),

calloc (size_t
elements,
size_t ele-
mentSize), real-
loc(void*, int)

• free (void*)
• exit(int),

abort()
• atexit(void

(*func)())
• getenv
• system
• qsort(void *,

size_t num-
ber, size_t
size, int (*sort-
func)(void*,
void*))

• abs, labs
• div, ldiv

<ctype.h> <locale.h> <stdarg.h> <string.h>

103

Procedures and functions

<assert.h> <limits.h> <signal.h> <stdlib.h>

• isalnum, isal-
pha, isblank

• iscntrl, isdigit,
isgraph

• islower, isprint,
ispunct

• isspace, isup-
per, isxdigit

• tolower, toup-
per

• struct lconv*
locale-
conv(void);

• char* setlo-
cale(int, const
char*);

• va_start
(va_list, ap)

• va_arg (ap,
(type))

• va_end (ap)
• va_copy

(va_list,
va_list)

• memcpy, mem-
move

• memchr, mem-
cmp, memset

• strcat, strncat,
strchr, strrchr

• strcmp,
strncmp, str-
ccoll

• strcpy, strncpy
• strerror
• strlen
• strspn, strcspn
• strpbrk
• strstr
• strtok
• strxfrm

errno.h math.h stddef.h time.h

104

Functions from the C Standard Library

<assert.h> <limits.h> <signal.h> <stdlib.h>

• (errno) • sin, cos, tan
• asin, acos, atan,

atan2
• sinh, cosh, tanh
• ceil
• exp
• fabs
• floor
• fmod
• frexp
• ldexp
• log, log10
• modf
• pow
• sqrt

• offsetof macro • asctime (struct
tm* tmptr)

• clock_t clock()
• char*

ctime(const
time_t* timer)

• double diff-
time(time_t
timer2, time_t
timer1)

• struct tm*
gmtime(const
time_t* timer)

• struct tm* gm-
time_r(const
time_t* timer,
struct tm* re-
sult)

• struct tm* lo-
caltime(const
time_t* timer)

• time_t mk-
time(struct tm*
ptm)

• time_t
time(time_t*
timer)

• char * strp-
time(const
char* buf, const
char* format,
struct tm*
tptr)

• time_t
timegm(struct
tm *broken-
time)

float.h setjmp.h stdio.h

105

Procedures and functions

<assert.h> <limits.h> <signal.h> <stdlib.h>

• (constants) • int
setjmp(jmp_buf
env)

• void
longjmp(jmp_buf
env, int value)

• fclose
• fopen, freopen
• remove
• rename
• rewind
• tmpfile
• clearerr
• feof, ferror
• fflush
• fgetpos, fsetpos
• fgetc, fputc
• fgets, fputs
• ftell, fseek

• fread, fwrite
• getc, putc
• getchar,

putchar,
fputchar

• gets, puts
• printf, vprintf
• fprintf, vfprintf
• sprintf,

snprintf,
vsprintf, vs-
nprintf

• perror
• scanf, vscanf
• fscanf, vfscanf
• sscanf, vsscanf
• setbuf, setvbuf
• tmpnam
• ungetc

• /printf/17
• full list18

17.5 Variable-length argument lists

Functions with variable-length argument lists are functions that can take a varying number
of arguments. An example in the C standard library is the printf function, which can take
any number of arguments depending on how the programmer wants to use it.

C programmers rarely find the need to write new functions with variable-length arguments.
If they want to pass a bunch of things to a function, they typically define a structure to
hold all those things -- perhaps a linked list, or an array -- and call that function with the
data in the arguments.

However, you may occasionally find the need to write a new function that supports a
variable-length argument list. To create a function that can accept a variable-length argu-
ment list, you must first include the standard library header stdarg.h. Next, declare the
function as you would normally. Next, add as the last argument an ellipsis ("..."). This
indicates to the compiler that a variable list of arguments is to follow. For example, the
following function declaration is for a function that returns the average of a list of numbers:

float average (int n_args, ...);

17 http://en.wikibooks.org/wiki/%2Fprintf%2F
18 http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ctype.h

106

http://en.wikibooks.org/wiki/%2Fprintf%2F
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ctype.h

Variable-length argument lists

Note that because of the way variable-length arguments work, we must somehow, in the
arguments, specify the number of elements in the variable-length part of the arguments. In
the average function here, it's done through an argument called n_args. In the printf
function, it's done with the format codes that you specify in that first string in the arguments
you provide.

Now that the function has been declared as using variable-length arguments, we must next
write the code that does the actual work in the function. To access the numbers stored in
the variable-length argument list for our average function, we must first declare a variable
for the list itself:

va_list myList;

The va_list type is a type declared in the stdarg.h header that basically allows you to
keep track of your list. To start actually using myList, however, we must first assign it a
value. After all, simply declaring it by itself wouldn't do anything. To do this, we must call
va_start, which is actually a macro defined in stdarg.h. In the arguments to va_start,
you must provide the va_list variable you plan on using, as well as the name of the last
variable appearing before the ellipsis in your function declaration:

#include <stdarg.h>
float average (int n_args, ...)
{

va_list myList;
va_start (myList, n_args);
va_end (myList);

}

Now that myList has been prepped for usage, we can finally start accessing the variables
stored in it. To do so, use the va_arg macro, which pops off the next argument on the
list. In the arguments to va_arg, provide the va_list variable you're using, as well as the
primitive data type (e.g. int, char) that the variable you're accessing should be:

#include <stdarg.h>
float average (int n_args, ...)
{

va_list myList;
va_start (myList, n_args);

int myNumber = va_arg (myList, int);
va_end (myList);

}

By popping n_args integers off of the variable-length argument list, we can manage to find
the average of the numbers:

#include <stdarg.h>
float average (int n_args, ...)
{

va_list myList;
va_start (myList, n_args);

int numbersAdded = 0;
int sum = 0;

while (numbersAdded < n_args) {
int number = va_arg (myList, int); // Get next number from list

107

Procedures and functions

sum += number;
numbersAdded += 1;

}
va_end (myList);

float avg = (float)(sum) / (float)(numbersAdded); // Find the average
return avg;

}

By calling average (2, 10, 20), we get the average of 10 and 20, which is 15.

it:C/Blocchi e funzioni/Funzioni19 pl:C/Funkcje20

19 http://it.wikibooks.org/wiki/C%2FBlocchi%20e%20funzioni%2FFunzioni
20 http://pl.wikibooks.org/wiki/C%2FFunkcje

108

http://it.wikibooks.org/wiki/C%2FBlocchi%20e%20funzioni%2FFunzioni
http://pl.wikibooks.org/wiki/C%2FFunkcje

18 Preprocessor

Preprocessors are a way of making text processing with your C program before they are
actually compiled. Before the actual compilation of every C program it is passed through
a Preprocessor. The Preprocessor looks through the program trying to find out specific in-
structions called Preprocessor directives that it can understand. All Preprocessor directives
begin with the # (hash) symbol. C++ compilers use the same C preprocessor.1

The preprocessor2 is a part of the compiler which performs preliminary operations (con-
ditionally compiling code, including files etc...) to your code before the compiler sees it.
These transformations are lexical, meaning that the output of the preprocessor is still text.

NOTE: Technically the output of the preprocessing phase for C consists of a sequence
of tokens, rather than source text, but it is simple to output source text which is
equivalent to the given token sequence, and that is commonly supported by compilers
via a -E or /E option -- although command line options to C compilers aren't com-
pletely standard, many follow similar rules.

18.1 Directives

Directives are special instructions directed to the preprocessor (preprocessor directive) or to
the compiler3 (compiler directive) on how it should process part or all of your source code
or set some flags on the final object and are used to make writing source code easier (more
portable for instance) and to make the source code more understandable. Directives are
handled by the preprocessor, which is either a separate program invoked by the compiler
or part of the compiler itself.

18.1.1 #include

C has some features as part of the language and some others as part of a standard library,
which is a repository of code that is available alongside every standard-conformant C com-
piler. When the C compiler compiles your program it usually also links it with the standard
C library. For example, on encountering a #include <stdio.h> directive, it replaces the
directive with the contents of the stdio.h header file.

1 Understanding C++/C Preprocessor ˆ{http://en.wikibooks.org/wiki/Understanding%20C%2B%2B%
2FC%20Preprocessor}

2 http://en.wikipedia.org/wiki/Preprocessor
3 http://en.wikipedia.org/wiki/compiler

109

http://en.wikibooks.org/wiki/Understanding%20C%2B%2B%2FC%20Preprocessor
http://en.wikibooks.org/wiki/Understanding%20C%2B%2B%2FC%20Preprocessor
http://en.wikipedia.org/wiki/Preprocessor
http://en.wikipedia.org/wiki/compiler

Preprocessor

When you use features from the library, C requires you to declare what you would be us-
ing. The first line in the program is a preprocessing directive which should look like this:

#include <stdio.h>

The above line causes the C declarations which are in the stdio.h header4 to be included
for use in your program. Usually this is implemented by just inserting into your program
the contents of a header file called stdio.h, located in a system-dependent location. The
location of such files may be described in your compiler's documentation. A list of standard
C header files is listed below in the Headers table.

The stdio.h header contains various declarations for input/output (I/O) using an abstrac-
tion of I/O mechanisms called streams. For example there is an output stream object
called stdout which is used to output text to the standard output, which usually displays
the text on the computer screen.

If using angle brackets like the example above, the preprocessor is instructed to search for
the include file along the development environment path for the standard includes.

#include "other.h"

If you use quotation marks (" "), the preprocessor is expected to search in some additional,
usually user-defined, locations for the header file, and to fall back to the standard include
paths only if it is not found in those additional locations. It is common for this form to
include searching in the same directory as the file containing the #include directive.

NOTE: You should check the documentation of the development environment you are
using for any vendor specific implementations of the #include directive.

Headers

The C90 standard headers list:

4 http://en.wikipedia.org/wiki/Header%20file

110

http://en.wikipedia.org/wiki/Header%20file

Directives

* <assert.h>5*
<ctype.h>6*
<errno.h>7*
<float.h>8*
<limits.h>9

* <locale.h>10*
<math.h>11*
<setjmp.h>12*
<signal.h>13*
<stdarg.h>14

* <stddef.h>15*
<stdio.h>16*
<stdlib.h>17*
<string.h>18*
<time.h>19

Headers added since C90:

* <complex.h>20*
<fenv.h>21*
<inttypes.h>22

* <iso646.h>23*
<stdbool.h>24*
<stdint.h>25

* <tgmath.h>26*
<wchar.h>27*
<wctype.h>28

18.1.2 #pragma

The pragma (pragmatic information) directive is part of the standard, but the meaning
of any pragma depends on the software implementation of the standard that is used. The
#pragma directive provides a way to request special behavior from the compiler. This
directive is most useful for programs that are unusually large or that need to take advantage
of the capabilities of a particular compiler.

Pragmas are used within the source program.

#pragma token(s)

5 http://en.wikipedia.org/wiki/Assert.h
6 http://en.wikipedia.org/wiki/Ctype.h
7 http://en.wikipedia.org/wiki/Errno.h
8 http://en.wikipedia.org/wiki/Float.h
9 http://en.wikipedia.org/wiki/Limits.h
10 http://en.wikipedia.org/wiki/Locale.h
11 http://en.wikipedia.org/wiki/Math.h
12 http://en.wikipedia.org/wiki/Setjmp.h
13 http://en.wikipedia.org/wiki/Signal.h
14 http://en.wikipedia.org/wiki/Stdarg.h
15 http://en.wikipedia.org/wiki/Stddef.h
16 http://en.wikipedia.org/wiki/Stdio.h
17 http://en.wikipedia.org/wiki/Stdlib.h
18 http://en.wikipedia.org/wiki/String.h
19 http://en.wikipedia.org/wiki/Time.h
20 http://en.wikipedia.org/wiki/Complex.h
21 http://en.wikipedia.org/wiki/Fenv.h
22 http://en.wikipedia.org/wiki/Inttypes.h
23 http://en.wikipedia.org/wiki/Iso646.h
24 http://en.wikipedia.org/wiki/Stdbool.h
25 http://en.wikipedia.org/wiki/Stdint.h
26 http://en.wikipedia.org/wiki/Tgmath.h
27 http://en.wikipedia.org/wiki/Wchar.h
28 http://en.wikipedia.org/wiki/Wctype.h

111

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Stdbool.h
http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Tgmath.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h

Preprocessor

1. pragma is usually followed by a single token, which represents a command for the
compiler to obey. You should check the software implementation of the C standard
you intend on using for a list of the supported tokens. Not surprisingly, the set of
commands that can appear in #pragma directives is different for each compiler; you'll
have to consult the documentation for your compiler to see which commands it allows
and what those commands do.

For instance one of the most implemented preprocessor directives, #pragma once when
placed at the beginning of a header file, indicates that the file where it resides will be
skipped if included several times by the preprocessor.

NOTE: Other methods exist to do this action that is commonly referred as using in-
clude guards.

18.1.3 #define

WARNING: Preprocessor macros, although tempting, can produce quite unexpected
results if not done right. Always keep in mind that macros are textual substitutions
done to your source code before anything is compiled. The compiler does not know
anything about the macros and never gets to see them. This can produce obscure
errors, amongst other negative effects. Prefer to use language features, if there are
equivalent (In example use const int or enum instead of #defined constants).That
said, there are cases, where macros are very useful (see the debug macro below for an
example).

The #define directive is used to define values or macros that are used by the preprocessor to
manipulate the program source code before it is compiled. Because preprocessor definitions
are substituted before the compiler acts on the source code, any errors that are introduced
by #define are difficult to trace.

By convention, values defined using #define are named in uppercase. Although doing so
is not a requirement, it is considered very bad practice to do otherwise. This allows the
values to be easily identified when reading the source code.

Today, #define is primarily used to handle compiler and platform differences. E.g., a
define might hold a constant which is the appropriate error code for a system call. The
use of #define should thus be limited unless absolutely necessary; typedef statements and
constant variables can often perform the same functions more safely.

Another feature of the #define command is that it can take arguments, making it rather
useful as a pseudo-function creator. Consider the following code:

#define ABSOLUTE_VALUE(x) (((x) < 0) ? -(x) : (x))
...
int x = -1;

112

Directives

while(ABSOLUTE_VALUE(x)) {
...
}

It's generally a good idea to use extra parentheses when using complex macros. Notice that
in the above example, the variable "x" is always within its own set of parentheses. This
way, it will be evaluated in whole, before being compared to 0 or multiplied by -1. Also,
the entire macro is surrounded by parentheses, to prevent it from being contaminated by
other code. If you're not careful, you run the risk of having the compiler misinterpret your
code.

Because of side-effects it is considered a very bad idea to use macro functions as described
above.

int x = -10;
int y = ABSOLUTE_VALUE(x++);

If ABSOLUTE_VALUE() were a real function 'x' would now have the value of '-9', but
because it was an argument in a macro it was expanded twice and thus has a value of -8.

Example:To illustrate the dangers of macros, consider this naive macro #define
MAX(a,b) a>b?a:band the code i = MAX(2,3)+5; j = MAX(3,2)+5;Take a look
at this and consider what the value after execution might be. The statements
are turned into int i = 2>3?2:3+5; int j = 3>2?3:2+5;Thus, after execution
i=8 and j=3 instead of the expected result of i=j=8! This is why you were cau-
tioned to use an extra set of parenthesis above, but even with these, the road is
fraught with dangers. The alert reader might quickly realize that if a or b con-
tains expressions, the definition must parenthesize every use of a,b in the macro
definition, like this: #define MAX(a,b) ((a)>(b)?(a):(b))This works, provided
a,b have no side effects. Indeed, i = 2; j = 3; k = MAX(i++, j++);would re-
sult in k=4, i=3 and j=5. This would be highly surprising to anyone expecting
MAX() to behave like a function.So what is the correct solution? The solution is
not to use macro at all. A global, inline function, like this inline int max(int a,
int b) { return a>b?a:b }has none of the pitfalls above, but will not work with all

types.

NOTE: The explicit inline declaration is not really necessary unless the defini-
tion is in a header file, since your compiler can inline functions for you (with gcc
this can be done with -finline-functions or -O3). The compiler is often better
than the programmer at predicting which functions are worth inlining. Also, func-
tion calls are not really expensive (they used to be). The compiler is actually free
to ignore the inline keyword. It is only a hint (except that inline is necessary in
order to allow a function to be defined in a header file without generating an error
message due to the function being defined in more than one translation unit).

(#, ##)

The # and ## operators are used with the #define macro. Using # causes the first
argument after the # to be returned as a string in quotes. For example, the command

113

Preprocessor

#define as_string(s) # s

will make the compiler turn this command

puts(as_string(Hello World!)) ;

into

puts("Hello World!");

Using ## concatenates what's before the ## with what's after it. For example, the
command

#define concatenate(x, y) x ## y
...
int xy = 10;
...

will make the compiler turn

printf("%d", concatenate(x, y));

into

printf("%d", xy);

which will, of course, display 10 to standard output.

It is possible to concatenate a macro argument with a constant prefix or suffix to obtain a
valid identifier as in

#define make_function(name) int my_ ## name (int foo) {}
make_function(bar)

which will define a function called my_bar(). But it isn't possible to integrate a macro
argument into a constant string using the concatenation operator. In order to obtain
such an effect, one can use the ANSI C property that two or more consecutive string
constants are considered equivalent to a single string constant when encountered. Using
this property, one can write

#define eat(what) puts("I'm eating " #what " today.")
eat(fruit)

114

Directives

which the macro-processor will turn into

puts("I'm eating " "fruit" " today.")

which in turn will be interpreted by the C parser as a single string constant.

The following trick can be used to turn a numeric constants into string literals

#define num2str(x) str(x)
#define str(x) #x
#define CONST 23

puts(num2str(CONST));

This is a bit tricky, since it is expanded in 2 steps. First num2str(CONST) is replaced with
str(23), which in turn is replaced with "23". This can be useful in the following example:

#ifdef DEBUG
#define debug(msg) fputs(__FILE__ ":" num2str(__LINE__) " - " msg, stderr)
#else
#define debug(msg)
#endif

This will give you a nice debug message including the file and the line where the message
was issued. If DEBUG is not defined however the debugging message will completely vanish
from your code. Be careful not to use this sort of construct with anything that has side
effects, since this can lead to bugs, that appear and disappear depending on the compilation
parameters.

18.1.4 macros

Macros aren't type-checked and so they do not evaluate arguments. Also, they do not obey
scope properly, but simply take the string passed to them and replace each occurrence of
the macro argument in the text of the macro with the actual string for that parameter (the
code is literally copied into the location it was called from).

An example on how to use a macro:

#include <stdio.h>

#define SLICES 8
#define ADD(x) ((x) / SLICES)

int main()
{
int a = 0, b = 10, c = 6;

a = ADD(b + c);
printf("%d\n", a);
return 0;

}

115

Preprocessor

-- the result of "a" should be "2" (b + c = 16 -> passed to ADD -> 16 / SLICES -> result
is "2")

NOTE:
It is usually bad practice to define macros in headers.A macro should be defined only
when it is not possible to achieve the same result with a function or some other mech-
anism. Some compilers are able to optimize code to where calls to small functions
are replaced with inline code, negating any possible speed advantage.Using typedefs,
enums, and inline (in C99) is often a better option.

One of the few situations where inline functions won't work -- so you are pretty much
forced to use function-like macros instead -- is to initialize compile time constants (static
initialization of structs). This happens when the arguments to the macro are literals that
the compiler can optimize to another literal. 29

18.1.5 #error

The #error directive halts compilation. When one is encountered the standard specifies
that the compiler should emit a diagnostic containing the remaining tokens in the directive.
This is mostly used for debugging purposes.

#error message

18.1.6 #warning

Many compilers support a #warning directive. When one is encountered, the compiler
emits a diagnostic containing the remaining tokens in the directive.

1. warning message

18.1.7 #undef

The #undef directive undefines a macro. The identifier need not have been previously
defined.

18.1.8 #if,#else,#elif,#endif (conditionals)

The #if command checks whether a controlling conditional expression evaluates to zero or
nonzero, and excludes or includes a block of code respectively. For example:

#if 1

29 David Hart, Jon Reid. "9 Code Smells of Preprocessor Use" ˆ{http://qualitycoding.org/
preprocessor/} . 2012.

116

http://qualitycoding.org/preprocessor/
http://qualitycoding.org/preprocessor/

Directives

/* This block will be included */
#endif
#if 0
/* This block will not be included */
#endif

The conditional expression could contain any C operator except for the assignment op-
erators, the increment and decrement operators, the address-of operator, and the sizeof
operator.

One unique operator used in preprocessing and nowhere else is the defined operator. It
returns 1 if the macro name, optionally enclosed in parentheses, is currently defined; 0 if
not.

The #endif command ends a block started by #if, #ifdef, or #ifndef.

The #elif command is similar to #if, except that it is used to extract one from a series of
blocks of code. E.g.:

#if /* some expression */
:
:
:

#elif /* another expression */
:

/* imagine many more #elifs here ... */
:

#else
/* The optional #else block is selected if none of the previous #if or

#elif blocks are selected */
:
:

#endif /* The end of the #if block */

18.1.9 #ifdef,#ifndef

The #ifdef command is similar to #if, except that the code block following it is selected
if a macro name is defined. In this respect,

#ifdef NAME

is equivalent to

#if defined NAME

The #ifndef command is similar to #ifdef, except that the test is reversed:

#ifndef NAME

is equivalent to

117

Preprocessor

#if !defined NAME

18.2 Useful Preprocessor Macros for Debugging

ANSI C defines some useful preprocessor macros and variables,3031 also called "magic con-
stants", include:

__FILE__ => The name of the current file, as a string literal

__LINE__ => Current line of the source file, as a numeric literal

__DATE__ => Current system date, as a string

__TIME__ => Current system time, as a string

__TIMESTAMP__ => Date and time (non-standard)

__cplusplus => undefined when your C code is being compiled by a C compiler; 199711L
when your C code is being compiled by a C++ compiler compliant with 1998 C++
standard.

__func__ => Current function name of the source file, as a string (part of C99)

__PRETTY_FUNCTION__ => "decorated" Current function name of the source file,
as a string (in GCC; non-standard)

Compile-time assertions

Some people32 define a preprocessor macro to allow compile-time assertions, something like:

#define COMPILE_TIME_ASSERT(pred) switch(0){case 0:case pred:;}

COMPILE_TIME_ASSERT(BOOLEAN CONDITION);

30 HP C Compiler Reference Manual ˆ{http://docs.hp.com/en/B3901-90003/ch07s04.html}
31 C++ reference: Predefined preprocessor variables ˆ{http://www.cppreference.com/wiki/

preprocessor/preprocessor_vars}
32 "Compile Time Assertions in C" ˆ{http://www.jaggersoft.com/pubs/CVu11_3.html} by Jon Jagger

1999

118

http://docs.hp.com/en/B3901-90003/ch07s04.html
http://www.cppreference.com/wiki/preprocessor/preprocessor_vars
http://www.cppreference.com/wiki/preprocessor/preprocessor_vars
http://www.jaggersoft.com/pubs/CVu11_3.html

Useful Preprocessor Macros for Debugging

The static_assert.hpp Boost library33 defines a similar macro. Some compilers define a
static_assert keyword used in the same way.34

Such compile-time assertions can help you debug faster than using only run-time assert()
statements, because the compile-time assertions are all tested at compile time, while it is
possible that a test run of a program may fail to exercise some run-time assert() statements.

X-Macros

One little-known usage pattern of the C preprocessor is known as "X-Macros".35363738 An
X-Macro is a header file39 or macro. Commonly these use the extension ".def" instead of
the traditional ".h". This file contains a list of similar macro calls, which can be referred
to as "component macros". The include file is then referenced repeatedly in the following
pattern. Here, the include file is "xmacro.def" and it contains a list of component macros
of the style "foo(x, y, z)".

#define foo(x, y, z) doSomethingWith(x, y, z);
#include "xmacro.def"
#undef foo

#define foo(x, y, z) doSomethingElseWith(x, y, z);
#include "xmacro.def"
#undef foo

(etc...)

The most common usage of X-Macros is to establish a list of C objects and then automati-
cally generate code for each of them. Some implementations also perform any #undefs they
need inside the X-Macro, as opposed to expecting the caller to undefine them.

33 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FLibraries%2FBoost%20
34 Wikipedia: C++0x#Static assertions ˆ{http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%

20assertions}
35 Wirzenius, Lars. C Preprocessor Trick For Implementing Similar Data Types ˆ{http://liw.iki.fi/

liw/texts/cpp-trick.html} Retrieved January 9, 2011.
36 Randy Meyers . The New C: X Macros The New C: X Macros ˆ{www.ddj.com/cpp/184401387} .

Dr. Dobb's Journal , May 2001

37 Beal

| first = Stephan
| month = August
| year = 2004
| title = Supermacros
| url = http://wanderinghorse.net/computing/papers/#supermacros
| accessdate = 27 October 2008

. . ,
38 Keith Schwarz. "Advanced Preprocessor Techniques" ˆ{http://www.keithschwarz.com/cs106l/

spring2009/handouts/080_Preprocessor_2.pdf} . 2009. Includes "Practical Applications of the Pre-
processor II: The X Macro Trick".

39 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%E2%80%8E%2FProgramming%
20Languages%E2%80%8E%2FC%2B%2B%E2%80%8E%2FCode%2FFile%20Organization%23.h

119

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FLibraries%2FBoost%20
http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%20assertions
http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%20assertions
http://liw.iki.fi/liw/texts/cpp-trick.html
http://liw.iki.fi/liw/texts/cpp-trick.html
 www.ddj.com/cpp/184401387
http://www.keithschwarz.com/cs106l/spring2009/handouts/080_Preprocessor_2.pdf
http://www.keithschwarz.com/cs106l/spring2009/handouts/080_Preprocessor_2.pdf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%E2%80%8E%2FProgramming%20Languages%E2%80%8E%2FC%2B%2B%E2%80%8E%2FCode%2FFile%20Organization%23.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%E2%80%8E%2FProgramming%20Languages%E2%80%8E%2FC%2B%2B%E2%80%8E%2FCode%2FFile%20Organization%23.h

Preprocessor

Common sets of objects are a set of global configuration settings, a set of members of a
struct40, a list of possible XML41 tags for converting an XML file to a quickly-traversable
tree, or the body of an enum42 declaration; other lists are possible.

Once the X-Macro has been processed to create the list of objects, the component macros
can be redefined to generate, for instance, accessor and/or mutator43 functions. Structure
serializing and deserializing44 are also commonly done.

Here is an example of an X-Macro that establishes a struct and automatically creates
serialize/deserialize functions. For simplicity, this example doesn't account for endianness
or buffer overflows.

File star.def:

EXPAND_EXPAND_STAR_MEMBER(x, int)
EXPAND_EXPAND_STAR_MEMBER(y, int)
EXPAND_EXPAND_STAR_MEMBER(z, int)
EXPAND_EXPAND_STAR_MEMBER(radius, double)
#undef EXPAND_EXPAND_STAR_MEMBER

File star_table.c:

typedef struct {
#define EXPAND_EXPAND_STAR_MEMBER(member, type) type member;
#include "star.def"
} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \
memcpy(buffer, &(star->member), sizeof(star->member)); \
buffer += sizeof(star->member);

#include "star.def"
}

void deserialize_star(starStruct *const star, const unsigned char *buffer) {
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \
memcpy(&(star->member), buffer, sizeof(star->member)); \
buffer += sizeof(star->member);

#include "star.def"
}

Handlers for individual data types may be created and accessed using token concatenation
("##") and quoting ("#") operators. For example, the following might be added to the above
code:

#define print_int(val) printf("%d", val)
#define print_double(val) printf("%g", val)

void print_star(const starStruct *const star) {
/* print_##type will be replaced with print_int or print_double */
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \
printf("%s: ", #member); \
print_##type(star->member); \
printf("\n");

40 http://en.wikibooks.org/wiki/struct%20%28C%20programming%20language%29
41 http://en.wikibooks.org/wiki/XML
42 http://en.wikibooks.org/wiki/enumerated%20type
43 http://en.wikibooks.org/wiki/mutator%20method
44 http://en.wikibooks.org/wiki/serialization

120

http://en.wikibooks.org/wiki/struct%20%28C%20programming%20language%29
http://en.wikibooks.org/wiki/XML
http://en.wikibooks.org/wiki/enumerated%20type
http://en.wikibooks.org/wiki/mutator%20method
http://en.wikibooks.org/wiki/serialization

Useful Preprocessor Macros for Debugging

#include "star.def"
}

Note that in this example you can also avoid the creation of separate handler functions for
each datatype in this example by defining the print format for each supported type, with
the additional benefit of reducing the expansion code produced by this header file:

#define FORMAT_(type) FORMAT_##type
#define FORMAT_int "%d"
#define FORMAT_double "%g"

void print_star(const starStruct *const star) {
/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \
printf("%s: " FORMAT_(type) "\n", #member, star->member);

#include "star.def"
}

The creation of a separate header file can be avoided by creating a single macro containing
what would be the contents of the file. For instance, the above file "star.def" could be
replaced with this macro at the beginning of:

File star_table.c:

#define EXPAND_STAR \
EXPAND_STAR_MEMBER(x, int) \
EXPAND_STAR_MEMBER(y, int) \
EXPAND_STAR_MEMBER(z, int) \
EXPAND_STAR_MEMBER(radius, double)

and then all calls to #include "star.def" could be replaced with a simple EXPAND_STAR
statement. The rest of the above file would become:

typedef struct {
#define EXPAND_STAR_MEMBER(member, type) type member;
EXPAND_STAR
#undef EXPAND_STAR_MEMBER
} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {
#define EXPAND_STAR_MEMBER(member, type) \
memcpy(buffer, &(star->member), sizeof(star->member)); \
buffer += sizeof(star->member);

EXPAND_STAR
#undef EXPAND_STAR_MEMBER
}

void deserialize_star(starStruct *const star, const unsigned char *buffer) {
#define EXPAND_STAR_MEMBER(member, type) \
memcpy(&(star->member), buffer, sizeof(star->member)); \
buffer += sizeof(star->member);

EXPAND_STAR
#undef EXPAND_STAR_MEMBER
}

and the print handler could be added as well as:

#define print_int(val) printf("%d", val)
#define print_double(val) printf("%g", val)

void print_star(const starStruct *const star) {
/* print_##type will be replaced with print_int or print_double */

121

Preprocessor

#define EXPAND_STAR_MEMBER(member, type) \
printf("%s: ", #member); \
print_##type(star->member); \
printf("\n");

EXPAND_STAR
#undef EXPAND_STAR_MEMBER

}

or as:

#define FORMAT_(type) FORMAT_##type
#define FORMAT_int "%d"
#define FORMAT_double "%g"

void print_star(const starStruct *const star) {
/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */
#define EXPAND_STAR_MEMBER(member, type) \
printf("%s: " FORMAT_(type) "\n", #member, star->member);

EXPAND_STAR
#undef EXPAND_STAR_MEMBER
}

A variant which avoids needing to know the members of any expanded sub-macros is to
accept the operators as an argument to the list macro:

File star_table.c:

/*
Generic
*/
#define STRUCT_MEMBER(member, type, dummy) type member;

#define SERIALIZE_MEMBER(member, type, obj, buffer) \
memcpy(buffer, &(obj->member), sizeof(obj->member)); \
buffer += sizeof(obj->member);

#define DESERIALIZE_MEMBER(member, type, obj, buffer) \
memcpy(&(obj->member), buffer, sizeof(obj->member)); \
buffer += sizeof(obj->member);

#define FORMAT_(type) FORMAT_##type
#define FORMAT_int "%d"
#define FORMAT_double "%g"

/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */
#define PRINT_MEMBER(member, type, obj) \
printf("%s: " FORMAT_(type) "\n", #member, obj->member);

/*
starStruct
*/

#define EXPAND_STAR(_, ...) \
_(x, int, __VA_ARGS__) \
_(y, int, __VA_ARGS__) \
_(z, int, __VA_ARGS__) \
_(radius, double, __VA_ARGS__)

typedef struct {
EXPAND_STAR(STRUCT_MEMBER,)
} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {
EXPAND_STAR(SERIALIZE_MEMBER, star, buffer)
}

122

Useful Preprocessor Macros for Debugging

void deserialize_star(starStruct *const star, const unsigned char *buffer) {
EXPAND_STAR(DESERIALIZE_MEMBER, star, buffer)
}

void print_star(const starStruct *const star) {
EXPAND_STAR(PRINT_MEMBER, star)
}

This approach can be dangerous in that the entire macro set is always interpreted as if it
was on a single source line, which could encounter compiler limits with complex component
macros and/or long member lists.

This technique was reported by Lars Wirzenius45 in a web page dated January 17, 2000,
in which he gives credit to Kenneth Oksanen for "refining and developing" the technique
prior to 1997. The other references describe it as a method from at least a decade before
the turn of the century.

w:C preprocessor46

de:C-Programmierung: Präprozessor47 fr:Programmation C/Préprocesseur48
it:C/Compilatore e precompilatore/Direttive49 pl:C/Preprocesor50

45 Wirzenius, Lars. C Preprocessor Trick For Implementing Similar Data Types ˆ{http://liw.iki.fi/
liw/texts/cpp-trick.html} Retrieved January 9, 2011.

46 http://en.wikipedia.org/wiki/C%20preprocessor
47 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Pr%C3%A4prozessor
48 http://fr.wikibooks.org/wiki/Programmation%20C%2FPr%C3%A9processeur
49 http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FDirettive
50 http://pl.wikibooks.org/wiki/C%2FPreprocesor

123

http://liw.iki.fi/liw/texts/cpp-trick.html
http://liw.iki.fi/liw/texts/cpp-trick.html
http://en.wikipedia.org/wiki/C%20preprocessor
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Pr%C3%A4prozessor
http://fr.wikibooks.org/wiki/Programmation%20C%2FPr%C3%A9processeur
http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FDirettive
http://pl.wikibooks.org/wiki/C%2FPreprocesor

19 Libraries

A library in C is a group of functions and declarations, exposed for use by other programs.
The library therefore consists of an interface expressed in a .h file (named the "header") and
an implementation expressed in a .c file. This .c file might be precompiled or otherwise
inaccessible, or it might be available to the programmer. (Note: Libraries may call functions
in other libraries such as the Standard C or math libraries to do various tasks.)

The format of a library varies with the operating system and compiler one is using. For
example, in the Unix and Linux operating systems, a library consists of one or more object
files, which consist of object code that is usually the output of a compiler (if the source
language is C or something similar) or an assembler (if the source language is assembly
language). These object files are then turned into a library in the form of an archive by the
ar archiver (a program that takes files and stores them in a bigger file without regard to
compression). The filename for the library usually starts with "lib" and ends with ".a"; e.g.
the libc.a file contains the Standard C library and the "libm.a" the mathematics routines,
which the linker would then link in. Other operating systems such as Microsoft Windows
use a ".lib" extension for libraries and an ".obj" extension for object files.

We're going to use as an example a function to parse1 arguments from the command line.
Arguments on the command line could be by themselves:

-i

have an optional argument that is concatenated2 to the letter:

-ioptarg

or have the argument in a separate argv-element:

-i optarg

In order to parse all these types of arguments, we have written the following "getopt.c" file:

#include <stdio.h> /* for fprintf() and EOF */
#include <string.h> /* for strchr() */
#include "getopt.h" /* consistency check */

/* variables */
int opterr = 1; /* getopt prints errors if this is on */

1 http://en.wikipedia.org/wiki/Parsing
2 http://en.wikipedia.org/wiki/Concatenate

125

http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Concatenate

Libraries

int optind = 1; /* token pointer */
int optopt; /* option character passed back to user */
char *optarg; /* flag argument (or value) */

/* function */
/* return option character, EOF if no more or ? if problem.

The arguments to the function:
argc, argv - the arguments to the main() function. An argument of "--"
stops the processing.
opts - a string containing the valid option characters.
an option character followed by a colon (:) indicates that
the option has a required argument.

*/
int
getopt (int argc, char **argv, char *opts)
{

static int sp = 1; /* character index into current token */
register char *cp; /* pointer into current token */

if (sp == 1)
{

/* check for more flag-like tokens */
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')

return EOF;
else if (strcmp (argv[optind], "--") == 0)
{

optind++;
return EOF;

}
}

optopt = argv[optind][sp];

if (optopt == ':' || (cp = strchr (opts, optopt)) == NULL)
{

if (opterr)
fprintf (stderr, "%s: invalid option -- '%c'\n", argv[0], optopt);

/* if no characters left in this token, move to next token */
if (argv[optind][++sp] == '\0')
{

optind++;
sp = 1;

}

return '?';
}

if (*++cp == ':')
{

/* if a value is expected, get it */
if (argv[optind][sp + 1] != '\0')

/* flag value is rest of current token */
optarg = argv[optind++] + (sp + 1);

else if (++optind >= argc)
{

if (opterr)
fprintf (stderr, "%s: option requires an argument -- '%c'\n",

argv[0], optopt);
sp = 1;
return '?';

}
else
/* flag value is next token */
optarg = argv[optind++];
sp = 1;

}
else

126

What to put in header files

{
/* set up to look at next char in token, next time */
if (argv[optind][++sp] == '\0')
{

/* no more in current token, so setup next token */
sp = 1;
optind++;

}
optarg = 0;

}
return optopt;

}
/* END OF FILE */

The interface would be the following "getopt.h" file:

#ifndef GETOPT_H
#define GETOPT_H

/* exported variables */
extern int opterr, optind, optopt;
extern char *optarg;

/* exported function */
int getopt(int, char **, char *);

#endif

/* END OF FILE */

At a minimum, a programmer has the interface file to figure out how to use a library,
although, in general, the library programmer also wrote documentation on how to use the
library. In the above case, the documentation should say that the provided arguments
**argv and *opts both shouldn't be null pointers (or why would you be using the getopt
function anyway?). Specifically, it typically states what each parameter is for and what
return values can be expected in which conditions. Programmers that use a library, are
normally not interested in the implementation of the library -- unless the implementation
has a bug, in which case he would want to complain somehow.

Both the implementation of the getopts library, and programs that use the library should
state #include "getopt.h", in order to refer to the corresponding interface. Now the
library is "linked" to the program -- the one that contains the main() function. The program
may refer to dozens of interfaces.

In some cases, just placing #include "getopt.h" may appear correct but will still fail
to link properly. This indicates that the library is not installed correctly, or there may
be some additional configuration required. You will have to check either the compiler's
documentation or library's documentation on how to resolve this issue.

19.1 What to put in header files

As a general rule, headers contain anything that should be exported, or "seen" by the other
modules in a program. This includes macro definitions (preprocessor #defines); structure,
union, and enumeration declarations; typedef declarations; external function declarations;
and global variable declarations. In the above getopt.h example file, one function declara-
tion (getopt) and four global variables (optind, optopt, optarg, and opterr) are defined.

127

Libraries

The #ifndef GETOPT_H/#define GETOPT_H trick is colloquially called include guards.
This is used so that if the getopt.h file were included more than once in a translation unit,
the unit would only see the contents once.

19.2 Further reading

• C FAQ: "I'm wondering what to put in .c files and what to put in .h files. (What does
".h" mean, anyway?)"3

• PIClist thread: "Global variables in projects with many C files."4

pl:C/Biblioteki5

3 http://c-faq.com/cpp/hfiles.html

4 http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\T1\textbackslash{}2007\
T1\textbackslash{}10\T1\textbackslash{}25\T1\textbackslash{}073430a&tgt=post

5 http://pl.wikibooks.org/wiki/C%2FBiblioteki

128

http://c-faq.com/cpp/hfiles.html
http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\T1\textbackslash {}2007\T1\textbackslash {}10\T1\textbackslash {}25\T1\textbackslash {}073430a&tgt=post
http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\T1\textbackslash {}2007\T1\textbackslash {}10\T1\textbackslash {}25\T1\textbackslash {}073430a&tgt=post
http://pl.wikibooks.org/wiki/C%2FBiblioteki

20 Standard libraries

The C standard library is a standardized collection of header files and library routines
used to implement common operations, such as input/output and character string handling.
Unlike other languages (such as COBOL, Fortran, and PL/I) C does not include builtin
keywords for these tasks, so nearly all C programs rely on the standard library to function.

20.1 History

The C programming language previously did not provide any elementary functionalities,
such as I/O operations. Over time, user communities of C shared ideas and implemen-
tations to provide that functionality. These ideas became common, and were eventually
incorporated into the definition of the standardized C programming language. These are
now called the C standard libraries.

Both Unix and C were created at AT&T's Bell Laboratories in the late 1960s and early
1970s. During the 1970s the C programming language became increasingly popular, with
many universities and organizations beginning to create their own variations of the language
for their own projects. By the start of the 1980s compatibility problems between the various
C implementations became apparent. In 1983 the American National Standards Institute
(ANSI) formed a committee to establish a standard specification of C known as "ANSI C".
This work culminated in the creation of the so-called C89 standard in 1989. Part of the
resulting standard was a set of software libraries called the ANSI C standard library.

Later revisions of the C standard have added several new required header files to the library.
Support for these new extensions varies between implementations.

The headers <iso646.h>, <wchar.h>, and <wctype.h> were added with Normative
Addendum 1 (hereafter abbreviated as NA1), an addition to the C Standard ratified in
1995.

The headers <complex.h>, <fenv.h>, <inttypes.h>, <stdbool.h>, <stdint.h>,
and <tgmath.h> were added with C99, a revision to the C Standard published in 1999.

Note:
The C++a programming language includes the functionality of the ANSI C 89 standard
library, but has made several modifications, such as placing all identifiers into the std
namespace and changing the names of the header files from <xxx.h> to <cxxx> (however,
the C-style names are still available, although deprecated).

a http://en.wikibooks.org/wiki/C%2B%2B

129

http://en.wikibooks.org/wiki/C%2B%2B

Standard libraries

20.2 Design

The declaration of each function is kept in a header file, while the actual implementation of
functions are separated into a library file. The naming and scope of headers have become
common but the organization of libraries still remains diverse. The standard library is
usually shipped along with a compiler. Since C compilers often provide extra functionalities
that are not specified in ANSI C, a standard library with a particular compiler is mostly
incompatible with standard libraries of other compilers.

Much of the C standard library has been shown to have been well-designed. A few parts,
with the benefit of hindsight, are regarded as mistakes. The string input functions gets()
(and the use of scanf() to read string input) are the source of many buffer overflows, and
most programming guides recommend avoiding this usage. Another oddity is strtok(), a
function that is designed as a primitive lexical analyser1 but is highly "fragile" and difficult
to use.

20.3 ANSI Standard

The ANSI C standard library consists of 24 C header files which can be included into a
programmer's project with a single directive. Each header file contains one or more function
declarations, data type definitions and macros. The contents of these header files follows.

In comparison to some other languages (for example Java) the standard library is minus-
cule. The library provides a basic set of mathematical functions, string manipulation, type
conversions, and file and console-based I/O. It does not include a standard set of "con-
tainer types" like the C++ Standard Template Library, let alone the complete graphical
user interface (GUI) toolkits, networking tools, and profusion of other functionality that
Java provides as standard. The main advantage of the small standard library is that pro-
viding a working ANSI C environment is much easier than it is with other languages, and
consequently porting C to a new platform is relatively easy.

Many other libraries have been developed to supply equivalent functionality to that provided
by other languages in their standard library. For instance, the GNOME desktop environ-
ment project has developed the GTK+ graphics toolkit and GLib, a library of container
data structures, and there are many other well-known examples. The variety of libraries
available has meant that some superior toolkits have proven themselves through history.
The considerable downside is that they often do not work particularly well together, pro-
grammers are often familiar with different sets of libraries, and a different set of them may
be available on any particular platform.

20.3.1 ANSI C library header files

<assert.h>2 Contains the assert macro, used to assist with detecting logical
errors and other types of bug in debugging versions of a program.

1 http://en.wikipedia.org/wiki/lexical%20analysis
2 http://en.wikipedia.org/wiki/Assert.h

130

http://en.wikipedia.org/wiki/lexical%20analysis
http://en.wikipedia.org/wiki/Assert.h

ANSI Standard

<com-
plex.h>3

A set of functions for manipulating complex numbers. (New with
C99)

<ctype.h>4 This header file contains functions used to classify characters by
their types or to convert between upper and lower case in a way
that is independent of the used character set (typically ASCII or
one of its extensions, although implementations utilizing EBCDIC
are also known).

<errno.h>5 For testing error codes reported by library functions.
<fenv.h>6 For controlling floating-point environment. (New with C99)
<float.h>7 Contains defined constants specifying the implementation-specific

properties of the floating-point library, such as the minimum differ-
ence between two different floating-point numbers (_EPSILON),
the maximum number of digits of accuracy (_DIG) and the range
of numbers which can be represented (_MIN, _MAX).

<int-
types.h>8

For precise conversion between integer types. (New with C99)

<iso646.h>9 For programming in ISO 646 variant character sets. (New with
NA1)

<limits.h>10 Contains defined constants specifying the implementation-specific
properties of the integer types, such as the range of numbers which
can be represented (_MIN, _MAX).

<locale.h>11 For setlocale() and related constants. This is used to choose an
appropriate locale.

<math.h>12 For computing common mathematical functions-- see ../Further
math/13 or C++ Programming/Code/Standard C Library/Math14
for details.

<setjmp.h>15 setjmp and longjmp, which are used for non-local exits
<signal.h>16 For controlling various exceptional conditions
<stdarg.h>17 For accessing a varying number of arguments passed to functions.
<std-
bool.h>18

For a boolean data type. (New with C99)

3 http://en.wikipedia.org/wiki/Complex.h
4 http://en.wikipedia.org/wiki/Ctype.h
5 http://en.wikipedia.org/wiki/Errno.h
6 http://en.wikipedia.org/wiki/Fenv.h
7 http://en.wikipedia.org/wiki/Float.h
8 http://en.wikipedia.org/wiki/Inttypes.h
9 http://en.wikipedia.org/wiki/Iso646.h
10 http://en.wikipedia.org/wiki/Limits.h
11 http://en.wikipedia.org/wiki/Locale.h
12 http://en.wikipedia.org/wiki/Math.h
13 Chapter 15 on page 73
14 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%

2FMath
15 http://en.wikipedia.org/wiki/Setjmp.h
16 http://en.wikipedia.org/wiki/Signal.h
17 http://en.wikipedia.org/wiki/Stdarg.h
18 http://en.wikipedia.org/wiki/Stdbool.h

131

http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMath
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMath
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stdbool.h

Standard libraries

<stdint.h>19 For defining various integer types. (New with C99)
<std-
def.h>20

For defining several useful types and macros.

<stdio.h>21 Provides the core input and output capabilities of the C language.
This file includes the venerable printf function.

<stdlib.h>22 For performing a variety of operations, including conversion,
pseudo-random numbers, memory allocation, process control, en-
vironment, signalling, searching, and sorting.

<string.h>23 For manipulating several kinds of strings.
<tg-
math.h>24

For type-generic mathematical functions. (New with C99)

<time.h>25 For converting between various time and date formats.
<wchar.h>26 For manipulating wide streams and several kinds of strings using

wide characters - key to supporting a range of languages. (New
with NA1)

<wc-
type.h>27

For classifying wide characters. (New with NA1)

20.4 Common support libraries

While not standardized, C programs may depend on a runtime library of routines which
contain code the compiler uses at runtime. The code that initializes the process for the oper-
ating system, for example, before calling main(), is implemented in the C Run-Time Library
for a given vendor's compiler. The Run-Time Library code might help with other language
feature implementations, like handling uncaught exceptions or implementing floating point
code.

The C standard library only documents that the specific routines mentioned in this article
are available, and how they behave. Because the compiler implementation might depend
on these additional implementation-level functions to be available, it is likely the vendor-
specific routines are packaged with the C Standard Library in the same module, because
they're both likely to be needed by any program built with their toolset.

Though often confused with the C Standard Library because of this packaging, the C
Runtime Library is not a standardized part of the language and is vendor-specific.

19 http://en.wikipedia.org/wiki/Stdint.h
20 http://en.wikipedia.org/wiki/Stddef.h
21 http://en.wikipedia.org/wiki/Stdio.h
22 http://en.wikipedia.org/wiki/Stdlib.h
23 http://en.wikipedia.org/wiki/String.h
24 http://en.wikipedia.org/wiki/Tgmath.h
25 http://en.wikipedia.org/wiki/Time.h
26 http://en.wikipedia.org/wiki/Wchar.h
27 http://en.wikipedia.org/wiki/Wctype.h

132

http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Tgmath.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h

Compiler built-in functions

20.5 Compiler built-in functions

Some compilers (for example, GCC28) provide built-in versions of many of the functions
in the C standard library; that is, the implementations of the functions are written into
the compiled object file, and the program calls the built-in versions instead of the func-
tions in the C library shared object file. This reduces function call overhead, especially
if function calls are replaced with inline variants, and allows other forms of optimization
(as the compiler knows the control-flow characteristics of the built-in variants), but may
cause confusion when debugging (for example, the built-in versions cannot be replaced with
instrumented variants).

20.6 POSIX standard library

POSIX, (along with the Single Unix Specification), specifies a number of routines that
should be available over and above those in the C standard library proper; these are often
implemented alongside the C standard library functionality, with varying degrees of close-
ness. For example, glibc implements functions such as fork within libc.so, but before NPTL
was merged into glibc it constituted a separate library with its own linker flag. Often, this
POSIX-specified functionality will be regarded as part of the library; the C library proper
may be identified as the ANSI or ISO C library.

pl:C/Biblioteka standardowa29

28 http://en.wikipedia.org/wiki/GCC
29 http://pl.wikibooks.org/wiki/C%2FBiblioteka%20standardowa

133

http://en.wikipedia.org/wiki/GCC
http://pl.wikibooks.org/wiki/C%2FBiblioteka%20standardowa

21 File IO

21.1 Introduction

The stdio.h header declares a broad assortment of functions that perform input and output
to files and devices such as the console. It was one of the earliest headers to appear in the C
library. It declares more functions than any other standard header and also requires more
explanation because of the complex machinery that underlies the functions.

The device-independent model of input and output has seen dramatic improvement over
the years and has received little recognition for its success. FORTRAN II was touted as
a machine-independent language in the 1960s, yet it was essentially impossible to move a
FORTRAN program between architectures without some change. In FORTRAN II, you
named the device you were talking to right in the FORTRAN statement in the middle of
your FORTRAN code. So, you said READ INPUT TAPE 5 on a tape-oriented IBM 7090 but
READ CARD to read a card image on other machines. FORTRAN IV had more generic READ
and WRITE statements, specifying a logical unit number (LUN) instead of the device name.
The era of device-independent I/O had dawned.

Peripheral devices such as printers still had fairly strong notions about what they were asked
to do. And then, peripheral interchange utilities were invented to handle bizarre devices.
When cathode-ray tubes came onto the scene, each manufacturer of consoles solved problems
such as console cursor movement in an independent manner, causing further headaches.

It was into this atmosphere that Unix was born. Ken Thompson and Dennis Ritchie, the
developers of Unix, deserve credit for packing any number of bright ideas into the operating
system. Their approach to device independence was one of the brightest.

The ANSI C <stdio.h> library is based on the original Unix file I/O primitives but casts
a wider net to accommodate the least-common denominator across varied systems.

21.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives,
or whether to or from files supported on structured storage devices, are mapped into logical
data streams, whose properties are more uniform than their various inputs and outputs.
Two forms of mapping are supported: text streams and binary streams.

A text stream consists of one or more lines. A line in a text stream consists of zero or
more characters plus a terminating new-line character. (The only exception is that in some
implementations the last line of a file does not require a terminating new-line character.)
Unix adopted a standard internal format for all text streams. Each line of text is terminated

135

File IO

by a new-line character. That's what any program expects when it reads text, and that's
what any program produces when it writes text. (This is the most basic convention, and
if it doesn't meet the needs of a text-oriented peripheral attached to a Unix machine, then
the fix-up occurs out at the edges of the system. Nothing in between needs to change.) The
string of characters that go into, or come out of a text stream may have to be modified to
conform to specific conventions. This results in a possible difference between the data that
go into a text stream and the data that come out. For instance, in some implementations
when a space-character precedes a new-line character in the input, the space character gets
removed out of the output. In general, when the data only consists of printable characters
and control characters like horizontal tab and new-line, the input and output of a text
stream are equal.

Compared to a text stream, a binary stream is pretty straight forward. A binary stream
is an ordered sequence of characters that can transparently record internal data. Data
written to a binary stream shall always equal the data that gets read out under the same
implementation. Binary streams, however, may have an implementation-defined number of
null characters appended to the end of the stream. There are no further conventions which
need to be considered.

Nothing in Unix prevents the program from writing arbitrary 8-bit binary codes to any open
file, or reading them back unchanged from an adequate repository. Thus, Unix obliterated
the long-standing distinction between text streams and binary streams.

21.3 Standard Streams

When a C program starts its execution the program automatically opens three standard
streams named stdin, stdout, and stderr. These are attached for every C program.

The first standard stream is used for input buffering and the other two are used for output.
These streams are sequences of bytes.

Consider the following program:

/* An example program. */
int main()
{

int var;
scanf ("%d", &var); /* use stdin for scanning an integer from keyboard. */
printf ("%d", var); /* use stdout for printing a character. */
return 0;

}
/* end program. */

By default stdin points to the keyboard and stdout and stderr point to the screen. It is
possible under Unix and may be possible under other operating systems to redirect input
from or output to a file or both.

136

FILE pointers

21.4 FILE pointers

The <stdio.h> header contains a definition for a type FILE (usually via a typedef) which is
capable of processing all the information needed to exercise control over a stream, including
its file position indicator, a pointer to the associated buffer (if any), an error indicator that
records whether a read/write error has occurred, and an end-of-file indicator that records
whether the end of the file has been reached.

It is considered bad manners to access the contents of FILE directly unless the programmer
is writing an implementation of <stdio.h> and its contents. Better access to the contents
of FILE is provided via the functions in <stdio.h>. It can be said that the FILE type is an
early example of object-oriented programming1.

21.5 Opening and Closing Files

To open and close files, the <stdio.h> library has three functions: fopen, freopen, and
fclose.

21.5.1 Opening Files

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
FILE *freopen(const char *filename, const char *mode, FILE *stream);

fopen and freopen opens the file whose name is in the string pointed to by filename and
associates a stream with it. Both return a pointer to the object controlling the stream, or if
the open operation fails a null pointer. The error and end-of-file indicators are cleared, and
if the open operation fails error is set. freopen differs from fopen in that the file pointed
to by stream is closed first when already open and any close errors are ignored.

mode for both functions points to a string consisting of one of the following sequences:

r open a text file for reading
w truncate to zero length or create a text file for writing
a append; open or create text file for writing at end-of-file
rb open binary file for reading
wb truncate to zero length or create a binary file for writing
ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)
w+ truncate to zero length or create a text file for update
a+ append; open or create text file for update
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create a binary file for update
a+b or ab+ append; open or create binary file for update

Opening a file with read mode ('r' as the first character in the mode argument) fails if the
file does not exist or cannot be read.

1 http://en.wikipedia.org/wiki/Object-oriented%20programming

137

http://en.wikipedia.org/wiki/Object-oriented%20programming

File IO

Opening a file with append mode ('a' as the first character in the mode argument) causes
all subsequent writes to the file to be forced to the then-current end-of-file, regardless of
intervening calls to the fseek function. In some implementations, opening a binary file
with append mode ('b' as the second or third character in the above list of mode arguments)
may initially position the file position indicator for the stream beyond the last data written,
because of null character padding.

When a file is opened with update mode ('+' as the second or third character in the above
list of mode argument values), both input and output may be performed on the associated
stream. However, output may not be directly followed by input without an intervening call
to the fflush function or to a file positioning function (fseek, fsetpos, or rewind), and
input may not be directly followed by output without an intervening call to a file positioning
function, unless the input operation encounters end-of-file. Opening (or creating) a text file
with update mode may instead open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device.

21.5.2 Closing Files

#include <stdio.h>
int fclose(FILE *stream);

The fclose function causes the stream pointed to by stream to be flushed and the asso-
ciated file to be closed. Any unwritten buffered data for the stream are delivered to the
host environment to be written to the file; any unread buffered data are discarded. The
stream is disassociated from the file. If the associated buffer was automatically allocated,
it is deallocated. The function returns zero if the stream was successfully closed or EOF if
any errors were detected.

21.6 Other file access functions

21.6.1 The fflush function

#include <stdio.h>
int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent operation
was not input, the fflush function causes any unwritten data for that stream to be deferred
to the host environment to be written to the file. The behavior of fflush is undefined for
input stream.

If stream is a null pointer, the fflush function performs this flushing action on all streams
for which the behavior is defined above.

The fflush functions returns EOF if a write error occurs, otherwise zero.

The reason for having a fflush function is because streams in C can have buffered in-
put/output; that is, functions that write to a file actually write to a buffer inside the FILE

138

Functions that Modify the File Position Indicator

structure. If the buffer is filled to capacity, the write functions will call fflush to actually
"write" the data that is in the buffer to the file. Because fflush is only called every once
in a while, calls to the operating system to do a raw write are minimized.

21.6.2 The setbuf function

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Except that it returns no value, the setbuf function is equivalent to the setvbuf function
invoked with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer)
with the value _IONBF for mode.

21.6.3 The setvbuf function

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The setvbuf function may be used only after the stream pointed to by stream has been
associated with an open file and before any other operation is performed on the stream.
The argument mode determines how the stream will be buffered, as follows: _IOFBF causes
input/output to be fully buffered; _IOLBF causes input/output to be line buffered; _IONBF
causes input/output to be unbuffered. If buf is not a null pointer, the array it points to
may be used instead of a buffer associated by the setvbuf function. (The buffer must have
a lifetime at least as great as the open stream, so the stream should be closed before a buffer
that has automatic storage duration is deallocated upon block exit.) The argument size
specifies the size of the array. The contents of the array at any time are indeterminate.

The setvbuf function returns zero on success, or nonzero if an invalid value is given for
mode or if the request cannot be honored.

21.7 Functions that Modify the File Position Indicator

The stdio.h library has five functions that affect the file position indicator besides those
that do reading or writing: fgetpos, fseek, fsetpos, ftell, and rewind.

The fseek and ftell functions are older than fgetpos and fsetpos.

21.7.1 The fgetpos and fsetpos functions

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, const fpos_t *pos);

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified

139

File IO

information usable by the fsetpos function for repositioning the stream to its position at
the time of the call to the fgetpos function.

If successful, the fgetpos function returns zero; on failure, the fgetpos function returns
nonzero and stores an implementation-defined positive value in errno.

The fsetpos function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos, which shall be a value obtained from
an earlier call to the fgetpos function on the same stream.

A successful call to the fsetpos function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos call, the
next operation on an update stream may be either input or output.

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns
nonzero and stores an implementation-defined positive value in errno.

21.7.2 The fseek and ftell functions

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);
long int ftell(FILE *stream);

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by adding offset to the position specified by whence. Three macros in
stdio.h called SEEK_SET, SEEK_CUR, and SEEK_END expand to unique values. If the position
specified by whence is SEEK_SET, the specified position is the beginning of the file; if whence
is SEEK_END, the specified position is the end of the file; and if whence is SEEK_CUR, the
specified position is the current file position. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_END.

For a text stream, either offset shall be zero, or offset shall be a value returned by an
earlier call to the ftell function on the same stream and whence shall be SEEK_SET.

The fseek function returns nonzero only for a request that cannot be satisfied.

The ftell function obtains the current value of the file position indicator for the stream
pointed to by stream. For a binary stream, the value is the number of characters from
the beginning of the file; for a text stream, its file position indicator contains unspecified
information, usable by the fseek function for returning the file position indicator for the
stream to its position at the time of the ftell call; the difference between two such return
values is not necessarily a meaningful measure of the number of characters written or read.

If successful, the ftell function returns the current value of the file position indicator for the
stream. On failure, the ftell function returns -1L and stores an implementation-defined
positive value in errno.

140

Error Handling Functions

21.7.3 The rewind function

#include <stdio.h>
void rewind(FILE *stream);

The rewind function sets the file position indicator for the stream pointed to by stream
to the beginning of the file. It is equivalent to

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

21.8 Error Handling Functions

21.8.1 The clearerr function

#include <stdio.h>
void clearerr(FILE *stream);

The clearerr function clears the end-of-file and error indicators for the stream pointed to
by stream.

21.8.2 The feof function

#include <stdio.h>
int feof(FILE *stream);

The feof function tests the end-of-file indicator for the stream pointed to by stream and
returns nonzero if and only if the end-of-file indicator is set for stream, otherwise it returns
zero.

21.8.3 The ferror function

#include <stdio.h>
int ferror(FILE *stream);

The ferror function tests the error indicator for the stream pointed to by stream and
returns nonzero if and only if the error indicator is set for stream, otherwise it returns zero.

21.8.4 The perror function

#include <stdio.h>
void perror(const char *s);

141

File IO

The perror function maps the error number in the integer expression errno to an error
message. It writes a sequence of characters to the standard error stream thus: first, if
s is not a null pointer and the character pointed to by s is not the null character, the
string pointed to by s followed by a colon (:) and a space; then an appropriate error
message string followed by a new-line character. The contents of the error message are
the same as those returned by the strerror function with the argument errno, which are
implementation-defined.

21.9 Other Operations on Files

The stdio.h library has a variety of functions that do some operation on files besides
reading and writing.

21.9.1 The remove function

#include <stdio.h>
int remove(const char *filename);

The remove function causes the file whose name is the string pointed to by filename to be
no longer accessible by that name. A subsequent attempt to open that file using that name
will fail, unless it is created anew. If the file is open, the behavior of the remove function
is implementation-defined.

The remove function returns zero if the operation succeeds, nonzero if it fails.

21.9.2 The rename function

#include <stdio.h>
int rename(const char *old_filename, const char *new_filename);

The rename function causes the file whose name is the string pointed to by old_filename
to be henceforth known by the name given by the string pointed to by new_filename. The
file named old_filename is no longer accessible by that name. If a file named by the string
pointed to by new_filename exists prior to the call to the rename function, the behavior is
implementation-defined.

The rename function returns zero if the operation succeeds, nonzero if it fails, in which case
if the file existed previously it is still known by its original name.

21.9.3 The tmpfile function

#include <stdio.h>
FILE *tmpfile(void);

The tmpfile function creates a temporary binary file that will automatically be removed
when it is closed or at program termination. If the program terminates abnormally, whether

142

Reading from Files

an open temporary file is removed is implementation-defined. The file is opened for update
with "wb+" mode.

The tmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmpfile function returns a null pointer.

21.9.4 The tmpnam function

#include <stdio.h>
char *tmpnam(char *s);

The tmpnam function generates a string that is a valid file name and that is not the name
of an existing file.

The tmpnam function generates a different string each time it is called, up to TMP_MAX
times. (TMP_MAX is a macro defined in stdio.h.) If it is called more than TMP_MAX times,
the behavior is implementation-defined.

The implementation shall behave as if no library function calls the tmpnam function.

If the argument is a null pointer, the tmpnam function leaves its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function may
modify the same object. If the argument is not a null pointer, it is assumed to point to an
array of at least L_tmpnam characters (L_tmpnam is another macro in stdio.h); the tmpnam
function writes its result in that array and returns the argument as its value.

The value of the macro TMP_MAX must be at least 25.

21.10 Reading from Files

21.10.1 Character Input Functions

The fgetc function

#include <stdio.h>
int fgetc(FILE *stream);

The fgetc function obtains the next character (if present) as an unsigned char converted
to an int, from the input stream pointed to by stream, and advances the associated file
position indicator for the stream (if defined).

The fgetc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc returns
EOF (EOF is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs,
the error indicator for the stream is set and fgetc returns EOF.

143

File IO

The fgets function

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

The fgets function reads at most one less than the number of characters specified by n from
the stream pointed to by stream into the array pointed to by s. No additional characters
are read after a new-line character (which is retained) or after end-of-file. A null character
is written immediately after the last character read into the array.

The fgets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are indeterminate
and a null pointer is returned.

Warning: Different operating systems may use different character sequences to represent
the end-of-line sequence. For example, some filesystems use the terminator \r\n in text
files; fgets may read those lines, removing the \n but keeping the \r as the last character
of s. This expurious character should be removed in the string s before the string is used
for anything (unless the programmer doesn't care about it). Unixes typically use \n as its
end-of-line sequence, MS-DOS and Windows uses \r\n, and Mac OSes used \r before OS
X.

/* A example program that reads from stdin and writes to stdout */
#include <stdio.h>

#define BUFFER_SIZE 100

int main(void)
{

char buffer[BUFFER_SIZE]; /* a read buffer */
while(fgets (buffer, BUFFER_SIZE, stdin) != NULL)
{

printf("%s",buffer);
}
return 0;

}
/* end program. */

The getc function

#include <stdio.h>
int getc(FILE *stream);

The getc function is equivalent to fgetc, except that it may be implemented as a macro.
If it is implemented as a macro, the stream argument may be evaluated more than once,
so the argument should never be an expression with side effects (i.e. have an assignment,
increment, or decrement operators, or be a function call).

The getc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns
EOF (EOF is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs,
the error indicator for the stream is set and getc returns EOF.

144

Reading from Files

The getchar function

#include <stdio.h>
int getchar(void);

The getchar function is equivalent to getc with the argument stdin.

The getchar function returns the next character from the input stream pointed to by stdin.
If stdin is at end-of-file, the end-of-file indicator for stdin is set and getchar returns EOF
(EOF is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs, the
error indicator for stdin is set and getchar returns EOF.

The gets function

#include <stdio.h>
char *gets(char *s);

The gets function reads characters from the input stream pointed to by stdin into the
array pointed to by s until an end-of-file is encountered or a new-line character is read. Any
new-line character is discarded, and a null character is written immediately after the last
character read into the array.

The gets function returns s if successful. If the end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are indeterminate
and a null pointer is returned.

This function and description is only included here for completeness. Most C programmers
nowadays shy away from using gets, as there is no way for the function to know how big the
buffer is that the programmer wants to read into. Commandment #5 of Henry Spencer2's
The Ten Commandments for C Programmers (Annotated Edition) reads, "Thou shalt check
the array bounds of all strings (indeed, all arrays), for surely where thou typest foo someone
someday shall type supercalifragilisticexpialidocious." It mentions gets in the annotation:
"As demonstrated by the deeds of the Great Worm, a consequence of this commandment is
that robust production software should never make use of gets(), for it is truly a tool of the
Devil. Thy interfaces should always inform thy servants of the bounds of thy arrays, and
servants who spurn such advice or quietly fail to follow it should be dispatched forthwith
to the Land Of Rm, where they can do no further harm to thee."

The ungetc function

#include <stdio.h>
int ungetc(int c, FILE *stream);

The ungetc function pushes the character specified by c (converted to an unsigned char)
back onto the input stream pointed to by stream. The pushed-back characters will be

2 http://en.wikipedia.org/wiki/Henry%20Spencer%20

145

http://en.wikipedia.org/wiki/Henry%20Spencer%20

File IO

returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by stream) to a file-positioning
function (fseek, fsetpos, or rewind) discards any pushed-back characters for the stream.
The external storage corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times on
the same stream without an intervening read or file positioning operation on that stream,
the operation may fail.

If the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The
value of the file position indicator for the stream after reading or discarding all pushed-back
characters shall be the same as it was before the characters were pushed back. For a text
stream, the value of its file-position indicator after a successful call to the ungetc function
is unspecified until all pushed-back characters are read or discarded. For a binary stream,
its file position indicator is decremented by each successful call to the ungetc function; if
its value was zero before a call, it is indeterminate after the call.

The ungetc function returns the character pushed back after conversion, or EOF if the
operation fails.

21.10.2 EOF pitfall

A mistake when using fgetc, getc, or getchar is to assign the result to a variable of type
char before comparing it to EOF. The following code fragments exhibit this mistake, and
then show the correct approach (using type int):

Mistake Correction

char c;
while ((c = getchar()) != EOF)

putchar(c);

int c;
while ((c = getchar()) != EOF)

putchar(c);

Consider a system in which the type char is 8 bits wide, representing 256 different values.
getchar may return any of the 256 possible characters, and it also may return EOF to
indicate end-of-file3, for a total of 257 different possible return values.

When getchar's result is assigned to a char, which can represent only 256 different values,
there is necessarily some loss of information—when packing 257 items into 256 slots, there
must be a collision4. The EOF value, when converted to char, becomes indistinguishable
from whichever one of the 256 characters shares its numerical value. If that character is

3 http://en.wikibooks.org/wiki/end-of-file
4 http://en.wikibooks.org/wiki/Pigeonhole%20principle

146

http://en.wikibooks.org/wiki/end-of-file
http://en.wikibooks.org/wiki/Pigeonhole%20principle

Reading from Files

found in the file, the above example may mistake it for an end-of-file indicator; or, just as
bad, if type char is unsigned, then because EOF is negative, it can never be equal to any
unsigned char, so the above example will not terminate at end-of-file. It will loop forever,
repeatedly printing the character which results from converting EOF to char.

However, this looping failure mode does not occur if the char definition is signed (C makes
the signedness of the default char type implementation-dependent),5 assuming the com-
monly used EOF value of -16. However, the fundamental issue remains that if the EOF value
is defined outside of the range of the char type, when assigned to a char that value is sliced
and will no longer match the full EOF value necessary to exit the loop. On the other hand, if
EOF is within range of char, this guarantees a collision between EOF and a char value. Thus,
regardless of how system types are defined, never use char types when testing against EOF.

On systems where int and char are the same size (i.e., systems incompatible with mini-
mally the POSIX and C99 standards), even the "good" example will suffer from the indistin-
guishability of EOF and some character's value. The proper way to handle this situation is
to check feof7 and ferror8 after getchar returns EOF. If feof indicates that end-of-file has
not been reached, and ferror indicates that no errors have occurred, then the EOF returned
by getchar can be assumed to represent an actual character. These extra checks are rarely
done, because most programmers assume that their code will never need to run on one of
these "big char" systems. Another way is to use a compile-time assertion to make sure that
UINT_MAX > UCHAR_MAX, which at least prevents a program with such an assumption from
compiling in such a system.

21.10.3 Direct input function: the fread function

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose
size is specified by size, from the stream pointed to by stream. The file position indicator
for the stream (if defined) is advanced by the number of characters successfully read. If an
error occurs, the resulting value of the file position indicator for the stream is indeterminate.
If a partial element is read, its value is indeterminate.

The fread function returns the number of elements successfully read, which may be less
than nmemb if a read error or end-of-file is encountered. If size or nmemb is zero, fread
returns zero and the contents of the array and the state of the stream remain unchanged.

21.10.4 Formatted input functions: the scanf family of functions

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

5 C99 §6.2.5/15
6 http://en.wikibooks.org/wiki/End-of-file
7 http://en.wikibooks.org/wiki/feof
8 http://en.wikibooks.org/wiki/ferror

147

http://en.wikibooks.org/wiki/End-of-file
http://en.wikibooks.org/wiki/feof
http://en.wikibooks.org/wiki/ferror

File IO

int scanf(const char *format, ...);
int sscanf(const char *s, const char *format, ...);

The fscanf function reads input from the stream pointed to by stream, under control of
the string pointed to by format that specifies the admissible sequences and how they are
to be converted for assignment, using subsequent arguments as pointers to the objects to
receive converted input. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated (as always) but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: one or more white-space
characters; an ordinary multibyte character (neither % or a white-space character); or a
conversion specification. Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

• An optional assignment-suppressing character *.
• An optional nonzero decimal integer that specifies the maximum field width.
• An optional h, l (ell) or L indicating the size of the receiving object. The conversion

specifiers d, i, and n shall be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by l if it is a pointer to long int. Similarly,
the conversion specifiers o, u, and x shall be preceded by h if the corresponding argument
is a pointer to unsigned short int rather than unsigned int, or by l if it is a pointer
to unsigned long int. Finally, the conversion specifiers e, f, and g shall be preceded
by l if the corresponding argument is a pointer to double rather than a pointer to float,
or by L if it is a pointer to long double. If an h, l, or L appears with any other format
specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the fscanf function returns. Failures are described as input failures (due
to the unavailability of input characters) or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread) or until no more characters remain
unread.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following
steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the
specification includes a [, c, or n specifier. (The white-space characters are not counted
against the specified field width.)

148

Reading from Files

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest matching sequences of input characters, unless that
exceeds a specified field width, in which case it is the initial subsequence of that length in
the sequence. The first character, if any, after the input item remains unread. If the length
of the input item is zero, the execution of the directive fails; this condition is a matching
failure, unless an error prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count
of input characters) is converted to a type appropriate to the conversion specifier. If the
input item is not a matching sequence, the execution of the directive fails; this condition is
a matching failure. Unless assignment suppression was indicated by a *, the result of the
conversion is placed in the object pointed to by the first argument following the format
argument that has not already received a conversion result. If this object does not have
an appropriate type, or if the result of the conversion cannot be represented in the space
provided, the behavior is undefined.

The following conversion specifiers are valid:

d

Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument. The
corresponding argument shall be a pointer to integer.

i

Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of the strtol function with the value 0 for the base argument. The corresponding
argument shall be a pointer to integer.

o

Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

u

Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

x

Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

e, f, g

Matches an optionally signed floating-point number, whose format is the same as expected
for the subject string of the strtod function. The corresponding argument will be a pointer
to floating.

s

149

File IO

Matches a sequence of non-white-space characters. (No special provisions are made for
multibyte characters.) The corresponding argument shall be a pointer to the initial char-
acter of an array large enough to accept the sequence and a terminating null character,
which will be added automatically.

[

Matches a nonempty sequence of characters (no special provisions are made for multibyte
characters) from a set of expected characters (the scanset). The corresponding argument
shall be a pointer to the initial character of an array large enough to accept the sequence
and a terminating null character, which will be added automatically. The conversion
specifier includes all subsequent characters in the format string, up to and including the
matching right bracket (]). The characters between the brackets (the scanlist) comprise
the scanset, unless the character after the left bracket is a circumflex (ˆ), in which case
the scanset contains all the characters that do not appear in the scanlist between the
circumflex and the right bracket. If the conversion specifier begins with [] or [ˆ], the right-
bracket character is in the scanlist and the next right bracket character is the matching
right bracket that ends the specification; otherwise, the first right bracket character is the
one that ends the specification. If a - character is in the scanlist and is not the first,
nor the second where the first character is a ˆ, nor the last character, the behavior is
implementation-defined.

c

Matches a sequence of characters (no special provisions are made for multibyte characters)
of the number specified by the field width (1 if no field width is present in the directive).
The corresponding argument shall be a pointer to the initial character of an array large
enough to accept the sequence. No null character is added.

p

Matches an implementation-defined set of sequences, which should be the same as the set
of sequences that may be produced by the %p conversion of the fprintf function. The
corresponding argument shall be a pointer to void. The interpretation of the input then
is implementation-defined. If the input item is a value converted earlier during the same
program execution, the pointer that results shall compare equal to that value; otherwise
the behavior of the %p conversion is undefined.

n

No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call to the fscanf function. Execution of a %n directive does not increment the assignment
count returned at the completion of execution of the fscanf function.

%

Matches a single %; no conversion or assignment occurs. The complete conversion specifi-
cation shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e,
g, and x.

150

Writing to Files

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is
left unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

The fscanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the fscanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching failure.

The scanf function is equivalent to fscanf with the argument stdin interposed before the
arguments to scanf. Its return value is similar to that of fscanf.

The sscanf function is equivalent to fscanf, except that the argument s specifies a string
from which the input is to be obtained, rather than from a stream. Reaching the end of
the string is equivalent to encountering the end-of-file for the fscanf function. If copying
takes place between objects that overlap, the behavior is undefined.

21.11 Writing to Files

21.11.1 Character Output Functions

The fputc function

#include <stdio.h>
int fputc(int c, FILE *stream);

The fputc function writes the character specified by c (converted to an unsigned char)
to the stream pointed to by stream at the position indicated by the associated file position
indicator (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream is opened with append mode, the character is appended
to the output stream. The function returns the character written, unless a write error occurs,
in which case the error indicator for the stream is set and fputc returns EOF.

The fputs function

#include <stdio.h>
int fputs(const char *s, FILE *stream);

The fputs function writes the string pointed to by s to the stream pointed to by stream.
The terminating null character is not written. The function returns EOF if a write error
occurs, otherwise it returns a nonnegative value.

151

File IO

The putc function

#include <stdio.h>
int putc(int c, FILE *stream);

The putc function is equivalent to fputc, except that if it is implemented as a macro, it
may evaluate stream more than once, so the argument should never be an expression with
side effects. The function returns the character written, unless a write error occurs, in which
case the error indicator for the stream is set and the function returns EOF.

The putchar function

#include <stdio.h>
int putchar(int c);

The putchar function is equivalent to putc with the second argument stdout. It returns
the character written, unless a write error occurs, in which case the error indicator for
stdout is set and the function returns EOF.

The puts function

#include <stdio.h>
int puts(const char *s);

The puts function writes the string pointed to by s to the stream pointed to by stdout, and
appends a new-line character to the output. The terminating null character is not written.
The function returns EOF if a write error occurs; otherwise, it returns a nonnegative value.

21.11.2 Direct output function: the fwrite function

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose
size is specified by size to the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of characters successfully written. If an
error occurs, the resulting value of the file position indicator for the stream is indeterminate.
The function returns the number of elements successfully written, which will be less than
nmemb only if a write error is encountered.

21.11.3 Formatted output functions: the printf family of functions

#include <stdarg.h>
#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);
int printf(const char *format, ...);

152

Writing to Files

int sprintf(char *s, const char *format, ...);
int vfprintf(FILE *stream, const char *format, va_list arg);
int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format, va_list arg);

Note: Some length specifiers and format specifiers are new in C99. These may not be
available in older compilers and versions of the stdio library, which adhere to the C89/C90
standard. Wherever possible, the new ones will be marked with (C99).

The fprintf function writes output to the stream pointed to by stream under control of
the string pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are evaluated (as
always) but are otherwise ignored. The fprintf function returns when the end of the
format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: ordinary multibyte characters
(not %), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments, converting them, if
applicable, according to the corresponding conversion specifier, and then writing the result
to the output stream.

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion specification.
• An optional minimum field width. If the converted value has fewer characters than

the field width, it is padded with spaces (by default) on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The field width
takes the form of an asterisk * (described later) or a decimal integer. (Note that 0 is
taken as a flag, not as the beginning of a field width.)

• An optional precision that gives the minimum number of digits to appear for the d, i, o,
u, x, and X conversions, the number of digits to appear after the decimal-point character
for a, A, e, E, f, and F conversions, the maximum number of significant digits for the g
and G conversions, or the maximum number of characters to be written from a string in
s conversions. The precision takes the form of a period (.) followed either by an asterisk
* (described later) or by an optional decimal integer; if only the period is specified, the
precision is taken as zero. If a precision appears with any other conversion specifier,
the behavior is undefined. Floating-point numbers are rounded to fit the precision; i.e.
printf("%1.1f\n", 1.19); produces 1.2.

• An optional length modifier that specifies the size of the argument.
• A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, an int argument supplies the field width or precision. The arguments specifying
field width, or precision, or both, shall appear (in that order) before the argument (if any)
to be converted. A negative field width argument is taken as a - flag followed by a positive
field width. A negative precision argument is taken as if the precision were omitted.

153

File IO

The flag characters and their meanings are:

-

The result of the conversion is left-justified within the field. (It is right-justified if this flag
is not specified.)

+

The result of a signed conversion always begins with a plus or minus sign. (It begins with
a sign only when a negative value is converted if this flag is not specified. The results of all
floating conversions of a negative zero, and of negative values that round to zero, include
a minus sign.)

space

If the first character of a signed conversion is not a sign, or if a signed conversion results
in no characters, a space is prefixed to the result. If the space and + flags both appear,
the space flag is ignored.

#

The result is converted to an "alternative form". For o conversion, it increases the precision,
if and only if necessary, to force the first digit of the result to be a zero (if the value and
precision are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has
0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result always
contains a decimal-point character, even if no digits follow it. (Normally, a decimal-point
character appears in the result of these conversions only if a digit follows it.) For g and
G conversions, trailing zeros are not removed from the result. For other conversions, the
behavior is undefined.

0

For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is performed.
If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x, and X conversions,
if a precision is specified, the 0 flag is ignored. For other conversions, the behavior is
undefined.

The length modifiers and their meanings are:

hh

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed
char or unsigned char argument (the argument will have been promoted according to
the integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a signed
char argument.

h

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int
or unsigned short int argument (the argument will have been promoted according to
the integer promotions, but its value shall be converted to short int or unsigned short

154

Writing to Files

int before printing); or that a following n conversion specifier applies to a pointer to a
short int argument.

l (ell)

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or
unsigned long int argument; that a following n conversion specifier applies to a pointer
to a long int argument; (C99) that a following c conversion specifier applies to a wint_t
argument; (C99) that a following s conversion specifier applies to a pointer to a wchar_t
argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell)

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long
long int or unsigned long long int argument; or that a following n conversion specifier
applies to a pointer to a long long int argument.

j

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer to
an intmax_t argument.

z

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or
the corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to size_t argument.

t

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t
or the corresponding unsigned integer type argument; or that a following n conversion
specifier applies to a pointer to a ptrdiff_t argument.

L

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long
double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i

The int argument is converted to signed decimal in the style [−−−]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no characters.

o, u, x, X

The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for
x conversion and the letters ABCDEF for X conversion. The precision specifies the minimum

155

File IO

number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

f, F

A double argument representing a (finite) floating-point number is converted to decimal
notation in the style [−]ddd.ddd, where the number of digits after the decimal-point char-
acter is equal to the precision specification. If the precision is missing, it is taken as 6; if
the precision is zero and the # flag is not specified, no decimal-point character appears.
If a decimal-point character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.
(C99) A double argument representing an infinity is converted in one of the styles [-]inf or
[-]infinity — which style is implementation-defined. A double argument representing a
NaN is converted in one of the styles [-]nan or [-]nan(n-char-sequence)— which style, and
the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively. (When
applied to infinite and NaN values, the -, +, and space flags have their usual meaning; the
and 0 flags have no effect.)

e, E

A double argument representing a (finite) floating-point number is converted in the style
[−]d.ddde±dd, where there is one digit (which is nonzero if the argument is nonzero) before
the decimal-point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,
no decimal-point character appears. The value is rounded to the appropriate number of
digits. The E conversion specifier produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits, and only as many more digits
as necessary to represent the exponent. If the value is zero, the exponent is zero.
(C99) A double argument representing an infinity or NaN is converted in the style of an
f or F conversion specifier.

g, G

A double argument representing a (finite) floating-point number is converted in style f or
e (or in style F or E in the case of a G conversion specifier), with the precision specifying the
number of significant digits. If the precision is zero, it is taken as 1. The style used depends
on the value converted; style e (or E) is used only if the exponent resulting from such a
conversion is less than −4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result unless the # flag is specified; a decimal-
point character appears only if it is followed by a digit.
(C99) A double argument representing an infinity or NaN is converted in the style of an
f or F conversion specifier.

a, A

(C99) A double argument representing a (finite) floating-point number is converted in
the style [−]0xh.hhhhp±d, where there is one hexadecimal digit (which is nonzero if the
argument is a normalized floating-point number and is otherwise unspecified) before the
decimal-point character (Binary implementations can choose the hexadecimal digit to the

156

Writing to Files

left of the decimal-point character so that subsequent digits align to nibble [4-bit] bound-
aries.) and the number of hexadecimal digits after it is equal to the precision; if the
precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient for an
exact representation of the value; if the precision is missing and FLT_RADIX is not a power
of 2, then the precision is sufficient to distinguish (The precision p is sufficient to distin-
guish values of the source type if 16p−1 > bn where b is FLT_RADIX and n is the number
of base-b digits in the significand of the source type. A smaller p might suffice depending
on the implementation's scheme for determining the digit to the left of the decimal-point
character.) values of type double, except that trailing zeros may be omitted; if the pre-
cision is zero and the # flag is not specified, no decimal-point character appears. The
letters abcdef are used for a conversion and the letters ABCDEF for A conversion. The A
conversion specifier produces a number with X and P instead of x and p. The exponent
always contains at least one digit, and only as many more digits as necessary to represent
the decimal exponent of 2. If the value is zero, the exponent is zero.
A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

c

If no l length modifier is present, the int argument is converted to an unsigned char,
and the resulting character is written.
(C99) If an l length modifier is present, the wint_t argument is converted as if by an ls
conversion specification with no precision and an argument that points to the initial ele-
ment of a two-element array of wchar_t, the first element containing the wint_t argument
to the lc conversion specification and the second a null wide character.

s

If no l length modifier is present, the argument shall be a pointer to the initial element
of an array of character type. (No special provisions are made for multibyte characters.)
Characters from the array are written up to (but not including) the terminating null char-
acter. If the precision is specified, no more than that many characters are written. If the
precision is not specified or is greater than the size of the array, the array shall contain a
null character.
(C99) If an l length modifier is present, the argument shall be a pointer to the initial
element of an array of wchar_t type. Wide characters from the array are converted to
multibyte characters (each as if by a call to the wcrtomb function, with the conversion
state described by an mbstate_t object initialized to zero before the first wide charac-
ter is converted) up to and including a terminating null wide character. The resulting
multibyte characters are written up to (but not including) the terminating null character
(byte). If no precision is specified, the array shall contain a null wide character. If a
precision is specified, no more than that many characters (bytes) are written (including
shift sequences, if any), and the array shall contain a null wide character if, to equal the
multibyte character sequence length given by the precision, the function would need to
access a wide character one past the end of the array. In no case is a partial multibyte
character written. (Redundant shift sequences may result if multibyte characters have a
state-dependent encoding.)

p

157

File IO

The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

n

The argument shall be a pointer to signed integer into which is written the number of
characters written to the output stream so far by this call to fprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

%

A % character is written. No argument is converted. The complete conversion specification
shall be %%.

If a conversion specification is invalid, the behavior is undefined. If any argument is not the
correct type for the corresponding coversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is expanded to contain the conversion
result.

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a
hexadecimal floating number with the given precision.

It is recommended practice that if FLT_RADIX is not a power of 2, the result should be one
of the two adjacent numbers in hexadecimal floating style with the given precision, with
the extra stipulation that the error should have a correct sign for the current rounding
direction.

It is recommended practice that for e, E, f, F, g, and G conversions, if the number of signif-
icant decimal digits is at most DECIMAL_DIG, then the result should be correctly rounded.
(For binary-to-decimal conversion, the result format's values are the numbers representable
with the given format specifier. The number of significant digits is determined by the format
specifier, and in the case of fixed-point conversion by the source value as well.) If the num-
ber of significant decimal digits is more than DECIMAL_DIG but the source value is exactly
representable with DECIMAL_DIG digits, then the result should be an exact representation
with trailing zeros. Otherwise, the source value is bounded by two adjacent decimal strings
L < U, both having DECIMAL_DIG significant digits; the value of the resultant decimal string
D should satisfy L ≤ D ≤ U, with the extra stipulation that the error should have a correct
sign for the current rounding direction.

The fprintf function returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

The printf function is equivalent to fprintf with the argument stdout interposed before
the arguments to printf. It returns the number of characters transmitted, or a negative
value if an output error occurred.

The sprintf function is equivalent to fprintf, except that the argument s specifies an
array into which the generated input is to be written, rather than to a stream. A null
character is written at the end of the characters written; it is not counted as part of
the returned sum. If copying takes place between objects that overlap, the behavior is

158

References

undefined. The function returns the number of characters written in the array, not counting
the terminating null character.

The vfprintf function is equivalent to fprintf, with the variable argument list replaced
by arg, which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vfprintf function does not invoke the va_end macro. The function
returns the number of characters transmitted, or a negative value if an output error occurred.

The vprintf function is equivalent to printf, with the variable argument list replaced by
arg, which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vprintf function does not invoke the va_end macro. The function
returns the number of characters transmitted, or a negative value if an output error occurred.

The vsprintf function is equivalent to sprintf, with the variable argument list replaced
by arg, which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vsprintf function does not invoke the va_end macro. If copying takes
place between objects that overlap, the behavior is undefined. The function returns the
number of characters written into the array, not counting the terminating null character.

21.12 References

pl:C/Czytanie i pisanie do plików9

9 http://pl.wikibooks.org/wiki/C%2FCzytanie%20i%20pisanie%20do%20plik%C3%B3w

159

http://pl.wikibooks.org/wiki/C%2FCzytanie%20i%20pisanie%20do%20plik%C3%B3w

22 Beginning exercises

22.1 Variables

22.1.1 Naming

1. Can a variable name start with a number?
2. Can a variable name start with a typographical symbol(e.g. #, *, _)?
3. Give an example of a C variable name that would not work. Why doesn't it work?

Solution

1. No, the name of a variable must begin with a letter (lowercase or uppercase), or an
underscore.

2. Only the underscore can be used.
3. for example, #nm*rt is not allowed because # and * are not the valid characters for

the name of a variable.

#include<stdio.h>
main()
{

int a,b,c,max;
clrscr();
printf("\nenter three numbers ");
scanf("%d %d %d",&a,&b,&c);
max=a;
if(max<b)

max=b;
if(max<c)

max=c;
printf("\nlargest=%d \n",max);
getch();

}

22.1.2 Data Types

1. List at least three data types in C
a) On your computer, how much memory does each require?
b) Which ones can be used in place of another? Why?

i. Are there any limitations on these uses?
ii. If so, what are they?
iii. Is it necessary to do anything special to use the alternative?

2. Can the name we use for a data type (e.g. 'int', 'float') be used as a variable?

Solution

• 3 data types : long int, short int,float.

161

Beginning exercises

• On my computer :
• long int : 4 byte
• short int : 2 bytes
• float : 4 bytes

• we can not use 'int' or 'float' as a variable's name.

22.1.3 Assignment

1. How would you assign the value 3.14 to a variable called pi?
2. Is it possible to assign an int to a double?

a) Is the reverse possible?

Solution

• The standard way of assigning 3.14 to pi is:

double pi;
pi=3.14;

• Since pi is a constant, good programming convention dictates to make it unchangeable
during runtime. Extra credit if you use one of the following two lines:

const float pi = 3.14;
#define pi 3.14

• Yes, for example :

int a=67;
double b;
b=a;

• Yes, but a cast is necessary and the double is truncated:

double a=89;
int b;
b=(int) a;

22.1.4 Referencing

1. A common mistake for new students is reversing the assignment statement. Suppose
you want to assign the value stored in the variable "pi" to another variable, say "pi2":
a) What is the correct statement?
b) What is the reverse? Is this a valid C statement (even if it gives incorrect results)?
c) What if you wanted to assign a constant value (like 3.1415) to "pi2":

a. What would the correct statement look like?
b. Would the reverse be a valid or invalid C statement?

Solution

1. pi2 = pi;
2. The reverse, pi = pi2; is a valid C statement if pi is not a constant.
3. a. pi2 = 3.1415;

b. The reverse: 3.1415 = pi2; is not valid since it is impossible to assign a value to
a literal.

162

Simple I/O

22.2 Simple I/O

22.2.1 Input

1. scanf() is a very powerful function. Describe some features that make it so versatile.
2. Write the scanf() function call that will read into the variable "var":

a) a float
b) an int
c) a double

Solution

scanf("%f",&var); //read float into var
scanf("%d",&var); //read int into var
scanf("%lf", &var); //read double into var

22.2.2 String manipulation

1. Write a program that prompts the user for a string, and prints its reverse. Solution
One possible solution could be:

#include <stdio.h>
#include <string.h>

int main(void)
{

char s[81]; // A string of upto 80 chars + '\0'
int i;

puts("Please write a string: ");
fgets(s, 81, stdin);

puts("Your sentence in reverse: ");
for (i= strlen(s)-1; i >= 0; i--)
{

if (s[i] == '\n')
continue; // don't write newline

else
putchar(s[i]);

}
putchar('\n');
return 0;

}

2. Write a program that prompts the user for a sentence, and prints each word on its own
line. Solution One possible solution could be:

#include <stdio.h>

int main(void)
{

char s[81], word[81];
int n= 0, idx= 0;

puts("Please write a sentence:");
fgets(s, 81, stdin);

/* %s matches a sequence of non-whitespace character, which is a

163

Beginning exercises

* fair definition of "word" in this context.
* %n matches nothing, but stores the number of characters that have
* been processed. i.e. if s is "Hello, World!", then word and n
* will be "Hello," and 6 respectively in the first iteration. In
* the second iteration they will be "World!" and 7 (6 chars +
* the space in front of the word).
*/

while (sscanf(&s[idx], "%s%n", word, &n) > 0)
{

idx += n;
puts(word);

}
return 0;

}

22.2.3 Loops

1. Write a function that outputs a right isosceles triangle of height and width n, so n = 3
would look like

*
**

Solution One possible solution:

void isosceles(int n)
{

int x,y;
for (y= 0; y < n; y++)
{

for (x= 0; x <= y; x++)
putchar('*');

putchar('\n');
}

}

2. Write a function that outputs a sideways triangle of height 2n-1 and width n, so the
output for n = 4 would be:

*
**

**
*

Solution One possible solution:

void sideways(int n)
{

int x,y;
for (y= 0; y < n; y++)
{

for (x= 0; x <= y; x++)
putchar('*');

putchar('\n');
}

164

Program Flow

for (y= n-1; y > 0; y--)
{

for (x= 0; x < y; x++)
putchar('*');

putchar('\n');
}

}

or like this (all math)

void sideways(int n)
{

int i=0,j=0;
for(i=1;i<2*n;i++){

for(j=1;j<=(n-(abs(n-i)));j++){
printf("*");

}
printf("\n");

}
}

3. Write a function that outputs a right-side-up triangle of height n and width 2n-1; the
output for n = 6 would be:

*

Solution One possible solution:

void right_side_up(int n)
{

int x,y;
for (y= 1; y <= n; y++)
{

for (x= 0; x < n-y; x++)
putchar(' ');

for (x= (n-y); x < (n-y)+(2*y-1); x++)
putchar('*');

putchar('\n');
}

}

22.3 Program Flow

1. Build a program where control passes from main to four different functions with 4 calls.

2. Now make a while loop in main with the function calls inside it. Ask for input at the
beginning of the loop. End the while loop if the user hits Q

3. Next add conditionals to call the functions when the user enters numbers, so 1 goes to
function1, 2 goes to function 2, etc.

4. Have function 1 call function a, which calls function b, which calls function c

5. Draw out a diagram of program flow, with arrows to indicate where control goes

165

Beginning exercises

22.4 Functions

1. Write a function to check if an integer is negative; the declaration should look like bool
is_positive(int i);

2. Write a function to raise a floating point number to an integer power, so for example to
when you use it

float a = raise_to_power(2, 3); //a gets 8

float b = raise_to_power(9, 2); //b gets 81

float raise_to_power(float f, int power); //make this your declaration

22.5 Math

1. Write a function to calculate if a number is prime. Return 1 if it is prime and 0 if it is
not a prime. Solution One possible solution using a naïve primality test1:

// to compile: gcc -Wall prime.c -lm -o prime

#include <math.h> // for the square root function sqrt()
#include <stdio.h>

int is_prime(int n);

int main()
{
printf("Write an integer: ");
int var;
scanf("%d", &var);
if (is_prime(var)==1) {
printf("A prime\n");

} else {
printf("Not a prime\n");

}
return 1;

}

int is_prime(int n)
{
int x;
int sq= sqrt(n)+1;

// Checking the trivial cases first
if (n < 2)

return 0;
if (n == 2 || n == 3)

return 1;

// Checking if n is divisible by 2 or odd numbers between 3 and the
// square root of n.
if (n % 2 == 0)

return 0;
for (x= 3; x <= sq; x += 2)
{

if (n % x == 0)

1 http://en.wikipedia.org/wiki/primality%20test

166

http://en.wikipedia.org/wiki/primality%20test

Recursion

return 0;
}

return 1;
}

2. Write a function to determine the number of prime numbers below n.

3. Write a function to find the square root by using Newton's method.

4. Write functions to evaluate the trigonometric functions:

5. Try to write a random number generator.

6. Write a function to determine the prime number between 2 and 100:

22.6 Recursion

Merge sort

1. Write a C program to generate a random integer array with a given length n , and sort
it recursively using the Merge sort algorithm.

• The merge sort algorithm is a recursive algorithm .

- sorting a one element array is easy.

- sorting two one-element arrays, requires the merge operation. The merge operation looks
at two sorted arrays as lists, and compares the head of the list , and which ever head is
smaller, this element is put on the sorted list and the head of that list is ticked off, so the
next element becomes the head of that list. This is done until one of the lists is exhausted,
and the other list is then copied onto the end of the sorted list.

- the recursion occurs, because merging two one-element arrays produces one two-element
sorted array, which can be merged with another two-element sorted array produced the
same way. This produces a sorted 4 element array, and the same applies for another 4
element sorted array.

- so the basic merge sort, is to check the size of list to be sorted, and if it is greater than
one, divide the array into two, and call merge sort again on the two halves. After wards,
merge the two halves in a temporary space of equal size, and then copy back the final sorted
array onto the original array.

Solution One possible solution , after reading online descriptions of recursive merge sort,
e.g. Dasgupta :

// to compile: gcc -Wall rmergesort.c -lm -o rmergesort

/*
==
Name : rmergesort.c
Author : Anon
Version : 0.1
Copyright : (C)2013 under CC-By-SA 3.0 License
Description : Recursive Merge Sort, Ansi-style

167

Beginning exercises

==
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//const int MAX = 200;
const int MAX = 20000000;

int *b;

int printOff = 0;

// this debugging print out of the array helps to show
// what is going on.
void printArray(char* label, int* a, int sz) {

int h = sz/ 2;
int i;

if (printOff) return;

printf("\n%s:\n", label);

for (i = 0; i < h; ++i) {

printf("%d%c", a[i],
// add in a newline every 20 numbers
((i != 0 && i % 20 == 0)? '\n': ' '));

}

printf(" | ");
for (;i < sz; ++i) {

printf("%d%c", a[i],
((i != 0 && i % 20 == 0)? '\n': ' '));

}

putchar('\n');

}

void mergesort(int* a, int m) {

printArray("BEFORE", a, m);

if (m > 2) {
// if greater than 2 elements, then recursive
mergesort(a, m / 2);
mergesort(a + m / 2, m - m / 2);

} else if (m == 2 && a[0] > a[1]) {
// if exactly 2 elements and need swapping, swap
int t = a[1];
a[1] = a[0];
a[0] = t;
goto end;

}

// 1 or greater than 2 elements which have been recursively sorted

// divide the array into a left and right array
// merge into the array b with index l.

int n = m/2;
int o = m - n;

168

Recursion

int i = 0, j = n;
int l = 0;
// i is left, j is right ;
// l should equal m the size of the array
while (i < n) {

if (j >= m) {
// the right array has finished, so copy the remaining left array
for(; i < n; ++i) {

b[l++] = a[i];
}

// the merge operation is to copy the smaller current element and
// increment the index of the parent sub-array.
} else if(a[i] < a[j]) {

b[l++] = a[i++];
} else {

b[l++] = a[j++];
}

}

while (j < m) {
// copy the remaining right array , if any
b[l++] = a[j++];

}

memcpy(a, b, sizeof(int) * l);

end:
printArray("AFTER", a, m);

return;

}

void rand_init(int* a, int n) {
int i;
for (i = 0; i < n; ++i) {

a[i] = rand() % MAX;

}
}

int main(void) {
puts("!!!Hello World!!!"); /* prints !!!Hello World!!! */

// int N = 20;
// int N = 1000;
// int N = 1000000;

int N = 100000000; // still can't make a stack overflow on ubuntu,4GB,
phenom

printOff = 1;

int *a;

b = calloc(N, sizeof(int));

a = calloc(N, sizeof(int));

rand_init(a, N);

mergesort(a, N);

printOff = 0;

printArray("LAST", a, N);

free(a);

169

Beginning exercises

free(b);

return EXIT_SUCCESS;
}

/* Having failed to translate my concept of non-recursive merge sort,
* I tackled the easier case of recursive merge sort.
* The next task is to translate the recursive version to a non-recursive
* version. This could be done by replacing calls to mergesort, with
* pushes onto a stack of
* tuples of (<array start address>, <number of elements to process>)
*/

/* The central idea of merging, is that two sorted lists can be
* merged into one sorted list, by comparing the top of each list and
* moving the lowest valued element onto the end of the new list.
* The other list which has the higher valued element keeps its top
* element unchanged. When a list is exhausted, copy the remaining other list
* onto the end of the new list.
*/

/* The recursive part, is to defer any work in sorting an unsorted list,
* by dividing it into two lists until there is only 1 or two elements,
* and if there are two elements, sort them directly by swapping if
* the first element is larger than the second element.
*
* After returning from a recursive call, merge the lists, which will
* begin with one or two element sorted lists. The result is a sorted list
* which will be returned to the parent of the recursive call, and can
* be used for merging.
*/

/* The following is an imaginary discussion about what a programmer
* might be thinking about when programming:
*
* Visualising recursion in terms of a Z80 assembly language, which
* is similiar to most assembly languages, there is a data stack (DS) and
* a call stack (CS) pointer, and each recursive call to mergesort
* pushes the return address , which is the program address of the instruction
* after the call , onto the stack pointed to by CS and CS is incremented,
* and the address of the array start and integer which is the subarray length
* onto the data stack pointed to by DS, which will be incremented twice.
*
* If the number of recursive , active calls exceed the allowable space for
either the call stack
* or the data stack, then the program will crash , or a process space
protection
* violation interrupt signal will be sent by the CPU, and the interrupt vector
* for that signal will jump the processor's current instruction pointer to the
* interrupt handling routine.
*/

Binary heaps

2. Binary heaps :

• A binary max-heap or min-heap, is an ordered structure where some nodes are guaranteed
greater than other nodes, e.g. the parent vs two children. A binary heap can be stored
in an array , where ,

170

Recursion

- given a position i (the parent) , i*2 is the left child, and i*2+1 is the right child.

- (C arrays begin at position 0, but 0 * 2 = 0, and 0 *2 + 1= 1, which is incorrect , so
start the heap at position 1, or add 1 for parent-to-child calculations, and subtract 1 for
child-to-parent calculations).

• try to model this using with a pencil and paper, using 10 random unsorted numbers,
and inserting each of them into a "heapsort" array of 10 elements.

• To insert into a heap, end-add and swap-parent if higher, until parent higher.

• To delete the top of a heap, move end-to-top, and defer-higher-child or sift-down ,
until no child is higher.

• try it on a pen and paper the numbers 10, 4, 6 ,3 ,5 , 11.

pen-and-paper-solution

• 10, 4, 6, 3, 5, 11 -> 10
• 4, 6,3, 5, 11 -> 10, 4 : 4 is end-added, no swap-parent because 4 < 10.
• 6, 3, 5, 11 -> 10, 4, 6 : 6 is end-added, no swap-parent because 6 < 10.
• 3, 5, 11 -> 10, 4, 6, 3 : 3 is end-added, 3 is position 4 , divide by 2 = 2, 4 at position 2,

no swap-parent because 4 > 3.
• 5 , 11 -> 10, 4, 6, 3 , 5 : 5 is end-added , 5 is position 5, divided by 2 = 2, 4 at position

2, swap-parent as 4 < 5; 5 at position 2, no swap-parent because 5 < 10 at position 1.
- 10 , 5, 6, 3, 4

• 11 -> 10, 5, 6, 3, 4, 11 : 11 is end-added, 11 is position 6, divide by 2 = 3, swap 6 with
11, 11 is position 3, swap 11 with 10, stop as no parent.
- 11, 5, 10, 3, 4, 6
- 11 has children 5, 10 ; 5 has children 3 and 4 ; 10 has child 6. Parent always > child.

• the answer was 11, 5, 10, 3, 4 , 6.

• EXERCISE: Now try removing each top element of 11, 5, 10, 3, 4, 6 , using end-to-top
and sift-down (or swap-higher-child) to get the numbers

in descending order.

pen-and-paper-solution

• 11 leaves * , 5, 10, 3, 4, 6 -> 6 , 5, 10, 3, 4 -> sift-down -> choose greater child 5
(2*n+0) or 10 (2*n+1) -> is 6 > 10 ? no -> swap 10 and 6 ->
- 10, 5, *6, 3, 4 -> 4 is greatest child as no +1 child. is 6 > 4 ? yes, stop.

• 10 leaves * , 5 , 6 , 3, 4 -> *4, 5, 6, 3 -> is left(0) or right(+1) child greater -> +1 is
greater; is 4 > +1 child ? no , swap
- 6,5, *4, 3 -> *4 has no children so stop.

• 6 leaves *, 5, 4, 3 -> *3, 5, 4 -> +0 child is greater -> is 3 > 5 ? no , so swap -> 5, *3,
4 , *3 has no child so stop. is

• 5 leaves so 3, 4 -> *4, 3 -> +0 child greatest as no right child -> is 4 > 3 ? no , so exit
• 4 leaves 3 .
• 3 leaves *.
• numbers extracted in descending order 11, 10, 6, 5, 4, 3.

171

Beginning exercises

• a priority queue allows elements to be inserted with a priority , and extracted according
to priority. (This can happen usefully, if the element has a paired structure, one part is
the key, and the other part the data. Otherwise, it is just a mechanism for sorting).

• EXERCISE: Using the above technique of insert-back/challenge-parent, and delete-
front/last-to-front/defer-higher-child, implement either heap sort or a priority queue.

Dijsktra's algorithm

Dijsktra's algorithm is a searching algorithm using a priority queue. It begins with inserting
the start node with a priority value of 0. All other nodes are inserted with priority values
of large N. Each node has an adjacency list of other nodes, a current distance to start node,
and previous pointer to previous node used to calculate current node. Alternative to an
adjacency list, is an adjacency matrix, which needs n x n boolean adjacencies.

The agorithm basically iterates over the priority queue, removing the front node, examining
the adjacent nodes, and updating with a distance equal to the sum of the front nodes
distance for each adjacent node , and the distance given by the adjacency information for
an adjacent node.

After each node's update, the extra operation "update priority" is used on that node :

while the node's distance is less than it's parents node (for this priority queue, parents have
lesser distances than the children), the node is swapped with the parent.

After this, while the node is greater distance than one or more of its children, it is swapped
with the least distant child, so the least distant child becomes parent of its greater distant
sibling, and parent to the greater distant current node.

With updating the priority, the adjacent node to the current node has a back pointer
changed to the current node.

The algorithm ends when the target node becomes the current node removed, and the path
to the start node can be recorded in an array by following back pointers, and then doing
something like a quick sort partition to reverse the order of the array , to give the shortest
path to target node from the start node.

Quick sort

3. Write a C program to recursively sort using the Quick sort partition exchange algorithm.

• you can use the "driver", or the random number test data from Q1. on mergesort. This
is "re-use", which is encouraged in general.

- an advantage of reuse is less writing time, debugging time, testing time.

• the concept of partition exchange is that a partition element is (randomly) selected, and
every thing that needs sorted is put into 3 equivalance

classes : those elements less than the partition value, the partition element, and everything
above (and equal to) the partition element.

172

Recursion

• this can be done without allocating more space than one temporary element space for
swapping two elements. e.g a temporary integer for integer data.

• However, where the partition element should be using the original array space is not
known.

• This is usually implemented with putting the partition on the end of the array to be
sorted, and then putting two pointers , one at the start of the array,

and one at the element next to the partition element , and repeatedly scanning the left
pointer right, and the right pointer left.

• the left scan stops when an element equal to or greater than the partition is found, and
the right scan stops for a smaller element than the partition value,

and these are swapped, which uses the temporary extra space.

• the left scan will always stop if it reaches the partition element , which is the last element;
this means the entire array is less than partition value.

• the right scan could reach the first element, if the entire array is greater than the partition
, and this needs to be tested for, else the scan doesn't stop.

• the outer loop exits when then left and right pointers cross. Testing for pointer crossing
and outer loop exit

should occur before swapping, otherwise the right pointer may be swapping a less-than-
partition element previously scanned by the left pointer.

• finally, the partition element needs to be put between the left and right partitions, once
the pointers cross.

• At pointer crossing, the left pointer may be stopped at the partition element's last
position in the array, and the right pointer not progressed past the

element just before the last element. This happens when all the elements are less than the
partition.

- if the right pointer is chosen to swap with the partition, then an incorrect state results
where the last element of the left array becomes less than the partition element value.

- if the left pointer is chosen to swap with the partition, then the left array will be less than
the partition, and partition will have swapped with an element with value greater than the
partition or the partition itself.

• The corner case of quicksorting a 2 element out-of-order array has to be examined.

- The left pointer stops on the first out of order element. The right pointer begins on the
first out-of-order element, but the outer loop exits because this is the leftmost element.
The partition element is then swapped with the left pointer's first element, and the two
elements are now in order.

- In the case of a 2 element in order array, the leftmost pointer skips the first element
which is less than the partition, and stops on the partition. The right pointer begins on
the first element and exits because it is the first position. The pointers have crossed so the
outer loop exits. The partition swaps with itself, so the in-ordering is preserved.

• After doing a swap, the left pointer should be incremented and right pointer decremented,
so the same positions aren't scanned again, because an endless loop can result (possibly

173

Beginning exercises

when the left pointer exits when the element is equal to or greater than the partition,
and the right element is equal to the partition value). One implementation, Sedgewick,
starts the pointers with the left pointer minus one and right pointer

the plus one the intended initial scan positions, and use the pre-increment and pre-decrement
operators e.g. (++i, --i) .

Solution One possible solution , can be to adapt this word sorting use of quicksort to
sort integers. Otherwise , an exercise would be to re-write non-generic qsort functions of
qsortsimp, partition, and swap for integers.

/*
* qsortsimp.h
*
* Created on: 17/03/2013
* Author: anonymous
*/

#ifndef QSORTSIMP_H_
#define QSORTSIMP_H_
#include <stdlib.h>
void qsortsimp(void* a, size_t elem_sz, int len, int(*cmp) (void*,void*));
void shutdown_qsortsimp();

#endif /* QSORTSIMP_H_ */

//--

/* qsortsimp.c
* author : anonymous
*/
#include "qsortsimp.h"
#include<stdlib.h>
#include<string.h>

static void * swap_buf =0;
static int bufsz = 0;

void swap(void* a, int i, int j, size_t elem_sz) {
if (i==j)return;
if (bufsz == 0 || bufsz < elem_sz) {

swap_buf = realloc(swap_buf, elem_sz);
bufsz=elem_sz;

}

memcpy(swap_buf, a+i*elem_sz, elem_sz);
memcpy(a+i*elem_sz, a+j*elem_sz, elem_sz);
memcpy(a+j*elem_sz, swap_buf, elem_sz);

}

void shutdown_qsortsimp() {
if (swap_buf) {

free(swap_buf);
}

}

int partition(void* a, size_t elem_sz, int len, int (*cmp)(void*,void*)) {

int i = -1;
int j = len-1;
void* v = a + j * elem_sz;

for(;;) {

174

Recursion

while((*cmp)(a + ++i * elem_sz , v) < 0);
while ((*cmp)(v, a + --j * elem_sz) < 0) if (j==0) break ;
if(i>=j)break;
swap(a, i, j, elem_sz);

}
swap(a, i, len-1, elem_sz);
return i;

}

void qsortsimp(void* a, size_t elem_sz, int len, int(*cmp) (void*,void*)) {
if (len > 2) {

int p = partition(a, elem_sz, len, cmp);
qsortsimp(a, elem_sz, p, cmp);
qsortsimp(a+(p+1)*elem_sz, elem_sz, len - p -1, cmp);

}

}

//--

/*
Name : words_quicksort.c
Author : anonymous
Version :
Copyright :
Description : quick sort the words in moby dick in C, Ansi-style
==
*/

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include "qsortsimp.h"

void printArray(const char* a[], int n) {
int i;
for(i=0; i < n; ++i) {

if(i!=0 && i% 5 == 0) {
printf("\n");

}
if (i%1000000 ==0) {

fprintf(stderr,"printed %d words\n", i);
}
printf("%s ", a[i]);

}
printf("\n");

}

const int MAXCHARS=250;
char ** wordlist=0;
int nwords=0;
int remaining_block;
const size_t NWORDS_PER_BLOCK = 1000;

//const char* spaces=" \t\n\r";
//inline isspace(const char ch) {
// int i=0;
// while(spaces[i]!='\0') {
// if(spaces[i++] == ch)
// return 1;
// }

175

Beginning exercises

// return 0;
//}

void freeMem() {
int i = nwords;
while(i > 0) {

free(wordlist[--i]);

}
free(wordlist);

}

static char * fname="~/Downloads/books/pg2701-moby-dick.txt";

void getWords() {

char buffer[MAXCHARS];
FILE* f = fopen(fname,"r");
int state=0;
int ch;
int i;
while ((ch=fgetc(f))!=EOF) {

if (isalnum(ch) && state==0) {
state=1;
i=0;
buffer[i++]=ch;

} else if (isalnum(ch) && i < MAXCHARS-1) {
buffer[i++]=ch;

} else if (state == 1) {
state =0;
buffer[i++]= '\0';
char* dynbuf = malloc(i);
int j;
for(j=0; j < i; ++j) {

dynbuf[j] = buffer[j];
}
i=0;
if (wordlist == 0) {

wordlist = calloc(NWORDS_PER_BLOCK, sizeof(char*));
remaining_block = NWORDS_PER_BLOCK;

} else if (remaining_block == 0) {
wordlist = realloc(wordlist, (NWORDS_PER_BLOCK + nwords)*

sizeof(char*));
remaining_block = NWORDS_PER_BLOCK;
fprintf(stderr,"allocated block %d , nwords = %d\n",

remaining_block, nwords);

}
wordlist[nwords++]= dynbuf;
--remaining_block;

}

}
fclose(f);

}
void testPrintArray() {

int i;

for(i=0; i < nwords;++i) {
printf("%s | ", wordlist[i]);

}
putchar('\n');

176

Recursion

printf("stored %d words. \n",nwords);
}

int cmp_str_1(void* a, void *b) {
int r = strcasecmp(*((char**)a),*((char**)b));
return r;

}

int main(int argc, char* argv[]) {
if (argc > 1) {

fname = argv[1];
}
getWords();
testPrintArray();

qsortsimp(wordlist, sizeof(char*), nwords, &cmp_str_1);

testPrintArray();

shutdown_qsortsimp();
freeMem();
puts("!!!Hello World!!!"); /* prints !!!Hello World!!! */
return EXIT_SUCCESS;

}

et:Programmeerimiskeel C/Harjutused2 pl:C/Ćwiczenia dla początkujących3

2 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FHarjutused
3 http://pl.wikibooks.org/wiki/C%2F%C4%86wiczenia%20dla%20pocz%C4%85tkuj%C4%85cych

177

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FHarjutused
http://pl.wikibooks.org/wiki/C%2F%C4%86wiczenia%20dla%20pocz%C4%85tkuj%C4%85cych

23 In-depth C ideas

179

24 Arrays

Arrays in C act to store related data under a single variable name with an index, also known
as a subscript. It is easiest to think of an array as simply a list or ordered grouping for
variables of the same type. As such, arrays often help a programmer organize collections of
data efficiently and intuitively.

Later we will consider the concept of a pointer, fundamental to C, which extends the nature
of the array (array can be termed as a constant pointer). For now, we will consider just
their declaration and their use.

24.1 Arrays

If we want an 2D array of six integers (or numbers), we write in C:

int numbers[3][2];

For a SIX character array called letters,

char letters[6];

and so on.

If we wish to initialize as we declare, we write:

int point[6]={0,0,1,0,0,0};

Though when the array is initialized as in this case, the array dimension may be omitted,
and the array will be automatically sized to hold the initial data:

int point[]={0,0,1,0,0,0};

This is very useful in that the size of the array can be controlled by simply adding or
removing initializer elements from the definition without the need to adjust the dimension.

If the dimension is specified, but not all elements in the array are initialized, the remaining
elements will contain a value of 0. This is very useful, especially when we have very large
arrays.

int numbers[2000]={245};

The above example sets the first value of the array to 245, and the rest to 0.

If we want to access a variable stored in an array, for example with the above declaration,
the following code will store a 1 in the variable x

181

Arrays

int x;
x = point[2];

Arrays in C are indexed starting at 0, as opposed to starting at 1. The first element of the
array above is point[0]. The index to the last value in the array is the array size minus
one. In the example above the subscripts run from 0 through 5. C does not guarantee
bounds checking on array accesses. The compiler may not complain about the following
(though the best compilers do):

char y;
int z = 9;
char point[6] = { 1, 2, 3, 4, 5, 6 };
//examples of accessing outside the array. A compile error is not always raised
y = point[15];
y = point[-4];
y = point[z];

During program execution, an out of bounds array access does not always cause a run
time error. Your program may happily continue after retrieving a value from point[-1]. To
alleviate indexing problems, the sizeof() expression is commonly used when coding loops
that process arrays.

int ix;
short anArray[]= { 3, 6, 9, 12, 15 };

for (ix=0; ix< (sizeof(anArray)/sizeof(short)); ++ix) {
DoSomethingWith("%d", anArray[ix]);

}

Notice in the above example, the size of the array was not explicitly specified. The compiler
knows to size it at 5 because of the five values in the initializer list. Adding an additional
value to the list will cause it to be sized to six, and because of the sizeof expression in the
for loop, the code automatically adjusts to this change. Good programming practice is to
declare a variable size , and store the number of elements in the array in it.

size = sizeof(anArray)/sizeof(short)

C also supports multi dimensional arrays (or, rather, arrays of arrays). The simplest type
is a two dimensional array. This creates a rectangular array - each row has the same
number of columns. To get a char array with 3 rows and 5 columns we write in C

char two_d[3][5];

To access/modify a value in this array we need two subscripts:

char ch;
ch = two_d[2][4];

or

two_d[0][0] = 'x';

Similarly, a multi-dimensional array can be initialized like this:

182

Strings

int two_d[2][3] = {{ 5, 2, 1 },
{ 6, 7, 8 }};

The amount of columns must be explicitly stated; however, the compiler will find the
appropriate amount of rows based on the initializer list.

There are also weird notations possible:

int a[100];
int i = 0;
if (a[i]==i[a])
{
printf("Hello world!\n");

}

a[i] and i[a] refer to the same location. (This is explained later in the next Chapter.)

24.2 Strings

Figure 1 String "Merkkijono" stored in memory

C has no string handling facilities built in; consequently, strings are defined as arrays of
characters. C allows a character array to be represented by a character string rather than a
list of characters, with the null terminating character automatically added to the end. For
example, to store the string "Merkkijono", we would write

char string[] = "Merkkijono";

or

char string[] = {'M', 'e', 'r', 'k', 'k', 'i', 'j', 'o', 'n', 'o', '\0'};

In the first example, the string will have a null character automatically appended to the
end by the compiler; by convention, library functions expect strings to be terminated by a
null character. The latter declaration indicates individual elements, and as such the null
terminator needs to be added manually.

Strings do not always have to be linked to an explicit variable. As you have seen already, a
string of characters can be created directly as an unnamed string that is used directly (as
with the printf functions.)

To create an extra long string, you will have to split the string into multiple sections, by
closing the first section with a quote, and recommencing the string on the next line (also
starting and ending in a quote):

char string[] = "This is a very, very long "
"string that requires two lines.";

183

Arrays

While strings may also span multiple lines by putting the backslash character at the end of
the line, this method is deprecated.

There is a useful library of string handling routines which you can use by including another
header file.

#include <string.h> //new header file

This standard string library will allow various tasks to be performed on strings, and is
discussed in the Strings1 chapter.

et:Programmeerimiskeel C/Massiivid2 it:C/Vettori e puntatori/Vettori3 pl:C/Tablice4
fi:C/Taulukot5

1 Chapter 27 on page 205
2 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMassiivid
3 http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FVettori
4 http://pl.wikibooks.org/wiki/C%2FTablice
5 http://fi.wikibooks.org/wiki/C%2FTaulukot

184

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMassiivid
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FVettori
http://pl.wikibooks.org/wiki/C%2FTablice
http://fi.wikibooks.org/wiki/C%2FTaulukot

25 Pointers and arrays

Figure 2 Pointer a pointing variable
b. Note that b stores number, whereas a
stores address of b in memory (1462)

A pointer1 is a value that designates the address (i.e., the location in memory), of some
value. There are four fundamental things you need to know about pointers:

• How to declare them
• How to assign to them
• How to reference the value to which the pointer points (known as dereferencing) and
• How they relate to arrays

We'll also discuss the relationship of pointers with text strings and the more advanced
concept of function pointers.

Pointers are variables that hold a memory location. One can access the value of the variable
pointed to using the dereferencing operator '*'.

Pointers can reference any data type, even functions.

1 http://en.wikipedia.org/wiki/Pointer%20%28computing%29

185

http://en.wikipedia.org/wiki/Pointer%20%28computing%29

Pointers and arrays

The vast majority of arrays in C are simple lists, also called "1 dimensional arrays". We
will briefly cover multi-dimensional arrays in a later chapter2.

25.1 Declaring pointers

Consider the following snippet of code which declares two pointers:

<source lang="c" line start=1>

struct MyStruct {
int m_aNumber;
float num2;

};

int * pJ2;
struct MyStruct * pAnItem;

</source>

Lines 1-4 define a structure3. Line 6 declares a variable which points to an int, and line
7 declares a variable which points to something with structure MyStruct. So to declare
a variable as something which points to some type, rather than contains some type, the
asterisk (*) is placed before the variable name.

In the following, line 1 declares var1 as a pointer to a long and var2 as a long and not a
pointer to a long. In line 2, p3 is declared as a pointer to a pointer to an int.

<source lang="c" line start=1>

long * var1, var2;

int ** p3;

</source>

Pointer types are often used as parameters to function calls. The following shows how to
declare a function which uses a pointer as an argument. Since C passes function arguments
by value, in order to allow a function to modify a value from the calling routine, a pointer
to the value must be passed. Pointers to structures are also used as function arguments
even when nothing in the struct will be modified in the function. This is done to avoid
copying the complete contents of the structure onto the stack. More about pointers as
function arguments later.

2 Chapter 30.1 on page 231
3 Chapter 28.1.2 on page 222

186

Assigning values to pointers

int MyFunction(struct MyStruct *pStruct);

25.2 Assigning values to pointers

So far we've discussed how to declare pointers. The process of assigning values to pointers
is next. To assign a pointer the address of a variable, the & or 'address of' operator is used.

int myInt;
int *pPointer;
struct MyStruct dvorak;
struct MyStruct *pKeyboard;

pPointer = &myInt;
pKeyboard = &dvorak;

Here, pPointer will now reference myInt and pKeyboard will reference dvorak.

Pointers can also be assigned to reference dynamically allocated memory. The malloc() and
calloc() functions are often what are used to do this.

#include <stdlib.h>
/* ... */
struct MyStruct *pKeyboard;
/* ... */
pKeyboard = malloc(sizeof *pKeyboard);

The malloc function returns a pointer to dynamically allocated memory (or NULL if un-
successful). The size of this memory will be appropriately sized to contain the MyStruct
structure.

The following is an example showing one pointer being assigned to another and of a pointer
being assigned a return value from a function.

static struct MyStruct val1, val2, val3, val4;

struct MyStruct *ASillyFunction(int b)
{

struct MyStruct *myReturn;

if (b == 1) myReturn = &val1;
else if (b==2) myReturn = &val2;
else if (b==3) myReturn = &val3;
else myReturn = &val4;

return myReturn;
}

struct MyStruct *strPointer;
int *c, *d;
int j;

c = &j; /* pointer assigned using & operator */
d = c; /* assign one pointer to another */
strPointer = ASillyFunction(3); /* pointer returned from a function. */

When returning a pointer from a function, do not return a pointer that points to a value
that is local to the function or that is a pointer to a function argument. Pointers to local

187

Pointers and arrays

variables become invalid when the function exits. In the above function, the value returned
points to a static variable. Returning a pointer to dynamically allocated memory is also
valid.

25.3 Pointer dereferencing

Figure 3 The pointer p points to the variable a.

To access a value to which a pointer points, the * operator is used. Another operator, the
-> operator is used in conjunction with pointers to structures. Here's a short example.

int c, d;
int *pj;
struct MyStruct astruct;
struct MyStruct *bb;

c = 10;
pj = &c; /* pj points to c */
d = *pj; /* d is assigned the value to which pj points, 10 */
pj = &d; /* now points to d */
pj = 12; / d is now 12 */

bb = &astruct;
(*bb).m_aNumber = 3; /* assigns 3 to the m_aNumber member of astruct */
bb->num2 = 44.3; /* assigns 44.3 to the num2 member of astruct */
pj = bb->m_aNumber; / eqivalent to d = astruct.m_aNumber; */

The expression bb->m_aNumber is entirely equivalent to (*bb).m_aNumber. They both
access the m_aNumber element of the structure pointed to by bb. There is one more way of
dereferencing a pointer, which will be discussed in the following section.

When dereferencing a pointer that points to an invalid memory location, an error often
occurs which results in the program terminating. The error is often reported as a seg-
mentation error. A common cause of this is failure to initialize a pointer before trying to
dereference it.

C is known for giving you just enough rope to hang yourself, and pointer dereferencing is a
prime example. You are quite free to write code that accesses memory outside that which
you have explicitly requested from the system. And many times, that memory may appear
as available to your program due to the vagaries of system memory allocation. However,
even if 99 executions allow your program to run without fault, that 100th execution may
be the time when your "memory pilfering" is caught by the system and the program fails.
Be careful to ensure that your pointer offsets are within the bounds of allocated memory!

188

Pointers and Arrays

The declaration void *somePointer; is used to declare a pointer of some nonspecified
type. You can assign a value to a void pointer, but you must cast the variable to point to
some specified type before you can dereference it. Pointer arithmetic is also not valid with
void * pointers.

25.4 Pointers and Arrays

Up to now, we've carefully been avoiding discussing arrays in the context of pointers. The
interaction of pointers and arrays can be confusing but here are two fundamental statements
about it:

• A variable declared as an array of some type acts as a pointer to that type. When used
by itself, it points to the first element of the array.

• A pointer can be indexed like an array name.

The first case often is seen to occur when an array is passed as an argument to a function.
The function declares the parameter as a pointer, but the actual argument may be the name
of an array. The second case often occurs when accessing dynamically allocated memory.
Let's look at examples of each. In the following code, the call to calloc() effectively allocates
an array of struct MyStruct items.

float KrazyFunction(struct MyStruct *parm1, int p1size, int bb)
{
int ix; //declaring an integer variable//
for (ix=0; ix<p1size; ix++) {

if (parm1[ix].m_aNumber == bb)
return parm1[ix].num2;

}
return 0.0f;

}

/* ... */
struct MyStruct myArray[4];
#define MY_ARRAY_SIZE (sizeof(myArray)/sizeof(*myArray))
float v3;
struct MyStruct *secondArray;
int someSize;
int ix;
/* initialization of myArray ... */
v3 = KrazyFunction(myArray, MY_ARRAY_SIZE, 4);
/* ... */
secondArray = calloc(someSize, sizeof(myArray));
for (ix=0; ix<someSize; ix++) {

secondArray[ix].m_aNumber = ix *2;
secondArray[ix].num2 = .304 * ix * ix;

}

Pointers and array names can pretty much be used interchangeably. There are exceptions.
You cannot assign a new pointer value to an array name. The array name will always point
to the first element of the array. In the function KrazyFunction above, you could however
assign a new value to parm1, as it is just a pointer to the first element of myArray. It is also
valid for a function to return a pointer to one of the array elements from an array passed
as an argument to a function. A function should never return a pointer to a local variable,
even though the compiler will probably not complain.

189

Pointers and arrays

When declaring parameters to functions, declaring an array variable without a size is equiva-
lent to declaring a pointer. Often this is done to emphasize the fact that the pointer variable
will be used in a manner equivalent to an array.

/* two equivalent function definitions */
int LittleFunction(int *paramN);
int LittleFunction(int paramN[]);

Now we're ready to discuss pointer arithmetic. You can add and subtract integer val-
ues to/from pointers. If myArray is declared to be some type of array, the expression
*(myArray+j), where j is an integer, is equivalent to myArray[j]. So for instance in the
above example where we had the expression secondArray[i].num2, we could have written
that as *(secondArray+i).num2 or more simply (secondArray+i)->num2.

Note that for addition and subtraction of integers and pointers, the value of the pointer is
not adjusted by the integer amount, but is adjusted by the amount multiplied by the size
(in bytes) of the type to which the pointer refers. One pointer may also be subtracted from
another, provided they point to elements of the same array (or the position just beyond the
end of the array). If you have a pointer that points to an element of an array, the index
of the element is the result when the array name is subtracted from the pointer. Here's an
example.

struct MyStruct someArray[20];
struct MyStruct *p2;
int idx;

.
/* array initialization .. */
.
for (p2 = someArray; p2 < someArray+20; ++p2) {

if (p2->num2 > testValue) break;
}
idx = p2 - someArray;

You may be wondering how pointers and multidimensional arrays interact. Let's look at
this a bit in detail. Suppose A is declared as a two dimensional array of floats (float
A[D1][D2];) and that pf is declared a pointer to a float. If pf is initialized to point to
A[0][0], then *(pf+1) is equivalent to A[0][1] and *(pf+D2) is equivalent to A[1][0]. The
elements of the array are stored in row-major order.

float A[6][8];
float *pf;
pf = &A[0][0];
(pf+1) = 1.3; / assigns 1.3 to A[0][1] */
(pf+8) = 2.3; / assigns 2.3 to A[1][0] */

Let's look at a slightly different problem. We want to have a two dimensional array, but
we don't need to have all the rows the same length. What we do is declare an array of
pointers. The second line below declares A as an array of pointers. Each pointer points to
a float. Here's some applicable code:

float linearA[30];
float *A[6];

190

Pointers in Function Arguments

A[0] = linearA; /* 5 - 0 = 5 elements in row */
A[1] = linearA + 5; /* 11 - 5 = 6 elements in row */
A[2] = linearA + 11; /* 15 - 11 = 4 elements in row */
A[3] = linearA + 15; /* 21 - 15 = 6 elements */
A[4] = linearA + 21; /* 25 - 21 = 4 elements */
A[5] = linearA + 25; /* 30 - 25 = 5 elements */

A[3][2] = 3.66; /* assigns 3.66 to linearA[17]; */
A[3][-3] = 1.44; /* refers to linearA[12];

negative indices are sometimes useful. But avoid
using them as much as possible. */

We also note here something curious about array indexing. Suppose myArray is an array and
idx is an integer value. The expression myArray[idx] is equivalent to idx[myArray]. The
first is equivalent to *(myArray+idx), and the second is equivalent to *(idx+myArray).
These turn out to be the same, since the addition is commutative.

Pointers can be used with preincrement or post decrement, which is sometimes done within
a loop, as in the following example. The increment and decrement applies to the pointer,
not to the object to which the pointer refers. In other words, *pArray++ is equivalent to
*(pArray++).

long myArray[20];
long *pArray;
int i;

/* Assign values to the entries of myArray */
pArray = myArray;
for (i=0; i<10; ++i) {
*pArray++ = 5 + 3*i + 12*i*i;
*pArray++ = 6 + 2*i + 7*i*i;

}

25.5 Pointers in Function Arguments

Often we need to invoke a function with an argument that is itself a pointer. In many
instances, the variable is itself a parameter for the current function and may be a pointer
to some type of structure. The ampersand character is not needed in this circumstance
to obtain a pointer value, as the variable is itself a pointer. In the example below, the
variable pStruct, a pointer, is a parameter to function FunctTwo, and is passed as an
argument to FunctOne. The second parameter to FunctOne is an int. Since in function
FunctTwo, mValue is a pointer to an int, the pointer must first be dereferenced using the *
operator, hence the second argument in the call is *mValue. The third parameter to function
FunctOne is a pointer to a long. Since pAA is itself a pointer to a long, no ampersand is
needed when it is used as the third argument to the function.

int FunctOne(struct SomeStruct *pValue, int iValue, long *lValue)
{

/* do some stuff ... */
return 0;

}
int FunctTwo(struct someStruct *pStruct, int *mValue)
{

int j;
long AnArray[25];
long *pAA;

191

Pointers and arrays

pAA = &AnArray[13];
j = FunctOne(pStruct, *mValue, pAA);
return j;

}

25.6 Pointers and Text Strings

Historically, text strings in C have been implemented as arrays of characters, with the last
byte in the string being a zero, or the null character '\0'. Most C implementations come
with a standard library of functions for manipulating strings. Many of the more commonly
used functions expect the strings to be null terminated strings of characters. To use these
functions requires the inclusion of the standard C header file "string.h".

A statically declared, initialized string would look similar to the following:

static const char *myFormat = "Total Amount Due: %d";

The variable myFormat can be viewed as an array of 21 characters. There is an implied
null character ('\0') tacked on to the end of the string after the 'd' as the 21st item in the
array. You can also initialize the individual characters of the array as follows:

static const char myFlower[] = { 'P', 'e', 't', 'u', 'n', 'i', 'a', '\0' };

An initialized array of strings would typically be done as follows:

static const char *myColors[] = {
"Red", "Orange", "Yellow", "Green", "Blue", "Violet" };

The initilization of an especially long string can be split across lines of source code as follows.

static char *longString = "Hello. My name is Rudolph and I work as a reindeer "
"around Christmas time up at the North Pole. My boss is a really swell guy."
" He likes to give everybody gifts.";

The library functions that are used with strings are discussed in a later chapter.

25.7 Pointers to Functions

C also allows you to create pointers to functions. Pointers to functions can get rather messy.
Declaring a typedef to a function pointer generally clarifies the code. Here's an example that
uses a function pointer, and a void * pointer to implement what's known as a callback. The
DoSomethingNice function invokes a caller supplied function TalkJive with caller data.
Note that DoSomethingNice really doesn't know anything about what dataPointerrefers
to.

192

Pointers to Functions

typedef int (*MyFunctionType)(int, void *); /* a typedef for a function
pointer */

#define THE_BIGGEST 100

int DoSomethingNice(int aVariable, MyFunctionType aFunction, void *dataPointer
)
{

int rv = 0;
if (aVariable < THE_BIGGEST) {

/* invoke function through function pointer (old style) */
rv = (*aFunction)(aVariable, dataPointer);

} else {
/* invoke function through function pointer (new style) */

rv = aFunction(aVariable, dataPointer);
};
return rv;

}

typedef struct {
int colorSpec;
char *phrase;

} DataINeed;

int TalkJive(int myNumber, void *someStuff)
{

/* recast void * to pointer type specifically needed for this function */
DataINeed *myData = someStuff;
/* talk jive. */
return 5;

}

static DataINeed sillyStuff = { BLUE, "Whatcha talkin 'bout Willis?" };

/* ... */
DoSomethingNice(41, &TalkJive, &sillyStuff);

Some versions of C may not require an ampersand preceding the TalkJive argument in the
DoSomethingNice call. Some implementations may require specifically casting the argument
to the MyFunctionType type, even though the function signature exacly matches that of
the typedef.

Function pointers can be useful for implementing a form of polymorphism in C. First one
declares a structure having as elements function pointers for the various operations to that
can be specified polymorphically. A second base object structure containing a pointer to
the previous structure is also declared. A class is defined by extending the second structure
with the data specific for the class, and static variable of the type of the first structure,
containing the addresses of the functions that are associated with the class. This type of
polymorphism is used in the standard library when file I/O functions are called.

A similar mechanism can also be used for implementing a state machine in C. A structure
is defined which contains function pointers for handling events that may occur within state,
and for functions to be invoked upon entry to and exit from the state. An instance of
this structure corresponds to a state. Each state is initialized with pointers to functions
appropriate for the state. The current state of the state machine is in effect a pointer to
one of these states. Changing the value of the current state pointer effectively changes
the current state. When some event occurs, the appropriate function is called through a
function pointer in the current state.

193

Pointers and arrays

25.8 Practical use of function pointers in C

Function pointers are mainly used to reduce the complexity of switch statement. Example
with switch statement:

#include <stdio.h>
int add(int a, int b);
int sub(int a, int b);
int mul(int a, int b);
int div(int a, int b);
int main()
{

int i, result;
int a=10;
int b=5;
printf("Enter the value between 0 and 3 : ");
scanf("%d",&i);
switch(i)
{

case 0: result = add(a,b); break;
case 1: result = sub(a,b); break;
case 2: result = mul(a,b); break;
case 3: result = div(a,b); break;

}
}
int add(int i, int j)
{

return (i+j);
}
int sub(int i, int j)
{

return (i-j);
}
int mul(int i, int j)
{

return (i*j);
}
int div(int i, int j)
{

return (i/j);
}

Without using a switch statement:

#include <stdio.h>
int add(int a, int b);
int sub(int a, int b);
int mul(int a, int b);
int div(int a, int b);
int (*oper[4])(int a, int b) = {add, sub, mul, div};
int main()
{

int i,result;
int a=10;
int b=5;
printf("Enter the value between 0 and 3 : ");
scanf("%d",&i);
result = oper[i](a,b);

}
int add(int i, int j)
{

return (i+j);
}
int sub(int i, int j)

194

Practical use of function pointers in C

{
return (i-j);

}
int mul(int i, int j)
{

return (i*j);
}
int div(int i, int j)
{

return (i/j);
}

Function pointers may be used to create a struct member function:

typedef struct
{

int (*open)(void);
void (*close)(void);
int (*register)(void);

} device;

int my_device_open(void)
{

/* ... */
}

void my_device_close(void)
{

/* ... */
}

void register_device(void)
{

/* ... */
}

device create(void)
{

device my_device;
my_device.open = my_device_open;
my_device.close = my_device_close;
my_device.register = register_device;
my_device.register();
return my_device;

}

Use to implement this pointer (following code must be placed in library).

static struct device_data
{

/* ... here goes data of structure ... */
};

static struct device_data obj;

typedef struct
{

int (*open)(void);
void (*close)(void);
int (*register)(void);

} device;

static struct device_data create_device_data(void)
{

struct device_data my_device_data;
/* ... here goes constructor ... */

195

Pointers and arrays

return my_device_data;
}

/* here I omit the my_device_open, my_device_close and register_device functions
*/

device create_device(void)
{

device my_device;
my_device.open = my_device_open;
my_device.close = my_device_close;
my_device.register = register_device;
my_device.register();
return my_device;

}

25.9 Examples of pointer constructs

Below are some example constructs which may aid in creating your pointer.

int i; // integer variable 'i'
int *p; // pointer 'p' to an integer
int a[]; // array 'a' of integers
int f(); // function 'f' with return value of type integer
int **pp; // pointer 'pp' to a pointer to an integer
int (*pa)[]; // pointer 'pa' to an array of integer
int (*pf)(); // pointer 'pf' to a function with return value integer
int *ap[]; // array 'ap' of pointers to an integer
int *fp(); // function 'fp' which returns a pointer to an integer
int ***ppp; // pointer 'ppp' to a pointer to a pointer to an integer
int (**ppa)[]; // pointer 'ppa' to a pointer to an array of integers
int (**ppf)(); // pointer 'ppf' to a pointer to a function with return value of
type integer
int *(*pap)[]; // pointer 'pap' to an array of pointers to an integer
int *(*pfp)(); // pointer 'pfp' to function with return value of type pointer
to an integer
int **app[]; // array of pointers 'app' that point to pointers to integer
values
int (*apa[])[];// array of pointers 'apa' to arrays of integers
int (*apf[])();// array of pointers 'apf' to functions with return values of
type integer
int ***fpp(); // function 'fpp' which returns a pointer to a pointer to a
pointer to an int
int (*fpa())[];// function 'fpa' with return value of a pointer to array of
integers
int (*fpf())();// function 'fpf' with return value of a pointer to function
which returns an integer

25.10 sizeof

The sizeof operator is often used to refer to the size of a static array declared earlier in the
same function.

To find the end of an array (example from wikipedia:Buffer overflow4):

4 http://en.wikipedia.org/wiki/Buffer%20overflow

196

http://en.wikipedia.org/wiki/Buffer%20overflow

sizeof

/* better.c - demonstrates one method of fixing the problem */

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char buffer[10];
if (argc < 2)
{
fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}
strncpy(buffer, argv[1], sizeof(buffer));
buffer[sizeof(buffer) - 1] = '\0';
return 0;

}

To iterate over every element of an array, use

#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

for(i = 0; i < NUM_ELEM(array); i++)
{

/* do something with array[i] */
;

}

Note that the sizeof operator only works on things defined earlier in the same function.
The compiler replaces it with some fixed constant number. In this case, the buffer was
declared as an array of 10 char's earlier in the same function, and the compiler replaces
sizeof(buffer) with the number 10 at compile time (equivalent to us hard-coding 10 into
the code in place of sizeof(buffer)). The information about the length of buffer is not
actually stored anywhere in memory (unless we keep track of it separately) and cannot be
programmatically obtained at run time from the array/pointer itself.

Often a function needs to know the size of an array it was given -- an array defined in some
other function. For example,

/* broken.c - demonstrates a flaw */

#include <stdio.h>
#include <string.h>
#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

int sum(int input_array[]){
int sum_so_far = 0;
int i;
for(i = 0; i < NUM_ELEM(input_array); i++) // WON'T WORK -- input_array
wasn't defined in this function.
{
sum_so_far += input_array[i];

};
return(sum_so_far);

}

int main(int argc, char *argv[])
{
int left_array[] = { 1, 2, 3 };
int right_array[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int the_sum = sum(left_array);
printf("the sum of left_array is: %d", the_sum);

197

Pointers and arrays

the_sum = sum(right_array);
printf("the sum of right_array is: %d", the_sum);

return 0;
}

Unfortunately, (in C and C++) the length of the array cannot be obtained from an array
passed in at run time, because (as mentioned above) the size of an array is not stored
anywhere. The compiler always replaces sizeof with a constant. This sum() routine needs
to handle more than just one constant length of an array.

There are some common ways to work around this fact:

• Write the function to require, for each array parameter, a "length" parameter (which has
type "size_t"). (Typically we use sizeof at the point where this function is called).

• Use of a convention, such as a null-terminated string5 to mark the end of the array.
• Instead of passing raw arrays, pass a structure that includes the length of the array (such

as ".length") as well as the array (or a pointer to the first element); similar to the string
or vector classes in C++.

/* fixed.c - demonstrates one work-around */

#include <stdio.h>
#include <string.h>
#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

int sum(int input_array[], size_t length){
int sum_so_far = 0;
int i;
for(i = 0; i < length; i++)
{
sum_so_far += input_array[i];

};
return(sum_so_far);

}

int main(int argc, char *argv[])
{
int left_array[] = { 1, 2, 3, 4 };
int right_array[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int the_sum = sum(left_array, NUM_ELEM(left_array)); // works here, because
left_array is defined in this function
printf("the sum of left_array is: %d", the_sum);
the_sum = sum(right_array, NUM_ELEM(right_array)); // works here, because
right_array is defined in this function
printf("the sum of right_array is: %d", the_sum);

return 0;
}

It's worth mentioning that sizeof operator has two variations: sizeof (type) (for in-
stance: sizeof (int) or sizeof (struct some_structure)) and sizeof expression
(for instance: sizeof some_variable.some_field or sizeof 1).

5 http://en.wikipedia.org/wiki/null-terminated%20string

198

http://en.wikipedia.org/wiki/null-terminated%20string

External Links

25.11 External Links

• C Reference Card (ANSI)6
• "Common Pointer Pitfalls"7 by Dave Marshall
• "Further insights into size_t"8 by Dan Saks 2007
• "Pointer Fun with Binky"9

de:C-Programmierung: Zeiger10 it:C/Vettori e puntatori/Interscambiabilità tra puntatori e
vettori11 pl:C/Wskaźniki12

6 http://www.digilife.be/quickreferences/QRC/C%20Reference%20Card%20(ANSI)%202.2.pdf
7 http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTION001080000000000000000
8 http://www.embedded.com/columns/programmingpointers/201803576
9 http://en.wikibooks.org/wiki/%3AFile%3APointer%20Fun%20with%20Binky%20%28C%29.ogg
10 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Zeiger

11 http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%C3%A0%
20tra%20puntatori%20e%20vettori

12 http://pl.wikibooks.org/wiki/C%2FWska%C5%BAniki

199

http://www.digilife.be/quickreferences/QRC/C%20Reference%20Card%20(ANSI)%202.2.pdf
http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTION001080000000000000000
http://www.embedded.com/columns/programmingpointers/201803576
http://en.wikibooks.org/wiki/%3AFile%3APointer%20Fun%20with%20Binky%20%28C%29.ogg
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Zeiger
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%C3%A0%20tra%20puntatori%20e%20vettori
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%C3%A0%20tra%20puntatori%20e%20vettori
http://pl.wikibooks.org/wiki/C%2FWska%C5%BAniki

26 Memory management

In C, you have already considered creating variables for use in the program. You have
created some arrays for use, but you may have already noticed some limitations:

• the size of the array must be known beforehand
• the size of the array cannot be changed in the duration of your program

Dynamic memory allocation in C is a way of circumventing these problems.

26.1 EXAMPLE

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);
void free(void *ptr);
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);

The C function malloc is the means of implementing dynamic memory allocation. It is
defined in stdlib.h or malloc.h, depending on what operating system you may be using.
Malloc.h contains only the definitions for the memory allocation functions and not the rest
of the other functions defined in stdlib.h. Usually you will not need to be so specific in your
program, and if both are supported, you should use <stdlib.h>, since that is ANSI C, and
what we will use here.

The corresponding call to release allocated memory back to the operating system is free.

When dynamically allocated memory is no longer needed, free should be called to release
it back to the memory pool. Overwriting a pointer that points to dynamically allocated
memory can result in that data becoming inaccessible. If this happens frequently, eventually
the operating system will no longer be able to allocate more memory for the process. Once
the process exits, the operating system is able to free all dynamically allocated memory
associated with the process.

Let's look at how dynamic memory allocation can be used for arrays.

Normally when we wish to create an array we use a declaration such as

int array[10];

Recall array can be considered a pointer which we use as an array. We specify the length
of this array is 10 ints. After array[0], nine other integers have space to be stored
consecutively.

Sometimes it is not known at the time the program is written how much memory will be
needed for some data. In this case we would want to dynamically allocate required memory

201

Memory management

after the program has started executing. To do this we only need to declare a pointer, and
invoke malloc when we wish to make space for the elements in our array, or, we can tell
malloc to make space when we first initialize the array. Either way is acceptable and useful.

We also need to know how much an int takes up in memory in order to make room for it;
fortunately this is not difficult, we can use C's builtin sizeof operator. For example, if
sizeof(int) yields 4, then one int takes up 4 bytes. Naturally, 2*sizeof(int) is how
much memory we need for 2 ints, and so on.

So how do we malloc an array of ten ints like before? If we wish to declare and make
room in one hit, we can simply say

int *array = malloc(10*sizeof(int));

We only need to declare the pointer; malloc gives us some space to store the 10 ints, and
returns the pointer to the first element, which is assigned to that pointer.

Important note! malloc does not initialize the array; this means that the array may
contain random or unexpected values! Like creating arrays without dynamic allocation, the
programmer must initialize the array with sensible values before using it. Make sure you
do so, too. (See later the function memset for a simple method.)

It is not necessary to immediately call malloc after declaring a pointer for the allocated
memory. Often a number of statements exist between the declaration and the call to malloc,
as follows:

int *array = NULL;
printf("Hello World!!!");
/* more statements */
array = malloc(10*sizeof(int)); /* delayed allocation */
/* use the array */

26.1.1 Error checking

When we want to use malloc, we have to be mindful that the pool of memory available
to the programmer is finite. As such, we can conceivably run out of memory! In this case,
malloc will return NULL. In order to stop the program crashing from having no more memory
to use, one should always check that malloc has not returned NULL before attempting to
use the memory; we can do this by

int *pt = malloc(3 * sizeof(int));
if(pt == NULL)
{

fprintf(stderr, "Out of memory, exiting\n");
exit(1);

}

Of course, suddenly quitting as in the above example is not always appropriate, and de-
pends on the problem you are trying to solve and the architecture you are programming for.
For example, if the program is a small, non critical application that's running on a desktop
quitting may be appropriate. However if the program is some type of editor running on
a desktop, you may want to give the operator the option of saving his tediously entered

202

The calloc function

information instead of just exiting the program. A memory allocation failure in an embed-
ded processor, such as might be in a washing machine, could cause an automatic reset of
the machine. For this reason, many embedded systems designers avoid dynamic memory
allocation altogether.

26.2 The calloc function

The calloc function allocates space for an array of items and initilizes the memory to
zeros. The call mArray = calloc(count, sizeof(struct V)) allocates count objects,
each of whose size is sufficient to contain an instance of the structure struct V. The space
is initialized to all bits zero. The function returns either a pointer to the allocated memory
or, if the allocation fails, NULL.

26.3 The realloc function

void * realloc (void * ptr, size_t size);

The realloc function changes the size of the object pointed to by ptr to the size specified
by size. The contents of the object shall be unchanged up to the lesser of the new and
old sizes. If the new size is larger, the value of the newly allocated portion of the object
is indeterminate. If ptr is a null pointer, the realloc function behaves like the malloc
function for the specified size. Otherwise, if ptr does not match a pointer earlier returned
by the calloc, malloc, or realloc function, or if the space has been deallocated by a
call to the free or realloc function, the behavior is undefined. If the space cannot be
allocated, the object pointed to by ptr is unchanged. If size is zero and ptr is not a null
pointer, the object pointed to is freed. The realloc function returns either a null pointer
or a pointer to the possibly moved allocated object.

26.4 The free function

Memory that has been allocated using malloc, realloc, or calloc must be released back
to the system memory pool once it is no longer needed. This is done to avoid perpetually
allocating more and more memory, which could result in an eventual memory allocation
failure. Memory that is not released with free is however released when the current program
terminates on most operating systems. Calls to free are as in the following example.

int *myStuff = malloc(20 * sizeof(int));
if (myStuff != NULL)
{

/* more statements here */
/* time to release myStuff */
free(myStuff);

}

203

Memory management

26.4.1 free with recursive data structures

It should be noted that free is neither intelligent nor recursive. The following code that
depends on the recursive application of free to the internal variables of a struct1 does not
work.

typedef struct BSTNode
{

int value;
struct BSTNode* left;
struct BSTNode* right;

} BSTNode;

// Later: ...

BSTNode* temp = (BSTNode*) calloc(1, sizeof(BSTNode));
temp->left = (BSTNode*) calloc(1, sizeof(BSTNode));

// Later: ...

free(temp); // WRONG! don't do this!

The statement "free(temp);" will not free temp->left, causing a memory leak.

Because C does not have a garbage collector, C programmers are responsible for making
sure there is a free() exactly once for each time there is a malloc(). If a tree has been
allocated one node at a time, then it needs to be freed one node at a time.

26.4.2 Don't free undefined pointers

Furthermore, using free when the pointer in question was never allocated in the first place
often crashes or leads to mysterious bugs further along.

To avoid this problem, always initialize pointers when they are declared. Either use malloc
at the point they are declared (as in most examples in this chapter), or set them to NULL
when they are declared (as in the "delayed allocation" example in this chapter). 2

26.5 References

1 Chapter 28 on page 221
2 "Bug 478901 ... libpng-1.2.34 and earlier might free undefined pointers" ˆ{https://bugzilla.

mozilla.org/show_bug.cgi?id=478901}

204

https://bugzilla.mozilla.org/show_bug.cgi?id=478901
https://bugzilla.mozilla.org/show_bug.cgi?id=478901

27 Strings

A string in C is merely an array of characters. The length of a string is determined by
a terminating null character: '\0'. So, a string with the contents, say, "abc" has four
characters: 'a', 'b', 'c', and the terminating null character.

The terminating null character has the value zero.

27.1 Syntax

In C, string constants (literals) are surrounded by double quotes ("), e.g. "Hello world!" and
are compiled to an array of the specified char values with an additional null terminating
character (0-valued) code to mark the end of the string. The type of a string constant is
char *.

String literals may not directly in the source code contain embedded newlines or other
control characters, or some other characters of special meaning in string.

To include such characters in a string, the backslash escapes may be used, like this:

Escape Meaning
\\ Literal backslash
\" Double quote
\' Single quote
\n Newline (line feed)
\r Carriage return
\b Backspace
\t Horizontal tab
\f Form feed
\a Alert (bell)
\v Vertical tab
\? Question mark (used to escape trigraphs1)
\nnn Character with octal value nnn
\xhh Character with hexadecimal value hh

27.1.1 Wide character strings

C supports wide character strings, defined as arrays of the type wchar_t, 16-bit (at least)
values. They are written with an L before the string like this

1 http://en.wikibooks.org/wiki/..%2FC%20trigraph%2F

205

http://en.wikibooks.org/wiki/..%2FC%20trigraph%2F

Strings

wchar_t *p = L"Hello world!";

This feature allows strings where more than 256 different possible characters are needed
(although also variable length char strings can be used). They end with a zero-valued
wchar_t. These strings are not supported by the <string.h> functions. Instead they have
their own functions, declared in <wchar.h>.

27.1.2 Character encodings

What character encoding the char and wchar_t represent is not specified by the C standard,
except that the value 0x00 and 0x0000 specify the end of the string and not a character.
It the input and output code which are directly affected by the character encoding. Other
code should not be too affected. The editor should also be able to handle the encoding if
strings shall be able to written in the source code.

There are three major types of encodings:

• One byte per character. Normally based on ASCII. There is a limit of 255 different
characters plus the zero termination character.

• Variable length char strings, which allows many more than 255 different characters.
Such strings are written as normal char-based arrays. These encodings are normally
ASCII-based and examples are UTF-82 or Shift JIS3.

• Wide character strings. They are arrays of wchar_t values. UTF-164 is the most com-
mon such encoding, and it is also variable-length, meaning that a character can be two
wchar_t.

27.2 The <string.h> Standard Header

Because programmers find raw strings cumbersome to deal with, they wrote the code in the
<string.h> library. It represents not a concerted design effort but rather the accretion of
contributions made by various authors over a span of years.

First, three types of functions exist in the string library:

• the mem functions manipulate sequences of arbitrary characters without regard to the
null character;

• the str functions manipulate null-terminated sequences of characters;
• the strn functions manipulate sequences of non-null characters.

27.2.1 The more commonly-used string functions

The nine most commonly used functions in the string library are:

• strcat - concatenate two strings

2 http://en.wikibooks.org/wiki/UTF-8
3 http://en.wikibooks.org/wiki/Shift%20JIS
4 http://en.wikibooks.org/wiki/UTF-16

206

http://en.wikibooks.org/wiki/UTF-8
http://en.wikibooks.org/wiki/Shift%20JIS
http://en.wikibooks.org/wiki/UTF-16

The <string.h> Standard Header

• strchr - string scanning operation
• strcmp - compare two strings
• strcpy - copy a string
• strlen - get string length
• strncat - concatenate one string with part of another
• strncmp - compare parts of two strings
• strncpy - copy part of a string
• strrchr - string scanning operation

The strcat function

char *strcat(char * restrict s1, const char * restrict s2);

Some people recommend using strncat() or strlcat() instead of strcat, in order to avoid
buffer overflow.

The strcat() function shall append a copy of the string pointed to by s2 (including the
terminating null byte) to the end of the string pointed to by s1. The initial byte of s2
overwrites the null byte at the end of s1. If copying takes place between objects that
overlap, the behavior is undefined. The function returns s1.

This function is used to attach one string to the end of another string. It is imperative that
the first string (s1) have the space needed to store both strings.

Example:

#include <stdio.h>
#include <string.h>
...
static const char *colors[] =

{"Red","Orange","Yellow","Green","Blue","Purple" };
static const char *widths[] = {"Thin","Medium","Thick","Bold" };
...
char penText[20];
...
int penColor = 3, penThickness = 2;
strcpy(penText, colors[penColor]);
strcat(penText, widths[penThickness]);
printf("My pen is %s\n", penText); // prints 'My pen is GreenThick'

Before calling strcat(), the destination must currently contain a null terminated string or
the first character must have been initialized with the null character (e.g. penText[0] =
'\0';).

The following is a public-domain implementation of strcat:

#include <string.h>
/* strcat */
char *(strcat)(char *restrict s1, const char *restrict s2)
{

char *s = s1;
/* Move s so that it points to the end of s1. */
while (*s != '\0')

s++;
/* Copy the contents of s2 into the space at the end of s1. */
strcpy(s, s2);

207

Strings

return s1;
}

The strchr function

char *strchr(const char *s, int c);

The strchr() function shall locate the first occurrence of c (converted to a char) in the
string pointed to by s. The terminating null byte is considered to be part of the string.
The function returns the location of the found character, or a null pointer if the character
was not found.

This function is used to find certain characters in strings.

At one point in history, this function was named index. The strchr name, however cryptic,
fits the general pattern for naming.

The following is a public-domain implementation of strchr:

#include <string.h>
/* strchr */
char *(strchr)(const char *s, int c)
{

/* Scan s for the character. When this loop is finished,
s will either point to the end of the string or the
character we were looking for. */

while (*s != '\0' && *s != (char)c)
s++;

return ((*s == c) ? (char *) s : NULL);
}

The strcmp function

int strcmp(const char *s1, const char *s2);

A rudimentary form of string comparison is done with the strcmp() function. It takes two
strings as arguments and returns a value less than zero if the first is lexographically less
than the second, a value greater than zero if the first is lexographically greater than the
second, or zero if the two strings are equal. The comparison is done by comparing the coded
(ascii) value of the chararacters, character by character.

This simple type of string comparison is nowadays generally considered unacceptable when
sorting lists of strings. More advanced algorithms exist that are capable of producing lists in
dictionary sorted order. They can also fix problems such as strcmp() considering the string
"Alpha2" greater than "Alpha12". (In the previous example, "Alpha2" compares greater
than "Alpha12" because '2' comes after '1' in the character set.) What we're saying is,
don't use this strcmp() alone for general string sorting in any commercial or professional
code.

The strcmp() function shall compare the string pointed to by s1 to the string pointed to
by s2. The sign of a non-zero return value shall be determined by the sign of the difference
between the values of the first pair of bytes (both interpreted as type unsigned char) that
differ in the strings being compared. Upon completion, strcmp() shall return an integer

208

The <string.h> Standard Header

greater than, equal to, or less than 0, if the string pointed to by s1 is greater than, equal
to, or less than the string pointed to by s2, respectively.

Since comparing pointers by themselves is not practically useful unless one is comparing
pointers within the same array, this function lexically compares the strings that two pointers
point to.

This function is useful in comparisons, e.g.

if (strcmp(s, "whatever") == 0) /* do something */
;

The collating sequence used by strcmp() is equivalent to the machine's native character
set. The only guarantee about the order is that the digits from '0' to '9' are in consecutive
order.

The following is a public-domain implementation of strcmp:

#include <string.h>
/* strcmp */
int (strcmp)(const char *s1, const char *s2)
{

unsigned char uc1, uc2;
/* Move s1 and s2 to the first differing characters

in each string, or the ends of the strings if they
are identical. */

while (*s1 != '\0' && *s1 == *s2) {
s1++;
s2++;

}
/* Compare the characters as unsigned char and

return the difference. */
uc1 = (*(unsigned char *) s1);
uc2 = (*(unsigned char *) s2);
return ((uc1 < uc2) ? -1 : (uc1 > uc2));

}

The strcpy function

char *strcpy(char *restrict s1, const char *restrict s2);

Some people recommend always using strncpy() instead of strcpy, to avoid buffer overflow.

The strcpy() function shall copy the C string pointed to by s2 (including the terminating
null byte) into the array pointed to by s1. If copying takes place between objects that
overlap, the behavior is undefined. The function returns s1. There is no value used to
indicate an error: if the arguments to strcpy() are correct, and the destination buffer is
large enough, the function will never fail.

Example:

#include <stdio.h>
#include <string.h>
/* ... */
static const char *penType="round";
/* ... */

209

Strings

char penText[20];
/* ... */
strcpy(penText, penType);

Important: You must ensure that the destination buffer (s1) is able to contain all the
characters in the source array, including the terminating null byte. Otherwise, strcpy()
will overwrite memory past the end of the buffer, causing a buffer overflow, which can cause
the program to crash, or can be exploited by hackers to compromise the security of the
computer.

The following is a public-domain implementation of strcpy:

#include <string.h>
/* strcpy */
char *(strcpy)(char *restrict s1, const char *restrict s2)
{

char *dst = s1;
const char *src = s2;
/* Do the copying in a loop. */
while ((*dst++ = *src++) != '\0')

; /* The body of this loop is left empty. */
/* Return the destination string. */
return s1;

}

The strlen function

size_t strlen(const char *s);

The strlen() function shall compute the number of bytes in the string to which s points,
not including the terminating null byte. It returns the number of bytes in the string. No
value is used to indicate an error.

The following is a public-domain implementation of strlen:

#include <string.h>
/* strlen */
size_t (strlen)(const char *s)
{

const char *p = s;
/* Loop over the data in s. */
while (*p != '\0')

p++;
return (size_t)(p - s);

}

The strncat function

char *strncat(char *restrict s1, const char *restrict s2, size_t n);

The strncat() function shall append not more than n bytes (a null byte and bytes that
follow it are not appended) from the array pointed to by s2 to the end of the string pointed
to by s1. The initial byte of s2 overwrites the null byte at the end of s1. A terminating null
byte is always appended to the result. If copying takes place between objects that overlap,
the behavior is undefined. The function returns s1.

210

The <string.h> Standard Header

The following is a public-domain implementation of strncat:

#include <string.h>
/* strncat */
char *(strncat)(char *restrict s1, const char *restrict s2, size_t n)
{

char *s = s1;
/* Loop over the data in s1. */
while (*s != '\0')

s++;
/* s now points to s1's trailing null character, now copy

up to n bytes from s1 into s stopping if a null character
is encountered in s2.
It is not safe to use strncpy here since it copies EXACTLY n
characters, NULL padding if necessary. */

while (n != 0 && (*s = *s2++) != '\0') {
n--;
s++;

}
if (*s != '\0')

*s = '\0';
return s1;

}

The strncmp function

int strncmp(const char *s1, const char *s2, size_t n);

The strncmp() function shall compare not more than n bytes (bytes that follow a null byte
are not compared) from the array pointed to by s1 to the array pointed to by s2. The sign
of a non-zero return value is determined by the sign of the difference between the values of
the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared. See strcmp for an explanation of the return value.

This function is useful in comparisons, as the strcmp function is.

The following is a public-domain implementation of strncmp:

#include <string.h>
/* strncmp */
int (strncmp)(const char *s1, const char *s2, size_t n)
{

unsigned char uc1, uc2;
/* Nothing to compare? Return zero. */
if (n == 0)

return 0;
/* Loop, comparing bytes. */
while (n-- > 0 && *s1 == *s2) {

/* If we've run out of bytes or hit a null, return zero
since we already know *s1 == *s2. */

if (n == 0 || *s1 == '\0')
return 0;

s1++;
s2++;

}
uc1 = (*(unsigned char *) s1);
uc2 = (*(unsigned char *) s2);
return ((uc1 < uc2) ? -1 : (uc1 > uc2));

}

211

Strings

The strncpy function

char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

The strncpy() function shall copy not more than n bytes (bytes that follow a null byte
are not copied) from the array pointed to by s2 to the array pointed to by s1. If copying
takes place between objects that overlap, the behavior is undefined. If the array pointed to
by s2 is a string that is shorter than n bytes, null bytes shall be appended to the copy in
the array pointed to by s1, until n bytes in all are written. The function shall return s1; no
return value is reserved to indicate an error.

It is possible that the function will not return a null-terminated string, which happens if
the s2 string is longer than n bytes.

The following is a public-domain version of strncpy:

#include <string.h>
/* strncpy */
char *(strncpy)(char *restrict s1, const char *restrict s2, size_t n)
{

char *dst = s1;
const char *src = s2;
/* Copy bytes, one at a time. */
while (n > 0) {

n--;
if ((*dst++ = *src++) == '\0') {

/* If we get here, we found a null character at the end
of s2, so use memset to put null bytes at the end of
s1. */

memset(dst, '\0', n);
break;

}
}
return s1;

}

The strrchr function

char *strrchr(const char *s, int c);

strrchr is similar to strchr, except the string is searched right to left.

The strrchr() function shall locate the last occurrence of c (converted to a char) in the
string pointed to by s. The terminating null byte is considered to be part of the string. Its
return value is similar to strchr's return value.

At one point in history, this function was named rindex. The strrchr name, however
cryptic, fits the general pattern for naming.

The following is a public-domain implementation of strrchr:

#include <string.h>
/* strrchr */
char *(strrchr)(const char *s, int c)
{

const char *last = NULL;
/* If the character we're looking for is the terminating null,

we just need to look for that character as there's only one

212

The <string.h> Standard Header

of them in the string. */
if (c == '\0')

return strchr(s, c);
/* Loop through, finding the last match before hitting NULL. */
while ((s = strchr(s, c)) != NULL) {

last = s;
s++;

}
return (char *) last;

}

27.2.2 The less commonly-used string functions

The less-used functions are:

• memchr - Find a byte in memory
• memcmp - Compare bytes in memory
• memcpy - Copy bytes in memory
• memmove - Copy bytes in memory with overlapping areas
• memset - Set bytes in memory
• strcoll - Compare bytes according to a locale-specific collating sequence
• strcspn - Get the length of a complementary substring
• strerror - Get error message
• strpbrk - Scan a string for a byte
• strspn - Get the length of a substring
• strstr - Find a substring
• strtok - Split a string into tokens
• strxfrm - Transform string

Copying functions

The memcpy function
void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. If copying takes place between objects that overlap, the behavior is
undefined. The function returns s1.

Because the function does not have to worry about overlap, it can do the simplest copy it
can.

The following is a public-domain implementation of memcpy:

#include <string.h>
/* memcpy */
void *(memcpy)(void * restrict s1, const void * restrict s2, size_t n)
{

char *dst = s1;
const char *src = s2;
/* Loop and copy. */
while (n-- != 0)

*dst++ = *src++;
return s1;

}

213

Strings

The memmove function
void *memmove(void *s1, const void *s2, size_t n);

The memmove() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. Copying takes place as if the n bytes from the object pointed to by s2
are first copied into a temporary array of n bytes that does not overlap the objects pointed
to by s1 and s2, and then the n bytes from the temporary array are copied into the object
pointed to by s1. The function returns the value of s1.

The easy way to implement this without using a temporary array is to check for a condition
that would prevent an ascending copy, and if found, do a descending copy.

The following is a public-domain, though not completely portable, implementation of
memmove:

#include <string.h>
/* memmove */
void *(memmove)(void *s1, const void *s2, size_t n)
{

/* note: these don't have to point to unsigned chars */
char *p1 = s1;
const char *p2 = s2;
/* test for overlap that prevents an ascending copy */
if (p2 < p1 && p1 < p2 + n) {

/* do a descending copy */
p2 += n;
p1 += n;
while (n-- != 0)

*--p1 = *--p2;
} else

while (n-- != 0)
*p1++ = *p2++;

return s1;
}

Comparison functions

The memcmp function
int memcmp(const void *s1, const void *s2, size_t n);

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char)
of the object pointed to by s1 to the first n bytes of the object pointed to by s2. The sign
of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the
objects being compared.

The following is a public-domain implementation of memcmp:

#include <string.h>
/* memcmp */
int (memcmp)(const void *s1, const void *s2, size_t n)
{

const unsigned char *us1 = (const unsigned char *) s1;
const unsigned char *us2 = (const unsigned char *) s2;
while (n-- != 0) {

if (*us1 != *us2)
return (*us1 < *us2) ? -1 : +1;

us1++;

214

The <string.h> Standard Header

us2++;
}
return 0;

}

The strcoll and strxfrm functions
int strcoll(const char *s1, const char *s2);

size_t strxfrm(char *s1, const char *s2, size_t n);

The ANSI C Standard specifies two locale-specific comparison functions.

The strcoll function compares the string pointed to by s1 to the string pointed to by
s2, both interpreted as appropriate to the LC_COLLATE category of the current locale. The
return value is similar to strcmp.

The strxfrm function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the strcmp function is
applied to the two transformed strings, it returns a value greater than, equal to, or less than
zero, corresponding to the result of the strcoll function applied to the same two original
strings. No more than n characters are placed into the resulting array pointed to by s1,
including the terminating null character. If n is zero, s1 is permitted to be a null pointer. If
copying takes place between objects that overlap, the behavior is undefined. The function
returns the length of the transformed string.

These functions are rarely used and nontrivial to code, so there is no code for this section.

Search functions

The memchr function
void *memchr(const void *s, int c, size_t n);

The memchr() function shall locate the first occurrence of c (converted to an unsigned
char) in the initial n bytes (each interpreted as unsigned char) of the object pointed to
by s. If c is not found, memchr returns a null pointer.

The following is a public-domain implementation of memchr:

#include <string.h>
/* memchr */
void *(memchr)(const void *s, int c, size_t n)
{

const unsigned char *src = s;
unsigned char uc = c;
while (n-- != 0) {

if (*src == uc)
return (void *) src;

src++;
}
return NULL;

}

215

Strings

The strcspn, strpbrk, and strspn functions
size_t strcspn(const char *s1, const char *s2);

char *strpbrk(const char *s1, const char *s2);

size_t strspn(const char *s1, const char *s2);

The strcspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters not from the string pointed to by s2.

The strpbrk function locates the first occurrence in the string pointed to by s1 of any
character from the string pointed to by s2, returning a pointer to that character or a null
pointer if not found.

The strspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters from the string pointed to by s2.

All of these functions are similar except in the test and the return value.

The following are public-domain implementations of strcspn, strpbrk, and strspn:

#include <string.h>
/* strcspn */
size_t (strcspn)(const char *s1, const char *s2)
{

const char *sc1;
for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) != NULL)
return (sc1 - s1);

return sc1 - s1; /* terminating nulls match */
}

#include <string.h>
/* strpbrk */
char *(strpbrk)(const char *s1, const char *s2)
{

const char *sc1;
for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) != NULL)
return (char *)sc1;

return NULL; /* terminating nulls match */
}

#include <string.h>
/* strspn */
size_t (strspn)(const char *s1, const char *s2)
{

const char *sc1;
for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) == NULL)
return (sc1 - s1);

return sc1 - s1; /* terminating nulls don't match */
}

The strstr function
char *strstr(const char *haystack, const char *needle);

The strstr() function shall locate the first occurrence in the string pointed to by haystack
of the sequence of bytes (excluding the terminating null byte) in the string pointed to by

216

The <string.h> Standard Header

needle. The function returns the pointer to the matching string in haystack or a null
pointer if a match is not found. If needle is an empty string, the function returns haystack.

The following is a public-domain implementation of strstr:

#include <string.h>
/* strstr */
char *(strstr)(const char *haystack, const char *needle)
{

size_t needlelen;
/* Check for the null needle case. */
if (*needle == '\0')

return (char *) haystack;
needlelen = strlen(needle);
for (; (haystack = strchr(haystack, *needle)) != NULL; haystack++)

if (strncmp(haystack, needle, needlelen) == 0)
return (char *) haystack;

return NULL;
}

The strtok function
char *strtok(char *restrict s1, const char *restrict delimiters);

A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by delimiters. The first
call in the sequence has s1 as its first argument, and is followed by calls with a null pointer
as their first argument. The separator string pointed to by delimiters may be different
from call to call.

The first call in the sequence searches the string pointed to by s1 for the first byte that is
not contained in the current separator string pointed to by delimiters. If no such byte is
found, then there are no tokens in the string pointed to by s1 and strtok() shall return a
null pointer. If such a byte is found, it is the start of the first token.

The strtok() function then searches from there for a byte (or multiple, consecutive bytes)
that is contained in the current separator string. If no such byte is found, the current token
extends to the end of the string pointed to by s1, and subsequent searches for a token
shall return a null pointer. If such a byte is found, it is overwritten by a null byte, which
terminates the current token. The strtok() function saves a pointer to the following byte,
from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above.

The strtok() function need not be reentrant. A function that is not required to be reentrant
is not required to be thread-safe.

Because the strtok() function must save state between calls, and you could not have two
tokenizers going at the same time, the Single Unix Standard defined a similar function,
strtok_r(), that does not need to save state. Its prototype is this:

char *strtok_r(char *s, const char *delimiters, char **lasts);

The strtok_r() function considers the null-terminated string s as a sequence of zero or
more text tokens separated by spans of one or more characters from the separator string

217

Strings

delimiters. The argument lasts points to a user-provided pointer which points to stored
information necessary for strtok_r() to continue scanning the same string.

In the first call to strtok_r(), s points to a null-terminated string, delimiters to a null-
terminated string of separator characters, and the value pointed to by lasts is ignored. The
strtok_r() function shall return a pointer to the first character of the first token, write a
null character into s immediately following the returned token, and update the pointer to
which lasts points.

In subsequent calls, s is a null pointer and lasts shall be unchanged from the previous
call so that subsequent calls shall move through the string s, returning successive tokens
until no tokens remain. The separator string delimiters may be different from call to call.
When no token remains in s, a NULL pointer shall be returned.

The following public-domain code for strtok and strtok_r codes the former as a special
case of the latter:

#include <string.h>
/* strtok_r */
char *(strtok_r)(char *s, const char *delimiters, char **lasts)
{

char *sbegin, *send;
sbegin = s ? s : *lasts;
sbegin += strspn(sbegin, delimiters);
if (*sbegin == '\0') {

*lasts = "";
return NULL;

}
send = sbegin + strcspn(sbegin, delimiters);
if (*send != '\0')

*send++ = '\0';
*lasts = send;
return sbegin;

}
/* strtok */
char *(strtok)(char *restrict s1, const char *restrict delimiters)
{

static char *ssave = "";
return strtok_r(s1, delimiters, &ssave);

}

Miscellaneous functions

These functions do not fit into one of the above categories.

The memset function
void *memset(void *s, int c, size_t n);

The memset() function converts c into unsigned char, then stores the character into the
first n bytes of memory pointed to by s.

The following is a public-domain implementation of memset:

#include <string.h>
/* memset */
void *(memset)(void *s, int c, size_t n)
{

218

Examples

unsigned char *us = s;
unsigned char uc = c;
while (n-- != 0)

*us++ = uc;
return s;

}

The strerror function
char *strerror(int errorcode);

This function returns a locale-specific error message corresponding to the parameter. De-
pending on the circumstances, this function could be trivial to implement, but this author
will not do that as it varies.

The Single Unix System Version 3 has a variant, strerror_r, with this prototype:

int strerror_r(int errcode, char *buf, size_t buflen);

This function stores the message in buf, which has a length of size buflen.

27.3 Examples

To determine the number of characters in a string, the strlen() function is used:

#include <stdio.h>
#include <string.h>
...
int length, length2;
char *turkey;
static char *flower= "begonia";
static char *gemstone="ruby ";

length = strlen(flower);
printf("Length = %d\n", length); // prints 'Length = 7'
length2 = strlen(gemstone);

turkey = malloc(length + length2 + 1);
if (turkey) {
strcpy(turkey, gemstone);
strcat(turkey, flower);
printf("%s\n", turkey); // prints 'ruby begonia'
free(turkey);

}

Note that the amount of memory allocated for 'turkey' is one plus the sum of the lengths
of the strings to be concatenated. This is for the terminating null character, which is not
counted in the lengths of the strings.

27.3.1 Exercises

1. The string functions use a lot of looping constructs. Is there some way to portably
unravel the loops?

2. What functions are possibly missing from the library as it stands now?

219

Strings

27.4 Further reading

• A Little C Primer/C String Function Library5
• C++ Programming/Code/IO/Streams/string6
• Because so many functions in the standard string.h library are vulnerable to buffer

overflow errors, some people7 recommend avoiding the string.h library and "C style
strings" and instead using a dynamic string API, such as the ones listed in the String
library comparison8.

• There's a tiny public domain concat() function, which will allocate memory and safely
concatenate any number of strings in portable C/C++ code9

pl:C/Napisy10 pt:Programar em C/Strings11

5 http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%
20Library

6 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FStreams%2Fstring
7 http://www.and.org/vstr/security
8 http://www.and.org/vstr/comparison
9 http://openwall.info/wiki/people/solar/software/public-domain-source-code/concat
10 http://pl.wikibooks.org/wiki/C%2FNapisy
11 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FStrings

220

http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%20Library
http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%20Library
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FStreams%2Fstring
http://www.and.org/vstr/security
http://www.and.org/vstr/comparison
http://openwall.info/wiki/people/solar/software/public-domain-source-code/concat
http://pl.wikibooks.org/wiki/C%2FNapisy
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FStrings

28 Complex types

In the section C types1 we looked at some basic types. However C complex types allow
us greater flexibility in managing data in our C program.

28.1 Data structures

A data structure ("struct") contains multiple pieces of data. Each piece of data (called a
"member") can be accessed by the name of the variable, followed by a '.', then the name of
the member. (Another way to access a member is using the member operator '->'). The
member variables of a struct can be of any data type and can even be an array or a pointer.

28.1.1 Pointers

Pointers are variables that don't hold the actual data. Instead they point to the memory
location of some other variable. For example,

int *pointer = &variable;

defines a pointer to an int, and also makes it point to the particular integer contained in
variable.

The '*' is what makes this an integer pointer. To make the pointer point to a different
integer, use the form

pointer = &sandwiches;

Where & is the address of operator. Often programmers set the value of the pointer to
NULL (a standard macro defined as 0 or (void*)0) like this:

pointer = NULL;

This tells us that the pointer isn't currently pointing to any real location.

Additionally, to dereference (access the thing being pointed at) the pointer, use the form:

1 http://en.wikibooks.org/wiki/C%20Programming%2FTypes

221

http://en.wikibooks.org/wiki/C%20Programming%2FTypes

Complex types

value = *pointer;

28.1.2 Structs

A data structure contains multiple pieces of data. One defines a data structure using the
struct keyword. For example,

struct mystruct
{

int int_member;
double double_member;
char string_member[25];

} variable;

variable is an instance of mystruct. You can omit it from the end of the struct
declaration and declare it later using:

struct mystruct variable;

It is often common practice to make a type synonym so we don't have to type "struct
mystruct" all the time. C allows us the possibility to do so using a typedef statement,
which aliases a type:

typedef struct
{
...

} Mystruct;

The struct itself has no name (by the absence of a name on the first line), but it is aliased
as Mystruct. Then you can use

Mystruct structure;

Note that it is commonplace, and good style to capitalize the first letter of a type
synonym. However in the actual definition we need to give the struct a tag so we can refer
to it: we may have a recursive data structure of some kind. For trees or chained lists, we
need a pointer to the same data type in the struct. During compilation, the type synonym
is not known to the compiler and there will be an error. To avoid this, it is necessary to let
the compiler know the name right from the start (Note that the struct keyword is used
only inside the structure! After the declaration, the compiler knows that the type synonym
refers to a struct):

typedef struct Mystruct
{
...

222

Type modifiers

struct Mystruct * pMystruct
} Mystruct;

28.1.3 Unions

The definition of a union is similar to that of a struct. The difference between the two
is that in a struct, the members occupy different areas of memory, but in a union, the
members occupy the same area of memory. Thus, in the following type, for example:

union {
int i;
double d;

} u;

The programmer can access either u.i or u.d, but not both at the same time. Since u.i
and u.d occupy the same area of memory, modifying one modifies the value of the other,
sometimes in unpredictable ways.

The size of a union is the size of its largest member.

28.2 Type modifiers

For "register", "volatile", "auto" and "extern", see ../Variables#Other_Modifiers2.

de:C-Programmierung: Komplexe Datentypen3 pl:C/Typy złożone4

2 Chapter 12.9 on page 54
3 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Komplexe%20Datentypen
4 http://pl.wikibooks.org/wiki/C%2FTypy%20z%C5%82o%C5%BCone

223

http://de.wikibooks.org/wiki/C-Programmierung%3A%20Komplexe%20Datentypen
http://pl.wikibooks.org/wiki/C%2FTypy%20z%C5%82o%C5%BCone

29 Networking in UNIX

Network programming under UNIX is relatively simple in C.

This guide assumes you already have a good general idea about C, UNIX and networks.

29.1 A simple client

To start with, we'll look at one of the simplest things you can do: initialize a stream
connection and receive a message from a remote server.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define MAXRCVLEN 500
#define PORTNUM 2343

int main(int argc, char *argv[])
{

char buffer[MAXRCVLEN + 1]; /* +1 so we can add null terminator */
int len, mysocket;
struct sockaddr_in dest;

mysocket = socket(AF_INET, SOCK_STREAM, 0);

memset(&dest, 0, sizeof(dest)); /* zero the struct */
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = inet_addr("127.0.0.1"); /* set destination IP number

*/
dest.sin_port = htons(PORTNUM); /* set destination port number

*/

connect(mysocket, (struct sockaddr *)&dest, sizeof(struct sockaddr));

len = recv(mysocket, buffer, MAXRCVLEN, 0);

/* We have to null terminate the received data ourselves */
buffer[len] = '\0';

printf("Received %s (%d bytes).\n", buffer, len);

close(mysocket);
return EXIT_SUCCESS;

}

This is the very bare bones of a client; in practice, we would check every function that we
call for failure, however, error checking has been left out for clarity.

225

Networking in UNIX

As you can see, the code mainly revolves around dest which is a struct of type sockaddr_in.
This struct stores information about the machine we want to connect to.

mysocket = socket(AF_INET, SOCK_STREAM, 0);

The socket() function tells our OS that we want a file descriptor for a socket which we
can use for a network stream connection; what the parameters mean is mostly irrelevant
for now.

memset(&dest, 0, sizeof(dest)); /* zero the struct */
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = inet_addr("127.0.0.1"); /* set destination IP number */
dest.sin_port = htons(PORTNUM); /* set destination port number */

Now we get on to the interesting part:

The first line uses memset() to zero the struct.

The second line sets the address family. This should be the same value that was passed as
the first parameter to socket(); for most purposes AF_INET will serve.

The third line is where we set the IP of the machine we need to connect to. The variable
dest.sin_addr.s_addr is just an integer stored in Big Endian format, but we don't have to
know that as the inet_addr() function will do the conversion from string into Big Endian
integer for us.

The fourth line sets the destination port number. The htons() function converts the port
number into a Big Endian short integer. If your program is going to be run solely on
machines which use Big Endian numbers as default then dest.sin_port = 21 would work
just as well. However, for portability reasons htons() should always be used.

Now that all of the preliminary work is done, we can actually make the connection and use
it:

connect(mysocket, (struct sockaddr *)&dest, sizeof(struct sockaddr));

This tells our OS to use the socket mysocket to create a connection to the machine specified
in dest.

len = recv(mysocket, buffer, MAXRCVLEN, 0);

Now this receives up to MAXRCVLEN bytes of data from the connection and stores them in
the buffer string. The number of characters received is returned by recv(). It is important
to note that the data received will not automatically be null terminated when stored in the
buffer, so we need to do it ourselves with buffer[inputlen] = '\0'.

And that's about it!

The next step after learning how to receive data is learning how to send it. If you've
understood the previous section then this is quite easy. All you have to do is use the
send() function, which uses the same parameters as recv(). If in our previous example
buffer had the text we wanted to send and its length was stored in len we would write
send(mysocket, buffer, len, 0). send() returns the number of bytes that were sent.
It is important to remember that send(), for various reasons, may not be able to send all

226

A simple server

of the bytes, so it is important to check that its return value is equal to the number of bytes
you tried to send. In most cases this can be resolved by resending the unsent data.

29.2 A simple server

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PORTNUM 2343

int main(int argc, char *argv[])
{

char msg[] = "Hello World !\n";

struct sockaddr_in dest; /* socket info about the machine connecting to us
*/

struct sockaddr_in serv; /* socket info about our server */
int mysocket; /* socket used to listen for incoming connections

*/
socklen_t socksize = sizeof(struct sockaddr_in);

memset(&serv, 0, sizeof(serv)); /* zero the struct before filling
the fields */

serv.sin_family = AF_INET; /* set the type of connection to
TCP/IP */

serv.sin_addr.s_addr = htonl(INADDR_ANY); /* set our address to any
interface */

serv.sin_port = htons(PORTNUM); /* set the server port number */

mysocket = socket(AF_INET, SOCK_STREAM, 0);

/* bind serv information to mysocket */
bind(mysocket, (struct sockaddr *)&serv, sizeof(struct sockaddr));

/* start listening, allowing a queue of up to 1 pending connection */
listen(mysocket, 1);
int consocket = accept(mysocket, (struct sockaddr *)&dest, &socksize);

while(consocket)
{

printf("Incoming connection from %s - sending welcome\n",
inet_ntoa(dest.sin_addr));

send(consocket, msg, strlen(msg), 0);
consocket = accept(mysocket, (struct sockaddr *)&dest, &socksize);

}

close(consocket);
close(mysocket);
return EXIT_SUCCESS;

}

Superficially, this is very similar to the client. The first important difference is that rather
than creating a sockaddr_in with information about the machine we're connecting to, we
create it with information about the server, and then we bind() it to the socket. This

227

Networking in UNIX

allows the machine to know the data received on the port specified in the sockaddr_in
should be handled by our specified socket.

The listen() function then tells our program to start listening using the given socket. The
second parameter of listen() allows us to specify the maximum number of connections
that can be queued. Each time a connection is made to the server it is added to the queue.
We take connections from the queue using the accept() function. If there is no connection
waiting on the queue the program waits until a connection is received. The accept()
function returns another socket. This socket is essentially a "session" socket, and can be
used solely for communicating with connection we took off the queue. The original socket
(mysocket) continues to listen on the specified port for further connections.

Once we have "session" socket we can handle it in the same way as with the client, using
send() and recv() to handle data transfers.

Note that this server can only accept one connection at a time; if you want to simultaneously
handle multiple clients then you'll need to fork() off separate processes, or use threads, to
handle the connections.

29.3 Useful network functions

int gethostname(char *hostname, size_t size);

The parameters are a pointer to an array of chars and the size of that array. If possible, it
finds the hostname and stores it in the array. On failure it returns -1.

struct hostent *gethostbyname(const char *name);

This function obtains information about a domain name and stores it in a hostent struct.
The most useful part of a hostent structure is the (char**) h_addr_list field, which is
a null terminated array of the IP addresses associated with that domain. The field h_addr
is a pointer to the first IP address in the h_addr_list array. Returns NULL on failure.

29.4 FAQs

29.4.1 What about stateless connections?

If you don't want to exploit the properties of TCP in your program and would rather just
use a UDP connection, then you can just replace SOCK_STREAM with SOCK_DGRAM in your
call to socket() and use the result in the same way. It is important to remember that
UDP does not guarantee delivery of packets and order of delivery, so checking is important.

If you want to exploit the properties of UDP, then you can use sendto() and recvfrom(),
which operate like send() and recv() except you need to provide extra parameters speci-
fying who you are communicating with.

228

FAQs

29.4.2 How do I check for errors?

The functions socket(), recv() and connect() all return -1 on failure and use errno for
further details.

229

30 Common practices

With its extensive use, a number of common practices and conventions have evolved to help
avoid errors in C programs. These are simultaneously a demonstration of the application
of good software engineering principles to a language and an indication of the limitations
of C. Although few are used universally, and some are controversial, each of these enjoys
wide use.

30.1 Dynamic multidimensional arrays

Although one-dimensional arrays are easy to create dynamically using malloc, and fixed-
size multidimensional arrays are easy to create using the built-in language feature, dynamic
multidimensional arrays are trickier. There are a number of different ways to create them,
each with different tradeoffs. The two most popular ways to create them are:

• They can be allocated as a single block of memory, just like static multidimensional
arrays. This requires that the array be rectangular (i.e. subarrays of lower dimensions
are static and have the same size). The disadvantage is that the syntax of declaration
the pointer is a little tricky for programmers at first. For example, if one wanted to
create an array of ints of 3 columns and rows rows, one would do
int (*multi_array)[3] = malloc(rows * sizeof(int[3]));

(Note that here multi_array is a pointer to an array of 3 ints.)

Because of array-pointer interchangeability, you can index this just like static multidimen-
sional arrays, i.e. multi_array[5][2] is the element at the 6th row and 3rd column.

• They can be allocated by first allocating an array of pointers, and then allocating subar-
rays and storing their addresses in the array of pointers (this approach is also known as
an Iliffe vector1). The syntax for accessing elements is the same as for multidimensional
arrays described above (even though they are stored very differently). This approach
has the advantage of the ability to make ragged arrays (i.e. with subarrays of different
sizes). However, it also uses more space and requires more levels of indirection to index
into, and can have worse cache performance. It also requires many dynamic allocations,
each of which can be expensive.

For more information, see the comp.lang.c FAQ, question 6.162.

1 http://en.wikipedia.org/wiki/Iliffe%20vector
2 http://www.eskimo.com/~scs/C-faq/q6.16.html

231

http://en.wikipedia.org/wiki/Iliffe%20vector
http://www.eskimo.com/~scs/C-faq/q6.16.html

Common practices

In some cases, the use of multi-dimensional arrays can best be addressed as an array of
structures. Before user-defined data structures were available, a common technique was to
define a multi-dimensional array, where each column contained different information about
the row. This approach is also frequently used by beginner programmers. For example,
columns of a two-dimensional character array might contain last name, first name, address,
etc.

In cases like this, it is better to define a structure that contains the information that was
stored in the columns, and then create an array of pointers to that structure. This is
especially true when the number of data points for a given record might vary, such as the
tracks on an album. In these cases, it is better to create a structure for the album that
contains information about the album, along with a dynamic array for the list of songs
on the album. Then an array of pointers to the album structure can be used to store the
collection.

• Another useful way to create a dynamic multi-dimensional array is to flatten the array
and index manually. For example, a 2-dimensional array with sizes x and y has x*y
elements, therefore can be created by

int dynamic_multi_array[x*y];

The index is slightly trickier than before, but can still be obtained by y*i+j. You then
access the array with

static_multi_array[i][j];
dynamic_multi_array[y*i+j];

Some more examples with higher dimensions:

int dim1[w];
int dim2[w*x];
int dim3[w*x*y];
int dim4[w*x*y*z];

dim1[i]
dim2[w*j+i];
dim3[w*(x*i+j)+k] // index is k + w*j + w*x*i
dim4[w*(x*(y*i+j)+k)+l] // index is w*x*y*i + w*x*j + w*k + l

Note that w*(x*(y*i+j)+k)+l is equal to w*x*y*i + w*x*j + w*k + l, but uses fewer
operations (see Horner's Method3). It uses the same number of operations as accessing a
static array by dim4[i][j][k][l], so should not be any slower to use.

The advantage to using this method is that the array can be passed freely between functions
without knowing the size of the array at compile time (since C sees it as a 1-dimensional
array, although some way of passing the dimensions is still necessary), and the entire array is
contiguous in memory, so accessing consecutive elements should be fast. The disadvantage
is that it can be difficult at first to get used to how to index the elements.

3 http://en.wikipedia.org/wiki/Horner%27s_method

232

http://en.wikipedia.org/wiki/Horner%27s_method

Constructors and destructors

30.2 Constructors and destructors

In most object-oriented languages, objects cannot be created directly by a client that wishes
to use them. Instead, the client must ask the class to build an instance of the object using
a special routine called a constructor. Constructors are important because they allow an
object to enforce invariants about its internal state throughout its lifetime. Destructors,
called at the end of an object's lifetime, are important in systems where an object holds
exclusive access to some resource, and it is desirable to ensure that it releases these resources
for use by other objects.

Since C is not an object-oriented language, it has no built-in support for constructors or
destructors. It is not uncommon for clients to explicitly allocate and initialize records and
other objects. However, this leads to a potential for errors, since operations on the object
may fail or behave unpredictably if the object is not properly initialized. A better approach
is to have a function that creates an instance of the object, possibly taking initialization
parameters, as in this example:

struct string {
size_t size;
char *data;

};

struct string *create_string(const char *initial) {
assert (initial != NULL);
struct string *new_string = malloc(sizeof(*new_string));
if (new_string != NULL) {

new_string->size = strlen(initial);
new_string->data = strdup(initial);

}
return new_string;

}

Similarly, if it is left to the client to destroy objects correctly, they may fail to do so,
causing resource leaks. It is better to have an explicit destructor which is always used,
such as this one:

void free_string(struct string *s) {
assert (s != NULL);
free(s->data); /* free memory held by the structure */
free(s); /* free the structure itself */

}

It is often useful to combine destructors with #Nulling freed pointers4.

Sometimes it is useful to hide the definition of the object to ensure that the client does
not allocate it manually. To do this, the structure is defined in the source file (or a private
header file not available to users) instead of the header file, and a forward declaration is
put in the header file:

4 Chapter 30.3 on page 234

233

Common practices

struct string;
struct string *create_string(const char *initial);
void free_string(struct string *s);

30.3 Nulling freed pointers

As discussed earlier, after free() has been called on a pointer, it becomes a dangling
pointer. Worse still, most modern platforms cannot detect when such a pointer is used
before being reassigned.

One simple solution to this is to ensure that any pointer is set to a null pointer immediately
after being freed: 5

free(p);
p = NULL;

Unlike dangling pointers, a hardware exception will arise on many modern architectures
when a null pointer is dereferenced. Also, programs can include error checks for the null
value, but not for a dangling pointer value. To ensure it is done at all locations, a macro
can be used:

#define FREE(p) do { free(p); (p) = NULL; } while(0)

(To see why the macro is written this way, see #Macro conventions6.) Also, when this
technique is used, destructors should zero out the pointer that they are passed, and their
argument must be passed by reference to allow this. For example, here's the destructor
from #Constructors and destructors7 updated:

void free_string(struct string **s) {
assert(s != NULL && *s != NULL);
FREE((*s)->data); /* free memory held by the structure */
FREE(*s); /* free the structure itself */
s=NULL; / zero the argument */

}

Unfortunately, this idiom will not do anything to any other pointers that may be pointing
to the freed memory. For this reason, some C experts regard this idiom as dangerous due
to creating a false sense of security.

5 comp.lang.c FAQ list: "Why isn't a pointer null after calling free?" ˆ{http://c-faq.com/malloc/
ptrafterfree.html} mentions that "it is often useful to set [pointer variables] to NULL immediately
after freeing them".

6 Chapter 30.4 on page 235
7 Chapter 30.2 on page 233

234

http://c-faq.com/malloc/ptrafterfree.html
http://c-faq.com/malloc/ptrafterfree.html

Macro conventions

30.4 Macro conventions

Because preprocessor macros in C work using simple token replacement, they are prone to
a number of confusing errors, some of which can be avoided by following a simple set of
conventions:

1. Placing parentheses around macro arguments wherever possible. This ensures that,
if they are expressions, the order of operations does not affect the behavior of the
expression. For example:
• Wrong: #define square(x) x*x
• Better: #define square(x) (x)*(x)

2. Placing parentheses around the entire expression if it is a single expression. Again,
this avoids changes in meaning due to the order of operations.
• Wrong: #define square(x) (x)*(x)
• Better: #define square(x) ((x)*(x))
• Dangerous, remember it replaces the text in verbatim. Suppose your code is square

(x++), after the macro invocation will x be incremented by 2
3. If a macro produces multiple statements, or declares variables, it can be wrapped in a

do { ... } while(0) loop, with no terminating semicolon. This allows the macro to be
used like a single statement in any location, such as the body of an if statement, while
still allowing a semicolon to be placed after the macro invocation without creating a
null statement. Care must be taken that any new variables do not potentially mask
portions of the macro's arguments.
• Wrong: #define FREE(p) free(p); p = NULL;
• Better: #define FREE(p) do { free(p); p = NULL; } while(0)

4. Avoiding using a macro argument twice or more inside a macro, if possible; this causes
problems with macro arguments that contain side effects, such as assignments.

5. If a macro may be replaced by a function in the future, considering naming it like a
function.

30.5 Further reading

There are a huge number of C style guidelines.

• "C and C++ Style Guides"8 by Chris Lott lists many popular C style guides.
• The Motor Industry Software Reliability Association (MISRA) publishes "MISRA-C:

Guidelines for the use of the C language in critical systems". (Wikipedia: MISRA C9;
http://www.misra-c.com/).

pl:C/Powszechne praktyki10

8 http://www.chris-lott.org/resources/cstyle/
9 http://en.wikipedia.org/wiki/%20MISRA%20C
10 http://pl.wikibooks.org/wiki/C%2FPowszechne%20praktyki

235

http://www.misra-c.com/
http://www.chris-lott.org/resources/cstyle/
http://en.wikipedia.org/wiki/%20MISRA%20C
http://pl.wikibooks.org/wiki/C%2FPowszechne%20praktyki

31 C and beyond

237

32 Language extensions

Most C compilers have one or more "extensions" to the standard C language, to do things
that are inconvenient to do in standard, portable C.

Some examples of language extensions:

• in-line assembly language
• interrupt service routines
• variable-length data structure (a structure whose last item is a "zero-length array").1

2

• re-sizeable multidimensional arrays
• various "#pragma" settings to compile quickly, to generate fast code, or to generate

compact code.
• bit manipulation, especially bit-rotations and things involving the "carry" bit
• storage alignment
• Arrays whose length is computed at run time.

32.1 External links

• GNU C: Extensions to the C Language3
• C/C++ interpreter Ch extensions to the C language for scripting4
• SDCC: Storage Class Language Extensions5

1
2 comp.lang.c FAQ list: Question 2.6 ˆ{http://c-faq.com/struct/structhack.html} : "C99 intro-

duces the concept of a flexible array member, which allows the size of an array to be omitted if it is
the last member in a structure, thus providing a well-defined solution."

3 http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/C-Extensions.html#C-Extensions
4 http://www.softintegration.com/support/faq/general.html#4
5 http://sdcc.sourceforge.net/doc/sdccman.html/node56.html

239

http://c-faq.com/struct/structhack.html
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/C-Extensions.html#C-Extensions
http://www.softintegration.com/support/faq/general.html#4
http://sdcc.sourceforge.net/doc/sdccman.html/node56.html

33 Mixing languages

33.1 Assembler

See Embedded Systems/Mixed C and Assembly Programming1

33.2 Cg

Make the main program (for CPU) in C, which loads and run the Cg2 program (for GPU
).345

33.2.1 Header Files

Add to C program :6

#include <Cg/cg.h> /* To include the core Cg runtime API into your program */
#include <Cg/cgGL.h> /* to include the OpenGL-specific Cg runtime API */

33.3 Java

Using the Java native interface (JNI), Java applications can call C libraries.

See also

• Java_Programming/Keywords/native7

1 http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%
20Programming

2 http://en.wikibooks.org/wiki/Cg_%28programming_language%29
3 Lesson: 47 from NeHe Productions ˆ{http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=

47}
4 Cg Bumpmapping by Razvan Surdulescu at GameDev ˆ{http://www.gamedev.net/reference/

articles/article1903.asp}
5 [http://www.fusionindustries.com/default.asp?page=cg-hlsl-faq | Cg & HLSL Shading Lan-

guage FAQ

by Fusion Industries]

6 http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_b.html NVidia Cg tuto-
rial. Appendix B. The Cg Runtime

7 http://en.wikibooks.org/wiki/Java_Programming%2FKeywords%2Fnative

241

http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Cg_%28programming_language%29
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47
http://www.gamedev.net/reference/articles/article1903.asp
http://www.gamedev.net/reference/articles/article1903.asp
http://www.fusionindustries.com/default.asp?page=cg-hlsl-faq
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_b.html
http://en.wikibooks.org/wiki/Java_Programming%2FKeywords%2Fnative

Mixing languages

33.4 Perl

To mix Perl and C, we can use XS. XS is an interface description file format used to create
an extension interface between Perl and C code (or a C library) which one wishes to use
with Perl.

The basic procedure is very simple. We can create the necessary subdirectory structure
by running "h2xs" application (e.g. "h2xs -A -n Modulename"). This will create - among
others - a Makefile.PL, a .pm Perl module and a .xs XSUB file in the subdirectory tree.
We can edit the .xs file by adding our code to that, let's say:

void
hello()
CODE:
printf("Hello, world!\n");

and we can successfully use our new command at Perl side, after running a "perl Make-
file.PL" and "make".

Further details can be found on the perlxstut8 perldoc9 page.

33.5 Python

33.6 For further reading

• Embedded Systems/Mixed C and Assembly Programming10

33.7 References

pl:C/Łączenie z innymi językami11

8 http://perldoc.perl.org/perlxstut.html
9 http://perldoc.perl.org

10 http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%
20Programming

11 http://pl.wikibooks.org/wiki/C%2F%C5%81%C4%85czenie%20z%20innymi%20j%C4%99zykami

242

http://perldoc.perl.org/perlxstut.html
http://perldoc.perl.org
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://pl.wikibooks.org/wiki/C%2F%C5%81%C4%85czenie%20z%20innymi%20j%C4%99zykami

34 Code library

The following is an implementation of the Standard C99 version of <assert.h>:

/* assert.h header */
#undef assert
#ifdef NDEBUG
#define assert(_Ignore) ((void)0)
#else
void _Assertfail(char *, char *, int, char *);
#define assert(_Test)
((_Test)?((void)0):_Assertfail(#_Test,__FILE__,__LINE__,__func__))
#endif
/* END OF FILE */

/* xassertfail.c -- _Assertfail function */
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
void
_Assertfail(char *test, char *filename, int line_number, char *function_name)
{

fprintf(stderr, "Assertion failed: %s, function %s, file %s, line %d.",
test, function_name, filename, line_number);

abort();
}
/* END OF FILE */

243

35 Computer Programming

The following articles are C adaptations from articles of the Computer programming1 book.

1 http://en.wikibooks.org/wiki/Computer%20programming

245

http://en.wikibooks.org/wiki/Computer%20programming

36 Statements

A statement is a command given to the computer that instructs the computer to take a
specific action, such as display to the screen, or collect input. A computer program is made
up of a series of statements.

puts ("Hi there!");

puts ("Hi there!");
puts ("Strange things are afoot...");

Category:C Programming1

1 http://en.wikibooks.org/wiki/Category%3AC%20Programming

247

http://en.wikibooks.org/wiki/Category%3AC%20Programming

37 C Reference Tables

This section has some tables and lists of C entities.

249

38 Reference Tables

38.1 List of Keywords

ANSI C (C89)/ISO C (C90) keywords:

• auto
• break
• case
• char
• const
• continue
• default
• do

• double
• else
• enum
• extern
• float
• for
• goto
• if

• int
• long
• register
• return
• short
• signed
• sizeof
• static

• struct
• switch
• typedef
• union
• unsigned
• void
• volatile
• while

Keywords added to ISO C (C99) (Supported only in new compilers):

• _Bool
• _Complex

• _Imaginary
• inline

• restrict1

Specific compilers may (in a non-standard-compliant mode) also treat some other words as
keywords, including asm, cdecl, far, fortran, huge, interrupt, near, pascal, typeof.

Very old compilers may not recognize some or all of the C89 keywords const, enum, signed,
void, volatile as well as the C99 keywords.

See also the list of reserved identifiers2.

38.2 List of Standard Headers

ANSI C (C89)/ISO C (C90) headers:

1 http://en.wikipedia.org/wiki/Restrict

2 http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/
language/ref/clrc02reserved_identifiers.htm

251

http://en.wikipedia.org/wiki/Restrict
http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/language/ref/clrc02reserved_identifiers.htm
http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/language/ref/clrc02reserved_identifiers.htm

Reference Tables

• <assert.h>3
• <ctype.h>4
• <errno.h>5
• <float.h>6

• <limits.h>7
• <locale.h>8
• <math.h>9
• <setjmp.h>10

• <signal.h>11
• <stdarg.h>12
• <stddef.h>13
• <stdio.h>14

• <stdlib.h>15
• <string.h>16
• <time.h>17

Very old compilers may not include some or all of the following headers:

Headers added to ISO C (C94/C95) in Amendment 1 (AMD1):

• <iso646.h>18 • <wchar.h>19 • <wctype.h>20

Headers added to ISO C (C99) (Supported only in new compilers):

• <complex.h>21
• <fenv.h>22

• <inttypes.h>23
• <stdbool.h>24

• <stdint.h>25
• <tgmath.h>26

3 http://en.wikipedia.org/wiki/Assert.h
4 http://en.wikipedia.org/wiki/Ctype.h
5 http://en.wikipedia.org/wiki/Errno.h
6 http://en.wikipedia.org/wiki/Float.h
7 http://en.wikipedia.org/wiki/Limits.h
8 http://en.wikipedia.org/wiki/Locale.h
9 http://en.wikipedia.org/wiki/Math.h
10 http://en.wikipedia.org/wiki/Setjmp.h
11 http://en.wikipedia.org/wiki/Signal.h
12 http://en.wikipedia.org/wiki/Stdarg.h
13 http://en.wikipedia.org/wiki/Stddef.h
14 http://en.wikipedia.org/wiki/Stdio.h
15 http://en.wikipedia.org/wiki/Stdlib.h
16 http://en.wikipedia.org/wiki/String.h
17 http://en.wikipedia.org/wiki/Time.h
18 http://en.wikipedia.org/wiki/Iso646.h
19 http://en.wikipedia.org/wiki/Wchar.h
20 http://en.wikipedia.org/wiki/Wctype.h
21 http://en.wikipedia.org/wiki/Complex.h
22 http://en.wikipedia.org/wiki/Fenv.h
23 http://en.wikipedia.org/wiki/Inttypes.h
24 http://en.wikipedia.org/wiki/Stdbool.h
25 http://en.wikipedia.org/wiki/Stdint.h
26 http://en.wikipedia.org/wiki/Tgmath.h

252

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h
http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Stdbool.h
http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Tgmath.h

Table of Operators

38.3 Table of Operators

Operators in the same row of this table have the same precedence and the order of
evaluation is decided by the associativity (left-to-right or right-to-left). Operators closer
to the top of this table have higher precedence than those in a subsequent group.

Operators Description Example Usage Associativ-
ity

Postfix operators

Left to right
() function call opera-

tor
swap (x, y)

[] array index opera-
tor

arr [i]

. member access op-
erator
for an object of
struct/union type
or a reference to it

obj.member

-> member access op-
erator
for a pointer to an
object of
struct/union type

ptr->member

Unary Operators

Right to left

! logical not operator !eof_reached
˜ bitwise not operator ˜mask
+ -[1]27 unary plus/minus

operators
-num

++ -- post-
increment/decrement
operators

num++

++ -- pre-
increment/decrement
operators

++num

& address-of operator &data
* indirection operator *ptr
sizeof sizeof operator for

expressions
sizeof 123

sizeof() sizeof operator for
types

sizeof (int)

(type) cast operator (float)i

Multiplicative Operators Left to right
27 Chapter 38.3.1 on page 255

253

Reference Tables

* / % multiplication, divi-
sion and
modulus operators

celsius_diff *
9.0 / 5.0

Additive Operators Left to right+ - addition and sub-
traction operators

end - start + 1

Bitwise Shift Operators
Left to right<< left shift operator bits << shift_len

>> right shift operator bits >> shift_len

Relational Inequality Operators Left to right< > <= >= less-than, greater-
than, less-than or
equal-to, greater-
than or equal-to
operators

i < num_elements

Relational Equality Operators Left to right== != equal-to, not-equal-
to

choice != 'n'

Bitwise And Operator Left to right& bits &
clear_mask_complement

Bitwise Xor Operator Left to rightˆ bits ˆ
invert_mask

Bitwise Or Operator Left to right| bits | set_mask

Logical And Operator Left to right&& arr != 0 &&
arr->len != 0

Logical Or Operator Left to right

254

Table of Data Types

|| see Logical Ex-
pressions28

arr == 0 ||
arr->len == 0

Conditional Operator Right to left?: size != 0 ? size
: 0

Assignment Operators
Right to left= assignment operator i = 0

+= -= *= /=
%= &= |= ˆ=
<<= >>=

shorthand assign-
ment operators
(foo op=
barrepresents
foo = foo op bar)

num /= 10

Comma Operator Left to right, i = 0, j = i + 1,
k = 0

38.3.1 Table of Operators Footnotes

[1]Very old compilers may not recognize the unary + operator.

et:Programmeerimiskeel C/Operaatorid29

38.4 Table of Data Types

28 Chapter 16.1.2 on page 85
29 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FOperaatorid

255

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FOperaatorid

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
char ≥ 8

• sizeof gives the
size in units of
chars. These "C
bytes" need not be
8-bit bytes (though
commonly they
are); the number of
bits is given by the
CHAR_BIT macro in
the limits.h header.

• Signedness is
implementation-
defined.

• Any encoding of
8 bits or less (e.g.
ASCII) can be used
to store characters.

• Integer operations
can be performed
portably only for the
range 0 ˜ 127.

• All bits contribute
to the value of the
char, i.e. there
are no "holes" or
"padding" bits.

—

signed char same as char
• Characters stored

like for type char.
• Can store integers in

the range -127 ˜ 127
portably[1]30 .

—

unsigned char same as char
• Characters stored

like for type char.
• Can store integers

in the range 0 ˜ 255
portably.

—

short ≥ 16, ≥ size of char
• Can store integers in

the range -32767 ˜
32767 portably[2]31 .

• Used to reduce
memory usage (al-
though the resulting
executable may be
larger and probably
slower as compared
to using int.

short int, signed
short, signed short
int

30 Chapter 38.4.1 on page 260
31 Chapter 38.4.1 on page 260

256

Table of Data Types

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
unsigned short same as short

• Can store integers in
the range 0 ˜ 65535
portably.

• Used to reduce
memory usage (al-
though the resulting
executable may be
larger and probably
slower as compared
to using int.

unsigned short int

int ≥ 16, ≥ size of short
• Represents the "nor-

mal" size of data the
processor deals with
(the word-size); this
is the integral data-
type used normally.

• Can store integers in
the range -32767 ˜
32767 portably[2]32 .

signed, signed int

unsigned int same as int
• Can store integers in

the range 0 ˜ 65535
portably.

unsigned

long ≥ 32, ≥ size of int
• Can store inte-

gers in the range
-2147483647
˜ 2147483647
portably[3]33 .

long int, signed long,
signed long int

unsigned long same as long
• Can store integers

in the range 0 ˜
4294967295 portably.

unsigned long int

float ≥ size of char
• Used to reduce

memory usage when
the values used do
not vary widely.

• The floating-point
format used is im-
plementation defined
and need not be
the IEEE single-
precision format.

• unsigned cannot be
specified.

—

32 Chapter 38.4.1 on page 260
33 Chapter 38.4.1 on page 260

257

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
double ≥ size of float

• Represents the "nor-
mal" size of data the
processor deals with;
this is the floating-
point data-type used
normally.

• The floating-point
format used is im-
plementation defined
and need not be
the IEEE double-
precision format.

• unsigned cannot be
specified.

—

long double ≥ size of double
• unsigned cannot be

specified.

—

Primitive Types added to ISO C (C99)
long long ≥ 64, ≥ size of long

• Can store integers
in the range -
9223372036854775807
˜
9223372036854775807
portably[4]34 .

long long int, signed
long long, signed long
long int

unsigned long long same as long long
• Can store integers

in the range 0 ˜
18446744073709551615
portably.

unsigned long long
int

intmax_t the maximum width
supported by the plat-
form

• Can store integers
in the range -(1 <<
n-1)+1 ˜ (1 << n-
1)-1, with 'n' the
width of intmax_t.

• Used by the "j"
length modifier
in the C Pro-
gramming/File
IO#Formatted
output functions:
the printf family of
functions35.

—

uintmax_t same as intmax_t
• Can store integers in

the range 0 ˜ (1 <<
n)-1, with 'n' the
width of uintmax_t.

—

User Defined Types

34 Chapter 38.4.1 on page 260
35 Chapter 21.4 on page 137

258

Table of Data Types

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
struct ≥ sum of size of each

member • Said to be an aggre-
gate type.

—

union ≥ size of the largest
member • Said to be an aggre-

gate type.

—

enum ≥ size of char
• Enumerations are a

separate type from
ints, though they
are mutually con-
vertible.

—

typedef same as the type being
given a name • typedef has syntax

similar to a storage
class like static,
register or extern.

—

Derived Types[5]36

type*
(pointer)

≥ size of char
• 0 always represents

the null pointer (an
address where no
data can be placed),
irrespective of what
bit sequence repre-
sents the value of a
null pointer.

• Pointers to differ-
ent types may have
different representa-
tions, which means
they could also be
of different sizes. So
they are not convert-
ible to one another.

• Even in an imple-
mentation which
guarantess all data
pointers to be of the
same size, function
pointers and data
pointers are in gen-
eral incompatible
with each other.

• For functions taking
variable number of
arguments, the argu-
ments passed must
be of appropriate
type, so even 0 must
be cast to the appro-
priate type in such
function-calls.

—

36 Chapter 38.4.1 on page 260

259

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
type [integer[6]

37
]

(array)
≥ integer × size of type

• The brackets ([])
follow the identifier
name in a declara-
tion.

• In a declaration
which also initializes
the array (including
a function parameter
declaration), the
size of the array
(the integer) can be
omitted.

• type [] is not the
same as type*. Only
under some circum-
stances one can be
converted to the
other.

—

type (comma-delimited
list of
types/declarations)
(function)

—
• Functions declared

without any storage
class are extern.

• The parentheses (())
follow the identifier
name in a declara-
tion, e.g. a 2-arg
function pointer:
int (* fptr) (int
arg1, int arg2).

—

38.4.1 Table of Data Types Footnotes

[1] -128 can be stored in two's-complement machines (i.e. most machines in existence).
Very old compilers may not recognize the signed keyword.
[2] -32768 can be stored in two's-complement machines (i.e. most machines in exis-
tence). Very old compilers may not recognize the signed keyword.
[3] -2147483648 can be stored in two's-complement machines (i.e. most machines in
existence). Very old compilers may not recognize the signed keyword.
[4] -9223372036854775808 can be stored in two's-complement machines (i.e. most ma-
chines in existence).
[5] The precedences in a declaration are:
[], () (left associative) — Highest
* (right associative) — Lowest
[6] The standards do NOT place any restriction on the size/type of the in-
teger, it's implementation dependent. The only mention in the standards
is a reference that an implementation may have limits to the maximum
size of memory block which can be allocated, and as such the limit on in-
teger will be size_of_max_block/sizeof(type).

37 Chapter 38.4.1 on page 260

260

Table of Data Types

pl:C/Składnia38

38 http://pl.wikibooks.org/wiki/C%2FSk%C5%82adnia

261

http://pl.wikibooks.org/wiki/C%2FSk%C5%82adnia

39 Compilers

39.1 Free (or with a free version)

• Ch_interpreter1 (http://www.softintegration.com) - The software works in Win-
dows, Linux, Mac OS X, Freebsd, Solaris, AIX and HP-UX. The Ch Standard Edition
is free for noncommercial use.

• lcc-win322 (http://www.cs.virginia.edu/~lcc-win32) - Software copyrighted by Ja-
cob Navia. It is free for non-commercial use. Windows (98/ME/XP/2000/NT).

• GNU Compiler Collection3 (http://gcc.gnu.org) - GNU Compiler Collection. GNU
General Public License / GNU Lesser General Public License.
• MinGW4 (http://www.mingw.org/) provides GCC for Windows

• Open Watcom5 (http://www.openwatcom.org) Open Source development community
to maintain and enhance the Watcom C/C++ and Fortran cross compilers and tools.
Version 1.4 released in December 2005.
• Host Platforms: Win32 systems (IDE and command line), 32-bit OS/2 (IDE and

command line), DOS (command line), and Windows 3.x (IDE)
• Target Platforms: DOS (16-bit), Windows 3.x (16-bit), OS/2 1.x (16-bit), Ex-

tended DOS, Win32s, Windows 95/98/Me, Windows NT/2000/XP, 32-bit OS/2, and
Novell NLMs

• Experimental / Development: Linux, BSD, *nix, PowerPC, Alpha AXP, MIPS,
and Sparc v8

• Tiny C Compiler6
• Portable C Compiler7 (http://pcc.ludd.ltu.se) - Portable C Compiler. BSD Style

License(s).
• Small Device C Compiler8 (SDCC)

• target platforms: Intel 8051-compatibles; Freescale (Motorola) HC08; Microchip
PIC16 and PIC18.

• FpgaC9. Target platform: FPGA hardware via XNF or VHDL files.
• Interactive C10 (http://www.botball.org/educational-resources/ic.php).

• target platform: Handy Board (Freescale 68HC11); Lego RCX

1 http://en.wikipedia.org/wiki/Ch_interpreter
2 http://en.wikipedia.org/wiki/lcc-win32
3 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
4 http://en.wikipedia.org/wiki/MinGW
5 http://en.wikipedia.org/wiki/Open%20Watcom
6 http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
7 http://en.wikipedia.org/wiki/Portable%20C%20Compiler
8 http://en.wikipedia.org/wiki/Small%20Device%20C%20Compiler
9 http://en.wikipedia.org/wiki/FpgaC
10 http://en.wikipedia.org/wiki/Interactive%20C

263

http://www.softintegration.com)
http://www.cs.virginia.edu/~lcc-win32)
http://gcc.gnu.org)
http://www.mingw.org/)
http://www.openwatcom.org)
http://pcc.ludd.ltu.se)
http://www.botball.org/educational-resources/ic.php).
http://en.wikipedia.org/wiki/Ch_interpreter
http://en.wikipedia.org/wiki/lcc-win32
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/Open%20Watcom
http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
http://en.wikipedia.org/wiki/Portable%20C%20Compiler
http://en.wikipedia.org/wiki/Small%20Device%20C%20Compiler
http://en.wikipedia.org/wiki/FpgaC
http://en.wikipedia.org/wiki/Interactive%20C

Compilers

• C compilers for many digital signal processors (DSPs), many of them free, are listed in
the comp.dsp FAQ11.

39.2 Commercial

• Intel C Compiler12 (http://software.intel.com/en-us/intel-compilers) - Win-
dows, Linux, Mac, QNX, and embedded C/C++ compilers. Optimized for Intel 32-bit
and 64-bit CPUs.

• Microsoft Visual C++13 (http://msdn.microsoft.com/visualc) - Free (partially lim-
ited) version available (Express edition)

• Impulse C14 - Target platform: FPGA hardware via Hardware Description Language
(HDL) files.

11 http://www.bdti.com/faq/3.htm
12 http://en.wikipedia.org/wiki/Intel%20C%20Compiler
13 http://en.wikipedia.org/wiki/Microsoft%20Visual%20C%2B%2B
14 http://en.wikipedia.org/wiki/Impulse%20C

264

http://software.intel.com/en-us/intel-compilers)
http://msdn.microsoft.com/visualc)
http://www.bdti.com/faq/3.htm
http://en.wikipedia.org/wiki/Intel%20C%20Compiler
http://en.wikipedia.org/wiki/Microsoft%20Visual%20C%2B%2B
http://en.wikipedia.org/wiki/Impulse%20C

40 Contributors

Edits User
1 16@r1

30 A thing2
8 A3 nm3

1 Ab8uu4
1 Abdull5

12 Adam majewski6
13 Adrignola7
1 Aentity8
5 AlbertCahalan9
6 Albmont10
1 AlistairMcMillan11
3 AllenZh12
1 Alsocal13
1 Alvin-cs14
4 Andrew Eugene15
1 Angus Lepper16
1 Arbitrarily017

43 Astone4218
1 Asymmetric19
7 Avicennasis20
2 Az156821

1 http://en.wikibooks.org/wiki/User:16@r
2 http://en.wikibooks.org/wiki/User:A_thing
3 http://en.wikibooks.org/wiki/User:A3_nm
4 http://en.wikibooks.org/wiki/User:Ab8uu
5 http://en.wikibooks.org/wiki/User:Abdull
6 http://en.wikibooks.org/wiki/User:Adam_majewski
7 http://en.wikibooks.org/wiki/User:Adrignola
8 http://en.wikibooks.org/wiki/User:Aentity
9 http://en.wikibooks.org/wiki/User:AlbertCahalan
10 http://en.wikibooks.org/wiki/User:Albmont
11 http://en.wikibooks.org/wiki/Special:Contributions/AlistairMcMillan
12 http://en.wikibooks.org/wiki/User:AllenZh
13 http://en.wikibooks.org/wiki/User:Alsocal
14 http://en.wikibooks.org/wiki/Special:Contributions/Alvin-cs
15 http://en.wikibooks.org/wiki/User:Andrew_Eugene
16 http://en.wikibooks.org/wiki/Special:Contributions/Angus_Lepper
17 http://en.wikibooks.org/wiki/User:Arbitrarily0
18 http://en.wikibooks.org/wiki/User:Astone42
19 http://en.wikibooks.org/wiki/Special:Contributions/Asymmetric
20 http://en.wikibooks.org/wiki/User:Avicennasis
21 http://en.wikibooks.org/wiki/User:Az1568

265

http://en.wikibooks.org/wiki/User:16@r
http://en.wikibooks.org/wiki/User:A_thing
http://en.wikibooks.org/wiki/User:A3_nm
http://en.wikibooks.org/wiki/User:Ab8uu
http://en.wikibooks.org/wiki/User:Abdull
http://en.wikibooks.org/wiki/User:Adam_majewski
http://en.wikibooks.org/wiki/User:Adrignola
http://en.wikibooks.org/wiki/User:Aentity
http://en.wikibooks.org/wiki/User:AlbertCahalan
http://en.wikibooks.org/wiki/User:Albmont
http://en.wikibooks.org/wiki/Special:Contributions/AlistairMcMillan
http://en.wikibooks.org/wiki/User:AllenZh
http://en.wikibooks.org/wiki/User:Alsocal
http://en.wikibooks.org/wiki/Special:Contributions/Alvin-cs
http://en.wikibooks.org/wiki/User:Andrew_Eugene
http://en.wikibooks.org/wiki/Special:Contributions/Angus_Lepper
http://en.wikibooks.org/wiki/User:Arbitrarily0
http://en.wikibooks.org/wiki/User:Astone42
http://en.wikibooks.org/wiki/Special:Contributions/Asymmetric
http://en.wikibooks.org/wiki/User:Avicennasis
http://en.wikibooks.org/wiki/User:Az1568

Contributors

1 BL22

1 BOTarate23
1 Berkunt24
3 Bevo25
9 BimBot26
2 Binksternet27
1 Blanchardb28
1 Bobo19229
1 Bpringlemeir30
1 Buggi2231

12 CarsracBot32
14 CharmlessCoin33
2 Chobot34
2 Ckorff35
1 CrQAZ36

1 Cryptic37
1 Cybiko12338
2 Cyp39
1 D640
1 DHN-bot41
1 Da monster under your bed42
4 Dan Polansky43
2 Darklama44

60 DavidCary45
1 Deathanatos46

22 http://en.wikibooks.org/wiki/Special:Contributions/BL
23 http://en.wikibooks.org/wiki/Special:Contributions/BOTarate
24 http://en.wikibooks.org/wiki/Special:Contributions/Berkunt
25 http://en.wikibooks.org/wiki/User:Bevo
26 http://en.wikibooks.org/wiki/User:BimBot
27 http://en.wikibooks.org/wiki/Special:Contributions/Binksternet
28 http://en.wikibooks.org/wiki/Special:Contributions/Blanchardb
29 http://en.wikibooks.org/wiki/Special:Contributions/Bobo192
30 http://en.wikibooks.org/wiki/Special:Contributions/Bpringlemeir
31 http://en.wikibooks.org/wiki/User:Buggi22
32 http://en.wikibooks.org/wiki/User:CarsracBot
33 http://en.wikibooks.org/wiki/User:CharmlessCoin
34 http://en.wikibooks.org/wiki/Special:Contributions/Chobot
35 http://en.wikibooks.org/wiki/Special:Contributions/Ckorff
36 http://en.wikibooks.org/wiki/Special:Contributions/CrQAZ
37 http://en.wikibooks.org/wiki/User:Cryptic
38 http://en.wikibooks.org/wiki/User:Cybiko123
39 http://en.wikibooks.org/wiki/User:Cyp
40 http://en.wikibooks.org/wiki/Special:Contributions/D6
41 http://en.wikibooks.org/wiki/Special:Contributions/DHN-bot
42 http://en.wikibooks.org/wiki/Special:Contributions/Da_monster_under_your_bed
43 http://en.wikibooks.org/wiki/User:Dan_Polansky
44 http://en.wikibooks.org/wiki/User:Darklama
45 http://en.wikibooks.org/wiki/User:DavidCary
46 http://en.wikibooks.org/wiki/Special:Contributions/Deathanatos

266

http://en.wikibooks.org/wiki/Special:Contributions/BL
http://en.wikibooks.org/wiki/Special:Contributions/BOTarate
http://en.wikibooks.org/wiki/Special:Contributions/Berkunt
http://en.wikibooks.org/wiki/User:Bevo
http://en.wikibooks.org/wiki/User:BimBot
http://en.wikibooks.org/wiki/Special:Contributions/Binksternet
http://en.wikibooks.org/wiki/Special:Contributions/Blanchardb
http://en.wikibooks.org/wiki/Special:Contributions/Bobo192
http://en.wikibooks.org/wiki/Special:Contributions/Bpringlemeir
http://en.wikibooks.org/wiki/User:Buggi22
http://en.wikibooks.org/wiki/User:CarsracBot
http://en.wikibooks.org/wiki/User:CharmlessCoin
http://en.wikibooks.org/wiki/Special:Contributions/Chobot
http://en.wikibooks.org/wiki/Special:Contributions/Ckorff
http://en.wikibooks.org/wiki/Special:Contributions/CrQAZ
http://en.wikibooks.org/wiki/User:Cryptic
http://en.wikibooks.org/wiki/User:Cybiko123
http://en.wikibooks.org/wiki/User:Cyp
http://en.wikibooks.org/wiki/Special:Contributions/D6
http://en.wikibooks.org/wiki/Special:Contributions/DHN-bot
http://en.wikibooks.org/wiki/Special:Contributions/Da_monster_under_your_bed
http://en.wikibooks.org/wiki/User:Dan_Polansky
http://en.wikibooks.org/wiki/User:Darklama
http://en.wikibooks.org/wiki/User:DavidCary
http://en.wikibooks.org/wiki/Special:Contributions/Deathanatos

Commercial

13 Derbeth47
1 Deryck Chan48
4 Dirk Hünniger49
1 Doshell50
2 Duplode51

15 EdC52

1 Edudobay53
8 Emperorbma54
5 Eric11955
1 Erkan Yilmaz56
2 Ervinn57
3 Felipebm58

1 Fourier.courier59
1 Frigotoni60
1 Giftlite61
1 Golftheman62
1 Grandscribe63
1 Graue64
4 Gsonnenf65
1 Guanabot66
1 Gulmammad67
3 Gwern68
2 Hagindaz69
1 HasharBot70
1 Hdante71

47 http://en.wikibooks.org/wiki/User:Derbeth
48 http://en.wikibooks.org/wiki/User:Deryck_Chan
49 http://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger
50 http://en.wikibooks.org/wiki/Special:Contributions/Doshell
51 http://en.wikibooks.org/wiki/User:Duplode
52 http://en.wikibooks.org/wiki/Special:Contributions/EdC
53 http://en.wikibooks.org/wiki/User:Edudobay
54 http://en.wikibooks.org/wiki/User:Emperorbma
55 http://en.wikibooks.org/wiki/User:Eric119
56 http://en.wikibooks.org/wiki/User:Erkan_Yilmaz
57 http://en.wikibooks.org/wiki/User:Ervinn
58 http://en.wikibooks.org/wiki/User:Felipebm
59 http://en.wikibooks.org/wiki/Special:Contributions/Fourier.courier
60 http://en.wikibooks.org/wiki/User:Frigotoni
61 http://en.wikibooks.org/wiki/Special:Contributions/Giftlite
62 http://en.wikibooks.org/wiki/Special:Contributions/Golftheman
63 http://en.wikibooks.org/wiki/Special:Contributions/Grandscribe
64 http://en.wikibooks.org/wiki/Special:Contributions/Graue
65 http://en.wikibooks.org/wiki/Special:Contributions/Gsonnenf
66 http://en.wikibooks.org/wiki/User:Guanabot
67 http://en.wikibooks.org/wiki/User:Gulmammad
68 http://en.wikibooks.org/wiki/User:Gwern
69 http://en.wikibooks.org/wiki/User:Hagindaz
70 http://en.wikibooks.org/wiki/Special:Contributions/HasharBot
71 http://en.wikibooks.org/wiki/Special:Contributions/Hdante

267

http://en.wikibooks.org/wiki/User:Derbeth
http://en.wikibooks.org/wiki/User:Deryck_Chan
http://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger
http://en.wikibooks.org/wiki/Special:Contributions/Doshell
http://en.wikibooks.org/wiki/User:Duplode
http://en.wikibooks.org/wiki/Special:Contributions/EdC
http://en.wikibooks.org/wiki/User:Edudobay
http://en.wikibooks.org/wiki/User:Emperorbma
http://en.wikibooks.org/wiki/User:Eric119
http://en.wikibooks.org/wiki/User:Erkan_Yilmaz
http://en.wikibooks.org/wiki/User:Ervinn
http://en.wikibooks.org/wiki/User:Felipebm
http://en.wikibooks.org/wiki/Special:Contributions/Fourier.courier
http://en.wikibooks.org/wiki/User:Frigotoni
http://en.wikibooks.org/wiki/Special:Contributions/Giftlite
http://en.wikibooks.org/wiki/Special:Contributions/Golftheman
http://en.wikibooks.org/wiki/Special:Contributions/Grandscribe
http://en.wikibooks.org/wiki/Special:Contributions/Graue
http://en.wikibooks.org/wiki/Special:Contributions/Gsonnenf
http://en.wikibooks.org/wiki/User:Guanabot
http://en.wikibooks.org/wiki/User:Gulmammad
http://en.wikibooks.org/wiki/User:Gwern
http://en.wikibooks.org/wiki/User:Hagindaz
http://en.wikibooks.org/wiki/Special:Contributions/HasharBot
http://en.wikibooks.org/wiki/Special:Contributions/Hdante

Contributors

1 HethrirBot72
1 Hongooi73
6 Hoxel74
1 I do not exist75
1 Icewedge76
3 Imran77
3 Intermediate-Hacker78
1 Iopq79
2 J.delanoy80
1 JAnDbot81
1 JL-Bot82
2 JackPotte83
1 Jafeluv84

11 James Dennett85
1 JetRanger40586

22 Jfmantis87
4 Jguk88
1 Jni89

25 Jomegat90
1 Jorgenev91
1 Jwwicks92
1 Kayau93
1 Kazabubu94

23 Kevinpaladin95
1 Keytotime96

72 http://en.wikibooks.org/wiki/User:HethrirBot
73 http://en.wikibooks.org/wiki/Special:Contributions/Hongooi
74 http://en.wikibooks.org/wiki/User:Hoxel
75 http://en.wikibooks.org/wiki/Special:Contributions/I_do_not_exist
76 http://en.wikibooks.org/wiki/User:Icewedge
77 http://en.wikibooks.org/wiki/User:Imran
78 http://en.wikibooks.org/wiki/User:Intermediate-Hacker
79 http://en.wikibooks.org/wiki/User:Iopq
80 http://en.wikibooks.org/wiki/User:J.delanoy
81 http://en.wikibooks.org/wiki/Special:Contributions/JAnDbot
82 http://en.wikibooks.org/wiki/Special:Contributions/JL-Bot
83 http://en.wikibooks.org/wiki/User:JackPotte
84 http://en.wikibooks.org/wiki/User:Jafeluv
85 http://en.wikibooks.org/wiki/User:James_Dennett
86 http://en.wikibooks.org/wiki/Special:Contributions/JetRanger405
87 http://en.wikibooks.org/wiki/User:Jfmantis
88 http://en.wikibooks.org/wiki/User:Jguk
89 http://en.wikibooks.org/wiki/User:Jni
90 http://en.wikibooks.org/wiki/User:Jomegat
91 http://en.wikibooks.org/wiki/User:Jorgenev
92 http://en.wikibooks.org/wiki/User:Jwwicks
93 http://en.wikibooks.org/wiki/User:Kayau
94 http://en.wikibooks.org/wiki/Special:Contributions/Kazabubu
95 http://en.wikibooks.org/wiki/User:Kevinpaladin
96 http://en.wikibooks.org/wiki/User:Keytotime

268

http://en.wikibooks.org/wiki/User:HethrirBot
http://en.wikibooks.org/wiki/Special:Contributions/Hongooi
http://en.wikibooks.org/wiki/User:Hoxel
http://en.wikibooks.org/wiki/Special:Contributions/I_do_not_exist
http://en.wikibooks.org/wiki/User:Icewedge
http://en.wikibooks.org/wiki/User:Imran
http://en.wikibooks.org/wiki/User:Intermediate-Hacker
http://en.wikibooks.org/wiki/User:Iopq
http://en.wikibooks.org/wiki/User:J.delanoy
http://en.wikibooks.org/wiki/Special:Contributions/JAnDbot
http://en.wikibooks.org/wiki/Special:Contributions/JL-Bot
http://en.wikibooks.org/wiki/User:JackPotte
http://en.wikibooks.org/wiki/User:Jafeluv
http://en.wikibooks.org/wiki/User:James_Dennett
http://en.wikibooks.org/wiki/Special:Contributions/JetRanger405
http://en.wikibooks.org/wiki/User:Jfmantis
http://en.wikibooks.org/wiki/User:Jguk
http://en.wikibooks.org/wiki/User:Jni
http://en.wikibooks.org/wiki/User:Jomegat
http://en.wikibooks.org/wiki/User:Jorgenev
http://en.wikibooks.org/wiki/User:Jwwicks
http://en.wikibooks.org/wiki/User:Kayau
http://en.wikibooks.org/wiki/Special:Contributions/Kazabubu
http://en.wikibooks.org/wiki/User:Kevinpaladin
http://en.wikibooks.org/wiki/User:Keytotime

Commercial

1 Kiensvay97
2 Kinglag98
1 Kj99

25 Krischik100
1 Ksn101
1 Kvgk102
1 Leftspk103
2 Liam987104
1 Lightbot105
3 Lincher106
3 Logictheo107
1 Lynx7725108
8 M2s87109
1 MF-Warburg110
1 MaTT111

4 MadCowpoke112
51 Maffu113
1 Mahanga114
1 ManiacK115

2 ManuelGR116

1 Markhobley117
1 Martyn Lovell118
1 Mattb112885119
3 MeMoria120
1 Mecanismo121

97 http://en.wikibooks.org/wiki/User:Kiensvay
98 http://en.wikibooks.org/wiki/User:Kinglag
99 http://en.wikibooks.org/wiki/User:Kj
100 http://en.wikibooks.org/wiki/User:Krischik
101 http://en.wikibooks.org/wiki/Special:Contributions/Ksn
102 http://en.wikibooks.org/wiki/Special:Contributions/Kvgk
103 http://en.wikibooks.org/wiki/Special:Contributions/Leftspk
104 http://en.wikibooks.org/wiki/User:Liam987
105 http://en.wikibooks.org/wiki/Special:Contributions/Lightbot
106 http://en.wikibooks.org/wiki/User:Lincher
107 http://en.wikibooks.org/wiki/User:Logictheo
108 http://en.wikibooks.org/wiki/User:Lynx7725
109 http://en.wikibooks.org/wiki/User:M2s87
110 http://en.wikibooks.org/wiki/User:MF-Warburg
111 http://en.wikibooks.org/wiki/Special:Contributions/MaTT
112 http://en.wikibooks.org/wiki/User:MadCowpoke
113 http://en.wikibooks.org/wiki/User:Maffu
114 http://en.wikibooks.org/wiki/User:Mahanga
115 http://en.wikibooks.org/wiki/Special:Contributions/ManiacK
116 http://en.wikibooks.org/wiki/User:ManuelGR
117 http://en.wikibooks.org/wiki/User:Markhobley
118 http://en.wikibooks.org/wiki/Special:Contributions/Martyn_Lovell
119 http://en.wikibooks.org/wiki/User:Mattb112885
120 http://en.wikibooks.org/wiki/User:MeMoria
121 http://en.wikibooks.org/wiki/User:Mecanismo

269

http://en.wikibooks.org/wiki/User:Kiensvay
http://en.wikibooks.org/wiki/User:Kinglag
http://en.wikibooks.org/wiki/User:Kj
http://en.wikibooks.org/wiki/User:Krischik
http://en.wikibooks.org/wiki/Special:Contributions/Ksn
http://en.wikibooks.org/wiki/Special:Contributions/Kvgk
http://en.wikibooks.org/wiki/Special:Contributions/Leftspk
http://en.wikibooks.org/wiki/User:Liam987
http://en.wikibooks.org/wiki/Special:Contributions/Lightbot
http://en.wikibooks.org/wiki/User:Lincher
http://en.wikibooks.org/wiki/User:Logictheo
http://en.wikibooks.org/wiki/User:Lynx7725
http://en.wikibooks.org/wiki/User:M2s87
http://en.wikibooks.org/wiki/User:MF-Warburg
http://en.wikibooks.org/wiki/Special:Contributions/MaTT
http://en.wikibooks.org/wiki/User:MadCowpoke
http://en.wikibooks.org/wiki/User:Maffu
http://en.wikibooks.org/wiki/User:Mahanga
http://en.wikibooks.org/wiki/Special:Contributions/ManiacK
http://en.wikibooks.org/wiki/User:ManuelGR
http://en.wikibooks.org/wiki/User:Markhobley
http://en.wikibooks.org/wiki/Special:Contributions/Martyn_Lovell
http://en.wikibooks.org/wiki/User:Mattb112885
http://en.wikibooks.org/wiki/User:MeMoria
http://en.wikibooks.org/wiki/User:Mecanismo

Contributors

8 Merrheim122

1 Michael Safyan123
3 Mike.lifeguard124
6 Mikeblas125
1 MithrandirAgain126
3 Monobi127
2 Mortense128
1 Mr.Z-man129
4 Mrquick130
1 Mshonle131
1 Mwtoews132
1 Netizen133
1 Newmanbe134
1 Nick135
2 NithinBekal136

10 Noogz137
1 OMouse138
1 Onion Bulb139

216 Orderud140
2 Otus141
1 Outlyer142
1 PGibbons143

18 Paddu144
33 Panic2k4145
20 Pcu123456789146

122 http://en.wikibooks.org/wiki/User:Merrheim
123 http://en.wikibooks.org/wiki/Special:Contributions/Michael_Safyan
124 http://en.wikibooks.org/wiki/User:Mike.lifeguard
125 http://en.wikibooks.org/wiki/Special:Contributions/Mikeblas
126 http://en.wikibooks.org/wiki/User:MithrandirAgain
127 http://en.wikibooks.org/wiki/User:Monobi
128 http://en.wikibooks.org/wiki/User:Mortense
129 http://en.wikibooks.org/wiki/User:Mr.Z-man
130 http://en.wikibooks.org/wiki/User:Mrquick
131 http://en.wikibooks.org/wiki/User:Mshonle
132 http://en.wikibooks.org/wiki/User:Mwtoews
133 http://en.wikibooks.org/wiki/Special:Contributions/Netizen
134 http://en.wikibooks.org/wiki/User:Newmanbe
135 http://en.wikibooks.org/wiki/User:Nick
136 http://en.wikibooks.org/wiki/User:NithinBekal
137 http://en.wikibooks.org/wiki/User:Noogz
138 http://en.wikibooks.org/wiki/User:OMouse
139 http://en.wikibooks.org/wiki/Special:Contributions/Onion_Bulb
140 http://en.wikibooks.org/wiki/User:Orderud
141 http://en.wikibooks.org/wiki/User:Otus
142 http://en.wikibooks.org/wiki/Special:Contributions/Outlyer
143 http://en.wikibooks.org/wiki/Special:Contributions/PGibbons
144 http://en.wikibooks.org/wiki/User:Paddu
145 http://en.wikibooks.org/wiki/User:Panic2k4
146 http://en.wikibooks.org/wiki/User:Pcu123456789

270

http://en.wikibooks.org/wiki/User:Merrheim
http://en.wikibooks.org/wiki/Special:Contributions/Michael_Safyan
http://en.wikibooks.org/wiki/User:Mike.lifeguard
http://en.wikibooks.org/wiki/Special:Contributions/Mikeblas
http://en.wikibooks.org/wiki/User:MithrandirAgain
http://en.wikibooks.org/wiki/User:Monobi
http://en.wikibooks.org/wiki/User:Mortense
http://en.wikibooks.org/wiki/User:Mr.Z-man
http://en.wikibooks.org/wiki/User:Mrquick
http://en.wikibooks.org/wiki/User:Mshonle
http://en.wikibooks.org/wiki/User:Mwtoews
http://en.wikibooks.org/wiki/Special:Contributions/Netizen
http://en.wikibooks.org/wiki/User:Newmanbe
http://en.wikibooks.org/wiki/User:Nick
http://en.wikibooks.org/wiki/User:NithinBekal
http://en.wikibooks.org/wiki/User:Noogz
http://en.wikibooks.org/wiki/User:OMouse
http://en.wikibooks.org/wiki/Special:Contributions/Onion_Bulb
http://en.wikibooks.org/wiki/User:Orderud
http://en.wikibooks.org/wiki/User:Otus
http://en.wikibooks.org/wiki/Special:Contributions/Outlyer
http://en.wikibooks.org/wiki/Special:Contributions/PGibbons
http://en.wikibooks.org/wiki/User:Paddu
http://en.wikibooks.org/wiki/User:Panic2k4
http://en.wikibooks.org/wiki/User:Pcu123456789

Commercial

9 Phosgram147

3 Pietrodn148
1 Public Menace149
6 PurplePieman150
3 QUBot151

14 QuiteUnusual152
4 Qwerky153

12 Recent Runes154
1 Redlentil155

10 Remi0o156
1 RibotBOT157

1 SPat158
1 STBot159
1 SieBot160
1 Sietse Snel161

89 Sigma 7162
1 Snowolf163
1 Somercet164
3 SoniyaR165

2 Sprink166
1 Stassats167
1 Steven jones168
1 Superm401169
2 Suruena170
5 TakuyaMurata171

147 http://en.wikibooks.org/wiki/User:Phosgram
148 http://en.wikibooks.org/wiki/User:Pietrodn
149 http://en.wikibooks.org/wiki/Special:Contributions/Public_Menace
150 http://en.wikibooks.org/wiki/User:PurplePieman
151 http://en.wikibooks.org/wiki/User:QUBot
152 http://en.wikibooks.org/wiki/User:QuiteUnusual
153 http://en.wikibooks.org/wiki/User:Qwerky
154 http://en.wikibooks.org/wiki/User:Recent_Runes
155 http://en.wikibooks.org/wiki/User:Redlentil
156 http://en.wikibooks.org/wiki/User:Remi0o
157 http://en.wikibooks.org/wiki/Special:Contributions/RibotBOT
158 http://en.wikibooks.org/wiki/User:SPat
159 http://en.wikibooks.org/wiki/Special:Contributions/STBot
160 http://en.wikibooks.org/wiki/Special:Contributions/SieBot
161 http://en.wikibooks.org/wiki/Special:Contributions/Sietse_Snel
162 http://en.wikibooks.org/wiki/User:Sigma_7
163 http://en.wikibooks.org/wiki/User:Snowolf
164 http://en.wikibooks.org/wiki/Special:Contributions/Somercet
165 http://en.wikibooks.org/wiki/User:SoniyaR
166 http://en.wikibooks.org/wiki/User:Sprink
167 http://en.wikibooks.org/wiki/User:Stassats
168 http://en.wikibooks.org/wiki/Special:Contributions/Steven_jones
169 http://en.wikibooks.org/wiki/User:Superm401
170 http://en.wikibooks.org/wiki/User:Suruena
171 http://en.wikibooks.org/wiki/User:TakuyaMurata

271

http://en.wikibooks.org/wiki/User:Phosgram
http://en.wikibooks.org/wiki/User:Pietrodn
http://en.wikibooks.org/wiki/Special:Contributions/Public_Menace
http://en.wikibooks.org/wiki/User:PurplePieman
http://en.wikibooks.org/wiki/User:QUBot
http://en.wikibooks.org/wiki/User:QuiteUnusual
http://en.wikibooks.org/wiki/User:Qwerky
http://en.wikibooks.org/wiki/User:Recent_Runes
http://en.wikibooks.org/wiki/User:Redlentil
http://en.wikibooks.org/wiki/User:Remi0o
http://en.wikibooks.org/wiki/Special:Contributions/RibotBOT
http://en.wikibooks.org/wiki/User:SPat
http://en.wikibooks.org/wiki/Special:Contributions/STBot
http://en.wikibooks.org/wiki/Special:Contributions/SieBot
http://en.wikibooks.org/wiki/Special:Contributions/Sietse_Snel
http://en.wikibooks.org/wiki/User:Sigma_7
http://en.wikibooks.org/wiki/User:Snowolf
http://en.wikibooks.org/wiki/Special:Contributions/Somercet
http://en.wikibooks.org/wiki/User:SoniyaR
http://en.wikibooks.org/wiki/User:Sprink
http://en.wikibooks.org/wiki/User:Stassats
http://en.wikibooks.org/wiki/Special:Contributions/Steven_jones
http://en.wikibooks.org/wiki/User:Superm401
http://en.wikibooks.org/wiki/User:Suruena
http://en.wikibooks.org/wiki/User:TakuyaMurata

Contributors

1 TelecomNut172
1 Thijs!bot173

33 Thunderbunny174
1 TimR175

1 Ttv176
4 Webaware177

36 Whiteknight178
2 Whym179

1 Wik180
1 WikHead181
1 Wikidemon182
2 Wj32183
3 Xania184
1 Xerol185
1 Xqbot186

16 Yacht187
1 Ygfperson188
1 Zoohouse189
3 タチコマ robot190

172 http://en.wikibooks.org/wiki/Special:Contributions/TelecomNut
173 http://en.wikibooks.org/wiki/Special:Contributions/Thijs!bot
174 http://en.wikibooks.org/wiki/User:Thunderbunny
175 http://en.wikibooks.org/wiki/Special:Contributions/TimR
176 http://en.wikibooks.org/wiki/User:Ttv
177 http://en.wikibooks.org/wiki/User:Webaware
178 http://en.wikibooks.org/wiki/User:Whiteknight
179 http://en.wikibooks.org/wiki/User:Whym
180 http://en.wikibooks.org/wiki/User:Wik
181 http://en.wikibooks.org/wiki/User:WikHead
182 http://en.wikibooks.org/wiki/Special:Contributions/Wikidemon
183 http://en.wikibooks.org/wiki/User:Wj32
184 http://en.wikibooks.org/wiki/User:Xania
185 http://en.wikibooks.org/wiki/User:Xerol
186 http://en.wikibooks.org/wiki/Special:Contributions/Xqbot
187 http://en.wikibooks.org/wiki/User:Yacht
188 http://en.wikibooks.org/wiki/Special:Contributions/Ygfperson
189 http://en.wikibooks.org/wiki/User:Zoohouse

190 http://en.wikibooks.org/wiki/User:%25E3%2582%25BF%25E3%2583%2581%25E3%2582%25B3%25E3%
2583%259E_robot

272

http://en.wikibooks.org/wiki/Special:Contributions/TelecomNut
http://en.wikibooks.org/wiki/Special:Contributions/Thijs!bot
http://en.wikibooks.org/wiki/User:Thunderbunny
http://en.wikibooks.org/wiki/Special:Contributions/TimR
http://en.wikibooks.org/wiki/User:Ttv
http://en.wikibooks.org/wiki/User:Webaware
http://en.wikibooks.org/wiki/User:Whiteknight
http://en.wikibooks.org/wiki/User:Whym
http://en.wikibooks.org/wiki/User:Wik
http://en.wikibooks.org/wiki/User:WikHead
http://en.wikibooks.org/wiki/Special:Contributions/Wikidemon
http://en.wikibooks.org/wiki/User:Wj32
http://en.wikibooks.org/wiki/User:Xania
http://en.wikibooks.org/wiki/User:Xerol
http://en.wikibooks.org/wiki/Special:Contributions/Xqbot
http://en.wikibooks.org/wiki/User:Yacht
http://en.wikibooks.org/wiki/Special:Contributions/Ygfperson
http://en.wikibooks.org/wiki/User:Zoohouse
http://en.wikibooks.org/wiki/User:%25E3%2582%25BF%25E3%2583%2581%25E3%2582%25B3%25E3%2583%259E_robot
http://en.wikibooks.org/wiki/User:%25E3%2582%25BF%25E3%2583%2581%25E3%2582%25B3%25E3%2583%259E_robot

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.
html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://
creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://
creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://
creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://
creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.
org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.
org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.
html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

273

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de

List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.
php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses191. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

191 Chapter 41 on page 277

274

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 Emijrpbot, Jarkko Piiroinen
2 Berland, Derbeth, MGA73bot2, SchlurcherBot, Slobot, Ufo

karadagli
3 Pietrodn CC-BY-SA-2.5

275

http://en.wikibooks.org/wiki/File:Merkkijono.svg
http://en.wikibooks.org/wiki/File:Zeiger.PNG
http://en.wikibooks.org/wiki/File:Pointers_in_programming.svg

41 Licenses

41.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing
it is not allowed. Preamble

The GNU General Public License is a free, copyleft
license for software and other kinds of works.

The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.

Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU Gen-
eral Public License.

“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.

To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with
it that, without permission, would make you di-
rectly or secondarily liable for infringement under
applicable copyright law, except executing it on a
computer or modifying a private copy. Propaga-
tion includes copying, distribution (with or with-
out modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer

network, with no transfer of a copy, is not convey-
ing.

An interactive user interface displays “Appropri-
ate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that
(1) displays an appropriate copyright notice, and
(2) tells the user that there is no warranty for the
work (except to the extent that warranties are pro-
vided), that licensees may convey the work under
this License, and how to view a copy of this License.
If the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.

The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.

All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is per-
mitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it un-
necessary. 3. Protecting Users’ Legal Rights From
Anti-Circumvention Law.

No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any le-
gal power to forbid circumvention of technological
measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:

* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distribu-
tion medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an
offer, in accord with subsection 6b. * d) Convey
the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmis-
sion, provided you inform other peers where the
object code and Corresponding Source of the work
are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the pub-
lic in source code form), and must require no spe-
cial password or key for unpacking, reading or copy-
ing. 7. Additional Terms.

“Additional permissions” are terms that supple-
ment the terms of this License by making excep-
tions from one or more of its conditions. Additional
permissions that are applicable to the entire Pro-
gram shall be treated as though they were included
in this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:

* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning
of section 10. If the Program as you received it,
or any part of it, contains a notice stating that it
is governed by this License along with a term that
is a further restriction, you may remove that term.
If a license document contains a further restriction
but permits relicensing or conveying under this Li-
cense, you may add to a covered work material gov-
erned by the terms of that license document, pro-
vided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.

Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.

You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)

277

Licenses

from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.

You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Au-
tomatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has
it or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of
it. 11. Patents.

A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.

A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of fur-
ther modification of the contributor version. For
purposes of this definition, “control” includes the
right to grant patent sublicenses in a manner con-
sistent with the requirements of this License.

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.

If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the
covered work in a country, would infringe one or
more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.

A patent license is “discriminatory” if it does not
include within the scope of its coverage, prohibits
the exercise of, or is conditioned on the non-
exercise of one or more of the rights that are specif-
ically granted under this License. You may not con-
vey a covered work if you are a party to an arrange-
ment with a third party that is in the business of
distributing software, under which you make pay-
ment to the third party based on the extent of your
activity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-
able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.

Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any

covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NEC-
ESSARY SERVICING, REPAIR OR CORREC-
TION. 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY AP-
PLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-
fect according to their terms, reviewing courts shall
apply local law that most closely approximates an

absolute waiver of all civil liability in connection
with the Program, unless a warranty or assump-
tion of liability accompanies a copy of the Program
in return for a fee.

END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs

If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it
output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute
it under certain conditions; type ‘show c’ for de-
tails.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work
as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not per-
mit incorporating your program into propri-
etary programs. If your program is a subrou-
tine library, you may consider it more use-
ful to permit linking proprietary applications
with the library. If this is what you want to
do, use the GNU Lesser General Public Li-
cense instead of this License. But first, please
read <http://www.gnu.org/philosophy/why-not-
lgpl.html>.

41.2 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing
it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or

authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.

The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invari-
ant. The Document may contain zero Invariant
Sections. If the Document does not identify any
Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by refer-
ence in this License, but only as regards disclaiming
warranties: any other implication that these War-
ranty Disclaimers may have is void and has no ef-
fect on the meaning of this License. 2. VERBATIM
COPYING

You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies
to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to
those of this License. You may not use techni-
cal measures to obstruct or control the reading
or further copying of the copies you make or dis-
tribute. However, you may accept compensation
in exchange for copies. If you distribute a large
enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-

ument’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies.
The front cover must present the full title with all
words of the title equally prominent and visible.
You may add other material on the covers in addi-
tion. Copying with changes limited to the covers,
as long as they preserve the title of the Document
and satisfy these conditions, can be treated as ver-
batim copying in other respects.

If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:

* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that

278

GNU Lesser General Public License

version gives permission. * B. List on the Title
Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below.
* G. Preserve in that license notice the full lists of
Invariant Sections and required Cover Texts given
in the Document’s license notice. * H. Include an
unaltered copy of this License. * I. Preserve the
section Entitled "History", Preserve its Title, and
add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as
given on the Title Page. If there is no section En-
titled "History" in the Document, create one stat-
ing the title, year, authors, and publisher of the
Document as given on its Title Page, then add an
item describing the Modified Version as stated in
the previous sentence. * J. Preserve the network
location, if any, given in the Document for public
access to a Transparent copy of the Document, and
likewise the network locations given in the Docu-
ment for previous versions it was based on. These
may be placed in the "History" section. You may
omit a network location for a work that was pub-
lished at least four years before the Document it-
self, or if the original publisher of the version it
refers to gives permission. * K. For any section En-
titled "Acknowledgements" or "Dedications", Pre-
serve the Title of the section, and preserve in the
section all the substance and tone of each of the
contributor acknowledgements and/or dedications
given therein. * L. Preserve all the Invariant Sec-
tions of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent
are not considered part of the section titles. * M.
Delete any section Entitled "Endorsements". Such
a section may not be included in the Modified Ver-
sion. * N. Do not retitle any existing section to be
Entitled "Endorsements" or to conflict in title with
any Invariant Section. * O. Preserve any Warranty
Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text
has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity

you are acting on behalf of, you may not add an-
other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document
do not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all of
the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; like-
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document. 7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribu-
tion medium, is called an "aggregate" if the copy-
right resulting from the compilation is not used to
limit the legal rights of the compilation’s users be-
yond what the individual works permit. When the
Document is included in an aggregate, this License
does not apply to the other works in the aggregate
which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise

they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document
under the terms of section 4. Replacing Invariant
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Docu-
ment, and any Warranty Disclaimers, provided that
you also include the original English version of this
License and the original versions of those notices
and disclaimers. In case of a disagreement between
the translation and the original version of this Li-
cense or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a
particular numbered version of this License "or any
later version" applies to it, you have the option of
following the terms and conditions either of that
specified version or of any later version that has
been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose

any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of
this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-
rizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an
example of such a server. A "Massive Multiauthor
Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus pub-
lished on the MMC site.

"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.

An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents

To use this License in a document you have writ-
ten, include a copy of the License in the document
and put the following copyright and license notices
just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:

with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

41.3 GNU Lesser General Public License
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing
it is not allowed.

This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.

The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the
System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may in-
corporate material from a header file that is part
of the Library. You may convey such object code
under terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:

* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you
also do each of the following:

* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document.
* c) For a Combined Work that displays copyright
notices during execution, include the copyright no-
tice for the Library among these notices, as well
as a reference directing the user to the copies of
the GNU GPL and this license document. * d)
Do one of the following: o 0) Convey the Mini-
mal Corresponding Source under the terms of this
License, and the Corresponding Application Code
in a form suitable for, and under terms that per-
mit, the user to recombine or relink the Applica-
tion with a modified version of the Linked Version
to produce a modified Combined Work, in the man-
ner specified by section 6 of the GNU GPL for con-
veying Corresponding Source. o 1) Use a suitable
shared library mechanism for linking with the Li-
brary. A suitable mechanism is one that (a) uses
at run time a copy of the Library already present
on the user’s computer system, and (b) will oper-
ate properly with a modified version of the Library
that is interface-compatible with the Linked Ver-
sion. * e) Provide Installation Information, but
only if you would otherwise be required to provide
such information under section 6 of the GNU GPL,
and only to the extent that such information is nec-
essary to install and execute a modified version of
the Combined Work produced by recombining or
relinking the Application with a modified version
of the Linked Version. (If you use option 4d0, the
Installation Information must accompany the Min-
imal Corresponding Source and Corresponding Ap-
plication Code. If you use option 4d1, you must
provide the Installation Information in the manner
specified by section 6 of the GNU GPL for convey-
ing Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:

* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.

6. Revised Versions of the GNU Lesser General
Public License.

The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.

If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.

279

1

Chapter 5:
Defects and Non-

stoichiometry

Perfect Crystal

Extended Defects Point Defects

ExtrinsicIntrinsicGrain
Boundaries

Dislocations

2

Point Defect - Intrinsic

Schottky Frenkel

interstitial cationanion vacancycation vacancy

Na+ + Cl-  Vna + VCl Ag+  VAg+ Ag+
interstitial

Anion Frenkel defect in fluorite

Example fluorites include CaF2, SrF2, PbF2, ThO2, UO2, ZrO2

Cation Frenkel defects are
common because of the
typically smaller size of a
cation compared to an
anion.
•However, anions in the
fluorite structure have a
lower electrical charge
than the cations and don’t
find it as difficult to move
nearer each other.
•The fluorite structure ccp
cations with all
tetrahedral holes
occupied by the anions –
thus all octahedral holes
are unoccupied.

3

Concentration of defects

•At equilibrium, the overall change in
free energy of the crystal due to the
defect formation is zero according to:

DG = DH – TDS







 D


kT
HNn s

s 2
exp

where ns is the number of Schottky defects per unit volume, at T
K, in a crystal with N cations and N anion sites per unit cell
volume, and DHs is the enthalpy required to form one defect.

At any temperature, there will always
be an equilibrium population of
defects. The number of defects (for
an MX crystal) is given by:

Energy is required to form a defect (endothermic process)

•Although there is a cost in energy, there is a gain in entropy in
the formation of a defect.

Concentration of defects, cont.

Estimate the configurational entropy, the change of entropy due to the
vibrations of atoms around the defects and the arrangement of defects,
using methods of statistical mechanics.

•If the number of Schottky defects is ns per unit volume at T K, then
there are ns cation vacancies and ns anion vacancies in a crystal
containing N possible cation sites and N possible anion sites.

•The Boltzmann formula tells us that the entropy of such a system is:

S = klnW

where W is the number of ways of distributing ns defects over N
possible sites at random, and k is the Boltzmann constant (1.38x10-23

J/K)

•Probability theory shows that W is given by:

!)!(
!

nnN
NW




N! is ‘factorial N’. N×(N-1)×(N-2)…×1

4

Concentration of defects, cont.

!)!(
!

ss
c nnN

NW


Number of ways on can distribute cation vacancies

!)!(
!

ss
a nnN

NW


Number of ways on can distribute anion vacancies

The total number of ways of distributing these defects, W, is:

acWWW 

The change in entropy due to introducing defects into a perfect crystal:





















D
!)!(

!ln2
!)!(

!lnln
2

ssss nnN
Nk

nnN
NkWkS

Simplify using Stirling’s approximation:

NNNN  ln!ln

Concentration of defects, cont.

}ln)ln()(ln{2 ssss nnnNnNNNkS D

thus:

If the enthalpy change for the formation of a single defect is DHs
and then assume that the enthalpy change for the formation of ns
defects is nsDHs then the Gibbs free energy change is given by:

}ln)ln()(ln{2 ssssss nnnNnNNNkTHnG DD

At equilibrium, Gibbs free energy of the system must be a
minimum with respect to changes in the number of defects, ns.

0






 D

sdn
Gd

0}ln)ln()(ln{2 D ssss
s

s nnnNnNNN
dn
dkTH

5

Concentration of defects, cont.

0}ln)ln()(ln{2 D ssss
s

s nnnNnNNN
dn
dkTH

NlnN is a constant, so differential becomes zero
Differential of:

ln x is 1/x
xlnx is (1+ lnx)

0}1ln1){ln(2 D sss nnNkTH








 
D

s

s
s n

nNkTH)(ln2 





 D


kT
HnNn s

ss 2
exp)(

Since N >> Ns, approximate N-ns as N







 D


kT
HNn s

s 2
exp in molar

quantities 





 D


RT
HNn s

s 2
exp

where R is 8.314 J/mol K

DHs is the enthalpy required to form one mole of Schottky defects

Concentration of defects, cont.







 D


kT
HNNn F

is 2
exp)(2/1

The number of Frenkel defects present in a MX crystal is:

where nf is the number of Frenkel defects per unit volume, N is the
number of lattice sites, and Ni the number of interstitial sites available.,
and DHF is the enthalpy of formation of one Frenkel defect:







 D


RT
HNNn F

is 2
exp)(2/1

If DHF is the enthalpy of formation of one mole of Frenkel defects:

Knowing the enthalpy of formation for Schottky and Frenkel defects,
one can estimate how many defects are present in a crystal.

6

Assuming DHs = 5×10-19 J, the proportion of vacant sites ns/N at 300 K
is 6.12×10-27, whereas at 1000 K this increases to 1.37×10-8

At room temperature there are very few Schottky defects, even at
1000K there are only about 1 or 2 defects per hundred million sites.
Depending on the value of DH, a Schottky or Frenkel defect
may be present. The lower DH dominates, but in some crystals
it is possible that both types of defects may be present.

Increasing temperature increases defects, in agreement with
the endothermic process and Le Chatelier’s principle.

Compound DH (10-19 J) DH (eV)

MgO 10.57 6.60

CaO 9.77 6.10

LiF 3.75 2.34

LiCl 3.40 2.12

LiBr 2.88 1.80

LiI 2.08 1.30

NaCl 3.69 2.30

KCl 3.62 2.26

Compound DH (10-19 J) DH (eV)

UO2 5.45 3.40

ZrO2 6.57 4.10

CaF2 4.49 2.80

SrF2 1.12 0.70

AgCl 2.56 1.60

AgBr 1.92 1.20

β-AgI 1.12 0.70

Schottky Defects Frenkel Defects

Extrinsic defects

Doping with selected ‘impurities’ can introduce vacancies into a crystal.

•Consider incorporating CaCl2 into NaCl, in which each Ca2+ replaces
two Na+ and creates one cation vacancy.

Defects and Ionic Conductivity in Solids

Defects make it possible for atoms or ions to move, through diffusion
through the lattice or ionic conductivity (ions under the influence of an
external electric field) through the structure.

Two possible mechanisms for the movement of ions through a lattice:

Vacancy mechanism Interstitial mechanism

7

Ion Migration (Schottky defects)

Na+ ions move, but meet resistance in the crystal structure

Na

Na
Na

Cl

Cl

Cl
Cl

The Frenkel defects in AgCl can migrate via two mechanisms.

Ag

Ag

Ag

Cl

Cl

Cl

Cl

Ag2

Ag1

Ag

Ag

Cl

Cl

Ag

Ag

Ag

Cl

Cl

Cl

Cl

Ag2

Ag1

Ag

Ag

Cl

Cl

Ag

Ag

Ag

Cl

Cl

Cl

Cl

Ag1

Ag2

Ag

Ag

Cl

Cl

Ag

Ag

Ag

Cl

Cl

Cl

Cl

Ag2

Ag1

Ag

Ag

Cl

Cl

Direct Interstitial Jump

Interstitialcy Mechanism

Ion Migration (Frenkel Defects)

8

The energy required to make the jump, Ea, is the
activation energy.

Ionic Conductivity

Ionic Conductivity, σ, is defined the same as electrical
conductivity:

σ = nZem
where n is the number of charge carriers per unit volume, Ze is
the charge (e = 1.602189×10-19 C), and m is the mobility, which
is a measure of the drift velocity in a constant electric field.

Material Conductivity / (S m-1)

Ionic Conductors Ionic crystals <10-16 – 10-2

Solid electrolytes 10-1 – 103

Strong (liquid) electrolytes 10-1 – 103

Electronic conductors Metals 103 – 107

Semiconductors 10-3 – 104

Insulators <10-10

9

Ionic ConductivityIonic Conductivity

If the external field is small (up to 300 V cm-1), a temperature
dependence of 1/T is present in the pre exponential factor.

An expression for the variation of ionic conductivity: 





 


T
E

T
aexp0

The temperature dependence of the mobility of the ions
can be expressed by an Arrhenius equation.







 


kT
Eaexp 






 


kT
Eaexp0 where m0 is a proportionality constant

known as the pre-exponential factoror

m0 depends on the attempt frequency (frequency of vibration of the
lattice 1012-1013 Hz), distance moved by ion, and the size of the
external field.

The term σ0 contains n and Ze as well as the attempt frequency
and jump distance. Taking logs…









T
ET a

0lnln 

Plotting lnσT vs 1/T should produce a straight line with a slope of –Ea.

lnσ vs 1/T is also used

Conductivities of Solid Electrolytes vs TemperatureConductivities of Solid Electrolytes vs Temperature

NaCl

10

Differences in slopes are evident, even in very pure crystals.

•At low temperatures extrinsic vacancies are most important.

•The concentration of intrinsic vacancies are so small at low
temperature that they may be ignored

•The number of vacancies will be essentially constant

ߤ• in the extrinsic region thus will only depend on the cation
mobility due to extrinsic defects, with the temperature
dependence:







 


kT
Eaexp0

At high temperatures the concentration of intrinsic
defects has increased so that it is similar or greater
then the concentration of extrinsic defects







 D


kT
HNn s

s 2
exp

The conductivity in this intrinsic region
on the left side of the plot: 






 D







 


kT
H

RT
E

T
sa

2
exp

2
exp'



A plot of lnsT vs 1/T gives a larger value for the activation energy (Es),
because it depends on both the activation energy for the cation jump
(Ea) and the enthalpy of formation of a Schottky defect. Es = Ea + 1/2DHs

For a system with Frenkel defects, EF = Ea + 1/2DHF

Activation energies typically lie in the range of 0.05 to 1.1 eV.

Solid Electrolytes

Ionic conductivity of solids is important towards the development of
solid state batteries.

•Primary batteries are not reversible and are discarded after use.

•Secondary or storage batteries are reversible and significant research
is performed to improve properties of materials.

11

α-AgI exists as two phases below 146°C

γ-AgI (zinc blende) and β-AgI (wurtzite), both  ccp I-

above 146°C α-AgI has I- in body centered cubic arrangement.

The conductivity of α-AgI is very high, ~104 higher than γ-AgI & β-AgI

Fast ion conductors: α-AgI

rhombic
dodecahedron

truncated
octahedron

12

•There are many possible
positions for the Ag+ to occupy, 6
are distorted octahedral, 12 are
~tetrahedral, and 24 are trigonal,
giving 42 possible sites.

•Structural determinations
indicate the Ag+ ions are
statistically distributed among the
twelve tetrahedral sites.

•There are five spare sites
available per Ag+ atom.

•Silver moves from site to site by
jumping though a vacant trigonal
site, changing the coordination
from 4-3-4, the activation energy
is very low, 0.05 eV.

•Described as a molten sublattice
of Ag+.

Fast ion conductors: RbAg4I5

The 146°C is higher than desired for many applications, so a search
for other solids with high ionic conductivity resulted in RbAg4I5.

•Has an ionic conductivity of 25 S/m and activation energy of 0.07 eV.

•The Rb+ and I- form a rigid array while the Ag+ ions are randomly
distributed over a network of tetrahedral sites.

•A conducting solid electrolyte must have high ionic conductivity, but
negligible electronic conductivity (otherwise a short circuit).

•A cell may be constructed with Ag and RbI3 electrodes.

•Cells constructed operate between -55 to +200°C, have long shelf
life, and can withstand mechanical shock.

Anion
Structure

bcc ccp hcp other

α-AgI α-CuI β-CuBr RbAg4I5
α-CuBr α-Ag2Te
α-Ag2S α-Cu2Se
α-Ag2Se α-Ag2HgI4

13

Fast ion conductors: oxygen ion conductors

Fluorite structure has some empty space that
may enable an F- ion to move into an
interstitial site. Some fluorites (PbF2) exhibits
low ionic conductivity at room temperature,
but increases to ~500 S/m at 500°C.

•Many oxides also adopt the fluorite structure
(UO2, ThO2, CeO2)

•Nernst found that mixed oxides of Y2O3 and
ZrO2 glowed white hot if an electrical current
passed, which was attributed to conduction of
oxide ions.

•These doped zirconia oxides were used for
filaments in ‘glower’ electric lights.

•The cubic form of ZrO2 (fluorite) is formed at
high temperature or when doped with another
element.

•Addition of either Y2O3 (yttria stabilized
zirconia, YSZ) or CaO to ZrO2

•If Ca2+ ions are located on
Zr4+ sites, then
compensating vacancies are
created in the O2-

sublattice.

•Ca-doped ZrO2 are very
good fast-ion conductors of
O2- ions.

•Conductivity maximizes at
relatively low
concentrations of dopant,
when the crystal lattice is
distorted as little as
possible.

•Two of the best oxygen ion
conductors are ZrO2 doped
with Sc2O3, and CeO2 doped
with Gd2O3, and others
based on CeO2, ThO2, HfO2,
and ZrO2 are doped with
other transition metals.

14

Perovskite:

Materials based on the perovskite lanthanum gallate, LaGaO3,
doped with Sr2+ and Mg2+, produce La1-xSrxGa1-yMgyO3-d (LSGM).

•Has similar conductivities to zirconias, but at a lower operating
temperature.

•For a cathode material in a solid oxide fuel cell, a material is
needed that can conduct both ions and electrons. The Sr2+

doped LaMnO3 (LSM) and LaCrO3 (Sr) have both these
properties.

LAMOX:

•Materials based on La2Mo2O9 has high conductivity above
600°C, but tend to be susceptible to reduction by hydrogen.

BIMEVOX:

•Materials based on Bi2O3 have high conductivity above 600°C

Apatite:

•Structure based on La10-xM6O26+y (M = Si, Ge) conduct well at
high temperatures.

Oxygen ion conductors: Other

•β-alumina is a series of
compounds that exhibit fast-
ion conducting properties.

•Parent compound is sodium
β-alumina, NaAl11O17

•General formula is M2O-
nX2O3, where n can range
from 5 to 11 and M is a
monovalent cation (alkali
metal)+, Cu+, Ag+, NH4

+, and
X is a trivalent cation Al3+,
Ga3+, or Fe3+.

•High conductivity of the
compound is related to the
crystal structure.

•Close-packed layers of oxide ions, but in every fifth layer three-fourths of
the oxygens are missing. The four close packed layers contain Al3+ ions in
both octahedral and tetrahedral holes. The Na+ are found in the fifth oxide
layer [B(ABCA) C (ACBA) B]. Na+ ions move in the conduction plane.

Fast-ion conductors: sodium ion conductors

15

Fast-ion conductors: NASICON

NaZr2(PO4)3 (NZP) consists of corner-linked ZrO6
octahedra joined by PO4 tetrahedra, each of which
corner-shares to four octahedra.

•This arrangement creates a 3D system of channels
with two types of vacant sites:

•Type I – a single distorted octahedral site
occupied by Na+ ions in NZP.

•Type II – a larger vacant site

•The structure type is very versatile and hundreds
of compounds adopt it by varying the charge
balancing ‘A’ cation with alkali or alkaline earth
metals, the structural ‘M’ cation with transition
metal, Ti, Zr, Nb, Cr, or Fe, and the P may be
substituted with Si.

•The NASICON (Na SuperIonic Conductor) has a conductivity of 20
S/m at 300°C and has the formula Na3Zr2(PO4)(SiO4)2 and has three
out of the four vacant sites occupied by Na+.

Batteries Fuel Cells Electrochromic Devices

Solid State Ionic Devices

16

A battery is an electrochemical cell that produces an electric current at
a constant voltage as a result of a chemical reaction.

•Ions travel through an electrolyte and are oxidized or reduced at the
electrode.

•Oxidation occurs at the anode.

•Reduction occurs at the cathode.

•The solid electrolyte must have high conductivity of ions, but not
electrons (electronic insulator).

•The electromotive force (emf), or voltage, produced by the cell under
standard open circuit conditions is related to Gibb’s free energy.

DG° = -nE°F

where n is the number of electrons transferred in the reaction, E° is the
standard emf of the cell (voltage delivered under standard, zero-
current conditions) and F is the Faraday constant (96485 C/mol or
96485 J/V).

•Energy stored in a battery is related to the energy generated by the
cell reaction and the amount of material used.

•Typically expressed in watt-hours (current*voltage*discharge time)

Batteries

Energy density (watt-hours/battery volume in L) or specific energy
(watt-hours divided by battery weight in kg) is a more useful
indicator in applications where size or weight is critical.

•LiI has relatively low ionic conductivity, but was used in heart
pacemaker batteries in the early 1970’s, where a low current, small,
long lasting, and generate no gases during discharge.

A B C

Li // LiI // I2 and polymer

where the cathode is a conducting polymer with embedded iodine,
poly-2-vinyl-pyridine

•Electrode reactions are:

Anode A: 2Li(s)  2Li+(s)+ 2e- Cathode C: I2(s) + 2e-  2I-(s)

•LiI contains intrinsic Schottky defects and the small Li+ cations are
able to pass through the solid electrolyte, while the electrons travel
through the circuit to perform work.

CBA

Lithium batteries

17

•Sony developed rechargeable lithium-ion
batteries the are able to undergo many charge-
discharge cycles.

•The lightweight batteries find use in many
applications from mobile phones and laptop
computers, etc.

•Driving reaction is that of Li with CoO2 to form
an intercalation compound, LixCoO2 and anode
is Li in graphitic carbon.

A B C

Li/C // Li+ electrolyte // CoO2

•Electrode reactions are:

Anode A: LixC6(s)  xLi++6C + xe-

Cathode C: xLi+ + CoO2(s) + xe-  LixCoO2(s)

http://electronics.howstuffworks.com/lithium-ion-battery1.htm

Lithium-ion batteries

http://electronics.howstuffworks.com/lithium-ion-battery1.htm

18

Na+ conduction has been used in a high-temperature
secondary battery, the sodium sulfur battery.

•Uses NASICON and β-alumina as the electrolyte.

•110 Wh/kg, with lightweight Na and energetic rxn.

•Electrolyte separates molten sulfur/molten sodium

A B C
Na(l) // β-alumina // S(l) and C(graphite)

Anode A: 2Na(l)  2 Na+ + 2e-

Cathode C: 2Na++5S(l)+2e-Na2S5(l)

Overall Reaction: 2Na(l)+5S(l)Na2S5(l)

•Reaction is completed when low polysulfides
are formed, terminating with Na2S3

•Wind to battery project

Sodium batteries

Uses β-alumina as a Na+ ion conductor.

•Nickel chloride or a mixture of ferrous and nickel chlorides are used as
the cathode.

•Current flow is improved by adding a second liquid electrolyte, molten
NaAlCl4 between the electrode and the β-alumina

•Overall cell reaction is 2Na + NiCl2  Ni + 2NaCl

•Has high specific energy > 100 Wh/kg and gives electric vehicles a
range of up to 250 km.

•Fully rechargeable, safe, and need no maintenance to over 100,000 km

Zebra batteries

19

Fuel Cells

Fuel cells differ from conventional batteries in that the fuel is fed in
externally to the electrodes.

•Advantage: cell can operate continuously as long as fuel is available,
unlike a battery that must be discarded (primary) or recharged (secondary).

•The fuels used are usually hydrogen and oxygen (air), which react
electrochemically to produce water, electricity and heat.

•H2 is fed to the anode where it is oxidized to H+ ions and electrons.

•Electrons travel through the external circuit and the H+ ions travel
through the electrolyte to the cathode, where they react with O2-.

•The reaction process is ‘green’ with byproducts of water and heat.

•The low temperature of the reaction means NOx are avoided.

•Efficiency is up to about 50% or more, compared to 15-20% for ICE and
30% for diesel engines.

•Reduction of oxygen at the cathode is rather slow at low temperatures,
therefore a Pt catalyst is incorporated into the carbon electrodes.

Fuel Cells

20

A B C
H2(g)//Pt/C electrode// hydrogen electrolyte //Pt/C electrode//O2(g)

•Electrode reactions are:

Anode A: H2(g)  2H+ + 2e-

Cathode C: 1/2O2(g) + 2H+ +2e-  H2O

•The theoretical emf is E0 = 1.229 V at 298K, but decreases to ~1 V at
500 K, so a compromise is needed between voltage and operating
temperature.

•Hydrogen storage is difficult, as well as the transportation (heavy
cylinders for transportation), and changeover of the current infrastructure.

•Production of very pure hydrogen is energy intensive, thus cheap sources
of electricity must be found (solar, hydroelectric, nuclear) or through the
use of reforming reactions from methane or methanol with steam to
produce hydrogen and CO2.

Fuel Cells

Phosphoric Acid Fuel Cell (PAFC)

21

Alkaline Fuel Cell (AFC)

Molten Carbonate Fuel Cell (MCFC)

22

http://www.udomi.de

Direct Methanol Fuel Cell (DMFC)

Polymer Electrolyte Fuel Cell

http://www.udomi.de

23

Solid Oxide Fuel Cell

SOFC’s employ a ceramic oxide (ceria- or yttria-doped zirconia,
Y2O3/ZrO2), which becomes O2- conducting at very high temperature
(800-1000°C) and requires heating, but at this temperature
reforming and H+ production can take place internally without Pt.

A B C
H2(g)//electrode// solid oxide electrolyte // electrode//O2(g)

•Electrode reactions are:

Anode A: H2(g) + O2- H2O + 2e-

Cathode C: 1/2O2(g) + 2e-  O2-

•The solid oxide electrolyte can withstand the extreme conditions of
H2 at the anode at 800°C. (many oxides would be reduced)

•Cathode materials must be able to conduct both oxide ions and
electrons, and must similar thermal expansion coefficients as the
electrolyte.

Solid Oxide Fuel Cell

24

Proton Exchange membrane Fuel cells operate at
~80°C

•Electrolyte is a conducting polymer membrane
(Nafion), which is a sulfonated fluoropolymer.

•The strongly acidic –SO2OH group allows movement
of H+, but not e-.

•Output voltage is ~1V at 80°C with a current flow of
0.5A/cm2

•Ohmic losses reduce this to 0.5V

•A membrane of 1 m2 provides about 1 kW

•Cells are placed together to form a stack

•Large fuel cells are produced and can power banks,
hospitals (250 kW)

•Medium cells (7 kW) can power a house and heat hot
water. Fuel cells powered the Space Shuttle.

Proton Exchange Membrane Fuel Cells (PEM)

CSZ is used in O2 detection, in
oxygen meters and oxygen
sensors.

•Gas pressures tend to
equalize, and if p’ > p” oxygen
ions pass through the
stabilized zirconia.

•A potential difference,
because the ions are charged,
is formed, indicating the
oxygen is present (in the
sensor) and a measurement of
the potential gives the oxygen
pressure difference (in the
oxygen meter).

Sensors: Oxygen meters and oxygen sensors

25

Oxygen gas is reduced to O2- at the right-hand electrode (C). The
oxide ions are able to pass through the doped zirconia and are
oxidized to oxygen gas at the left-hand electrode (A).

•Electrode reactions are:

Anode A: 2O2- O2(p”) + 4e-

Cathode C: O2(p’) + 4e-  2O2-

Overall: O2(p’)  O2(p”)

Under standard conditions, the change in Gibb’s Free energy is
related to the standard emf of the cell:

DGo = -nEoF

Nernst equation - allows calculation of the cell emf under
nonstandard conditions, E. Assume the cell reaction is given by a
general equation: aA = bB +… + ne  xX yY +…









 b
B

a
A

y
Y

x
Xo

aa
aa

nF
RTEE log303.2

where the quantities ax are the activities of the reactants and products.

Sensors: Oxygen meters and oxygen sensors

Applying the Nernst equation to the cell reaction in an oxygen meter:

Eo is zero, since under standard conditions the oxygen pressure is equal.

•Typically the pressure of the oxygen on one side of the cell (p”) is set to
be a known reference pressure, usually either pure oxygen at 1 atm or
atmospheric oxygen pressure (~0.21 atm).

•All of the quantities in the equation are known or can be measured,
enabling a direct measure of the unknown oxygen pressure p’.










'
"log

4
303.2

p
p

F
RTEE o














ref

o

p
p

F
RTEE 'log

4
303.2

•In order for a oxygen sensor of meter to
operate, there must not be any electronic
conduction through the electrolyte.

•Oxygen meters find use in detection of waste
gases in chimneys, exhaust pipes, etc.

•Sensors for other gases operate using
different electrolytes in the detection of H2, F2,
Cl2, CO2, SOx, NOx.

26

•Electric current is applied to the
cell, causing a movement of ions
through the electrolyte and
creating a colored compound in
one of the electrodes.

•Li+ ions flow from the anode,
through the colorless electrolyte
to form LixWO3 at the cathode,
changing it from colorless to deep
blue.

Granqvist et al Appl. Phys. A 89, 29–35 (2007)

Electrochromic Devices

http://eetd.lbl.gov/l2m2/tms-mirrors.html

•The film used for the switchable mirror is made of an alloy of
magnesium and one or more transition-metals.

Thin Ni-Mg films, on exposure to hydrogen
gas or on reduction in alkaline electrolyte, the
films become transparent. The transition is
believed to result from formation of nickel
magnesium hydride, Mg2NiH4.

Transition-Metal Switchable Mirrors

http://eetd.lbl.gov/l2m2/tms-mirrors.html

27

Anders et al, Thin Solid Films 517 (2008) 1021–1026

A photographic emulsion contains small crystallites of AgBr (or AgBr-AgI)
dispersed in gelatin that is supported on a paper or thin plastic to form a
photographic film.

•Crystallites are small triangular or hexagonal platelets, known as grains.

•Grains are grown in situ, few defects and range in size 0.05 to 2x10-6 m.

•Light causes formation of Ag atoms from the salt, forming the dark part of
the image. The grains that are affected by the light contain the latent
image. Formation of the latent image depends on the presence of point
defects.

•AgBr and AgI have the NaCl-structure type and AgBr has Frenkel defects
in the form of interstitial Ag+ ions.

•For a grain to possess a latent image, a cluster forms as small as 4 Ag
atoms on the surface of the grain.

•When light strikes the AgBr crystals, an electron is promoted from the
valence band to the conduction band. (band gap AgBr = 2.7 eV)

Agi
+ + e-  Ag

Photography

28

Ag + e-  Ag-

Ag- + Agi
+  Ag2

Ag2 + Agi
+  Ag3

+

Ag3
+ + e-  Ag3

Ag3 + e-  Ag3
-

Ag3
- + Agi

+  Ag4 + …

Only the odd numbered clusters appear to
interact with the electrons.

•Sensitizers, sulfur or organic dye, are added
and absorb light of longer wavelength and
extend the spectra range.

•Sensitizers form traps for the photoelectrons on
the surfaces of the grains and transfer from an
excited energy level of the sensitizer to the
conduction band of AgBr.

The film containing the latent image is treated to produce a negative.

•Developed by using a reducing agent – such as an alkaline solution of
hydroquinone, to reduce the AgBr crystals to Ag.

•The clusters of Ag atoms act as a catalyst to the reduction process,
all of the grains with a latent image are reduced to Ag.

•Process is rate controlled, so all grains that have not reacted to light
are unaffected by the developer (except for long developing times).

•Final stage is to dissolve out the remaining light sensitive AgBr using
hypo-sodium thiosulfate (Na2S2O3) which forms a water soluble
complex with Ag+ ions.

Crystals of alkali halides become brightly colored when exposed to X-rays.

electron

A color center
is known as a
Farbenzentre
(F-center).

Electron Spin Resonance (ESR) spectroscopy confirms the presence of
unpaired electrons trapped at vacant lattice (anion site).

A H-center may also
be formed by heating
NaCl in Cl2 gas, with
the Cl2- ion occupying
an anion site.

Color Centers

F-center H-center

29

Impurity induced defects are extrinsic and maintain charge neutrality.

Color centers in NaCl may be formed heat heating in the presence of Na vapor,
becoming Na1+xCl, where the sodium atom occupies cation sites, creating anion
vacancies. The sodium atoms oxidize to form a sodium cation with an electron at
the anion vacancy.

•The resulting compound is known as a non-stoichiometric compound because the
number of atomic components is no longer 1:1.

•Ionic compounds may also be non-stoichiometric when it contains an element
with a variable valency, then a change in the number of ions of that element can
be compensated with changes in ion charge.

Compound Composition range

TiOx [≈TiO] 0.65 < x <1.25

[≈TiO2] 1.998 < x < 2.000

VOx [≈VO] 0.79 < x < 1.29

MnxO [≈MnO] 0.848 < x <1.000

FexO [≈FeO] 0.833 < x <0.957

CoxO [≈CoO] 0.998 < x < 1.000

NixO [≈NiO] 0.999 < x <1.000

CeOx [≈Ce2O3] 1.50 < x < 1.52

ZrOx [≈ZrO2] 1.700 < x < 2.004

UOx [≈UO2] 1.65 < x < 2.25

LixWO3 0< x < 0.50

•Isolated point defects are not randomly
located in non-stoichiometric compounds, but
are dispersed in a regular pattern.

•Conventional XRD gives average structure,
local structure may be investigated using
high resolution electron microscopy (HREM)
and direct lattice imaging.

Non-stoichiometric Compounds

Ferrous oxide, or wustite (FeO) has
the NaCl structure type.

• Chemical analysis indicates it is
non-stoichiometric and always
deficient in iron. Stoichiometric
FeO isn’t stable, and below 570°C
disproportionates into α-Fe and
Fe3O4.

• Iron deficiency may be
accommodated in the structure on
one of two ways:

1. Iron vacancies, giving Fe1-xO

2. Excess of oxygen in interstitial
positions, giving FeO1+x

Non-stoichiometry in Wustite (FeO)

30

It is often found that non-stoichiometric compounds have a unit
cell size that varies smoothly with composition but has symmetry
that is unchanged, which is known as Vegard’s Law.

O:Fe
ratio

Fe:O
ratio

Lattice
parameter
/pm

Observed
density
(g/cm3)

Interstitial
O (g/cm3)

Fe
Vacancies
(g/cm3)

1.058 0.945 430.1 5.728 6.075 5.742
1.075 0.930 429.2 5.658 6.136 5.706
1.087 0.920 428.5 5.624 6.181 5.687
1.099 0.910 428.2 5.613 6.210 5.652

428

428.5

429

429.5

430

430.5

0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95
Fe:O Ratio

La
tti

ce
 P

ar
am

et
er

 (p
m

)

Vegard’s Law

Compensation for iron deficiency is energetically more favorable to
oxidize Fe(II), requiring the oxidation of two Fe2+ to Fe3+ for every Fe2+

cation vacancy.

•In the case of excess metal,
neighboring cations would be reduced.
•In the case of an Fe2+ vacancy, the
two Fe3+ vacancies are determined to
be neighboring as confirmed by
Mossbauer spectroscopy.
•Some Fe3+ ions are found to be in a
tetrahedral site.
•If the tetrahedral site is occupied,
then the thirteen neighboring
octahedral Fe2+ sites are empty.
•This type of defect is found for low
values of x.
•At high values of x, the structure
contains various types of defect
clusters, one possibility is a Koch-
Cohen cluster.

Electronic Defects and Structure in FeO

31

•A defect cluster is a region of the
crystal where defects form an
ordered structure.

•Surrounding the central defect
unit cell, the other octahedral iron
sites (Feoct) are occupied, but may
contain either Fe2+ or Fe3+.

•Clusters sometimes referred to
the ratio of cation vacancies to
interstitial Fe3+ in tetrahedral
holes (13:4).

Koch-Cohen Cluster

•Above 1127°C, a
single oxygen-rich
non-stoichiometric
phase of UO2 is found
with formula UO2 to
UO2.25 (U4O9)

•Interstitial anions are
present in the fluorite
structure.

•Interstitial O’ causes
O’’ displacement.

•A defect cluster, considered as two vacancies, one
interstitial of one kind O’, and two of another O’’, is called
a 2:1:2 Willis cluster.

•The movement of the interstitial oxide O’ is along the
direction towards the diagonal of the cube face (110)
direction, whereas the O’’ is along cube diagonal (111)

•Can consider UO2 as containing microdomains of U4O9
structure within UO2.

Uranium Dioxide

32

•Composition ranges from TiO0.65 to TiO1.25, with a stoichiometric 1:1
composition resembling the NaCl-type structure with vacancies in both
the metal and oxygen sublattices: 1/6 of Ti and 1/6 of O are missing.

•Vacancies are randomly distributed above 900°C, but below are ordered.
•The structure appears
stoichiometric, but contains
defects on both the cation and
anion sublattices.
•Note that every other atom
along every third diagonal
plane is missing.
•The new unit cell is
monoclinic (β ≠ 90°)
•Vacancies permit sufficient
contraction of the lattice to
enable 3d orbitals on Ti to
overlap, broadening the
conduction band and allowing
electronic conduction.

Titanium Monoxide (TiO)

•TiO1.25 has all of the oxygens present and one in every five Ti missing.

•Ordering produces a superlattice with a different unit cell.

•Formula would be more correctly written as Ti0.8O (Ti1-xO) because this
indicates the structure contains interstitial vacancies.

Titanium Monoxide (TiO1.25)

33

The simplest linear defect is a dislocation where there is a fault in
the arrangement of atoms in a line through the crystal lattice.

Extended Defects

Another linear defect is a screw dislocation. This occurs
when a stress is applied to the crystal and the dislocation
of the line of atoms is perpendicular to the stress.

34

Antiphase domain: the grain
has the reverse structure from
the surrounding structure.

There are also
planar defects
such as grain
boundaries.

Chemical twinning
(planar defects)
contains unit cells
mirrored about the
twin plane through
the crystal.

35

Non-stoichiometric compounds are found for the higher oxides of
tungsten (WO3-x), molybdenum (MoO3-x), and titanium (TiO2-x).

•In these systems a series of closely related compounds with similar
formula exist (MonO3n-1, WnO3n-1 and WnO3n-2, and TinO2n-1, where n can
take values of 4 and above). The resulting series of oxides is known as
a homologous series.

•These compounds have regions of corner-sharing octahedra separated
from each other by regions of a different structure known as a
crystallographic shear plane.

•The different members of a homologous series are determined by the
fixed spacing between the crystallographic shear planes.

•Above 900°C, the WO3 structure is that of ReO3, which has [WO6]
octahedra sharing corners with any octahedron lined to four others in
the same layer.

•Non-stoichiometry is WO3-x is achieved by some of the octahedra in
this structure changing from corner-sharing to edge-sharing.

•Shearing occurs at regular intervals and creates groups of four
octahedra which share edges.

•Direction of maximum density of edge sharing groups in the CS plane.

Crystallographic Shear Planes

Formation of Shear Structure

36

The four octahedra consist of four
W atoms and 18 O atoms.

•14 of the O are linked to other
octahedra and 4 O are involved in
edge sharing within the group.

•The overall stoichiometry is given
by 4W + (14*1/2)O+4O = W4O11

•If groups of W4O11 are
interspersed throughout the WO3
structure, the groups can be
written as WO3-x.

•W4O11 + WO3 = W5O14

•W4O11 + 2WO3 = W6O17

•W4O11 + 3WO3 = W7O20

•W4O11 + 4WO3 = W8O23

•Simplifies to WnO3n-1

Shear Structure: W4O11 + 7WO3  W11O32

37

The term bronze is applied to metallic
oxides that have a deep color (yellow to
red or deep purple), metallic luster, and
are metallic or semiconducting.

•Color depends on x in NaxWO3.

•Structure is a 3d network of channels
throughout the structure, with alkali
metals in the channels.

•Three main types of structures:

1. Cubic, 2. Tetragonal, 3. Hexagonal

•Charge compensation occurs with the
M+ presence, reducing the metal M5+.

•In the case of K, stability lies in the
range of K0.19WO3 to K0.33WO3, below
0.19 the structure has WO3 intergrown
with the hexagonal structure in a
regular fashion.

•Layers of hexagonal structure 1 or 2
tunnels wide. Hexagonal

Tetragonal

(2.) Planar Intergrowths: Tungsten Bronze

(2.) Planar Intergrowths: Tungsten Bronze

38

Electron micrograph of intergrowth BaxWO3

High-resolution electron
micrograph of W4Nb26O77

In O-deficient Nb2O5, and mixed oxides of Nb and Ti, and Nb and W, the
crystallographic shear planes occur in two sets at right angles to each other.

•Intervening regions of perfect
structure change from infinite sheets
to infinite columns or blocks, which are
known as double shear or block
structures.

•Characterized by the cross sectional
size of the blocks.

•May also have blocks of two or three
different sizes arranged in an ordered
fashion, such as the 4x4 and 3x4
blocks in W4Nb26O77.

Three-Dimensional Defects: Block Structures

39

•Structure consists of a
pentagonal ring of five [MO6]
octahedra, which when stacked
form a pentagonal column with
alternating M and O atoms.

•The pentagonal columns fit
inside an ReO3 type structure in
an ordered way and, depending
on the spacing, form a
homologous series.

•One example is the Mo5O14
structure.

Mo5O14

Three-Dimensional Defects:
Pentagonal Columns

Ta22W4O67

Ta30W2O81

•A large number of compounds
form in the Ta2O5-WO3 system,
built from fitting together
pentagonal columns.

•Structure have a wavelike
skeleton of pentagonal columns.

•As the composition varies, the
‘wavelength’ of the backbone
changes, giving rise to a huge
number of possible ordered
structures, know as infinitely
adaptive structures.

Three-Dimensional Defects:
Infinitely Adaptive Structures

40

Four basic types of compounds are non-stoichiometric:
Metal excess (reduced metal)
Type A: anion vacancies present  formula MO1-x (e.g. TiO, VO, ZrS)
Type B: interstitial cations  formula M1+xO (e.g. CdO, ZnO)
Metal deficiency (oxidized metal)
Type C: interstitial anions  formula MO1+x

Type D: cation vacancies  M1-xO (e.g. TiO, VO, MnO, FeO, CoO)

Electronic Properties of Non-stoichiometric Oxides

Type A oxides: Compensate for metal excess with anion
vacancies. Two electrons have to be introduced for each anion
vacancy, which may be trapped at the vacant anion site. More
likely to find electrons associated with the reduction of nearby
metal cations from M2+ to M+.

Type B oxides: Have a metal excess incorporated into the lattice in
interstitial positions. Most likely that an interstitial atom is
ionized, reducing nearby metal cations from M2+ to M+.

Type C oxides: Compensate for the lack of metal with interstitial
anions. Charge balance is maintained by creation of two M3+

cations for each interstitial anion (O2-).

Conductivity:

(i) depends on d-orbital overlap – the bigger the overlap the greater the band width
and electrons in the band are delocalized over the whole structure.

(ii) interelectronic repulsion tends to keep electrons localized on individual atoms.

41

TiO and VO are metallic conductors – have good overlap between
d-orbitals (forming a d-electron band), partly because Ti and V are
early in the transition series and the d orbitals have not suffered
contraction due to increase nuclear charge as is later in the series.

-TiO also has 1/6 of the Ti and O missing from NaCl structure type,
leading to a contraction of the structure and better d overlap.

MnO, FeO, CoO, and NiO are insulators - the d-orbitals are too
contracted to overlap much, with typical band width 1 eV, and the
overlap is not sufficient to overcome the localizing influence of
interelectronic repulsions. Gives rise to magnetic properties.

Non-stoichiometric oxides, types A and B metal excess monoxides,
have extra electrons to compensate for excess metal in the structure.
These electrons can be free to move through the lattice and are not
necessarily bound to a particular atom.

-thermal energy is enough to make the electrons move and
conductivity increases with temperature (like a semiconductor).

42

Compounds of type A and B would produce n-type semiconductors
because the conduction is produced by electrons.

•Consider the conduction electrons (or holes) as localized, or
trapped, at atoms or defects instead of delocalized in bands.

•Conduction occurs by jumping or hopping from one site to another
under the influence of an electric field.

•Energetically, electron ‘jumps’ between two valence states (e.g.
Zn+ and Zn2+), it doesn’t take much energy.

•These are called hopping semiconductors and can be described
in the same way as ionic conduction.

•The mobility (m) for a charge carrier (electron or positive hole), is
an activated process.

m is proportional to e(-Ea/kT)

where Ea is the activation energy of the hop (0.1 to 0.5 eV).

The hopping conductivity is s = nem

where n is the number of mobile charge carriers per unit volume and
e is the electronic charge. n doesn’t depend on temperature, only on
composition.

Compounds of type C and D monoxides have M3+ ions, which can
be regarded as a positive hole compared to the M2+ cation.

•if sufficient energy is available, conduction can be thought to
occur via the positive hole hopping to another M2+ cation, giving
rise to p-type electronic conductivity.

•This type of conductivity is found for MnO, CoO, NiO, and FeO

Non-stoichiometric oxides cover the entire range from metal to
insulator.

•Others, such as TiO2 and WO3 require a different description.

•Each structure needs to be examined individually in terms of
conductivity.

Doping compounds with an impurity extends the range of properties:

0.5x Li2O + (1-x)NiO + 1/4x O2  LixNi1-xO

where Ni2+ is oxidized to Ni3+, creating a high concentration of positive
holes located at Ni cations. This process is known as valence induction.

In greatly increase the conductivity range of NiO – at high Li
concentration the conductivity approaches that of a metal.

Ch 3.1: Second Order Linear Homogeneous
Equations with Constant Coefficients

A second order ordinary differential equation has the
general form

where f is some given function.
This equation is said to be linear if f is linear in y and y':

Otherwise the equation is said to be nonlinear.
A second order linear equation often appears as

If G(t) = 0 for all t, then the equation is called homogeneous.
Otherwise the equation is nonhomogeneous.

),,(yytfy ′=′′

ytqytptgy)()()(−′−=′′

)()()()(tGytRytQytP =+′+′′

Homogeneous Equations, Initial Values
In Sections 3.6 and 3.7, we will see that once a solution to a
homogeneous equation is found, then it is possible to solve
the corresponding nonhomogeneous equation, or at least
express the solution in terms of an integral.
The focus of this chapter is thus on homogeneous equations;
and in particular, those with constant coefficients:

We will examine the variable coefficient case in Chapter 5.
Initial conditions typically take the form

Thus solution passes through (t0, y0), and slope of solution at
(t0, y0) is equal to y0'.

0=+′+′′ cyybya

() () 0000 , ytyyty ′=′=

Example 1: Infinitely Many Solutions (1 of 3)

Consider the second order linear differential equation

Two solutions of this equation are

Other solutions include

Based on these observations, we see that there are infinitely
many solutions of the form

It will be shown in Section 3.2 that all solutions of the
differential equation above can be expressed in this form.

0=−′′ yy

tt etyety −==)(,)(21

tttt eetyetyety −− +=== 53)(,5)(,3)(543

tt ececty −+= 21)(

Example 1: Initial Conditions (2 of 3)

Now consider the following initial value problem for our
equation:

We have found a general solution of the form

Using the initial equations,

Thus

1)0(,3)0(,0 =′==−′′ yyyy

tt ececty −+= 21)(

1,2
1)0(
3)0(

21
21

21 ==⇒
⎭
⎬
⎫

=−=′
=+=

cc
ccy
ccy

tt eety −+= 2)(

Example 1: Solution Graphs (3 of 3)

Our initial value problem and solution are

Graphs of this solution are given below. The graph on the
right suggests that both initial conditions are satisfied.

tt eetyyyyy −+=⇒=′==−′′ 2)(1)0(,3)0(,0

Characteristic Equation

To solve the 2nd order equation with constant coefficients,

we begin by assuming a solution of the form y = ert.
Substituting this into the differential equation, we obtain

Simplifying,

and hence

This last equation is called the characteristic equation of
the differential equation.
We then solve for r by factoring or using quadratic formula.

,0=+′+′′ cyybya

02 =++ rtrtrt cebreear

0)(2 =++ cbrarert

02 =++ cbrar

General Solution
Using the quadratic formula on the characteristic equation

we obtain two solutions, r1 and r2.
There are three possible results:

The roots r1, r2 are real and r1 ≠ r2.
The roots r1, r2 are real and r1 = r2.
The roots r1, r2 are complex.

In this section, we will assume r1, r2 are real and r1 ≠ r2.
In this case, the general solution has the form

,02 =++ cbrar

trtr ececty 21
21)(+=

a
acbbr

2
42 −±−

=

Initial Conditions
For the initial value problem

we use the general solution

together with the initial conditions to find c1 and c2. That is,

Since we are assuming r1 ≠ r2, it follows that a solution of the
form y = ert to the above initial value problem will always
exist, for any set of initial conditions.

,)(,)(,0 0000 ytyytycyybya ′=′==+′+′′

0201

0201

0201

21

010
2

21

200
1

02211

021 , trtr
trtr

trtr

e
rr
yryce

rr
ryyc

yercerc

yecec −−

−
′−

=
−
−′

=⇒
⎪⎭

⎪
⎬
⎫

′=+

=+

trtr ececty 21
21)(+=

Example 2
Consider the initial value problem

Assuming exponential soln leads to characteristic equation:

Factoring yields two solutions, r1 = -4 and r2 = 3
The general solution has the form

Using the initial conditions:

Thus

1)0(,0)0(,012 =′==−′+′′ yyyyy

()() 034012)(2 =−+⇔=−+⇒= rrrrety rt

tt ececty 3
2

4
1)(+= −

7
1,

7
1

134
0

21
21

21 =
−

=⇒
⎭
⎬
⎫

=+−
=+

cc
cc
cc

tt eety 34

7
1

7
1)(+

−
= −

Example 3
Consider the initial value problem

Then

Factoring yields two solutions, r1 = 0 and r2 = -3/2
The general solution has the form

Using the initial conditions:

Thus

() () 30,10,032 =′==′+′′ yyyy

() 032032)(2 =+⇔=+⇒= rrrrety rt

2/3
21

2/3
2

0
1)(ttt eccececty −− +=+=

2,3
3

2
3

1
212

21

−==⇒
⎪⎭

⎪
⎬
⎫

=−

=+
ccc

cc

2/323)(tety −−=

Example 4: Initial Value Problem (1 of 2)

Consider the initial value problem

Then

Factoring yields two solutions, r1 = -2 and r2 = -3
The general solution has the form

Using initial conditions:

Thus

() () 30,20,065 =′==+′+′′ yyyyy

()() 032065)(2 =++⇔=++⇒= rrrrety rt

tt ececty 3
2

2
1)(−− +=

7,9
332
2

21
21

21 −==⇒
⎭
⎬
⎫

=−−
=+

cc
cc
cc

tt eety 32 79)(−− −=

Example 4: Find Maximum Value (2 of 2)

Find the maximum value attained by the solution.

204.2
1542.0

)6/7ln(
6/7

76
02118)(

79)(

32

32

32

≈
≈
=
=

=

=+−=′

−=

−−

−−

−−

y
t
t

e
ee

eety

eety

t

tt

set
tt

tt

Ch 3.2: Fundamental Solutions of Linear
Homogeneous Equations
Let p, q be continuous functions on an interval I = (α, β),
which could be infinite. For any function y that is twice
differentiable on I, define the differential operator L by

Note that L[y] is a function on I, with output value

For example,

[] yqypyyL +′+′′=

[])()()()()()(tytqtytptytyL +′+′′=

()
[])sin(2)cos()sin()(

2,0),sin()(,)(,)(
22

22

tettttyL
Ittyetqttp

t

t

++−=

==== π

Differential Operator Notation
In this section we will discuss the second order linear
homogeneous equation L[y](t) = 0, along with initial
conditions as indicated below:

We would like to know if there are solutions to this initial
value problem, and if so, are they unique.
Also, we would like to know what can be said about the form
and structure of solutions that might be helpful in finding
solutions to particular problems.
These questions are addressed in the theorems of this section.

[]
1000)(,)(

0)()(
ytyyty

ytqytpyyL
=′=

=+′+′′=

Theorem 3.2.1
Consider the initial value problem

where p, q, and g are continuous on an open interval I that
contains t0. Then there exists a unique solution y = φ(t) on I.

Note: While this theorem says that a solution to the initial
value problem above exists, it is often not possible to write
down a useful expression for the solution. This is a major
difference between first and second order linear equations.

0000)(,)(
)()()(

ytyyty
tgytqytpy

′=′=
=+′+′′

Example 1
Consider the second order linear initial value problem

In Section 3.1, we showed that this initial value problem had
the following solution:

Note that p(t) = 0, q(t) = -1, g(t) = 0 are each continuous on
(-∞, ∞), and the solution y is defined and twice differentiable
on (-∞, ∞).

tt eety −+= 2)(

() () 10,30,0 =′==−′′ yyyy

1000)(,)(
)()()(

ytyyty
tgytqytpy

=′=
=+′+′′

Example 2
Consider the second order linear initial value problem

where p, q are continuous on an open interval I containing t0.
In light of the initial conditions, note that y = 0 is a solution
to this homogeneous initial value problem.
Since the hypotheses of Theorem 3.2.1 are satisfied, it
follows that y = 0 is the only solution of this problem.

() () 00,00,0)()(=′==+′+′′ yyytqytpy

Example 3
Determine the longest interval on which the given initial
value problem is certain to have a unique twice differentiable
solution. Do not attempt to find the solution.

First put differential equation into standard form:

The longest interval containing the point t = 0 on which the
coefficient functions are continuous is (-1, ∞).
It follows from Theorem 3.2.1 that the longest interval on
which this initial value problem is certain to have a twice
differentiable solution is also (-1, ∞).

() () () 00,10,13)(cos1 =′==+′−′′+ yyyytyt

() () 00,10,
1

1
1

3
1

cos
=′=

+
=

+
+′

+
−′′ yy

t
y

t
y

t
ty

Theorem 3.2.2 (Principle of Superposition)
If y1and y2 are solutions to the equation

then the linear combination c1y1 + y2c2 is also a solution, for
all constants c1 and c2.

To prove this theorem, substitute c1y1 + y2c2 in for y in the
equation above, and use the fact that y1 and y2 are solutions.
Thus for any two solutions y1 and y2, we can construct an
infinite family of solutions, each of the form y = c1y1 + c2 y2.
Can all solutions can be written this way, or do some
solutions have a different form altogether? To answer this
question, we use the Wronskian determinant.

0)()(][=+′+′′= ytqytpyyL

The Wronskian Determinant (1 of 3)

Suppose y1 and y2 are solutions to the equation

From Theorem 3.2.2, we know that y = c1y1 + c2 y2 is a
solution to this equation.
Next, find coefficients such that y = c1y1 + c2 y2 satisfies the
initial conditions

To do so, we need to solve the following equations:

0)()(][=+′+′′= ytqytpyyL

0000)(,)(ytyyty ′=′=

0022011

0022011

)()(
)()(

ytyctyc
ytyctyc
′=′+′

=+

The Wronskian Determinant (2 of 3)

Solving the equations, we obtain

In terms of determinants:

0022011

0022011

)()(
)()(

ytyctyc
ytyctyc
′=′+′

=+

)()()()(
)()(

)()()()(
)()(

02010201

010010
2

02010201

020020
1

tytytyty
tyytyyc

tytytyty
tyytyyc

′−′
′+′−

=

′−′
′−′

=

)()(
)()(

)(
)(

,

)()(
)()(

)(
)(

0201

0201

001

001

2

0201

0201

020

020

1

tyty
tyty

yty
yty

c

tyty
tyty

tyy
tyy

c

′′

′′
=

′′

′′
=

The Wronskian Determinant (3 of 3)

In order for these formulas to be valid, the determinant W in
the denominator cannot be zero:

W is called the Wronskian determinant, or more simply,
the Wronskian of the solutions y1and y2. We will sometimes
use the notation

)()()()(
)()(
)()(

02010201
0201

0201 tytytyty
tyty
tyty

W ′−′=
′′

=

W
yty
yty

c
W

tyy
tyy

c 001

001

2
020

020

1

)(
)(

,
)(
)(

′′
=

′′
=

()()021, tyyW

Theorem 3.2.3
Suppose y1 and y2 are solutions to the equation

and that the Wronskian

is not zero at the point t0 where the initial conditions

are assigned. Then there is a choice of constants c1, c2 for
which y = c1y1 + c2 y2 is a solution to the differential
equation (1) and initial conditions (2).

)1(0)()(][=+′+′′= ytqytpyyL

2121 yyyyW ′−′=

)2()(,)(0000 ytyyty ′=′=

Example 4
Recall the following initial value problem and its solution:

Note that the two functions below are solutions to the
differential equation:

The Wronskian of y1 and y2 is

Since W ≠ 0 for all t, linear combinations of y1 and y2 can be
used to construct solutions of the IVP for any initial value t0.

tt eyey −== 21 ,

22 0
2121

21

21 −=−=−−=′−′=
′′

= −− eeeeeyyyy
yy
yy

W tttt

() () tt eetyyyyy −+=⇒=′==−′′ 2)(10,30,0

2211 ycycy +=

Theorem 3.2.4 (Fundamental Solutions)
Suppose y1 and y2 are solutions to the equation

If there is a point t0 such that W(y1,y2)(t0) ≠ 0, then the family
of solutions y = c1y1 + c2 y2 with arbitrary coefficients c1, c2
includes every solution to the differential equation.

The expression y = c1y1 + c2 y2 is called the general solution
of the differential equation above, and in this case y1 and y2
are said to form a fundamental set of solutions to the
differential equation.

.0)()(][=+′+′′= ytqytpyyL

Example 5
Recall the equation below, with the two solutions indicated:

The Wronskian of y1 and y2 is

Thus y1 and y2 form a fundamental set of solutions to the
differential equation above, and can be used to construct all
of its solutions.
The general solution is

tt eyeyyy −===−′′ 21 ,,0

. allfor 022 0

21

21 teeeee
yy
yy

W tttt ≠−=−=−−=
′′

= −−

tt ececy −+= 21

Example 6
Consider the general second order linear equation below,
with the two solutions indicated:

Suppose the functions below are solutions to this equation:

The Wronskian of y1and y2 is

Thus y1and y2 form a fundamental set of solutions to the
equation, and can be used to construct all of its solutions.
The general solution is

2121 ,, 21 rreyey trtr ≠==

() () . allfor 021

21

21

12
2121

21 terr
erer

ee
yy
yy

W trr
trtr

trtr

≠−==
′′

= +

0)()(=+′+′′ ytqytpy

trtr ececy 21
21 +=

Example 7: Solutions (1 of 2)

Consider the following differential equation:

Show that the functions below are fundamental solutions:

To show this, first substitute y1 into the equation:

Thus y1 is a indeed a solution of the differential equation.
Similarly, y2 is also a solution:

1
2

2/1
1 , −== tyty

0,032 2 >=−′+′′ tyytyt

01
2
3

2
1

2
3

4
2 2/12/1

2/12/3
2 =⎟

⎠
⎞

⎜
⎝
⎛ −+−=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ − −−

tttttt

() () () 0134322 11232 =−−=−−+ −−−− tttttt

Example 7: Fundamental Solutions (2 of 2)

Recall that

To show that y1 and y2 form a fundamental set of solutions,
we evaluate the Wronskian of y1 and y2:

Since W ≠ 0 for t > 0, y1, y2 form a fundamental set of
solutions for the differential equation

3

2/32/32/3
22/1

12/1

21

21

2
3

2
3

2
1

2
1

t
ttttt

tt

yy
yy

W −=−=−−=−=
′′

= −−−
−−

−

1
2

2/1
1 , −== tyty

0,032 2 >=−′+′′ tyytyt

Theorem 3.2.5: Existence of Fundamental Set
of Solutions

Consider the differential equation below, whose coefficients
p and q are continuous on some open interval I:

Let t0 be a point in I, and y1 and y2 solutions of the equation
with y1 satisfying initial conditions

and y2 satisfying initial conditions

Then y1, y2 form a fundamental set of solutions to the given
differential equation.

0)()(][=+′+′′= ytqytpyyL

0)(,1)(0101 =′= tyty

1)(,0)(0202 =′= tyty

Example 7: Theorem 3.2.5 (1 of 3)

Find the fundamental set specified by Theorem 3.2.5 for the
differential equation and initial point

We showed previously that

were fundamental solutions, since W(y1, y2)(t0) = -2 ≠ 0.
But these two solutions don’t satisfy the initial conditions
stated in Theorem 3.2.5, and thus they do not form the
fundamental set of solutions mentioned in that theorem.
Let y3 and y4 be the fundamental solutions of Thm 3.2.5.

tt eyey −== 21 ,

0,0 0 ==−′′ tyy

1)0(,0)0(;0)0(,1)0(4433 =′==′= yyyy

Example 7: General Solution (2 of 3)

Since y1 and y2 form a fundamental set of solutions,

Solving each equation, we obtain

The Wronskian of y3 and y4 is

Thus y3, y4 forms the fundamental set of solutions indicated
in Theorem 3.2.5, with general solution in this case

1)0(,0)0(,

0)0(,1)0(,

44214

33213

=′=+=

=′=+=
−

−

yyededy

yyececy
tt

tt

)sinh(
2
1

2
1)(),cosh(

2
1

2
1)(43 teetyteety tttt =−==+= −−

01sinhcosh
coshsinh
sinhcosh 22

21

21 ≠=−==
′′

= tt
tt
tt

yy
yy

W

)sinh()cosh()(21 tktkty +=

Example 7:
Many Fundamental Solution Sets (3 of 3)

Thus

both form fundamental solution sets to the differential
equation and initial point

In general, a differential equation will have infinitely many
different fundamental solution sets. Typically, we pick the
one that is most convenient or useful.

{ } { }ttSeeS tt sinh,cosh,, 21 == −

0,0 0 ==−′′ tyy

Summary
To find a general solution of the differential equation

we first find two solutions y1 and y2.
Then make sure there is a point t0 in the interval such that
W(y1, y2)(t0) ≠ 0.
It follows that y1 and y2 form a fundamental set of solutions
to the equation, with general solution y = c1y1 + c2 y2.
If initial conditions are prescribed at a point t0 in the interval
where W ≠ 0, then c1 and c2 can be chosen to satisfy those
conditions.

βα <<=+′+′′ tytqytpy ,0)()(

Ch 3.3:
Linear Independence and the Wronskian

Two functions f and g are linearly dependent if there
exist constants c1 and c2, not both zero, such that

for all t in I. Note that this reduces to determining whether
f and g are multiples of each other.
If the only solution to this equation is c1 = c2 = 0, then f
and g are linearly independent.
For example, let f(x) = sin2x and g(x) = sinxcosx, and
consider the linear combination

This equation is satisfied if we choose c1 = 1, c2 = -2, and
hence f and g are linearly dependent.

0)()(21 =+ tgctfc

0cossin2sin 21 =+ xxcxc

Solutions of 2 x 2 Systems of Equations
When solving

for c1 and c2, it can be shown that

Note that if a = b = 0, then the only solution to this system of
equations is c1 = c2 = 0, provided D ≠ 0.

bycyc
axcxc

=+
=+

2211

2211

21

2111

2121

11
2

22

2121

22
1

 where,

,

yy
xx

D
D

bxay
xyyx

bxayc

D
bxay

xyyx
bxayc

=
+−

=
−
+−

=

−
=

−
−

=

Example 1: Linear Independence (1 of 2)

Show that the following two functions are linearly
independent on any interval:

Let c1 and c2 be scalars, and suppose

for all t in an arbitrary interval (α, β).
We want to show c1 = c2 = 0. Since the equation holds for
all t in (α, β), choose t0 and t1 in (α, β), where t0 ≠ t1. Then

tt etgetf −==)(,)(

0)()(21 =+ tgctfc

0

0
11

00

21

21

=+

=+
−

−

tt

tt

ecec

ecec

Example 1: Linear Independence (2 of 2)

The solution to our system of equations

will be c1 = c2 = 0, provided the determinant D is nonzero:

Then

Since t0 ≠ t1, it follows that D ≠ 0, and therefore f and g are
linearly independent.

01101010

11

00
tttttttt

tt

tt

eeeeee
ee
ee

D −−−−
−

−

−=−==

()
10

2

1

 11 0

10

10

10

100110

tte

e
e

eeeD

tt

tt
tt

tttttt

=⇔=⇔

=⇔=⇔=⇔=

−

−
−

−−−

0

0
11

00

21

21

=+

=+
−

−

tt

tt

ecec

ecec

Theorem 3.3.1
If f and g are differentiable functions on an open interval I
and if W(f, g)(t0) ≠ 0 for some point t0 in I, then f and g are
linearly independent on I. Moreover, if f and g are
linearly dependent on I, then W(f, g)(t) = 0 for all t in I.

Proof (outline): Let c1 and c2 be scalars, and suppose

for all t in I. In particular, when t = t0 we have

Since W(f, g)(t0) ≠ 0, it follows that c1 = c2 = 0, and hence
f and g are linearly independent.

0)()(21 =+ tgctfc

0)()(
0)()(

0201

0201

=′+′
=+

tgctfc
tgctfc

Theorem 3.3.2 (Abel’s Theorem)
Suppose y1 and y2 are solutions to the equation

where p and q are continuous on some open interval I. Then
W(y1,y2)(t) is given by

where c is a constant that depends on y1 and y2 but not on t.

Note that W(y1,y2)(t) is either zero for all t in I (if c = 0) or
else is never zero in I (if c ≠ 0).

0)()(][=+′+′′= ytqytpyyL

∫=
− dttp

cetyyW
)(

21))(,(

Example 2: Wronskian and Abel’s Theorem
Recall the following equation and two of its solutions:

The Wronskian of y1and y2 is

Thus y1 and y2 are linearly independent on any interval I, by
Theorem 3.3.1. Now compare W with Abel’s Theorem:

Choosing c = -2, we get the same W as above.

tt eyeyyy −===−′′ 21 ,,0

. allfor 022 0

21

21 teeeee
yy
yy

W tttt ≠−=−=−−=
′′

= −−

ccecetyyW
dtdttp
=∫=∫=

−− 0)(
21))(,(

Theorem 3.3.3
Suppose y1 and y2 are solutions to equation below, whose
coefficients p and q are continuous on some open interval I:

Then y1 and y2 are linearly dependent on I iff W(y1, y2)(t) = 0
for all t in I. Also, y1 and y2 are linearly independent on I iff
W(y1, y2)(t) ≠ 0 for all t in I.

0)()(][=+′+′′= ytqytpyyL

Summary
Let y1 and y2 be solutions of

where p and q are continuous on an open interval I.
Then the following statements are equivalent:

The functions y1 and y2 form a fundamental set of solutions on I.
The functions y1 and y2 are linearly independent on I.
W(y1,y2)(t0) ≠ 0 for some t0 in I.
W(y1,y2)(t) ≠ 0 for all t in I.

0)()(=+′+′′ ytqytpy

Linear Algebra Note
Let V be the set

Then V is a vector space of dimension two, whose bases are
given by any fundamental set of solutions y1 and y2.
For example, the solution space V to the differential equation

has bases

with
{ } { }ttSeeS tt sinh,cosh,, 21 == −

(){ }βα ,,0)()(: ∈=+′+′′= tytqytpyyV

0=−′′ yy

21 SpanSpan SSV ==

Ch 3.4:
Complex Roots of Characteristic Equation
Recall our discussion of the equation

where a, b and c are constants.
Assuming an exponential soln leads to characteristic equation:

Quadratic formula (or factoring) yields two solutions, r1 & r2:

If b2 – 4ac < 0, then complex roots: r1 = λ + iμ, r2 = λ - iμ
Thus

0=+′+′′ cyybya

0)(2 =++⇒= cbrarety rt

a
acbbr

2
42 −±−

=

() ()titi etyety μλμλ −+ ==)(,)(21

Euler’s Formula; Complex Valued Solutions
Substituting it into Taylor series for et, we obtain Euler’s
formula:

Generalizing Euler’s formula, we obtain

Then

Therefore

() () tit
n

ti
n

t
n
ite

n

nn

n

nn

n

n
it sincos

!12
)1(

!2
)1(

!
)(

1

121

0

2

0
+=

−
−

+
−

== ∑∑∑
∞

=

−−∞

=

∞

=

tite ti μμμ sincos +=

() [] tietetiteeee ttttitti μμμμ λλλμλμλ sincossincos +=+==+

()

() tieteety

tieteety
ttti

ttti

μμ

μμ
λλμλ

λλμλ

sincos)(

sincos)(

2

1

−==

+==
−

+

Real Valued Solutions
Our two solutions thus far are complex-valued functions:

We would prefer to have real-valued solutions, since our
differential equation has real coefficients.
To achieve this, recall that linear combinations of solutions
are themselves solutions:

Ignoring constants, we obtain the two solutions

tietety

tietety
tt

tt

μμ

μμ
λλ

λλ

sincos)(

sincos)(

2

1

−=

+=

tietyty

tetyty
t

t

μ

μ
λ

λ

sin2)()(

cos2)()(

21

21

=−

=+

tetytety tt μμ λλ sin)(,cos)(43 ==

Real Valued Solutions: The Wronskian
Thus we have the following real-valued functions:

Checking the Wronskian, we obtain

Thus y3 and y4 form a fundamental solution set for our ODE,
and the general solution can be expressed as

tetytety tt μμ λλ sin)(,cos)(43 ==

() ()
0

cossinsincos
sincos

2 ≠=

+−
=

t

tt

tt

e

ttette
tete

W

λ

λλ

λλ

μ

μμμλμμμλ
μμ

tectecty tt μμ λλ sincos)(21 +=

Example 1
Consider the equation

Then

Therefore

and thus the general solution is

() ()2/3sin2/3cos)(2/
2

2/
1 tectecty tt −− +=

0=+′+′′ yyy

iirrrety rt

2
3

2
1

2
31

2
41101)(2 ±−=

±−
=

−±−
=⇔=++⇒=

2/3,2/1 =−= μλ

Example 2
Consider the equation

Then

Therefore

and thus the general solution is

04 =+′′ yy

irrety rt 204)(2 ±=⇔=+⇒=

2,0 == μλ

() ()tctcty 2sin2cos)(21 +=

Example 3
Consider the equation

Then

Therefore the general solution is

023 =+′−′′ yyy

irrrety rt

3
2

3
1

6
12420123)(2 ±=

−±
=⇔=+−⇒=

() ()3/2sin3/2cos)(3/
2

3/
1 tectecty tt +=

Example 4: Part (a) (1 of 2)

For the initial value problem below, find (a) the solution u(t)
and (b) the smallest time T for which |u(t)| ≤ 0.1

We know from Example 1 that the general solution is

Using the initial conditions, we obtain

Thus

() ()2/3sin2/3cos)(2/
2

2/
1 tectectu tt −− +=

1)0(,1)0(,0 =′==+′+′′ yyyyy

3
3

3,1
1

2
3

2
1

1

21
21

1

===⇒
⎪⎭

⎪
⎬

⎫

=+−

=
cc

cc

c

() ()2/3sin32/3cos)(2/2/ tetetu tt −− +=

Example 4: Part (b) (2 of 2)

Find the smallest time T for which |u(t)| ≤ 0.1
Our solution is

With the help of graphing calculator or computer algebra
system, we find that T ≅ 2.79. See graph below.

() ()2/3sin32/3cos)(2/2/ tetetu tt −− +=

Ch 3.5:
Repeated Roots; Reduction of Order
Recall our 2nd order linear homogeneous ODE

where a, b and c are constants.
Assuming an exponential soln leads to characteristic equation:

Quadratic formula (or factoring) yields two solutions, r1 & r2:

When b2 – 4ac = 0, r1 = r2 = -b/2a, since method only gives
one solution:

0=+′+′′ cyybya

0)(2 =++⇒= cbrarety rt

a
acbbr

2
42 −±−

=

atbcety 2/
1)(−=

Second Solution: Multiplying Factor v(t)
We know that

Since y1 and y2 are linearly dependent, we generalize this
approach and multiply by a function v, and determine
conditions for which y2 is a solution:

Then

solution a)()(solution a)(121 tcytyty =⇒

atbatb etvtyety 2/
2

2/
1)()(try solution a)(−− =⇒=

atbatbatbatb

atbatb

atb

etv
a
betv

a
betv

a
betvty

etv
a
betvty

etvty

2/
2

2
2/2/2/

2

2/2/
2

2/
2

)(
4

)(
2

)(
2

)()(

)(
2

)()(

)()(

−−−−

−−

−

+′−′−′′=′′

−′=′

=

Finding Multiplying Factor v(t)
Substituting derivatives into ODE, we seek a formula for v:

0=+′+′′ cyybya

43

2

222

22

22

2

2
2/

)(0)(

0)(
4

4)(

0)(
4
4

4
)(0)(

4
4

4
2

4
)(

0)(
24

)(

0)()(
2

)()(
4

)()(

0)()(
2

)()(
4

)()(

ktktvtv

tv
a

acbtva

tv
a
ac

a
btvatv

a
ac

a
b

a
btva

tvc
a

b
a

btva

tcvtv
a

btvbtv
a

btvbtva

tcvtv
a
btvbtv

a
btv

a
btvae atb

+=⇒=′′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−′′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+′′⇔=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+′′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+′′

=+−′++′−′′

=
⎭
⎬
⎫

⎩
⎨
⎧

+⎥⎦
⎤

⎢⎣
⎡ −′+⎥

⎦

⎤
⎢
⎣

⎡
+′−′′−

General Solution
To find our general solution, we have:

Thus the general solution for repeated roots is

()
abtabt

abtabt

abtabt

tecec

ektkek

etvkekty

2/
2

2/
1

2/
43

2/
1

2/
2

2/
1)()(

−−

−−

−−

+=

++=

+=

abtabt tececty 2/
2

2/
1)(−− +=

Wronskian
The general solution is

Thus every solution is a linear combination of

The Wronskian of the two solutions is

Thus y1 and y2 form a fundamental solution set for equation.

abtabt tececty 2/
2

2/
1)(−− +=

abtabt tetyety 2/
2

2/
1)(,)(−− ==

te
a

bte
a

bte

e
a

bte
a
b

tee
tyyW

abt

abtabt

abtabt

abtabt

 allfor 0
22

1

2
1

2
))(,(

/

//

2/2/

2/2/

21

≠=

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

−

−−

−−

−−

Example 1
Consider the initial value problem

Assuming exponential soln leads to characteristic equation:

Thus the general solution is

Using the initial conditions:

Thus

() () 10,10,02 =′==+′+′′ yyyyy

10)1(012)(22 −=⇔=+⇔=++⇒= rrrrety rt

tt tececty −− += 21)(

2,1
1
1

21
21

1 ==⇒
⎭
⎬
⎫

=+−
=

cc
cc

c

tt teety −− += 2)(

Example 2
Consider the initial value problem

Assuming exponential soln leads to characteristic equation:

Thus the general solution is

Using the initial conditions:

Thus

() () 2/10,20,025.0 =′==+′−′′ yyyyy

2/10)2/1(025.0)(22 =⇔=−⇔=+−⇒= rrrrety rt

2/
2

2/
1)(tt tececty +=

2
1,2

2
1

2
1

2
21

21

1
−==⇒

⎪⎭

⎪
⎬
⎫

=+

=
cccc

c

2/2/

2
12)(tt teety −=

Example 3
Consider the initial value problem

Assuming exponential soln leads to characteristic equation:

Thus the general solution is

Using the initial conditions:

Thus

() () 2/30,20,025.0 =′==+′−′′ yyyyy

2/10)2/1(025.0)(22 =⇔=−⇔=+−⇒= rrrrety rt

2/
2

2/
1)(tt tececty +=

2
1,2

2
3

2
1

2
21

21

1
==⇒

⎪⎭

⎪
⎬
⎫

=+

=
cccc

c

2/2/

2
12)(tt teety +=

Reduction of Order
The method used so far in this section also works for
equations with nonconstant coefficients:

That is, given that y1 is solution, try y2 = v(t)y1:

Substituting these into ODE and collecting terms,

Since y1 is a solution to the differential equation, this last
equation reduces to a first order equation in v′ :

0)()(=+′+′′ ytqytpy

)()()()(2)()()(
)()()()()(

)()()(

1112

112

12

tytvtytvtytvty
tytvtytvty

tytvty

′′+′′+′′=′′
′+′=′

=

() () 02 111111 =+′+′′+′+′+′′ vqyypyvpyyvy

() 02 111 =′+′+′′ vpyyvy

Example 4: Reduction of Order (1 of 3)

Given the variable coefficient equation and solution y1,

use reduction of order method to find a second solution:

Substituting these into ODE and collecting terms,

,)(;0,03 1
1

2 −=>=+′+′′ ttytyytyt

321
2

21
2

1
2

)(2)(2)()(

)()()(

)()(

−−−

−−

−

+′−′′=′′

−′=′

=

ttvttvttvty

ttvttvty

ttvty

() ()

)()(where,0
0

03322
0322

111

1213212

tvtuuut
vvt

vtvtvvtvtv
vtvttvtvttvtvt

′==+′⇔
=′+′′⇔

=+−′++′−′′⇔

=+−′++′−′′
−−−

−−−−−−

Example 4: Finding v(t) (2 of 3)

To solve

for u, we can use the separation of variables method:

Thus

and hence

.0 since,

lnln10

11 >=⇔=⇔

+−=⇔−=⇔=+

−−

∫∫
tctuetu

Ctudt
tu

duu
dt
dut

C

)()(,0 tvtuuut ′==+′

t
cv =′

ktctv += ln)(

Example 4: General Solution (3 of 3)

We have

Thus

Recall

and hence we can neglect the second term of y2 to obtain

Hence the general solution to the differential equation is

() 111
2 lnln)(−−− +=+= tktcttktcty

ktctv += ln)(

.ln)(1
2 ttty −=

1
1)(−= tty

ttctcty ln)(1
2

1
1

−− +=

Ch 3.6: Nonhomogeneous Equations;
Method of Undetermined Coefficients

Recall the nonhomogeneous equation

where p, q, g are continuous functions on an open interval I.
The associated homogeneous equation is

In this section we will learn the method of undetermined
coefficients to solve the nonhomogeneous equation, which
relies on knowing solutions to homogeneous equation.

)()()(tgytqytpy =+′+′′

0)()(=+′+′′ ytqytpy

Theorem 3.6.1

If Y1, Y2 are solutions of nonhomogeneous equation

then Y1 - Y2 is a solution of the homogeneous equation

If y1, y2 form a fundamental solution set of homogeneous
equation, then there exists constants c1, c2 such that

)()()()(221121 tyctyctYtY +=−

)()()(tgytqytpy =+′+′′

0)()(=+′+′′ ytqytpy

Theorem 3.6.2 (General Solution)

The general solution of nonhomogeneous equation

can be written in the form

where y1, y2 form a fundamental solution set of homogeneous
equation, c1, c2 are arbitrary constants and Y is a specific
solution to the nonhomogeneous equation.

)()()()(2211 tYtyctycty ++=

)()()(tgytqytpy =+′+′′

Method of Undetermined Coefficients

Recall the nonhomogeneous equation

with general solution

In this section we use the method of undetermined
coefficients to find a particular solution Y to the
nonhomogeneous equation, assuming we can find solutions
y1, y2 for the homogeneous case.
The method of undetermined coefficients is usually limited
to when p and q are constant, and g(t) is a polynomial,
exponential, sine or cosine function.

)()()(tgytqytpy =+′+′′

)()()()(2211 tYtyctycty ++=

Example 1: Exponential g(t)
Consider the nonhomogeneous equation

We seek Y satisfying this equation. Since exponentials
replicate through differentiation, a good start for Y is:

Substituting these derivatives into differential equation,

Thus a particular solution to the nonhomogeneous ODE is

teyyy 2343 =−′−′′

ttt AetYAetYAetY 222 4)(,2)()(=′′=′⇒=

2/136
3464

22

2222

−=⇔=−⇔

=−−

AeAe
eAeAeAe

tt

tttt

tetY 2

2
1)(−=

Example 2: Sine g(t), First Attempt (1 of 2)

Consider the nonhomogeneous equation

We seek Y satisfying this equation. Since sines replicate
through differentiation, a good start for Y is:

Substituting these derivatives into differential equation,

Since sin(x) and cos(x) are linearly independent (they are not
multiples of each other), we must have c1= c2 = 0, and hence
2 + 5A = 3A = 0, which is impossible.

tyyy sin243 =−′−′′

tAtYtAtYtAtY sin)(,cos)(sin)(−=′′=′⇒=

()
0cossin

0cos3sin52
sin2sin4cos3sin

21 =+⇔
=++⇔
=−−−

tctc
tAtA

ttAtAtA

Example 2: Sine g(t), Particular Solution (2 of 2)

Our next attempt at finding a Y is

Substituting these derivatives into ODE, we obtain

Thus a particular solution to the nonhomogeneous ODE is

tBtAtYtBtAtY
tBtAtY

cossin)(,sincos)(
cossin)(

−−=′′−=′⇒
+=

() () ()
() ()

17/3 ,17/5
053,235

sin2cos53sin35
sin2cossin4sincos3cossin

=−=⇔
=−−=+−⇔

=−−++−⇔
=+−−−−−

BA
BABA

ttBAtBA
ttBtAtBtAtBtA

tyyy sin243 =−′−′′

tttY cos
17
3sin

17
5)(+

−
=

Example 3: Polynomial g(t)
Consider the nonhomogeneous equation

We seek Y satisfying this equation. We begin with

Substituting these derivatives into differential equation,

Thus a particular solution to the nonhomogeneous ODE is

1443 2 −=−′−′′ tyyy

AtYBAttYCBtAttY 2)(,2)()(2 =′′+=′⇒++=

() ()
() ()

8/11 ,2/3 ,1
1432,046,44

14432464
144232

22

22

−==−=⇔
−=−−=+=−⇔

−=−−++−−⇔

−=++−+−

CBA
CBABAA

tCBAtBAAt
tCBtAtBAtA

8
11

2
3)(2 −+−= tttY

Example 4: Product g(t)
Consider the nonhomogeneous equation

We seek Y satisfying this equation, as follows:

Substituting derivatives into ODE and solving for A and B:

teyyy t 2cos843 −=−′−′′

() ()
() () ()

()
() () teBAteBA

teBA
teBAteBAteBAtY

teBAteBA
tBetBetAetAetY

tBetAetY

tt

t

ttt

tt

tttt

tt

2sin342cos43
2cos22

2sin22sin222cos2)(
2sin22cos2

2cos22sin2sin22cos)(
2sin2cos)(

−−++−=

+−+

+−++−+=′′

+−++=

++−=′

+=

tetetYBA tt 2sin
13
22cos

13
10)(

13
2 ,

13
10

+=⇒==

Discussion: Sum g(t)

Consider again our general nonhomogeneous equation

Suppose that g(t) is sum of functions:

If Y1, Y2 are solutions of

respectively, then Y1 + Y2 is a solution of the
nonhomogeneous equation above.

)()()(tgytqytpy =+′+′′

)()()(21 tgtgtg +=

)()()(
)()()(

2

1

tgytqytpy
tgytqytpy

=+′+′′
=+′+′′

Example 5: Sum g(t)
Consider the equation

Our equations to solve individually are

Our particular solution is then

teteyyy tt 2cos8sin2343 2 −+=−′−′′

tetettetY ttt 2sin
13
22cos

13
10sin

17
5cos

17
3

2
1)(2 ++−+−=

teyyy
tyyy

eyyy

t

t

2cos843
sin243

343 2

−=−′−′′

=−′−′′
=−′−′′

Example 6: First Attempt (1 of 3)

Consider the equation

We seek Y satisfying this equation. We begin with

Substituting these derivatives into ODE:

Thus no particular solution exists of the form

tyy 2cos34 =+′′

tBtAtYtBtAtY
tBtAtY

2cos42sin4)(,2sin22cos2)(
2cos2sin)(

−−=′′−=′⇒
+=

() ()
() ()

t
ttBBtAA
ttBtAtBtA

2cos30
2cos32cos442sin44
2cos32cos2sin42cos42sin4

=
=+−++−
=++−−

tBtAtY 2cos2sin)(+=

Example 6: Homogeneous Solution (2 of 3)

Thus no particular solution exists of the form

To help understand why, recall that we found the
corresponding homogeneous solution in Section 3.4 notes:

Thus our assumed particular solution solves homogeneous
equation

instead of the nonhomogeneous equation.

tBtAtY 2cos2sin)(+=

tctctyyy 2sin2cos)(04 21 +=⇒=+′′

tyy 2cos34 =+′′

04 =+′′ yy

Example 6: Particular Solution (3 of 3)

Our next attempt at finding a Y is:

Substituting derivatives into ODE,

tBttAttBtA
tBttBtBtAttAtAtY

tBttBtAttAtY
tBttAttY

2cos42sin42sin42cos4
2cos42sin22sin22sin42cos22cos2)(

2sin22cos2cos22sin)(
2cos2sin)(

−−−=
−−−−+=′′

−++=′
+=

tttY

BA
ttBtA

2sin
4
3)(

0,4/3
2cos32sin42cos4

=⇒

==⇒
=−

tyy 2cos34 =+′′

Ch 3.7: Variation of Parameters

Recall the nonhomogeneous equation

where p, q, g are continuous functions on an open interval I.
The associated homogeneous equation is

In this section we will learn the variation of parameters
method to solve the nonhomogeneous equation. As with the
method of undetermined coefficients, this procedure relies on
knowing solutions to homogeneous equation.

Variation of parameters is a general method, and requires no
detailed assumptions about solution form. However, certain
integrals need to be evaluated, and this can present difficulties.

)()()(tgytqytpy =+′+′′

0)()(=+′+′′ ytqytpy

Example: Variation of Parameters (1 of 6)

We seek a particular solution to the equation below.

We cannot use method of undetermined coefficients since
g(t) is a quotient of sint or cos t, instead of a sum or product.
Recall that the solution to the homogeneous equation is

To find a particular solution to the nonhomogeneous
equation, we begin with the form

Then

or

tyy csc34 =+′′

tctctyC 2sin2cos)(21 +=

ttuttuty 2sin)(2cos)()(21 +=

ttuttuttuttuty 2cos)(22sin)(2sin)(22cos)()(2211 +′+−′=′

ttuttuttuttuty 2sin)(2cos)(2cos)(22sin)(2)(2121 ′+′++−=′

Example: Derivatives, 2nd Equation (2 of 6)

From the previous slide,

Note that we need two equations to solve for u1 and u2. The
first equation is the differential equation. To get a second
equation, we will require

Then

Next,

ttuttuttuttuty 2sin)(2cos)(2cos)(22sin)(2)(2121 ′+′++−=′

02sin)(2cos)(21 =′+′ ttuttu

ttuttuty 2cos)(22sin)(2)(21 +−=′

ttuttuttuttuty 2sin)(42cos)(22cos)(42sin)(2)(2211 −′+−′−=′′

Example: Two Equations (3 of 6)

Recall that our differential equation is

Substituting y'' and y into this equation, we obtain

This equation simplifies to

Thus, to solve for u1 and u2, we have the two equations:

() tttuttu
ttuttuttuttu

csc32sin)(2cos)(4
2sin)(42cos)(22cos)(42sin)(2

21

2211

=++
−′+−′−

02sin)(2cos)(
csc32cos)(22sin)(2

21

21

=′+′
=′+′−

ttuttu
tttuttu

tttuttu csc32cos)(22sin)(2 21 =′+′−

tyy csc34 =+′′

Example: Solve for u1' (4 of 6)

To find u1 and u2 , we need to solve the equations

From second equation,

Substituting this into the first equation,
t
ttutu

2sin
2cos)()(12 ′−=′

() ()

() ()[]
ttu

t
tttttu

ttttuttu

tt
t
ttuttu

cos3)(
sin

cossin232cos2sin)(2

2sincsc32cos)(22sin)(2

csc32cos
2sin
2cos)(22sin)(2

1

22
1

2
1

2
1

11

−=′

⎥⎦
⎤

⎢⎣
⎡=+′−

=′−′−

=⎥⎦
⎤

⎢⎣
⎡ ′−+′−

02sin)(2cos)(
csc32cos)(22sin)(2

21

21

=′+′
=′+′−

ttuttu
tttuttu

Example : Solve for u1 and u2 (5 of 6)

From the previous slide,

Then

Thus

tt
t
t

t

t
t

tt
tt

t
tttu

sin3csc
2
3

sin2
sin2

sin2
13

sin2
sin213

cossin2
sin21cos3

2sin
2coscos3)(

2

22

2

−=⎥
⎦

⎤
⎢
⎣

⎡
−=

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ −
=⎥⎦

⎤
⎢⎣
⎡=′

222

111

cos3cotcscln
2
3sin3csc

2
3)()(

sin3cos3)()(

ctttdtttdttutu

cttdtdttutu

++−=⎟
⎠
⎞

⎜
⎝
⎛ −=′=

+−=−=′=

∫∫

∫∫

t
ttututtu

2sin
2cos)()(,cos3)(121 ′−=′−=′

Example: General Solution (6 of 6)

Recall our equation and homogeneous solution yC:

Using the expressions for u1 and u2 on the previous slide, the
general solution to the differential equation is

[]

()[]

tctctttt

tyttttttt

tyttttttt

tyttttttt

tyttuttuty

C

C

C

C

2sin2cos2sincotcscln
2
3sin3

)(2sincotcscln
2
31cos2sincossin23

)(2sincotcscln
2
32cossin2sincos3

)(2sincos32sincotcscln
2
32cossin3

)(2sin)(2cos)()(

21

22

21

++−+=

+−+−−=

+−+−=

++−+−=

++=

tctctytyy C 2sin2cos)(,csc34 21 +==+′′

Summary
Suppose y1, y2 are fundamental solutions to the homogeneous
equation associated with the nonhomogeneous equation
above, where we note that the coefficient on y'' is 1.
To find u1 and u2, we need to solve the equations

Doing so, and using the Wronskian, we obtain

Thus

)()()()()(
0)()()()(

2211

2211

tgtytutytu
tytutytu
=′′+′′
=′+′

)()()()()(
)()()(

2211 tytutytuty
tgytqytpy

+=
=+′+′′

() ())(,
)()()(,

)(,
)()()(

21

1
2

21

2
1 tyyW

tgtytu
tyyW

tgtytu =′−=′

() ()∫∫ +=+−= 2
21

1
21

21

2
1)(,

)()()(,
)(,

)()()(cdt
tyyW

tgtytucdt
tyyW

tgtytu

Theorem 3.7.1
Consider the equations

If the functions p, q and g are continuous on an open interval I,
and if y1 and y2 are fundamental solutions to Eq. (2), then a
particular solution of Eq. (1) is

and the general solution is

() ()∫∫ +−= dt
tyyW

tgtytydt
tyyW

tgtytytY
)(,

)()()(
)(,

)()()()(
21

1
2

21

2
1

)()()()(2211 tYtyctycty ++=

)2(0)()(
)1()()()(

=+′+′′
=+′+′′

ytqytpy
tgytqytpy

Ch 3.8: Mechanical & Electrical Vibrations

Two important areas of application for second order linear
equations with constant coefficients are in modeling
mechanical and electrical oscillations.
We will study the motion of a mass on a spring in detail.
An understanding of the behavior of this simple system is the
first step in investigation of more complex vibrating systems.

Spring – Mass System
Suppose a mass m hangs from vertical spring of original
length l. The mass causes an elongation L of the spring.
The force FG of gravity pulls mass down. This force has
magnitude mg, where g is acceleration due to gravity.
The force FS of spring stiffness pulls mass up. For small
elongations L, this force is proportional to L.
That is, Fs = kL (Hooke’s Law).
Since mass is in equilibrium, the forces balance each other:

kLmg =

Spring Model

We will study motion of mass when it is acted on by an
external force (forcing function) or is initially displaced.
Let u(t) denote the displacement of the mass from its
equilibrium position at time t, measured downward.
Let f be the net force acting on mass. Newton’s 2nd Law:

In determining f, there are four separate forces to consider:
Weight: w = mg (downward force)
Spring force: Fs = - k(L+ u) (up or down force, see next slide)
Damping force: Fd(t) = - γ u′ (t) (up or down, see following slide)
External force: F (t) (up or down force, see text)

)()(tftum =′′

Spring Model:
Spring Force Details

The spring force Fs acts to restore spring to natural position,
and is proportional to L + u. If L + u > 0, then spring is
extended and the spring force acts upward. In this case

If L + u < 0, then spring is compressed a distance of |L + u|,
and the spring force acts downward. In this case

In either case,

)(uLkFs +−=

()[] ()uLkuLkuLkFs +−=+−=+=

)(uLkFs +−=

Spring Model:
Damping Force Details
The damping or resistive force Fd acts in opposite direction as
motion of mass. Can be complicated to model.
Fd may be due to air resistance, internal energy dissipation
due to action of spring, friction between mass and guides, or a
mechanical device (dashpot) imparting resistive force to mass.
We keep it simple and assume Fd is proportional to velocity.
In particular, we find that

If u′ > 0, then u is increasing, so mass is moving downward. Thus Fd
acts upward and hence Fd = - γ u′, where γ > 0.
If u′ < 0, then u is decreasing, so mass is moving upward. Thus Fd
acts downward and hence Fd = - γ u′ , γ > 0.

In either case,
0),()(>′−= γγ tutFd

Spring Model:
Differential Equation

Taking into account these forces, Newton’s Law becomes:

Recalling that mg = kL, this equation reduces to

where the constants m, γ, and k are positive.
We can prescribe initial conditions also:

It follows from Theorem 3.2.1 that there is a unique solution
to this initial value problem. Physically, if mass is set in
motion with a given initial displacement and velocity, then
its position is uniquely determined at all future times.

[])()()(
)()()()(

tFtutuLkmg
tFtFtFmgtum ds

+′−+−=
+++=′′

γ

)()()()(tFtkututum =+′+′′ γ

00)0(,)0(vuuu =′=

Example 1:
Find Coefficients (1 of 2)

A 4 lb mass stretches a spring 2". The mass is displaced an
additional 6" and then released; and is in a medium that exerts
a viscous resistance of 6 lb when velocity of mass is 3 ft/sec.
Formulate the IVP that governs motion of this mass:

Find m:

Find γ :

Find k:

ft
seclb

8
1

sec/ft32
lb4 2

2 =⇒=⇒=⇒= mm
g
wmmgw

ft
seclb2

sec/ft3
lb6lb6 =⇒=⇒=′ γγγ u

ft
lb24

ft6/1
lb4

in2
lb4

=⇒=⇒=⇒−= kkkLkFs

00)0(,)0(),()()()(vuuutFtkututum =′==+′+′′ γ

Example 1: Find IVP (2 of 2)

Thus our differential equation becomes

and hence the initial value problem can be written as

This problem can be solved using
methods of Chapter 3.4. Given
on right is the graph of solution.

0)(24)(2)(
8
1

=+′+′′ tututu

0)0(,
2
1)0(

0)(192)(16)(

=′=

=+′+′′

uu

tututu

Spring Model:
Undamped Free Vibrations (1 of 4)

Recall our differential equation for spring motion:

Suppose there is no external driving force and no damping.
Then F(t) = 0 and γ = 0, and our equation becomes

The general solution to this equation is
0)()(=+′′ tkutum

)()()()(tFtkututum =+′+′′ γ

mk

tBtAtu

/
where

,sincos)(

2
0

00

=

+=

ω

ωω

Spring Model:
Undamped Free Vibrations (2 of 4)

Using trigonometric identities, the solution

can be rewritten as follows:

where

Note that in finding δ, we must be careful to choose correct
quadrant. This is done using the signs of cosδ and sinδ.

mktBtAtu /,sincos)(2
000 =+= ωωω

()
,sinsincoscos)(
cos)(sincos)(

00

000

tRtRtu
tRtutBtAtu

ωδωδ
δωωω

+=⇔
−=⇔+=

A
BBARRBRA =+=⇒== δδδ tan,sin,cos 22

Spring Model:
Undamped Free Vibrations (3 of 4)

Thus our solution is

where

The solution is a shifted cosine (or sine) curve, that describes
simple harmonic motion, with period

The circular frequency ω0 (radians/time) is natural frequency
of the vibration, R is the amplitude of max displacement of
mass from equilibrium, and δ is the phase (dimensionless).

()δωωω −=+= tRtBtAtu 000 cos sincos)(

k
mT π

ω
π 22

0

==

mk /0 =ω

Spring Model:
Undamped Free Vibrations (4 of 4)

Note that our solution

is a shifted cosine (or sine) curve with period

Initial conditions determine A & B, hence also the amplitude R.
The system always vibrates with same frequency ω0 , regardless
of initial conditions.
The period T increases as m increases, so larger masses vibrate
more slowly. However, T decreases as k increases, so stiffer
springs cause system to vibrate more rapidly.

() mktRtBtAtu /,cos sincos)(0000 =−=+= ωδωωω

k
mT π2=

Example 2: Find IVP (1 of 3)

A 10 lb mass stretches a spring 2". The mass is displaced an
additional 2" and then set in motion with initial upward
velocity of 1 ft/sec. Determine position of mass at any later
time. Also find period, amplitude, and phase of the motion.

Find m:

Find k:

Thus our IVP is

ft
seclb

16
5

sec/ft32
lb10 2

2 =⇒=⇒=⇒= mm
g
wmmgw

ft
lb60

ft6/1
lb10

in2
lb10

=⇒=⇒=⇒−= kkkLkFs

1)(,6/1)0(,0)(60)(16/5 −=′==+′′ tuututu

00)0(,)0(,0)()(vuuutkutum =′==+′′

Example 2: Find Solution (2 of 3)

Simplifying, we obtain

To solve, use methods of Ch 3.4 to obtain

or

1)0(,6/1)0(,0)(192)(−=′==+′′ uututu

tttu 192sin
192
1192cos

6
1)(−=

tttu 38sin
38

138cos
6
1)(−=

Example 2:
Find Period, Amplitude, Phase (3 of 3)

The natural frequency is

The period is

The amplitude is

Next, determine the phase δ :

tttu 38sin
38

138cos
6
1)(−=

rad/sec 856.1338192/0 ≅=== mkω

sec 45345.0/2 0 ≅= ωπT

ft 18162.022 ≅+= BAR

rad 40864.0
4

3tan
4

3tantan 1 −≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⇒

−
=⇒= −δδδ

A
B

ABRBRA /tan,sin,cos === δδδ

()409.038cos182.0)(Thus += ttu

Spring Model: Damped Free Vibrations (1 of 8)

Suppose there is damping but no external driving force F(t):

What is effect of damping coefficient γ on system?
The characteristic equation is

Three cases for the solution:

0)()()(=+′+′′ tkututum γ

⎥
⎦

⎤
⎢
⎣

⎡
−±−=

−±−
= 2

2

21
411

22
4

,
γ

γγγ mk
mm

mk
rr

()

()

 term.damping from expected as ,0)(limcases, threeallIn :Note

.0
2

4
,sincos)(:04

;02/where,)(:04

;0,0where,)(:04

2
2/2

2/2
21

2 21

=

>
−

=+=<−

>+==−

<<+=>−

∞→

−

−

tu
m

mk
tBtAetumk

meBtAtumk

rrBeAetumk

t

mt

mt

trtr

γ
μμμγ

γγ

γ

γ

γ

Damped Free Vibrations: Small Damping (2 of 8)

Of the cases for solution form, the last is most important,
which occurs when the damping is small:

We examine this last case. Recall

Then

and hence

(damped oscillation)

()
() 0,sincos)(:04

 02/,)(:04

0,0,)(:04

2/2

2/2
21

2 21

>+=<−

>+==−

<<+=>−

−

−

μμμγ

γγ

γ

γ

γ

tBtAetumk
meBtAtumk

rrBeAetumk

mt

mt

trtr

δδ sin,cos RBRA ==

()δμγ −= − teRtu mt cos)(2/

mteRtu 2/)(γ−≤

Damped Free Vibrations: Quasi Frequency (3 of 8)

Thus we have damped oscillations:

Amplitude R depends on the initial conditions, since

Although the motion is not periodic, the parameter μ
determines mass oscillation frequency.
Thus μ is called the quasi frequency.
Recall

() δδμμγ sin,cos,sincos)(2/ RBRAtBtAetu mt ==+= −

() mtmt eRtuteRtu 2/2/)(cos)(γγ δμ −− ≤⇒−=

m
mk
2

4 2γ
μ

−
=

Damped Free Vibrations: Quasi Period (4 of 8)

Compare μ with ω0 , the frequency of undamped motion:

Thus, small damping reduces oscillation frequency slightly.
Similarly, quasi period is defined as Td = 2π/μ. Then

Thus, small damping increases quasi period.

kmkmmkkm

kmkm
km

mkm

km
mkm

km

8
1

8
1

644
1

4
1

4
4

/4

4
/2

4

222

22

42

22

2

22

0

γγγγ

γγγγ
ω
μ

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+−≅

−=
−

=
−

=
−

=

For small γ

kmkmkmT
Td

8
1

8
1

4
1

/2
/2 2122/12

0

0

γγγ
μ
ω

ωπ
μπ

+≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−===

−−

Damped Free Vibrations:
Neglecting Damping for Small γ 2/4km (5 of 8)

Consider again the comparisons between damped and
undamped frequency and period:

Thus it turns out that a small γ is not as telling as a small
ratio γ 2/4km.
For small γ 2/4km, we can neglect effect of damping when
calculating quasi frequency and quasi period of motion. But
if we want a detailed description of motion of mass, then we
cannot neglect damping force, no matter how small.

2/122/12

0 4
1,

4
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

kmT
T

km
d γγ

ω
μ

Damped Free Vibrations:
Frequency, Period (6 of 8)

Ratios of damped and undamped frequency, period:

Thus

The importance of the relationship between γ2 and 4km is
supported by our previous equations:

2/122/12

0 4
1,

4
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

kmT
T

km
d γγ

ω
μ

∞==
→→

dkmkm
T

22
lim and 0lim

γγ
μ

()
() 0,sincos)(:04

 02/,)(:04

0,0,)(:04

2/2

2/2
21

2 21

>+=<−

>+==−

<<+=>−

−

−

μμμγ

γγ

γ

γ

γ

tBtAetumk
meBtAtumk

rrBeAetumk

mt

mt

trtr

Damped Free Vibrations:
Critical Damping Value (7 of 8)

Thus the nature of the solution changes as γ passes through
the value
This value of γ is known as the critical damping value, and
for larger values of γ the motion is said to be overdamped.
Thus for the solutions given by these cases,

we see that the mass creeps back to its equilibrium position
for solutions (1) and (2), but does not oscillate about it, as
for small γ in solution (3).
Soln (1) is overdamped and soln (2) is critically damped.

.2 km

()
())3(0,sincos)(:04

)2(02/,)(:04

)1(0,0,)(:04

2/2

2/2
21

2 21

>+=<−

>+==−

<<+=>−

−

−

μμμγ

γγ

γ

γ

γ

tBtAetumk
meBtAtumk

rrBeAetumk

mt

mt

trtr

Damped Free Vibrations:
Characterization of Vibration (8 of 8)

Mass creeps back to equilibrium position for solns (1) & (2),
but does not oscillate about it, as for small γ in solution (3).

Soln (1) is overdamped and soln (2) is critically damped.

()
())3((Blue)sincos)(:04

)2(Black) (Red,02/,)(:04

)1((Green)0,0,)(:04

2/2

2/2
21

2 21

tBtAetumk
meBtAtumk

rrBeAetumk

mt

mt

trtr

μμγ

γγ

γ

γ

γ

+=<−

>+==−

<<+=>−

−

−

Example 3: Initial Value Problem (1 of 4)

Suppose that the motion of a spring-mass system is governed
by the initial value problem

Find the following:
(a) quasi frequency and quasi period;
(b) time at which mass passes through equilibrium position;
(c) time τ such that |u(t)| < 0.1 for all t > τ.

For Part (a), using methods of this chapter we obtain:

where

0)0(,2)0(,0125.0 =′==+′+′′ uuuuu

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= −− δtettetu tt

16
255cos

255
32

16
255sin

255
2

16
255cos2)(16/16/

)sin,cos (recall 06254.0
255
1tan δδδδ RBRA ==≅⇒=

Example 3: Quasi Frequency & Period (2 of 4)

The solution to the initial value problem is:

The graph of this solution, along with solution to the
corresponding undamped problem, is given below.
The quasi frequency is

and quasi period

For undamped case:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= −− δtettetu tt

16
255cos

255
32

16
255sin

255
2

16
255cos2)(16/16/

998.016/255 ≅=μ

295.6/2 ≅= μπdT

283.62,10 ≅== πω T

Example 3: Quasi Frequency & Period (3 of 4)

The damping coefficient is γ = 0.125 = 1/8, and this is 1/16 of
the critical value
Thus damping is small relative to mass and spring stiffness.
Nevertheless the oscillation amplitude diminishes quickly.
Using a solver, we find that |u(t)| < 0.1 for t > τ ≈ 47.515 sec

22 =km

Example 3: Quasi Frequency & Period (4 of 4)

To find the time at which the mass first passes through the
equilibrium position, we must solve

Or more simply, solve

0
16
255cos

255
32)(16/ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= − δtetu t

sec 637.1
2255

16
216

255

≅⎟
⎠
⎞

⎜
⎝
⎛ +=⇒

=−

δπ

πδ

t

t

Electric Circuits

The flow of current in certain basic electrical circuits is
modeled by second order linear ODEs with constant
coefficients:

It is interesting that the flow of current in this circuit is
mathematically equivalent to motion of spring-mass system.
For more details, see text.

00)0(,)0(

)()(1)()(

IIII

tEtI
C

tIRtIL

′=′=

′=+′+′′

Ch 3.9: Forced Vibrations

We continue the discussion of the last section, and now
consider the presence of a periodic external force:

tFtuktutum ωγ cos)()()(0=+′+′′

Forced Vibrations with Damping
Consider the equation below for damped motion and external
forcing funcion F0cosωt.

The general solution of this equation has the form

where the general solution of the homogeneous equation is

and the particular solution of the nonhomogeneous equation is

tFtkututum ωγ cos)()()(0=+′+′′

() ())()(sincos)()()(2211 tUtutBtAtuctuctu C +=+++= ωω

)()()(2211 tuctuctuC +=

() ()tBtAtU ωω sincos)(+=

Homogeneous Solution
The homogeneous solutions u1 and u2 depend on the roots r1
and r2 of the characteristic equation:

Since m, γ, and k are are all positive constants, it follows that
r1 and r2 are either real and negative, or complex conjugates
with negative real part. In the first case,

while in the second case

Thus in either case,

m
mk

rkrrmr
2

4
0

2
2 −±−

=⇒=++
γγ

γ

0)(lim =
∞→

tuCt

() ,0lim)(lim 21
21 =+=

∞→∞→

trtr

tCt
ecectu

() .0sincoslim)(lim 21 =+=
∞→∞→

tectectu tt

tCt
μμ λλ

Transient and Steady-State Solutions
Thus for the following equation and its general solution,

we have

Thus uC(t) is called the transient solution. Note however that

is a steady oscillation with same frequency as forcing function.
For this reason, U(t) is called the steady-state solution, or
forced response.

() ()tBtAtU ωω sincos)(+=

() 0)()(lim)(lim 2211 =+=
∞→∞→

tuctuctu
tCt

() (),sincos)()()(
cos)()()(

)()(

2211

0

444 3444 2144 344 21
tUtu

tBtAtuctuctu
tFtkututum

C

ωω
ωγ

+++=
=+′+′′

Transient Solution and Initial Conditions
For the following equation and its general solution,

the transient solution uC(t) enables us to satisfy whatever initial
conditions might be imposed.
With increasing time, the energy put into system by initial
displacement and velocity is dissipated through damping force.
The motion then becomes the response U(t) of the system to
the external force F0cosωt.
Without damping, the effect of the initial conditions would
persist for all time.

() ()
444 3444 2144 344 21

)()(

2211

0

sincos)()()(
cos)()()(

tUtu

tBtAtuctuctu
tFtkututum

C

ωω
ωγ

+++=
=+′+′′

Rewriting Forced Response
Using trigonometric identities, it can be shown that

can be rewritten as

It can also be shown that

where

()δω −= tRtU cos)(

() ()tBtAtU ωω sincos)(+=

22222
0

222222
0

2

22
0

22222
0

2
0

)(
sin,

)(
)(cos

,
)(

ωγωω
ωγδ

ωγωω
ωωδ

ωγωω

+−
=

+−

−
=

+−
=

mm
m

m
FR

mk /2
0 =ω

Amplitude Analysis of Forced Response
The amplitude R of the steady state solution

depends on the driving frequency ω. For low-frequency
excitation we have

where we recall (ω0)2 = k /m. Note that F0 /k is the static
displacement of the spring produced by force F0.
For high frequency excitation,

,
)(22222

0
2

0

ωγωω +−
=

m
FR

k
F

m
F

m
FR 0

2
0

0
22222

0
2

0

00)(
limlim ==

+−
=

→→ ωωγωωωω

0
)(

limlim
22222

0
2

0 =
+−

=
∞→∞→ ωγωωωω m

FR

Maximum Amplitude of Forced Response
Thus

At an intermediate value of ω, the amplitude R may have a
maximum value. To find this frequency ω, differentiate R and
set the result equal to zero. Solving for ωmax, we obtain

where (ω0)2 = k /m. Note ωmax < ω0, and ωmax is close to ω0
for small γ. The maximum value of R is

)4(1 2
0

0
max

mk
FR
γγω −

=

0lim,lim 00
==

∞→→
RkFR

ωω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

mkm 2
1

2

2
2
02

2
2
0

2
max

γωγωω

Maximum Amplitude for Imaginary ωmax

We have

and

where the last expression is an approximation for small γ. If
γ 2 /(mk) > 2, then ωmax is imaginary. In this case, Rmax= F0 /k,
which occurs at ω = 0, and R is a monotone decreasing
function of ω. Recall from Section 3.8 that critical damping
occurs when γ 2 /(mk) = 4.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≅

−
=

mk
F

mk
FR

8
1

)4(1

2

0

0
2

0

0
max

γ
γωγγω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

mk2
1

2
2
0

2
max

γωω

Resonance
From the expression

we see that Rmax≅ F0 /(γ ω0) for small γ.
Thus for lightly damped systems, the amplitude R of the forced
response is large for ω near ω0, since ωmax ≅ ω0 for small γ.
This is true even for relatively small external forces, and the
smaller the γ the greater the effect.
This phenomena is known as resonance. Resonance can be
either good or bad, depending on circumstances; for example,
when building bridges or designing seismographs.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≅

−
=

mk
F

mk
FR

8
1

)4(1

2

0

0
2

0

0
max

γ
γωγγω

Graphical Analysis of Quantities
To get a better understanding of the quantities we have been
examining, we graph the ratios R/(F0/k) vs. ω/ω0 for several
values of Γ = γ 2 /(mk), as shown below.
Note that the peaks tend to get higher as damping decreases.
As damping decreases to zero, the values of R/(F0/k) become
asymptotic to ω = ω0. Also, if γ 2 /(mk) > 2, then Rmax= F0 /k,
which occurs at ω = 0.

Analysis of Phase Angle
Recall that the phase angle δ given in the forced response

is characterized by the equations

If ω ≅ 0, then cosδ ≅ 1, sinδ ≅ 0, and hence δ ≅ 0. Thus the
response is nearly in phase with the excitation.
If ω = ω0, then cosδ = 0, sinδ = 1, and hence δ ≅ π /2. Thus
response lags behind excitation by nearly π /2 radians.
If ω large, then cosδ ≅ -1, sinδ = 0, and hence δ ≅ π . Thus
response lags behind excitation by nearly π radians, and
hence they are nearly out of phase with each other.

22222
0

222222
0

2

22
0

)(
sin,

)(
)(cos

ωγωω
ωγδ

ωγωω
ωωδ

+−
=

+−

−
=

mm
m

()δω −= tRtU cos)(

Example 1:
Forced Vibrations with Damping (1 of 4)

Consider the initial value problem

Then ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.
The unforced motion of this system was discussed in Ch 3.8,
with the graph of the solution given below, along with the
graph of the ratios R/(F0/k) vs. ω/ω0 for different values of Γ.

0)0(,2)0(,2cos3)()(125.0)(=′==+′+′′ uuttututu

Example 1:
Forced Vibrations with Damping (2 of 4)

Recall that ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.
The solution for the low frequency case ω = 0.3 is graphed
below, along with the forcing function.
After the transient response is substantially damped out, the
steady-state response is essentially in phase with excitation,
and response amplitude is larger than static displacement.
Specifically, R ≅ 3.2939 > F0/k = 3, and δ ≅ 0.041185.

Example 1:
Forced Vibrations with Damping (3 of 4)

Recall that ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.
The solution for the resonant case ω = 1 is graphed below,
along with the forcing function.
The steady-state response amplitude is eight times the static
displacement, and the response lags excitation by π /2 radians,
as predicted. Specifically, R = 24 > F0/k = 3, and δ = π /2.

Example 1:
Forced Vibrations with Damping (4 of 4)

Recall that ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.
The solution for the relatively high frequency case ω = 2 is
graphed below, along with the forcing function.
The steady-state response is out of phase with excitation, and
response amplitude is about one third the static displacement.
Specifically, R ≅ 0.99655 ≅ F0/k = 3, and δ ≅ 3.0585 ≅ π.

Undamped Equation:
General Solution for the Case ω0 ≠ ω

Suppose there is no damping term. Then our equation is

Assuming ω0 ≠ ω, then the method of undetermined
coefficients can be use to show that the general solution is

tFtkutum ωcos)()(0=+′′

t
m

Ftctctu ω
ωω

ωω cos
)(

sincos)(22
0

0
0201 −
++=

Undamped Equation:
Mass Initially at Rest (1 of 3)

If the mass is initially at rest, then the corresponding initial
value problem is

Recall that the general solution to the differential equation is

Using the initial conditions to solve for c1 and c2, we obtain

Hence

0)0(,0)0(,cos)()(0 =′==+′′ uutFtkutum ω

0,
)(222

0

0
1 =

−
−= c

m
Fc

ωω

()tt
m

Ftu 022
0

0 coscos
)(

)(ωω
ωω

−
−

=

t
m

Ftctctu ω
ωω

ωω cos
)(

sincos)(22
0

0
0201 −
++=

Undamped Equation:
Solution to Initial Value Problem (2 of 3)

Thus our solution is

To simplify the solution even further, let A = (ω0 + ω)/2 and
B = (ω0 - ω)/2. Then A + B = ω0t and A - B = ωt. Using the
trigonometric identity

it follows that

and hence

()tt
m

Ftu 022
0

0 coscos
)(

)(ωω
ωω

−
−

=

,sinsincoscos)cos(BABABA m=±

BABAt
BABAt

sinsincoscoscos
sinsincoscoscos

0 −=
+=

ω
ω

BAtt sinsin2coscos 0 =− ωω

Undamped Equation: Beats (3 of 3)

Using the results of the previous slide, it follows that

When |ω0 - ω| ≅ 0, ω0 + ω is much larger than ω0 - ω, and
sin[(ω0 + ω)t/2] oscillates more rapidly than sin[(ω0 - ω)t/2].
Thus motion is a rapid oscillation with frequency (ω0 + ω)/2,
but with slowly varying sinusoidal amplitude given by

This phenomena is called a beat.
Beats occur with two tuning forks of
nearly equal frequency.

()
2

sin2 0
22

0

0 t
m

F ωω
ωω

−
−

() ()
2

sin
2

sin
)(

2)(00
22

0

0 tt
m

Ftu ωωωω
ωω

+
⎥
⎦

⎤
⎢
⎣

⎡ −
−

=

Example 2: Undamped Equation,
Mass Initially at Rest (1 of 2)

Consider the initial value problem

Then ω0 = 1, ω = 0.8, and F0 = 0.5, and hence the solution is

The displacement of the spring–mass system oscillates with a
frequency of 0.9, slightly less than natural frequency ω0 = 1.
The amplitude variation has a slow
frequency of 0.1 and period of 20π.
A half-period of 10π corresponds to
a single cycle of increasing and then
decreasing amplitude.

0)0(,0)0(,8.0cos5.0)()(=′==+′′ uuttutu

()()tttu 9.0sin1.0sin77778.2)(=

Example 2: Increased Frequency (2 of 2)

Recall our initial value problem

If driving frequency ω is increased to ω = 0.9, then the slow
frequency is halved to 0.05 with half-period doubled to 20π.
The multiplier 2.77778 is increased to 5.2632, and the fast
frequency only marginally increased, to 0.095.

0)0(,0)0(,8.0cos5.0)()(=′==+′′ uuttutu

Undamped Equation:
General Solution for the Case ω0 = ω (1 of 2)

Recall our equation for the undamped case:

If forcing frequency equals natural frequency of system, i.e.,
ω = ω0 , then nonhomogeneous term F0cosωt is a solution of
homogeneous equation. It can then be shown that

Thus solution u becomes unbounded as t →∞.
Note: Model invalid when u gets
large, since we assume small
oscillations u.

tt
m
Ftctctu 0

0

0
0201 sin

2
sincos)(ω

ω
ωω ++=

tFtkutum ωcos)()(0=+′′

Undamped Equation: Resonance (2 of 2)

If forcing frequency equals natural frequency of system, i.e.,
ω = ω0 , then our solution is

Motion u remains bounded if damping present. However,
response u to input F0cosωt may be large if damping is
small and |ω0 - ω| ≅ 0, in which case we have resonance.

tt
m
Ftctctu 0

0

0
0201 sin

2
sincos)(ω

ω
ωω ++=

SECTION 15.1 Exact First-Order Equations 1093

Exact Differential Equations • Integrating Factors

Exact Differential Equations
In Section 5.6, you studied applications of differential equations to growth and decay
problems. In Section 5.7, you learned more about the basic ideas of differential equa-
tions and studied the solution technique known as separation of variables. In this
chapter, you will learn more about solving differential equations and using them in
real-life applications. This section introduces you to a method for solving the first-
order differential equation

for the special case in which this equation represents the exact differential of a
function

From Section 12.3, you know that if f has continuous second partials, then

This suggests the following test for exactness.

Exactness is a fragile condition in the sense that seemingly minor alterations in
an exact equation can destroy its exactness. This is demonstrated in the following
example.

­M
­y

5
­2f

­y­x
5

­2f
­x­y

5
­N
­x

.

z 5 f sx, yd.

Msx, yd dx 1 Nsx, yd dy 5 0

15.1S E C T I O N Exact First-Order Equations

Definition of an Exact Differential Equation

The equation is an exact differential equation if
there exists a function f of two variables x and y having continuous partial deriv-
atives such that

and

The general solution of the equation is f sx, yd 5 C.

fysx, yd 5 Nsx, yd.fxsx, yd 5 Msx, yd

Msx, yd dx 1 Nsx, yd dy 5 0

THEOREM 15.1 Test for Exactness

Let M and N have continuous partial derivatives on an open disc R. The differen-
tial equation is exact if and only if

­M
­y

5
­N
­x

.

Msx, yd dx 1 Nsx, yd dy 5 0

1094 CHAPTER 15 Differential Equations

EXAMPLE 1 Testing for Exactness

a. The differential equation is exact because

and

But the equation is not exact, even though it is obtained
by dividing both sides of the first equation by x.

b. The differential equation is exact because

and

But the equation is not exact, even though it
differs from the first equation only by a single sign.

Note that the test for exactness of is the same as the
test for determining whether is the gradient of a poten-
tial function (Theorem 14.1). This means that a general solution to an
exact differential equation can be found by the method used to find a potential
function for a conservative vector field.

EXAMPLE 2 Solving an Exact Differential Equation

Solve the differential equation

Solution The given differential equation is exact because

The general solution, is given by

In Section 14.1, you determined by integrating with respect to y and
reconciling the two expressions for An alternative method is to partially
differentiate this version of with respect to y and compare the result with

In other words,

Thus, and it follows that Therefore,

and the general solution is Figure 15.1 shows the solution curves
that correspond to 10, 100, and 1000.C 5 1,

x2y 2 x3 2 y2 5 C.

f sx, yd 5 x2y 2 x3 2 y2 1 C1

gsyd 5 2y2 1 C1.g9syd 5 22y,

g9syd 5 22y

fysx, yd 5
­

­y
 fx2y 2 x3 1 gsydg 5 x2 1 g9syd 5 x2 2 2y.

Nsx, yd

Nsx, yd.
f sx, yd

f sx, yd.
Nsx, ydgsyd

 5 E s2xy 2 3x2d dx 5 x2y 2 x3 1 gsyd.

 f sx, yd 5 E Msx, yd dx

f sx, yd 5 C,

­M
­y

5
­

­y
 f2xy 2 3x2g 5 2x 5

­N
­x

5
­

­x
 fx2 2 2yg.

s2xy 2 3x2d dx 1 sx2 2 2yd dy 5 0.

f sx, yd 5 C
Fsx, yd 5 Msx, yd i 1 Nsx, ydj

Msx, yd dx 1 Nsx, yd dy 5 0

cos y dx 1 sy2 1 x sin yd dy 5 0

­N
­x

5
­

­x
 f y2 2 x sin yg 5 2sin y.

­M
­y

5
­

­y
 fcos yg 5 2sin y

cos y dx 1 sy2 2 x sin yd dy 5 0

sy2 1 1d dx 1 xy dy 5 0

­N
­x

5
­

­x
 f yx2g 5 2xy.

­M
­y

5
­

­y
 fxy2 1 xg 5 2xy

sxy2 1 xd dx 1 yx2 dy 5 0

x

y

4−4 8

8

−8 12

12

16

20

24

−12

C = 1
C = 10

C = 100

C = 1000

Figure 15.1

NOTE Every differential equation of
the form

is exact. In other words, a separable vari-
ables equation is actually a special type
of an exact equation.

Msxd dx 1 Nsyd dy 5 0

SECTION 15.1 Exact First-Order Equations 1095

EXAMPLE 3 Solving an Exact Differential Equation

Find the particular solution of

that satisfies the initial condition when

Solution The differential equation is exact because

Because is simpler than it is better to begin by integrating

Thus, and

which implies that , and the general solution is

General solution

Applying the given initial condition produces

which implies that Hence, the particular solution is

Particular solution

The graph of the particular solution is shown in Figure 15.3. Notice that the graph
consists of two parts: the ovals are given by and the y-axis is given
by

In Example 3, note that if the total differential of z
is given by

In other words, is called an exactdifferential equation because
is exactly the differential of f sx, yd.M dx 1 N dy

M dx 1 N dy 5 0

 5 Msx, yd dx 1 Nsx, yd dy.

 5 scos x 2 x sin x 1 y2d dx 1 2xy dy

 dz 5 fxsx, yd dx 1 fysx, yd dy

z 5 f sx, yd 5 xy2 1 x cos x,

x 5 0.
y2 1 cos x 5 0,

xy2 1 x cos x 5 0.

C 5 0.

ps1d2 1 p cos p 5 C

xy2 1 x cos x 5 C.

f sx, yd 5 xy2 1 x cos x 1 C1

 5 x cos x 1 C1

 gsxd 5 E scos x 2 x sin xd dx

g9sxd 5 cos x 2 x sin x

g9sxd 5 cos x 2 x sin x

fxsx, yd 5
­

­x
 fxy2 1 gsxdg 5 y2 1 g9sxd 5 cos x 2 x sin x 1 y2

Msx, yd

f sx, yd 5 E Nsx, yd dy 5 E 2xy dy 5 xy2 1 gsxd

Nsx, yd.Msx, yd,Nsx, yd

­

­y
 fcos x 2 x sin x 1 y2g 5 2y 5

­

­x
 f2xyg.

­N
­x

­M
­y

x 5 p.y 5 1

scos x 2 x sin x 1 y2d dx 1 2xy dy 5 0

x

y

2

4

−2

−4

π 2π 3ππ−3π− 2π−

(, 1)π

Figure 15.3

TECHNOLOGY You can use a
graphing utility to graph a particular
solution that satisfies the initial condi-
tion of a differential equation. In
Example 3, the differential equation
and initial conditions are satisfied
when which
implies that the particular solution
can be written as or

On a graphing
calculator screen, the solution would
be represented by Figure 15.2 together
with the y-axis.

Figure 15.2

−12.57

−4

12.57

4

y 5 ±!2cos x .
x 5 0

xy2 1 x cos x 5 0,

1096 CHAPTER 15 Differential Equations

Integrating Factors
If the differential equation is not exact, it may be possi-
ble to make it exact by multiplying by an appropriate factor which is called an
integrating factor for the differential equation.

EXAMPLE 4 Multiplying by an Integrating Factor

a. If the differential equation

Not an exact equation

is multiplied by the integrating factor the resulting equation

Exact equation

is exact—the left side is the total differential of

b. If the equation

Not an exact equation

is multiplied by the integrating factor the resulting equation

Exact equation

is exact—the left side is the total differential of

Finding an integrating factor can be difficult. However, there are two classes of
differential equations whose integrating factors can be found routinely—namely,
those that possess integrating factors that are functions of either x alone or y alone.
The following theorem, which we present without proof, outlines a procedure for
finding these two special categories of integrating factors.

STUDY TIP If either or is constant, Theorem 15.2 still applies. As an aid to
remembering these formulas, note that the subtracted partial derivative identifies both the
denominator and the variable for the integrating factor.

ksydhsxd

xyy.

1
y
 dx 2

x
y2 dy 5 0

usx, yd 5 1yy2,

y dx 2 x dy 5 0

x2y.

2xy dx 1 x2 dy 5 0

usx, yd 5 x,

2y dx 1 x dy 5 0

usx, yd,
Msx, yd dx 1 Nsx, yd dy 5 0

THEOREM 15.2 Integrating Factors

Consider the differential equation

1. If

is a function of x alone, then is an integrating factor.

2. If

is a function of y alone, then is an integrating factor.eeksyd dy

1
Msx, yd fNxsx, yd 2 Mysx, ydg 5 ksyd

eehsxd dx

1
Nsx, yd fMysx, yd 2 Nxsx, ydg 5 hsxd

Msx, yd dx 1 Nsx, yd dy 5 0.

SECTION 15.1 Exact First-Order Equations 1097

EXAMPLE 5 Finding an Integrating Factor

Solve the differential equation

Solution The given equation is not exact because and
However, because

it follows that is an integrating factor. Multiplying the given
differential equation by produces the exact differential equation

whose solution is obtained as follows.

Therefore, and which implies that

The general solution is or

In the next example, we show how a differential equation can help in sketching a
force field given by

EXAMPLE 6 An Application to Force Fields

Sketch the force field given by

by finding and sketching the family of curves tangent to F.

Solution At the point in the plane, the vector has a slope of

which, in differential form, is

From Example 5, we know that the general solution of this differential equation is
or Figure 15.4 shows several representa-

tive curves from this family. Note that the force vector at is tangent to the curve
passing through sx, yd.

sx, yd
y2 5 x 2 1 1 Ce2x.y2 2 x 1 1 5 Ce2x,

 sy2 2 xd dx 1 2y dy 5 0.

 2y dy 5 2sy2 2 xd dx

dy
dx

5
2sy2 2 xdy!x2 1 y2

2yy!x2 1 y2
5

2sy2 2 xd
2y

Fsx, ydsx, yd

Fsx, yd 5
2y

!x2 1 y2
 i 2

y2 2 x
!x2 1 y2

 j

Fsx, yd 5 Msx, yd i 1 Nsx, ydj.

y2 2 x 1 1 5 Ce2x.y2ex 2 xex 1 ex 5 C,

f sx, yd 5 y2ex 2 xex 1 ex 1 C1.

gsxd 5 2xex 1 ex 1 C1,g9sxd 5 2xex

g9sxd 5 2xex

fxsx, yd 5 y2ex 1 g9sxd 5 y2ex 2 xex

Msx, yd

f sx, yd 5 E Nsx, yd dy 5 E 2yex dy 5 y2ex 1 gsxd

sy2ex 2 xexd dx 1 2yex dy 5 0

ex
eehsxd dx 5 ee dx 5 ex

Mysx, yd 2 Nxsx, yd
Nsx, yd 5

2y 2 0
2y

5 1 5 hsxd

Nxsx, yd 5 0.Mysx, yd 5 2y

sy2 2 xd dx 1 2y dy 5 0.

3

2

13

2

3

y

x

j
x

2

y

x

2

22
i

2

2

x
),,(xF

Force field:

y
y

F:.toesrv

e

c
x

uenngtof

1

ail
2

am

y

F

x

y

C

t
y y

Figure 15.4

1098 CHAPTER 15 Differential Equations

In Exercises 1–10, determine whetherthe differential equation
is exact. If it is, find the general solution.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Exercises 11 and 12, (a) sketch an approximate solution of
the differential equation satisfying the initial condition by hand
on the direction field, (b) find the particular solution that satis-
fies the initial condition, and (c) use a graphing utility to graph
the particular solution. Compare the graph with the hand-
drawn graph of part (a).

11.

12.

Figure for 11 Figure for 12

In Exercises 13–16, find the particular solution that satisfies the
initial condition.

13.

14.

15.

16.

In Exercises 17–26, find the integrating factorthat is a function
of x or y alone and use it to find the general solution of the
dif ferential equation.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

In Exercises 27–30, use the integrating factorto find the
general solution of the differential equation.

27.

28.

29.

30.

31. Show that each of the following is an integrating factor for the
differential equation

(a) (b) (c) (d)

32. Show that the differential equation

is exact only if If show that is an integrat-
ing factor, where

In Exercises 33–36, use a graphing utility to graph the family of
tangent curves to the given force field.

33.

34.

35.

36. Fsx, yd 5 s1 1 x2d i 2 2xy j

Fsx, yd 5 4x2y i 2 12xy2 1
x
y22 j

Fsx, yd 5
x

!x2 1 y2
 i 2

y
!x2 1 y2

 j

Fsx, yd 5
y

!x2 1 y2
 i 2

x
!x2 1 y2

 j

n 5 2
2a 1 b
a 1 b

.m 5 2
2b 1 a
a 1 b

,

xmyna Þ b,a 5 b.

saxy2 1 byd dx 1 sbx2y 1 axd dy 5 0

1
x2 1 y2

1
xy

1
y2

1
x2

y dx 2 x dy 5 0.

usx, yd 5 x22y22

2y3 dx 1 sxy2 2 x2d dy 5 0

usx, yd 5 x22y23

s2y5 1 x2yd dx 1 s2xy4 2 2x3d dy 5 0

usx, yd 5 x2y

s3y2 1 5x2yd dx 1 s3xy 1 2x3d dy 5 0

usx, yd 5 xy2

s4x2y 1 2y2d dx 1 s3x3 1 4xyd dy 5 0

s22y3 1 1d dx 1 s3xy2 1 x3d dy 5 0

2y dx 1 sx 2 sin!yd dy 5 0

sx2 1 2x 1 yd dx 1 2 dy 5 0

y2 dx 1 sxy 2 1d dy 5 0

s2x2y 2 1d dx 1 x3 dy 5 0

sx 1 yd dx 1 tan x dy 5 0

s5x2 2 y2d dx 1 2y dy 5 0

s5x2 2 yd dx 1 x dy 5 0

s2x3 1 yd dx 2 x dy 5 0

y dx 2 sx 1 6y2d dy 5 0

ys3d 5 1sx2 1 y2d dx 1 2xy dy 5 0

ys0d 5 pe3xssin 3y dx 1 cos 3y dyd 5 0

ys0d 5 4
1

x2 1 y2 sx dx 1 y dyd 5 0

ys2d 5 4
y

x 2 1
 dx 1 flnsx 2 1d 1 2yg dy 5 0

Initial ConditionDifferential Equation

x

y

−4 −2 2 4

−4

−2

2

4

ys4d 5 3
1

!x2 1 y2
 sx dx 1 y dyd 5 0

ys1
2d 5 py4s2x tan y 1 5d dx 1 sx2sec2yd dy 5 0

Initial ConditionDifferential Equation

ey cos xy fydx 1 sx 1 tan xyd dyg 5 0

1
sx 2 yd2 sy2 dx 1 x2 dyd 5 0

e2sx21y2dsx dx 1 y dyd 5 0

1
x2 1 y2 sx dy 2 y dxd 5 0

2y2exy2 dx 1 2xyexy2 dy 5 0

s4x3 2 6xy2d dx 1 s4y3 2 6xyd dy 5 0

2 coss2x 2 yd dx 2 coss2x 2 yd dy 5 0

s3y2 1 10xy2d dx 1 s6xy 2 2 1 10x2yd dy 5 0

yex dx 1 ex dy 5 0

s2x 2 3yd dx 1 s2y 2 3xd dy 5 0

E X E R C I S E S F O R S E C T I O N 15 .1

x

y

−4 −2 2 4

−4

−2

4

2

LAB SERIES
Lab 20

In Exercises 37 and 38, find an equation forthe curve with the
specified slope passing through the given point.

37.

38.

39. Cost If represents the cost of producing x units in a
manufacturing process, the elasticity of costis defined as

Find the cost function if the elasticity function is

where and

40. Euler’s Method Consider the differential equation
with the initial condition At any point

in the domain of F, yields the slope of the solu-
tion at that point. Euler’s Method gives a discrete set of esti-
mates of the y values of a solution of the differential equation
using the iterative formula

where

(a) Write a short paragraph describing the general idea of how
Euler’s Method works.

(b) How will decreasing the magnitude of affect the accu-
racy of Euler’s Method?

41. Euler’s Method Use Euler’s Method (see Exercise 40) to
approximate for the values of given in the table if

and (Note that the number of iterations
increases as decreases.) Sketch a graph of the approximate
solution on the direction field in the figure.

The value of accurate to three decimal places, is 4.213.

42. Programming Write a program for a graphing utility or
computer that will perform the calculations of Euler’s Method
for a specified differential equation, interval, and initial
condition. The output should be a graph of the discrete points
approximating the solution.

Euler’s Method In Exercises 43–46, (a) use the program of
Exercise 42 to approximate the solution of the differential equa-
tion over the indicated interval with the specified value of
and the initial condition, (b) solve the differential equation
analytically, and (c) use a graphing utility to graph the particu-
lar solution and compare the result with the graph of part (a).

Differential Initial

43. 0.01

44. 0.1

45. 0.05

46. 0.2

47. Euler’s Method Repeat Exercise 45 for and
discuss how the accuracy of the result changes.

48. Euler’s Method Repeat Exercise 46 for and
discuss how the accuracy of the result changes.

True or False? In Exercises 49–52, determine whetherthe
statement is true orfalse. If it is false, explain why orgive an
example that shows it is false.

49. The differential equation is exact.

50. If is exact, then is also
exact.

51. If is exact, then
is also exact.

52. The differential equation is exact.f sxd dx 1 gsyd dy 5 0

Ng dy 5 0
f f sxd 1 M g dx 1 fgsyd 1M dx 1 N dy 5 0

xM dx 1 xN dy 5 0M dx 1 N dy 5 0

2xy dx 1 sy2 2 x2d dy 5 0

Dx 5 0.5

Dx 5 1

ys0d 5 1f0, 5gy9 5
6x 1 y2

ys3y 2 2xd

ys2d 5 1f2, 4gy9 5
2xy

x2 1 y2

ys21d 5 21f21, 1gy9 5
p

4
 sy2 1 1d

ys1d 5 1f1, 2gy9 5 x 3!y

Condition Dx IntervalEquation

Dx

Dx,

x

y

−4 −3 −2 −1 1 2

5

4

3

2

1

ys1d,

Dx
ys0d 5 2.y9 5 x 1 !y

Dxys1d

Dx

Dx 5 xk11 2 xk.

yk11 5 yk 1 Fsxk , ykd Dx

Fsxk , ykdsxk , ykd
ysx0d 5 y0.y9 5 Fsx, yd

x ≥ 100.Cs100d 5 500

Esxd 5
20x 2 y

2y 2 10x

Esxd 5
marginal cost
average cost

5
C9sxd

Csxdyx
5

x
y

dy
dx

.

y 5 Csxd

s0, 2ddy
dx

5
22xy

x2 1 y2

s2, 1ddy
dx

5
y 2 x

3y 2 x

PointSlope

0.50 0.25 0.10

Estimate of ys1d

Dx

SECTION 15.1 Exact First-Order Equations 1099

Complete Graph

A complete graph is a graph in which each pair of graph vertices is connected by an edge. The complete graph with graph vertices is

denoted and has (the triangular numbers) undirected edges, where is a binomial coefficient. In older

literature, complete graphs are sometimes called universal graphs.

The complete graph on nodes is implemented in the Wolfram Language as CompleteGraph[n] or CompleteGraph[n] in the Wolfram
Language package Combinatorica` , and precomputed properties are available using GraphData["Complete", n]. A graph may
be tested to see if it is complete in the Wolfram Language using the function CompleteGraphQ[g].

The complete graph on 0 nodes is a trivial graph known as the null graph, while the complete graph on 1 node is a trivial graph known
as the singleton graph.

In the 1890s, Walecki showed that complete graphs admit a Hamilton decomposition for odd , and decompositions into Hamiltonian
cycles plus a perfect matching for even (Lucas 1892, Bryant 2007, Alspach 2008). Alspach et al. (1990) give a construction for
Hamilton decompositions of all .

The graph complement of the complete graph is the empty graph on nodes. has graph genus for
(Ringel and Youngs 1968; Harary 1994, p. 118), where is the ceiling function.

The adjacency matrix of the complete graph takes the particularly simple form of all 1s with 0s on the diagonal, i.e., the unit matrix
minus the identity matrix,

(1)

 is the cycle graph , as well as the odd graph (Skiena 1990, p. 162). is the tetrahedral graph, as well as the wheel graph
, and is also a planar graph. is nonplanar, and is sometimes known as the pentatope graph or Kuratowski graph. Conway and
Gordon (1983) proved that every embedding of is intrinsically linked with at least one pair of linked triangles, and is also a Cayley
graph. Conway and Gordon (1983) also showed that any embedding of contains a knotted Hamiltonian cycle.

The complete graph is the line graph of the star graph .

http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/GraphVertex.html
http://mathworld.wolfram.com/GraphEdge.html
http://mathworld.wolfram.com/GraphVertex.html
http://mathworld.wolfram.com/BinomialCoefficient.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/CompleteGraph.html
http://reference.wolfram.com/language/Combinatorica/ref/CompleteGraph.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/GraphData.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/CompleteGraphQ.html
http://mathworld.wolfram.com/NullGraph.html
http://mathworld.wolfram.com/SingletonGraph.html
http://mathworld.wolfram.com/HamiltonDecomposition.html
http://mathworld.wolfram.com/HamiltonDecomposition.html
http://mathworld.wolfram.com/GraphComplement.html
http://mathworld.wolfram.com/EmptyGraph.html
http://mathworld.wolfram.com/GraphGenus.html
http://mathworld.wolfram.com/CeilingFunction.html
http://mathworld.wolfram.com/AdjacencyMatrix.html
http://mathworld.wolfram.com/UnitMatrix.html
http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/CycleGraph.html
http://mathworld.wolfram.com/OddGraph.html
http://mathworld.wolfram.com/TetrahedralGraph.html
http://mathworld.wolfram.com/WheelGraph.html
http://mathworld.wolfram.com/PlanarGraph.html
http://mathworld.wolfram.com/PentatopeGraph.html
http://mathworld.wolfram.com/IntrinsicallyLinked.html
http://mathworld.wolfram.com/CayleyGraph.html
http://mathworld.wolfram.com/HamiltonianCycle.html
http://mathworld.wolfram.com/LineGraph.html
http://mathworld.wolfram.com/StarGraph.html

The chromatic polynomial of is given by the falling factorial . The independence polynomial is given by

(2)

and the matching polynomial by

(3)

(4)

where is a normalized version of the Hermite polynomial .

The chromatic number and clique number of are . The automorphism group of the complete graph is the symmetric group
 (Holton and Sheehan 1993, p. 27). The numbers of graph cycles in the complete graph for , 4, ... are 1, 7, 37, 197, 1172,

8018 ... (OEIS A002807). These numbers are given analytically by

(5)

(6)

where is a binomial coefficient and is a generalized hypergeometric function (Char 1968, Holroyd and Wingate

1985).

It is not known in general if a set of trees with 1, 2, ..., graph edges can always be packed into . However, if the choice of trees
is restricted to either the path or star from each family, then the packing can always be done (Zaks and Liu 1977, Honsberger 1985).

The bipartite double graph of the complete graph is the ­crown graph.

http://mathworld.wolfram.com/ChromaticPolynomial.html
http://mathworld.wolfram.com/FallingFactorial.html
http://mathworld.wolfram.com/IndependencePolynomial.html
http://mathworld.wolfram.com/MatchingPolynomial.html
http://mathworld.wolfram.com/HermitePolynomial.html
http://mathworld.wolfram.com/ChromaticNumber.html
http://mathworld.wolfram.com/CliqueNumber.html
http://mathworld.wolfram.com/AutomorphismGroup.html
http://mathworld.wolfram.com/SymmetricGroup.html
http://mathworld.wolfram.com/GraphCycle.html
http://oeis.org/A002807
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html
http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/GraphEdge.html
http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/BipartiteDoubleGraph.html
http://mathworld.wolfram.com/CrownGraph.html

GRAPH THEORY

AND

APPLICATIONS

G. Appasami, M.Sc., M.C.A., M.Phil., M.Tech., (Ph.D.)

Assistant Professor

Department of Computer Science and Engineering

Dr. Paul’s Engineering Collage

Pauls Nagar, Villupuram

Tamilnadu, India

SARUMATHI PUBLICATIONS

Villupuram, Tamilnadu, India

First Edition: July 2016

Published By

SARUMATHI PUBLICATIONS

© All rights reserved. No part of this publication can be reproduced or stored in any form or

by means of photocopy, recording or otherwise without the prior written permission of the

author.

Price Rs. 101/-

Copies can be had from

SARUMATHI PUBLICATIONS

Villupuram, Tamilnadu, India.

Sarumathi.publications@gmail.com

Printed at

Meenam Offset

Pondicherry – 605001, India

CS6702 GRAPH THEORY AND APPLICATIONS L T P C 3 0 0 3

OBJECTIVES: The student should be made to:

 Be familiar with the most fundamental Graph Theory topics and results.

 Be exposed to the techniques of proofs and analysis.

UNIT I INTRODUCTION 9

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –
Connectedness – Components – Euler graphs – Hamiltonian paths and circuits – Trees –

Properties of trees – Distance and centers in tree – Rooted and binary trees.

UNIT II TREES, CONNECTIVITY & PLANARITY 9

Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets –

Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and

separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and

geometric graphs – Planer graphs – Different representation of a planer graph.

UNIT III MATRICES, COLOURING AND DIRECTED GRAPH 8

Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching –

Covering -Four color problem – Directed graphs – Types of directed graphs – Digraphs and

binary relations – Directed paths and connectedness – Euler graphs.

UNIT IV PERMUTATIONS & COMBINATIONS 9

Fundamental principles of counting - Permutations and combinations - Binomial theorem -

combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion

- Derangements - Arrangements with forbidden positions.

UNIT V GENERATING FUNCTIONS 10

Generating functions - Partitions of integers - Exponential generating function – Summation

operator - Recurrence relations - First order and second order – Non-homogeneous

recurrence relations - Method of generating functions.

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students should be able to:

 Write precise and accurate mathematical definitions of objects in graph theory.

 Use mathematical definitions to identify and construct examples and to distinguish

examples from non-examples.

 Validate and critically assess a mathematical proof.

 Use a combination of theoretical knowledge and independent mathematical thinking

in creative investigation of questions in graph theory.

 Reason from definitions to construct mathematical proofs.

TEXT BOOKS:
1. Narsingh Deo, “Graph Theory: With Application to Engineering and Computer

Science”, Prentice Hall of India, 2003.
2. Grimaldi R.P. “Discrete and Combinatorial Mathematics: An Applied Introduction”,

Addison Wesley, 1994.

REFERENCES:
1. Clark J. and Holton D.A, “A First Look at Graph Theory”, Allied Publishers, 1995.
2. Mott J.L., Kandel A. and Baker T.P. “Discrete Mathematics for Computer Scientists

and Mathematicians” , Prentice Hall of India, 1996.
3. Liu C.L., “Elements of Discrete Mathematics”, Mc Graw Hill, 1985.
4. Rosen K.H., “Discrete Mathematics and Its Applications”, Mc Graw Hill, 2007.

Acknowledgement

I am very much grateful to the management of paul’s educational trust, Respected
principal Dr. Y. R. M. Rao, M.E., Ph.D., cherished Dean Dr. E. Mariappane, M.E.,

Ph.D., and helpful Head of the department Mr. M. G. Lavakumar M.E., (Ph.D.).

 I thank my colleagues and friends for their cooperation and their support in my

career venture.

 I thank my parents and family members for their valuable support in completion of

the book successfully.

 I express my special thanks to SARUMATHI PUBLICATIONS for their continued

cooperation in shaping the work.

 Suggestions and comments to improve the text are very much solicitated.

Mr. G. Appasami

TABLE OF CONTENTS

UNIT I INTRODUCTION

1. 1 Graphs 1

1. 2 Introduction 1

1. 3 Isomorphism 7

1. 4 Sub graphs 8

1. 5 Walks, Paths, Circuits 9

1. 6 Connectedness 10

1. 7 Components 10

1. 8 Euler graphs 12

1. 9 Hamiltonian paths and circuits 14

1. 10 Trees 15

1. 11 Properties of trees 16

1. 12 Distance and centers in tree 17

1. 13 Rooted and binary trees 19

UNIT II TREES, CONNECTIVITY & PLANARITY

2. 1 Spanning trees 20

2. 2 Fundamental circuits 21

2. 3 Spanning trees in a weighted graph 23

2. 4 cut sets 24

2. 5 Properties of cut set 24

2. 6 All cut sets 25

2. 7 Fundamental circuits and cut sets 26

2. 8 Connectivity and separability 28

2. 9 Network flows 30

2. 10 1-Isomorphism 31

2. 11 2-Isomorphism 32

2. 12 Combinational and geometric graphs 33

2. 13 Planer graphs 34

2. 14 Different representation of a planer graph 36

UNIT III MATRICES, COLOURING AND DIRECTED GRAPH

3. 1 Chromatic number 38

3. 2 Chromatic partitioning 40

3. 3 Chromatic polynomial 41

3. 4 Matching 43

3. 5 Covering 43

3. 6 Four color problem 45

3. 7 Directed graphs 47

3. 8 Types of directed graphs 48

3. 9 Digraphs and binary relations 50

3. 10 Directed paths and connectedness 52

3. 11 Euler graphs 54

UNIT IV PERMUTATIONS & COMBINATIONS

4. 1 Fundamental principles of counting 56

4. 2 Permutations and combinations 56

4. 3 Binomial theorem 57

4. 4 Combinations with repetition 59

4. 5 Combinatorial numbers 61

4. 6 Principle of inclusion and exclusion 61

4. 7 Derangements 62

4. 8 Arrangements with forbidden positions 62

UNIT V GENERATING FUNCTIONS

5. 1 Generating functions 65

5. 2 Partitions of integers 65

5. 3 Exponential generating function 67

5. 4 Summation operator 68

5. 5 Recurrence relations 68

5. 6 First order and second order 70

5. 7 Non-homogeneous recurrence relations 71

5. 8 Method of generating functions. 72

2 Marks Questions and Answers 74

Question Bank 100

Model Question paper 105

References 107

CS6702 GRAPH THEORY AND APPLICATIONS 1

CS6702 GRAPH THEORY AND APPLICATIONS

UNIT I INTRODUCTION

1.1 GRAPHS – INTRODUCTION

1.1.1 Introduction

 A graph G = (V, E) consists of a set of objects V={v1, v2, v3, … } called vertices

(also called points or nodes) and other set E = {e1, e2, e3,} whose elements are called

edges (also called lines or arcs).

For example : A graph G is defined by the sets V(G) = {u, v, w, x, y, z} and

E(G) = {uv, uw, wx, xy, xz}.

 The set V(G) is called the vertex set of G and E(G) is the edge set of G.

 A graph with p-vertices and q-edges is called a (p, q) graph.

 The (1, 0) graph is called trivial graph.

 An edge having the same vertex as its end vertices is called a self-loop.

 More than one edge associated a given pair of vertices called parallel edges.

 Intersection of any two edges is not a vertex.

 A graph that has neither self-loops nor parallel edges is called simple graph.

 Same graph can be drawn in different ways.

u v

w x y

Simple Graph

u v

w x y

Pseudo Graph

Graph G: Graph H:

u
v

w
x y

z

Graph G:

Graph G with 6 vertices and 5 edges

CS6702 GRAPH THEORY AND APPLICATIONS 2

 A graph is also called a linear complex, a 1-complex, or a one-dimensional

complex.

 A vertex is also referred to as a node, a junction, a point, O-cell, or an O-simplex.

 Other terms used for an edge are a branch, a line, an element, a 1-cell, an arc, and a

1-simplex.

1.1.2 Applications of graph.

(i) Konigsberg bridge problem

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides

(A and B) of the Pregel River, and included two large islands (C and D) which were

connected to each other and the mainland by seven bridges. The problem was to devise a

walk through the city that would cross each bridge once and only once, with the provisos

that: the islands could only be reached by the bridges and every bridge once accessed must

be crossed to its other end. The starting and ending points of the walk need not be the same.

Euler proved that the problem has no solution. This problem can be represented by a

graph as shown below.

(ii) Utilities problem

 There are three houses H1, H2 and H3, each to be connected to each of the three

utilities water (W), gas (G) and electricity (E) by means of conduits. This problem can be

represented by a graph as shown below.

u

v w x

x

Graph G1: Graph G2:

u
w

v

u

v
w

x

Graph G3:

CS6702 GRAPH THEORY AND APPLICATIONS 3

(iii) Electrical network problems

 Every Electrical network has two factor.

1. Elements such as resisters, inductors, transistors, and so on.

2. The way these elements are connected together (topology)

(iv) Seating problems

 Nine members of a new club meet each day for lunch at a round table. They decide

to sit such that every member has different neighbors at each lunch. How many days can

this arrangement last?

This situation can be represented by a graph with nine vertices such that each vertex

represents a member, and an edge joining two vertices represents the relationship of sitting

next to each other. Figure shows two possible seating arrangements—these are 1 2 3 4 5 6 7

8 9 1 (solid lines), and 1 3 5 2 7 4 9 6 8 1 (dashed lines). It can be shown by graph-theoretic

considerations that there are more arrangements possible.

1.2.3 Finite and infinite graphs

 A graph with a finite number off vertices as well as a finite number of edges is

called a finite graph; otherwise, it is an infinite graph.

CS6702 GRAPH THEORY AND APPLICATIONS 4

1.1.4 Incidence, adjacent and degree.

 When a vertex vi is an end vertex of some edge ej, vi and ej are said to be incident

with each other. Two non parallel edges are said to be adjacent if they are incident on a

common vertex. The number of edges incident on a vertex vi, with self-loops counted twice,

is called the degree (also called valency), d(vi), of the vertex vi. A graph in which all

vertices are of equal degree is called regular graph.

 The edges e2, e6 and e7 are incident with vertex v4.

 The edges e2 and e7 are adjacent.

 The edges e2 and e4 are not adjacent.

 The vertices v4 and v5 are adjacent.

The vertices v1 and v5 are not adjacent.

d(v1) = d(v3) = d(v4) = 3. d(v2) = 4. d(v5) = 1.

Total degree = d(v1) + d(v2) + d(v3) + d(v4) + d(v5)

= 3 + 4 + 3 + 3 + 1 = 14 = Twice the number of edges.

Theorem 1-1

The number of vertices of odd degree in a graph is always even.

Proof: Let us now consider a graph G with e edges and n vertices v1, v2, ..., vn. Since each

edge contributes two degrees, the sum of the degrees of all vertices in G is twice the

number of edges in G. That is, ∑ ݀ሺݒ௜ሻ = ʹ݁.௡
௜=ଵ

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

e1 Graph G:

Finite Graphs
Infinite Graphs

CS6702 GRAPH THEORY AND APPLICATIONS 5

If we consider the vertices with odd and even degrees separately, the quantity in the

left side of the above equation can be expressed as the sum of two sums, each taken over

vertices of even and odd degrees, respectively, as follows:

∑ ݀ሺݒ௜ሻ =௡
௜=ଵ ∑ ௘�௘௡(௝ݒ)݀ + ∑ ݀ሺݒ௞ሻ௢ௗௗ

Since the left-hand side in the above equation is even, and the first expression on the

right-hand side is even (being a sum of even numbers), the second expression must also be

even: ∑ ݀ሺݒ௞ሻ௢ௗௗ = ݎܾ݁݉ݑ݊ ݊݁ݒ݁ ݊ܽ

Because in the above equation each d(vk) is odd, the total number of terms in the

sum must be even to make the sum an even number. Hence the theorem. ∎

1.1.5 Define Isolated and pendent vertex.

 A vertex having no incident edge is called an isolated vertex. In other words,

isolated vertices are vertices with zero degree. A vertex of degree one is called a pendant

vertex or an end vertex.

 The vertices v6 and v7 are isolated vertices.

 The vertex v5 is a pendant vertex.

1.1.6 Null graph and Multigraph

 In a graph G=(V, E), If E is empty (Graph without any edges), then G is called a

null graph.

v1 v2

v3 v4 v5

Graph G:

v6 v7

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

e1 Graph G:

v6 v7

CS6702 GRAPH THEORY AND APPLICATIONS 6

In a multigraph, no loops are allowed but more than one edge can join two vertices,

these edges are called multiple edges or parallel edges and a graph is called multigraph.

The edges e5 and e4 are multiple (parallel) edges.

1.1.7 Complete graph and Regular graph

Complete graph

A simple graph G is said to be complete if every vertex in G is connected with

every other vertex. i.e., if G contains exactly one edge between each pair of distinct

vertices.

A complete graph is usually denoted by Kn. It should be noted that Kn has exactly

n(n-1)/2 edges.

The complete graphs Kn for n = 1, 2, 3, 4, 5 are show in the following Figure.

Regular graph

A graph, in which all vertices are of equal degree, is called a regular graph.

If the degree of each vertex is r, then the graph is called a regular graph of degree r.

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

Graph G:

v6

CS6702 GRAPH THEORY AND APPLICATIONS 7

1.2 ISOMORPHISM

Two graphs G and G' are said to be isomorphic to each other if there is a one-to-

one correspondence (bijection) between their vertices and between their edges such that the

incidence relationship is preserved.

Correspondence of vertices Correspondence of edges

f(a) = v1 f(1) = e1

f(b) = v2 f(2) = e2

f(c) = v3 f(3) = e3

f(d) = v4 f(4) = e4

f(e) = v5 f(5) = e5

Adjacency also preserved. Therefore G and G' are said to be isomorphic.

The following graphs are isomorphic to each other. i.e two different ways of

drawing the same geaph.

The following three graphs are isomorphic.

Graph G':
5

v1
a

b

c

4
1

2

6

d

Graph G:

e

3

e4

v4 v3

v1 v2

e6 e2

e1

e5

e3

v5

CS6702 GRAPH THEORY AND APPLICATIONS 8

The following two graphs are not isomorphic, because x is adjacent to two pendent vertex

is not preserved.

1.3 SUB GRAPHS

A graph G' is said to be a subgraph of a graph G, if all the vertices and all the edges

of G' are in G, and each edge of G' has the same end vertices in G' as in G.

A subgraph can be thought of as being contained in (or a part of) another graph. The

symbol from set theory, g ⊂ G, is used in stating "g is a subgraph of G".

The following observations can be made immediately:

1. Every graph is its own subgraph.

2. A subgraph of a subgraph of G is a subgraph of G.

3. A single vertex in a graph C is a subgraph of G.

4. A single edge in G, together with its end vertices, is also a subgraph of G.

Edge-Disjoint Subgraphs: Two (or more) subgraphs g1, and g2 of a graph G are said

to be edge disjoint if g1, and g2 do not have any edges in common.

For example, the following two graphs are edge-disjoint sub-graphs of the graph G.

v1 v2

v4 v5 v6

e4 e3

e2

e6

e5

e1 Graph G: v3

e4

v1 v2

v5 v6

e4

e2 e1 Subgraph G' of G:
v3

e4

CS6702 GRAPH THEORY AND APPLICATIONS 9

Note that although edge-disjoint graphs do not have any edge in common, they may

have vertices in common. Sub-graphs that do not even have vertices in common are said to

be vertex disjoint. (Obviously, graphs that have no vertices in common cannot possibly

have edges in common.)

1.4 WALKS, PATHS, CIRCUITS

A walk is defined as a finite alternating sequence of vertices and edges, beginning

and ending with vertices. No edge appears more than once. It is also called as an edge train

or a chain.

 An open walk in which no vertex appears more than once is called path. The

number of edges in the path is called length of a path.

 A closed walk in which no vertex (except initial and final vertex) appears more than

once is called a circuit. That is, a circuit is a closed, nonintersecting walk.

 v1 a v2 b v3 c v3 d v4 e v2 f v5 is a walk. v1 and v5 are terminals of walk.

 v1 a v2 b v3 d v4 is a path. a v2 b v3 c v3 d v4 e v2 f v5 is not a path.

 v2 b v3 d v4 e v2 is a circuit.

The concept of walks, paths, and circuits are simple and tha relation is represented

by the following figure.

v3

v2

v4 v5

c

d

b

f

h

Graph G:

v1

a g

e

v3

v2

v4 v5

c

d

b

f

h

Open walk

v1

a g

e

v3

v2

v4 v5

c

d

b

f

h

Path of length 3

v1

a g

e

CS6702 GRAPH THEORY AND APPLICATIONS 10

1.5 CONNECTEDNESS

A graph G is said to be connected if there is at least one path between every pair of

vertices in G. Otherwise, G is disconnected.

1.6 COMPONENTS

A disconnected graph consists of two or more connected graphs. Each of these connected

subgraphs is called a component.

THEOREM 1-2

A graph G is disconnected if and only if its vertex set V can be partitioned into two

nonempty, disjoint subsets V1 and V2 such that there exists no edge in G whose one end

vertex is in subset V1 and the other in subset V2.

Proof: Suppose that such a partitioning exists. Consider two arbitrary vertices a and

b of G, such that a ∈ V1 and b ∈ V2. No path can exist between vertices a and b; otherwise,

there would be at least one edge whose one end vertex would be in V1 and the other in V2.

Hence, if a partition exists, G is not connected.

v1 v2

v3 v4 v5

e5 e4
e3 e2

e6

Disconnected Graph H with 3 components

v6

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

e1

Connected Graph G

v1 v2

v3 v4 v5

e5 e4
e3 e2

e6

Disconnected Graph H

v6

CS6702 GRAPH THEORY AND APPLICATIONS 11

Conversely, let G be a disconnected graph. Consider a vertex a in G. Let V1 be the

set of all vertices that are joined by paths to a. Since G is disconnected, V1 does not include

all vertices of G. The remaining vertices will form a (nonempty) set V2. No vertex in V1 is

joined to any in V2 by an edge. Hence the partition. ∎

THEOREM 1-3

If a graph (connected or disconnected) has exactly two vertices of odd degree, there

must be a path joining these two vertices.

Proof: Let G be a graph with all even vertices except vertices v1, and v2, which are

odd. From Theorem 1-2, which holds for every graph and therefore for every component of

a disconnected graph, no graph can have an odd number of odd vertices. Therefore, in

graph G, v1 and v2 must belong to the same component, and hence must have a path

between them. ∎

THEOREM 1-4

A simple graph (i.e., a graph without parallel edges or self-loops) with n vertices

and k components can have at most ሺ݊ — �ሻሺ݊ — � + ͳሻ/ʹ edges.

Proof: Let the number of vertices in each of the k components of a graph G be n1,

n2, ..., nk. Thus we have ݊ଵ + ݊ଶ + ⋯ + ݊௞ = ݊, ݊௞ ൒ ͳ

The proof of the theorem depends on an algebraic inequality.

∑ ݊௜ଶ ൑ ݊ଶ − ሺ� − ͳሻሺʹ݊ − �ሻ௞
௜−ଵ

Now the maximum number of edges in the ith component of G (which is a simple

connected graph) is
ଵଶ ݊௜ሺ݊௜ − ͳሻ. Therefore, the maximum number of edges in G is ͳʹ ∑ሺ݊௜ − ͳሻ݊௜ = ͳʹ (∑ ݊௜ଶ௞

௜−ଵ) − ݊ʹ ௞
௜−ଵ

 ൑ ଵଶ [݊ଶ − ሺ� − ͳሻሺʹ݊ − �ሻ] − ௡ଶ

 = ଵଶ ሺ݊ − �ሻሺ݊ − � + ͳሻ. ∎

CS6702 GRAPH THEORY AND APPLICATIONS 12

1.7 EULER GRAPHS

A path in a graph G is called Euler path if it includes every edges exactly once.

Since the path

contains every edge exactly once, it is also called Euler trail / Euler line.

A closed Euler path is called Euler circuit. A graph which contains an Eulerian

circuit is called an Eulerian graph.

 v4 e1 v1 e2 v3 e3 v1 e4 v2 e5 v4 e6 v3 e7 v4 is an Euler circuit. So the above graph is

Euler graph.

THEOREM 1-4

A given connected graph G is an Euler graph if and only if all vertices of G are

of even degree.

Proof: Suppose that G is an Euler graph. It therefore contains an Euler line

(which is a closed walk). In tracing this walk we observe that every time the walk meets

a vertex v it goes through two "new" edges incident on v - with one we "entered" v and

with the other "exited." This is true not only of all intermediate vertices of the walk

but also of the terminal vertex, because we "exited" and "entered" the same vertex at

the beginning and end of the walk, respectively. Thus if G is an Euler graph, the degree

of every vertex is even.

To prove the sufficiency of the condition, assume that all vertices of G are of

even degree. Now we construct a walk starting at an arbitrary vertex v and going through

the edges of G such that no edge is traced more than once. We continue tracing as far as

possible. Since every vertex is of even degree, we can exit from every vertex we enter;

the tracing cannot stop at any vertex but v. And since v is also of even degree, we shall

eventually reach v when the tracing comes to an end. If this closed walk h we just traced

includes all the edges of G, G is an Euler graph. If not, we remove from G all the edges in

h and obtain a subgraph h' of G formed by the remaining edges. Since both G and h have

all their vertices of even degree, the degrees of the vertices of h' are also even.

Moreover, h' must touch h at least at one vertex a, because G is connected. Starting

from a, we can again construct a new walk in graph h'. Since all the vertices of h' are

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7

CS6702 GRAPH THEORY AND APPLICATIONS 13

of even degree, this walk in h' must terminate at vertex a; but this walk in h' can be

combined with h to form a new walk, which starts and ends at vertex v and has more

edges than h. This process can be repeated until we obtain a closed walk that traverses

all the edges of G. Thus G is an Euler graph. ∎

Unicursal graph

An open walk that includes all the edges of a graph without retracing any edge is

called unicrusal line or an open Euler line. A (connected) graph that has a unicrusal line

will be called a unicursal graph.

Euler graphs (i) Mohammed’s scimitars (ii) Star of david.

unicursal graph with a walk a 1 c 2 d 3 a 4 b 5 d 6 e 7 b.

THEOREM 1-5

In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint

subgraphs such that they together contain all edges of G and that each is a unicursal graph.

 Proof: Let the odd vertices of the given graph G be named v1, v2, …, vk;

w1, w2, …, wk in any arbitrary order. Add k edges to G between the vertex pairs (v1, w1),

(v2, w2), …, (vk, wk) to form a new graph G'.

Since every vertex of G' is of even degree, G' consists of an Euler line p. Now

if we remove from p the k edges we just added (no two of these edges are incident on the

same vertex), p will be split into k walks, each of which is a unicursal line: The first

removal will leave a single unicursal line; the second removal will split that into two

unicursal lines; and each successive removal will split a unicursal line into two

unicursal lines, until there are k of them. Thus the theorem. ∎

CS6702 GRAPH THEORY AND APPLICATIONS 14

1.8 HAMILTONIAN PATHS AND CIRCUITS

A Hamiltonian circuit in a connected graph is defined as a closed walk that traverses

every vertex of graph G exactly once except starting and terminal vertex.

 Removal of any one edge from a Hamiltonian circuit generates a path. This path is

called Hamiltonian path.

THEOREM 1-6

In a complete graph with n vertices there are ሺ� − ͳሻ/ʹ edge-disjoint

Hamiltonian circuits, if n is an odd number ≥ γ.

Proof: A complete graph G of n vertices has �ሺ� − ͳሻ/ʹ edges, and a

Hamiltonian circuit in G consists of n edges. Therefore, the number of edge-disjoint

Hamiltonian circuits in G cannot exceed ሺ� − ͳሻ/ʹ. That there are ሺ� − ͳሻ/ʹ edge-

disjoint Hamiltonian circuits, when n is odd, can be shown as follows:

The subgraph (of a complete graph of n vertices) in Figure is a Hamiltonian circuit.

Keeping the vertices fixed on a circle, rotate the polygonal pattern clockwise

by ͵͸Ͳ/ሺ݊ − ͳሻ, ʹ ∙ ͵͸Ͳ/ሺ݊ − ͳሻ, ͵ ∙ ͵͸Ͳ/ሺ݊ − ͳሻ ሺ� − ͵ሻ/ʹ ∙ ͵͸Ͳ/ሺ݊ − ͳሻ

degrees. Observe that each rotation produces a Hamiltonian circuit that has no edge in

CS6702 GRAPH THEORY AND APPLICATIONS 15

common with any of the previous ones. Thus we have (n - 3)/2 new Hamiltonian

circuits, all edge disjoint from the one in Figure and also edge disjoint among

themselves. Hence the theorem. ∎

1.9 TREES

A tree is a connected graph without any circuits.

Trees with 1, 2, 3, and 4 vertices are shown in figure.

Decision tree shown in figure

CS6702 GRAPH THEORY AND APPLICATIONS 16

1.10 PROPERTIES OF TREES

1. There is one and only one path between every pair of vertices in a tree T.

2. In a graph G there is one and only one path between every pair of vertices, G is

a tree.

3. A tree with n vertices has n-1 edges.

4. Any connected graph with n vertices has n-1 edges is a tree.

5. A graph is a tree if and only if it is minimally connected.

6. A graph G with n vertices has n-1 edges and no circuits are connected.

THEOREM 1-7

There is one and only one path between every pair of vertices in a tree, T.

Proof: Since T is a connected graph, there must exist at least one path between

every pair of vertices in T. Now suppose that between two vertices a and b of T there are

two distinct paths. The union of these two paths will contain a circuit and T cannot be a

tree. ∎

Conversely:

THEOREM 1-8

If in a graph G there is one and only one path between every pair of vertices, G is a

tree.

Proof: Existence of a path between every pair of vertices assures that G is connected. A

circuit in a graph (with two or more vertices) implies that there is at least one pair of

vertices a, b such that there are two distinct paths between a and b. Since G has one and

only one path between every pair of vertices, G can have no circuit. Therefore, G is a tree.

Prepared by G. Appasami, Assistant professor, Dr. pauls Engineering College. ∎

THEOREM 1-9

A tree with n vertices has ݊ − ͳ edges.

Proof: The theorem will be proved by induction on the number of vertices. It is easy

to see that the theorem is true for n = 1, 2, and 3 (see Figure). Assume that the theorem holds for

all trees with fewer than n vertices.

CS6702 GRAPH THEORY AND APPLICATIONS 17

Let us now consider a tree T with n vertices. In T let ek be an edge with end vertices vi and vj.

According to Theorem 1-9, there is no other path between vi and vj, except ek. Therefore,

deletion of ek from T will disconnect the graph, as shown in Figure. Furthermore, T — ek consists

of exactly two components, and since there were no circuits in no begin with, each of these

components is a tree. Both these trees, t1 and t2, have fewer than n vertices each, and therefore, by the

induction hypothesis, each contains one less edge than the number of vertices in it. Thus T — ek

consists of n — 2 edges (and n vertices). Hence T has exactly n — 1 edges. ∎

1.11 DISTANCE AND CENTERS IN TREE

In a connected graph G, the distance d(vi , vj) between two of its vertices vi and vj is the

length of the shortest path.

Paths between vertices v6 and v2 are (a, e), (a, c, f), (b, c, e), (b, f), (b, g, h), and (b, g, i, k).

The shortest paths between vertices v6 and v2 are (a, e) and (b, f), each of length two.

Hence d(v6 , v2) =2

Define eccentricity and center.

The eccentricity E(v) of a vertex v in a graph G is the distance from v to the vertex

farthest from v in G; that is, �ሺݒሻ = max��∈� ݀ሺݒ, ௜ሻݒ

 A vertex with minimum eccentricity in graph G is called a center of G

 Distance d(a, b) = 1, d(a, c) =2, d(c, b)=1, and so on.

 Eccentricity E(a) =2, E(b) =1, E(c) =2, and E(d) =2.

 Center of G = A vertex with minimum eccentricity in graph G = b.

 Finding Center of graph.

a

c

Graph G:

b
d

f

v1 v2

v3 v4 v5

a c

e

h k j

Graph G:

v6

d

b g i

CS6702 GRAPH THEORY AND APPLICATIONS 18

Distance metric.

 The function f (x, y) of two variables defines the distance between them. These

function must satisfy certain requirements. They are

1. Non-negativity: f (x, y) ≥ 0, and f (x, y) = 0 if and only if x = y.

2. Symmetry: f (x, y) = f (x, y).

3. Triangle inequality: f (x, y) ≤ f (x, z) + f (z, y) for any z.

Radius and Diameter in a tree.

 The eccentricity of a center in a tree is defined as the radius of tree.

 The length of the longest path in a tree is called the diameter of tree.

CS6702 GRAPH THEORY AND APPLICATIONS 19

1.12 ROOTED AND BINARY TREES

Rooted tree

A tree in which one vertex (called the root) is distinguished from all the others is called a

rooted tree.

 In general tree means without any root. They are sometimes called as free trees

(non rooted trees).

The root is enclosed in a small triangle. All rooted trees with four vertices are

shown below.

Rooted binary tree

There is exactly one vertex of degree two (root) and each of remaining vertex of degree one

or three. A binary rooted tree is special kind of rooted tree. Thus every binary tree is a

rooted tree. A non pendent vertex in a tree is called an internal vertex.

CS6702 GRAPH THEORY AND APPLICATIONS 20

UNIT II TREES, CONNECTIVITY & PLANARITY

2. 1 SPANNING TREES

2.1.1 Spanning trees.

 A tree T is said to be a spanning tree of a connected graph G if T is a subgraph of G

and T contains all vertices (maximal tree subgraph).

2.1.2. Branch and chord.

 An edge in a spanning tree T is called a branch of T. An edge of G is not in a given

spanning tree T is called a chord (tie or link).

 Edge e1 is a branch of T Edge e5 is a chord of T

2.1.3. Complement of tree.

 If T is a spanning tree of graph G, then the complement of T of G denoted by �̅ is

the collection of chords. It also called as chord set (tie set or cotree) of T

 � ∪ �̅ = �

2.1.4. Rank and Nullity:

 A graph G with n number of vertices, e number of edges, and k number of

components with the following constraints ݊ − � ൒ Ͳ and ݁ − ݊ + � ൒ Ͳ.

 Rank ݎ = ݊ − �

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7
v3

v1 v2

v4

e3

e4

e1

Graph G: Spanning Tree T:

v3

v1 v2

v4

e2 e5

e6

e7

�̅:Complement of Tree T

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7 v3

v1 v2

v4

e3

e4

e1

Graph G: Spanning Tree T:

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7 v3

v1 v2

v4

e3

e4

e1

Graph G: Spanning Tree T:

CS6702 GRAPH THEORY AND APPLICATIONS 21

 Nullity � = ݁ − ݊ + � (Nullity also called as Cyclomatic number or first betti

number)

Rank of G = number of branches in any spanning tree of G

Nullity of G = number of chords in G

Rank + Nullity = ݁ = number of edges in G

2. 2 FUNDAMENTAL CIRCUITS

Addition of an edge between any two vertices of a tree creates a circuit. This is

because there already exists a path between any two vertices of a tree.

If the branches of the spanning tree T of a connected graph G are b1, . . . , bn−1 and the

corresponding links of the co spanning tree T ∗ are c1, . . . , cm−n+1, then there exists one

and only one circuit Ci in T + ci (which is the subgraph of G induced by the branches of T

and ci)

Theorem: We call this circuit a fundamental circuit. Every spanning tree defines m − n + 1

fundamental circuits C1, . . . , Cm−n+1, which together form a fundamental set of circuits.

Every fundamental circuit has exactly one link which is not in any other fundamental

circuit in the fundamental set of circuits.

Therefore, we can not write any fundamental circuit as a ring sum of other fundamental

circuits in the same set. In other words, the fundamental set of circuits is linearly

independent under the ring sum operation.

Example:

CS6702 GRAPH THEORY AND APPLICATIONS 22

The graph T − bi has two components T1 and T2. The corresponding vertex sets are V1 and

V2. Then, (v1,v2) is a cut of G. It is also a cut set of G if we treat it as an edge set because G

− hV1, Vβi has two components . Thus, every branch bi of T has a corresponding cut set Ii .

The cut sets I1, . . . , In−1 are also known as fundamental cut sets and they form a

fundamental set of cut sets. Every fundamental cut set includes exactly one branch of T and

every branch of T belongs to exactly one fundamental cut set. Therefore, every spanning

tree defines a unique fundamental set of cut sets for G.

Example. (Continuing from the previous example) .

The graph has the spanning tree that defines these fundamental cut sets:

b1 : {e1, e2} b2 : {e2, e3, e4} b3 : {e2, e4, e5, e6} b4 : {e2, e4, e5, e7}b5 : {e8}

Next, we consider some properties of circuits and cut sets:

(a) Every cut set of a connected graph G includes at least one branch from every spanning

tree of G. (Counter hypothesis: Some cut set F of G does not include any branches of a

spanning tree T. Then, T is a subgraph of G − F and G − F is connected.

(b) Every circuit of a connected graph G includes at least one link from every co spanning

tree of G. (Counter hypothesis: Some circuit C of G does not include any link of a cos

panning tree T ∗ . Then, T = G − T ∗ has a circuit and T is not a tree.

CS6702 GRAPH THEORY AND APPLICATIONS 23

2. 3 SPANNING TREES IN A WEIGHTED GRAPH

A spanning tree in a graph G is a minimal subgraph connecting all the vertices of G.

If G is a weighted graph, then the weight of a spanning tree T of G is defined as the sum of

the weights of all the branches in T.

 A spanning tree with the smallest weight in a weighted graph is called a shortest

spanning tree (shortest-distance spanning tree or minimal spanning tree).

A shortest spanning tree T for a weighted connected graph G with a constraint ݀ሺݒiሻ ൑ � for all vertices in T. for k=2, the tree will be Hamiltonian path.

A spanning tree is an n-vertex connected digraph analogous to a spanning tree in an

undirected graph and consists of n − 1 directed arcs.

A spanning arborescence in a connected digraph is a spanning tree that is an arborescence.

For example, {a, b, c, g} is a spanning arborescence in Figure .

Theorem: In a connected isograph D of n vertices and m arcs, let W = (a1, a2,..., am) be an

Euler line, which starts and ends at a vertex v (that is, v is the initial vertex of a1 and the

terminal vertex of am). Among the m arcs in W there are n − 1 arcs that enter each of n−1
vertices, other than v, for the first time. The sub digraph D1 of these n−1 arcs together with
the n vertices is a spanning arborescence of D, rooted at vertex v. Prepared by G.

Appasami, Assistant professor, Dr. pauls Engineering College.

Proof :In the sub digraph D1, vertex v is of in degree zero, and every other vertex is of

indegree one, for D1 includes exactly one arc going to each of the n−1 vertices and no arc

going to v. Further, the way D1 is defined in W, implies that D1 is connected and contains

n−1 arcs. Therefore D1 is a spanning arborescence in D and is rooted at v.

Illustration: In Figure, W = (b d c e f g h a) is an Euler line, starting and ending at vertex

2. The sub digraph {b, d, f } is a spanning arborescence rooted at vertex 2.

CS6702 GRAPH THEORY AND APPLICATIONS 24

2. 4 CUT SETS

In a connected graph G, a cut-set is a set of edges whose removal from G leave the graph G

disconnected.

Possible cut sets are {a, c, d, f}, {a, b, e, f}, {a, b, g}, {d, h, f}, {k}, and so on.

{a, c, h, d} is not a cut set, because its proper subset {a, c, h} is a cut set.

{g, h} is not a cut set.

 A minimal set of edges in a connected graph whose removal reduces the rank by

one is called minimal cut set (simple cut-set or cocycle). Every edge of a tree is a cut set.

2. 5 PROPERTIES OF CUT SET

 Every cut-set in a connected graph G must contain at least one branch of every

spanning tree of G.

 In a connected graph G, any minimal set of edges containing at least one branch of

every spanning tree of G is a cut-set.

 Every circuit has an even number of edges in common with any cut set.

Properties of circuits and cut sets:

Every cut set of a connected graph G includes at least one branch from every spanning tree

of G. (Counter hypothesis: Some cut set F of G does not include any branches of a spanning

tree T. Then, T is a subgraph of G − F and G − F is connected.)

(b) Every circuit of a connected graph G includes at least one link from every co-spanning

tree of G. (Counter hypothesis: Some circuit C of G does not include any link of a co-

spanning tree T∗. Then, T = G − T∗ has a circuit and T is not a tree.)

Theorem : The edge set F of the connected graph G is a cut set of G if and only if

(i) F includes at least one branch from every spanning tree of G, and

e
d

c b

v1

v3

v2 v5

v4

g

a

h

Graph G:

v6

k

f

e

b

v1

v3

v2 v5

v4

g h v6

k

Disconnected graph G with 2 components

after removing cut set {a, c, d, f}

CS6702 GRAPH THEORY AND APPLICATIONS 25

(ii) if H ⊂ F, then there is a spanning tree none of whose branches is in H.

Proof. Let us first consider the case where F is a cut set. Then, (i) is true (previous

proposition

(a). If H ⊂ F then G − H is connected and has a spanning tree T. This T is also a spanning

tree of G. Hence, (ii) is true.

Let us next consider the case where both (i) and (ii) are true. Then G − F is disconnected.

If H ⊂ F there is a spanning tree T none of whose branches is in H. Thus T is a subgraph of

G − H and G − H is connected. Hence, F is a cut set.

2. 6 ALL CUT SETS

It was shown how cut-sets are used to identify weak spots in a communication net. For this

purpose we list all cut-sets of the corresponding graph, and find which ones have the

smallest number of edges. It must also have become apparent to you that even in a simple

example, such as in Fig.

There is a large number of cut-sets, and we must have a systematic method of generating all

relevant cut-sets. In the case of circuits, we solved a similar problem by the simple

technique of finding a set of fundamental circuits and then realizing that other circuits in a

graph are just combinations of two or more fundamental circuits.

We shall follow a similar strategy here. Just as a spanning tree is essential for defining a set

of fundamental circuits, so is a spanning tree essential for a set of fundamental cut-sets. It

will be beneficial for the reader to look for the parallelism between circuits and cut-sets.

Fundamental Cut-Sets: Consider a spanning tree T of a connected graph G.

Take any branch b in T. Since {b) is a cut-set in T, (b) partitions all vertices of T into two

disjoint sets—one at each end of b. Consider the same partition of vertices in G, and the cut

set S in G that corresponds to this partition. Cut-set S will contain only one branch b of T,

and the rest (if any) of the edges in S are chords with respect to T.

Such a cut-set S containing exactly one branch of a tree T is called a fundamental cut-set

with respect to T. Sometimes a fundamental cut-set is also called a basic cut-set. Prepared

by G. Appasami, Assistant professor, Dr. pauls Engineering College.

CS6702 GRAPH THEORY AND APPLICATIONS 26

Fundamental cut sets of graph

T (in heavy lines) and all five of the fundamental cut-sets with respect to T are shown

(broken lines "cutting" through each cut-set). Just as every chord of a spanning tree defines

a unique fundamental cir-cuit, every branch of a spanning tree defines a unique

fundamental cut-set.

It must also be kept in mind that the term fundamental cut-set (like the term fundamental

circuit) has meaning only with respect to a given spanning tree. Now we shall show how

other cut-sets of a graph can be obtained from a given set of cut-sets.

2. 7 FUNDAMENTAL CIRCUITS AND CUT SETS

Adding just one edge to a spanning tree will create a cycle; such a cycle is called

a fundamental cycle (Fundamental circuits). There is a distinct fundamental cycle for

each edge; thus, there is a one-to-one correspondence between fundamental cycles and

edges not in the spanning tree. For a connected graph with V vertices, any spanning tree

will have V − 1 edges, and thus, a graph of E edges and one of its spanning trees will

have E − V + 1 fundamental cycles.

Dual to the notion of a fundamental cycle is the notion of a fundamental cutset. By

deleting just one edge of the spanning tree, the vertices are partitioned into two disjoint sets.

The fundamental cutset is defined as the set of edges that must be removed from the

graph G to accomplish the same partition. Thus, each spanning tree defines a set of V − 1

fundamental cutsets, one for each edge of the spanning tree.

CS6702 GRAPH THEORY AND APPLICATIONS 27

 Consider a spanning tree T in a given connected graph G. Let c, be a chord with

respect to T, and let the fundamental circuit made by ei be called r, con-sisting of k

branches b1, b2, . . . , b4 in addition to the chord 4; that is, r = {b1, b2, b3 B4} is a

fundamental circuit with respect to T. Every branch of any spanning tree has a fundamental

cut-set associated with it.

Let Si be the fundamental cut-set associated with by consisting of q chords in addition to

the branch b1; that is,

Si = {b1, c1 c2 C4} is a fundamental cut-set with respect to T.

Because of above Theorem , there must be an even number of edges common to and Si.

Edge b, is in both and Si and there is only one other edge in (which is c,) that can

possibly also be in Si. Therefore, we must have two edges b, and c, common to S, and r.

Thus the chord c, is one of the chords c1, , C4.

Exactly the same argument holds for fundamental cut-sets associated with b2,b3, . , and bk.

Therefore, the chord c, is contained in every fundamental cut-set associated with branches

in . Is it possible for the chord c, to be in any other fundamental cut-set S' (with respect

to T, of course) besides those associated with b2,b3, . and bk. The answer is no.

Otherwise (since none of the branches in r are in S'), there would be only one edge c,

common to S' and , a contradiction to Theorem. Thus we have an important result.

THEOREM With respect to a given spanning tree T, a chord ci that determines a

fundamental circuit occurs in every fundamental cut-set associated with the branches

in and in no other.

As an example, consider the spanning tree (b, c, e, h, k}, shown in heavy lines, in Fig. The

fundamental circuit made by chord f is {f, e, h, k}.

The three fundamental cut-sets determined by the three branches e, h, and k are

determined by branch e: {d, e, f},

determined by branch h: {f, g, h},

determined by branch k: {f, g, k}.

Chord f occurs in each of these three fundamental cut-sets, and there is no other

fundamental cut-set that contains f. The converse of above Theorem is also true.

CS6702 GRAPH THEORY AND APPLICATIONS 28

2. 8 CONNECTIVITY AND SEPARABILITY

edge Connectivity.

 Each cut-set of a connected graph G consists of certain number of edges. The

number of edges in the smallest cut-set is defined as the edge Connectivity of G.

 The edge Connectivity of a connected graph G is defined as the minimum number

of edges whose removal reduces the rank of graph by one.

 The edge Connectivity of a tree is one.

The edge Connectivity of the above graph G is three.

vertex Connectivity

 The vertex Connectivity of a connected graph G is defined as the minimum

number of vertices whose removal from G leaves the remaining graph disconnected. The

vertex Connectivity of a tree is one.

The vertex Connectivity of the above graph G is one.

separable and non-separable graph.

 A connected graph is said to be separable graph if its vertex connectivity is one. All

other connected graphs are called non-separable graph.

articulation point.

v1 v2

Separable Graph G:
Non-Separable Graph H:

v1

v1

CS6702 GRAPH THEORY AND APPLICATIONS 29

 In a separable graph a vertex whose removal disconnects the graph is called a cut-

vertex, a cut-node, or an articulation point.

v1 is an articulation point.

component (or block) of graph.

 A separable graph consists of two or more non separable subgraphs. Each of the

largest nonseparable is called a block (or component).

 The above graph has 5 blocks.

Lemmas:

If S ⊆ VG separates u and v, then every path P: u v visits a vertex of S.

If a connected graph G has no separating sets, then it is a complete graph.

Proof. If vG ≤ β, then the claim is clear. For VG ≥ γ, assume that G is not complete,and let

uv G. Now VG \ {u, v} is a separating set.

DEFINITION. The (vertex) connectivity number k(G) of G is defined as k(G) = min{k | k

= |S|, G−S disconnected or trivial, S ⊆ VG} .

A graph G is k-connected, if k(G) ≥ k.

In other words,

• k(G) = 0, if G is disconnected,

• k(G) = vG − 1, if G is a complete graph, and

• otherwise k(G) equals the minimum size of a separating set of G. Clearly, if G is

connected, then it is 1-connected.

v1

CS6702 GRAPH THEORY AND APPLICATIONS 30

2. 9 NETWORK FLOWS

 A flow network (also known as a transportation network) is a graph where each edge has

a capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the

capacity of the edge.

The max. flow between two vertices = Min. of the capacities of all cut-sets.

Various transportation networks or water pipelines are conveniently represented by

weighted directed graphs. These networks usually possess also some additional

requirements.

Goods are transported from specific places (warehouses) to final locations (marketing

places) through a network of roads.

In modeling a transportation network by a digraph, we must make sure that the number of

goods remains the same at each crossing of the roads.

The problem setting for such networks was proposed by T.E. Harris in the 1950s. The

connection to Kirchhoff’s Current Law (1847) is immediate.

According to this law, in every electrical network the amount of current flowing in a vertex

equals the amount flowing out that vertex.

Flows

A network N consists of

1) An underlying digraph D = (V, E),

2) Two distinct vertices s and r, called the source and the sink of N, and

3) A capacity function α : V × V → R+ (nonnegative real numbers), for which α (e) = 0, if

e E.

Denote VN = V and EN = E.

Let A ⊆ VN be a set of vertices, and f : VN × VN → R any function such that f (e) = 0, if

e N. We adopt the following notations:

[A,] = {e ∈ D | e = uv, u ∈ A, v A} ,

CS6702 GRAPH THEORY AND APPLICATIONS 31

2. 10 1-ISOMORPHISM

A graph G1 was 1-Isomorphic to graph G2 if the blocks of G1 were isomorphic to the blocks

of G2.

Two graphs G1 and G2 are said to be 1-Isomorphic if they become isomorphic to

each other under repeated application of the following operation.

 Operation 1: “Split” a cut-vertex into two vertices to produce two disjoint

subgraphs.

Graph G1: Graph G2:

Graph G1 is 1-Isomorphism with Graph G2.

 A separable graph consists of two or more non separable subgraphs. Each of the

largest non separable subgraphs is called a block.

(Some authors use the term component, but to avoid confusion with components of a

disconnected graph, we shall use the term block.) The graph in Fig has two blocks. The

graph in Fig has five blocks (and three cut-vertices a, b, and c); each block is shown

enclosed by a broken line.

Note that a non separable connected graph consists of just one block. Visually compare the

disconnected graph in Fig. with the one in Fig. These two graphs are certainly not

isomorphic (they do not have the same number of vertices), but they are related by the fact

that the blocks of the graph in Fig.are isomorphic to the components of the graph in above

Fig. Such graphs are said to be I-isomorphic.

More formally: Two graphs G1 and G2 are said to be I-isomorphic if they become

isomorphic to each other under repeated application of the following operation. Operation I:

"Split" a cut-vertex into two vertices to produce two disjoint subgraphs. From this

CS6702 GRAPH THEORY AND APPLICATIONS 32

definition it is apparent that two nonseparable graphs are 1-isomorphic if and only if they

are isomorphic.

THEOREM If GI and G2 arc two 1-isomorphic graphs, the rank of GI equals the rank of

C2 and the nullity of CI equals the nullity of G2.

Proof: Under operation 1, whenever a cut-vertex in a graph G is "split" into two vertices,

the number of components in G increases by one. Therefore, the rank of G which is number

of vertices in C - number of components in G remains invariant under operation 1.

Also, since no edges are destroyed or new edges created by operation I, two 1-isomorphic

graphs have the same number of edges.

Two graphs with equal rank and with equal numbers of edges must have the same nullity,

because nullity = number of edges -- rank. What if we join two components of Fig by

"gluing" together two vertices (say vertex x to y)? We obtain the graph shown in Fig.

Clearly, the graph in Fig is 1-isomorphic to the graph in Fig.

Since the blocks of the graph in Fig are isomorphic to the blocks of the graph in Fig, these

two graphs are also 1-isomorphic. Thus the three graphs in above Figs. are 1-isomorphic to

one another.

2. 11 2-ISOMORPHISM

Two graphs G1 and G2 are said to be 2-Isomorphic if they become isomorphic after

undergoing operation 1 or operation 2, or both operations any number of times.

 Operation 1: “Split” a cut-vertex into two vertices to produce two disjoint

subgraphs.

CS6702 GRAPH THEORY AND APPLICATIONS 33

Operation 2: “Split” the vertex x into x1 and x2 and the vertex y into y1 and y2 such

that G is split into g1 and g2. Let vertices x1 and y1 go with g1 and

vertices x2 and y2 go with g2. Now rejoin the graphs g1 and g2 by

merging x1 with y2 and x2 with y1.

2. 12 COMBINATIONAL AND GEOMETRIC GRAPHS

An abstract graph G can be defined as G = (�, �, �)

 Where the set V consists of five objects named a, b, c, d, and e, that is, � = { a, b, c, d, e }

and the set E consist of seven objects named 1, 2, 3, 4, 5, 6, and 7, that is, � = { 1, 2, 3, 4,

5, 6, 7}, and the relationship between the two sets is defined by the mapping �, which

consist of

 �= [1(a, c), 2(c, d) , 3(a, d) , 4(a, b) , 5(b, d) , 6(d, e) , 7(b, e)].

Here the symbol 1(a, c), says that object 1 from set E is mapped onto the pair (a, c) of

objects from set V.

 This combinatorial abstract object G can also be represented by means of a

geometric figure.

The figure is one such geometric representation of this graph G.

 Any graph can be geometrically represented by means of such configuration in three

dimensional Euclidian space.

CS6702 GRAPH THEORY AND APPLICATIONS 34

2. 13 PLANER GRAPHS

A graph is said to be planar if it can be drawn in the plane in such a way that no two edges

intersect each other. Drawing a graph in the plane without edge crossing is called

embedding the graph in the plane (or planar embedding or planar representation).

Given a planar representation of a graph G, a face (also called a region) is a maximal

section of the plane in which any two points can be joint by a curve that does not intersect

any part of G.

When we trace around the boundary of a face in G, we encounter a sequence of vertices and

edges, finally returning to our final position. Let v1, e1, v2, e2, . . . , vd, ed, v1 be the sequence

obtained by tracing around a face, then d is the degree of the face.

Some edges may be encountered twice because both sides of them are on the same face. A

tree is an extreme example of this: each edge is encountered twice.

The following result is known as Euler’s Formula.

PLANAR GRAPHS:

It has been indicated that a graph can be represented by more than one geometrical

drawing. In some drawing representing graphs the edges intersect (cross over) at points

which are not vertices of the graph and in some others the edges meet only at the vertices.

A graph which can be represented by at least one plane drawing in which the edges meet

only at vertices is called a ‘planar graph’.

On the other hand, a graph which cannot be represented by a plane drawing in which the

edges meet only at the vertices is called a non planar graph.

In other words, a non planar graph is a graph whose every possible plane drawing contains

at least two edges which intersect each other at points other than vertices.

Example 1

Show that (a) a graph of order 5 and size 8, and (b) a graph of order 6 and size 12, are

planar graphs.

Solution: A graph of order 5 and size 8 can be represented by a plane drawing.

Graph(a)Graph(b)

CS6702 GRAPH THEORY AND APPLICATIONS 35

In which the edges of the graph meet only at the vertices, as shown in fig a. therefore, this

graph is a planar graph.

Similarly, fig. b shows that a graph of order 6 and size 12 is a planar graph.

The plane representations of graphs are by no means unique. Indeed, a graph G can be

drawn in arbitrarily many different ways.

Also, the properties of a graph are not necessarily immediate from one representation, but

may be apparent from another.There are, however, important families of graphs, the surface

graphs, that rely on the (topological or geometrical) properties of the drawings of graphs.

We restrict ourselves in this chapter to the most natural of these, the planar graphs. The

geometry of the plane will be treated intuitively.

A planar graph will be a graph that can be drawn in the plane so that no two edges intersect

with each other.

Such graphs are used, e.g., in the design of electrical (or similar) circuits, where one tries to

(or has to) avoid crossing the wires or laser beams.

Planar graphs come into use also in some parts of mathematics, especially in group theory

and topology.

There are fast algorithms (linear time algorithms) for testing whether a graph is planar or

not. However, the algorithms are all rather difficult to implement. Most of them are based

on an algorithm.

Definition

A graph G is a planar graph, if it has a plane figure P(G), called the plane embedding of

G,where the lines (or continuous curves) corresponding to the edges do not intersect each

other except at their ends.

The complete bipartite graph K2,4 is a planar graph.

Bipartite graph

An edge e = uv ∈ G is subdivided, when it is replaced by a path u −→ x −→ v of length

two by introducing a new vertex x.

A subdivision H of a graph G is obtained from G by a sequence of subdivisions.

CS6702 GRAPH THEORY AND APPLICATIONS 36

Graph

The following result is clear.

2. 14 DIFFERENT REPRESENTATION OF A PLANER GRAPH

between Planar and non-planar graphs

 A graph G is said to be planar if there exists some geometric representation of G

which can be drawn on a plan such that no two of its edges intersect.

A graph that cannot be drawn on a plan without crossover its edges is called non-

planar.

embedding graph.

 A drawing of a geometric representation of a graph on any surface such that no

edges intersect is called embedding.

region in graph.

 In any planar graph, drawn with no intersections, the edges divide the planes into

different regions (windows, faces, or meshes). The regions enclosed by the

planar graph are called interior faces of the graph. The region surrounding the

Graph G:
Embedded Graph G:

Planar Graph G:
Non-planar Graph H:

CS6702 GRAPH THEORY AND APPLICATIONS 37

planar graph is called the exterior (or infinite or unbounded) face of the graph. Prepared by

G. Appasami, Assistant professor, Dr. pauls Engineering College.

The graph has 6 regions.

graph embedding on sphere.

 To eliminate the distinction between finite and infinite regions, a planar graph is

often embedded in the surface of sphere. This is done by stereographic projection.

CS6702 GRAPH THEORY AND APPLICATIONS 38

UNIT III MATRICES, COLOURING AND DIRECTED GRAPH

3. 1 CHROMATIC NUMBER

1. proper coloring

 Painting all the vertices of a graph with colors such that no two adjacent vertices

have the same color is called the proper coloring (simply coloring) of a graph. A graph in

which every vertex has been assigned a color according to a proper coloring is called a

properly colored graph.

2. Chromatic number

A graph G that requires k different colors for its proper coloring, and no less, is

called k-chromatic graph, and the number k is called the chromatic number of G.

The minimum number of colors required for the proper coloring of a graph is called

Chromatic number.

 The above graph initially colored with 5 different colors, then 4, and finally 3. So

the chromatic number is 3. i.e., The graph is 3-chromatic

3. properties of chromatic numbers (observations).

 A graph consisting of only isolated vertices is 1-chromatic.

 Every tree with two or more vertices is 2-chromatic.

 A graph with one or more vertices is at least 2-chromatic.

 A graph consisting of simply one circuit with n ≥ γ vertices is β-chromatic if n

is even and 3-chromatic if n is odd.

 A complete graph consisting of n vertices is n-chromatic.

CS6702 GRAPH THEORY AND APPLICATIONS 39

SOME RESULTS:

i) A graph consisting of only isolated vertices (ie., Null graph) is 1–Chromatic (Because no

two vertices of such a graph are adjacent and therefore we can assign the same color to all

vertices).

ii) A graph with one or more edges is at least 2 -chromatic (Because such a graph has at

least one pair of adjacent vertices which should have different colors).

iii) If a graph G contains a graph G1 as a subgraph, then

iv. If G is a graph of n vertices, then

v. (Kn) = n, for all n 1. (Because, in Kn, every two vertices are adjacent and as such all the

n vertices should have different colors)

vi. If a graph G contains Kn as a subgraph, then

Example 1: Find the chromatic number of each of the following graphs.

Solution

i) For the graph (a), let us assign a color a to the vertex V1, then for a proper coloring, we

have to assign a different color to its neighbors V2,V4,V6, since V2, V4, V6are mutually

non-adjacent vertices, they can have the same color as V1, namely α.

Thus, the graph can be properly colored with at lest two colors, with the vertices

V1,V3,V5 having one color α and V2,V4,V6 having a different color ȕ. Hence, the chromatic

number of the graph is 2.

ii) For the graph (b) , let us assign the color α to the vertex V1. Then for a proper coloring

its neighbors V2,V3 & V4 cannot have the color α. Further more, V2, V3,V4 must have

different colors, say ȕ, Ȗ , δ .Thus, at least four colors are required for a proper coloring of

the graph. Hence the chromatic number of the graph is 4.

iii) For the graph (c) , we can assign the same color, say α, to the non-adjacent vertices

V1,V3, V5. Then the vertices V2,V4,V6consequently V7and V8 can be assigned the same

color which is different from both α and ȕ. Thus, a minimum of three colors are needed for

a proper coloring of the graph. Hence its chromatic number is 3. Prepared by G. Appasami,

Assistant professor, Dr. pauls Engineering College.

CS6702 GRAPH THEORY AND APPLICATIONS 40

3. 2 CHROMATIC PARTITIONING

A proper coloring of a graph naturally induces a partitioning of the vertices into different

subsets based on colors.

For example, the coloring of the above graph produces the portioning {v1, v4}, {v2}, and

{v3, v5}.

A proper coloring of a graph naturally induces a partitioning of the vertices into different

subsets. For example, the coloring in Fig. produces the partitioning

No two vertices in any of these three subsets are adjacent. Such a subset of vertices is called

an independent set; more formally:

A set of vertices in a graph is said to be an independent set of vertices or simply an

independent set (or an internally stable set) if no two vertices in the set arc adjacent.

For example: in Fig., {a, c, d} is an independent set. A single vertex in any graph

constitutes an independent set. A maximal independent set (or maximal internally stable

set) is an independent set to which no other vertex can be added without destroying its

independence property.

The set {a, c, d, f} in Fig. is a maximal independent set.

The set lb,/ I is another maximal independent set.

The set {b, g} is a third one. From the preceding example, it is clear that a graph, in

general, has many maximal independent sets; and they may be of different sizes.

Among all maximal independent sets, one with the largest number of vertices is often of

particular interest . Suppose that the graph in Fig. describes the following problem.

Each of the seven vertices of the graph is a possible code word to be used in some

communication. Some words are so close (say, in sound) to others that they might be

confused for each other. Pairs of such words that may be mistaken for one another are

joined by edges. Find a largest set of code words for a reliable communication.

CS6702 GRAPH THEORY AND APPLICATIONS 41

This is a problem of finding a maximal independent set with largest number of vertices. In

this simple example, {a, c, d, f} is an answer.

Chromatic partitioning graph

The number of vertices in the largest independent set of a graph G is called the

independence number (or coefficient of internal stability), ȕ(G).

Consider a K-chromatic graph G of n vertices properly colored with different colors.

Since the largest number of vertices in G with the same color cannot exceed the

independence number ȕ(G), we have the inequality

3. 3 CHROMATIC POLYNOMIAL

A set of vertices in a graph is said to be an independent set of vertices or simply

independent set (or an internally stable set) if two vertices in the set are adjacent.

 For example, in the above graph produces {a, c, d} is an independent set.

 A single vertex in any graph constitutes an independent set.

 A maximal independent set is an independent set to which no other vertex can be

added without destroying its independence property.

 {a, c, d, f} is one of the maximal independent set. {b, f} is one of the maximal

independent set.

 The number of vertices in the largest independent set of a graph G is called the

independence number (or coefficients of internal stability), denoted by ȕ(G).

 For a K-chromatic graph of n vertices, the independence number ȕ(G) ≥௡௞.

a e

c

d

b

f

g

CS6702 GRAPH THEORY AND APPLICATIONS 42

Uniquely colorable graph.

 A graph that has only one chromatic partition is called a uniquely colorable graph.

For example,

Dominating set.

 A dominating set (or an externally stable set) in a graph G is a set of vertices that

dominates every vertex v in G in the following sense: Either v is included in the dominating

set or is adjacent to one or more vertices included in the dominating set.

 {b, g} is a dominating set, {a, b, c, d, f} is a dominating set. A is a dominating set

need not be independent set. Set of all vertices is a dominating set.

 A minimal dominating set is a dominating set from which no vertex can be removed

without destroying its dominance property.

{b, e} is a minimal dominating set.

Chromatic polynomial.

 A graph G of n vertices can be properly colored in many different ways using a

sufficiently large number of colors. This property of a graph is expressed elegantly by

means of polynomial. This polynomial is called the Chromatic polynomial of G.

 The value of the Chromatic polynomial Pn(λ) of a graph with n vertices the number

of ways of properly coloring the graph , using λ or fewer colors.

a e

c

d

b

f

g

a e

c

d

b

f

g

v1

v5 v2

v3 v4

Uniquely colorable graph G:
Not uniquely colorable graph H:

CS6702 GRAPH THEORY AND APPLICATIONS 43

3. 4 MATCHING

A matching in a graph is a subset of edges in which no two edges are adjacent. A single

edge in a graph is a matching.

 A maximal matching is a matching to which no edge in the graph can be added.

 The maximal matching with the largest number of edges are called the largest

maximal matching.

3. 5 COVERING

A set g of edges in a graph G is said to be cover og G if every vertex in G is incident

on at least one edge in g. A set of edges that covers a graph G is said to be a covering (or

an edge covering, or a coverring subgraph) of G.

Every graph is its own covering.

A spanning tree in a connected graph is a covering.

A Hamiltonian circuit in a graph is also a covering.

Minimal cover.

 A minimal covering is a covering from which no edge can be removed without

destroying it ability to cover the graph G.

v1 v2

v3 v4

e1

e3

e2
e4

 Graph G Matching

e5

v1 v2

v3 v4

e1

e3

e2
e4

e5

v1 v2

v3 v4

e1

e3

e2
e4

 Maximal matching

e5

CS6702 GRAPH THEORY AND APPLICATIONS 44

Dimer covering

 A covering in which every vertex is of degree one is called a dimer covering or a 1-

factor. A dimmer covering is a maximal matching because no two edges in it are adjacent.

 Two dimmer coverings.

Let G = (V, E) be a graph. A stable set is a subset C of V such that e ⊆ C for each edge e of

G. A vertex cover is a subset W of V such that e ∩ W = ∅ for each edge e of G. It is not

difficult to show that for each U ⊆ V :

U is a stable set ⇐⇒ V \ U is a vertex cover.

A matching is a subset M of E such that e∩e ′ = ∅ for all e, e′ ∈ M with e = e ′ . A matching

is called perfect if it covers all vertices (that is, has size 1 2 |V |). An edge cover is a subset

F of E such that for each vertex v there exists e ∈ F satisfying v ∈ e. Note that an edge

cover can exist only if G has no isolated vertices.

Define:

α(G) := max{|C| | C is a stable set},

Ĳ (G) := min{|W| | W is a vertex cover},

ν(G) := max{|M| | M is a matching},

ρ(G) := min{|F| | F is an edge cover}.

These numbers are called the stable set number, the vertex cover number, the matching

number, and the edge cover number of G, respectively.

v1 v2

v3 v4

e1

e3

e2
e4

 Graph G

e5

v1 v2

v3 v4

e1

e3

e2
e4

Minimal cover

e5

CS6702 GRAPH THEORY AND APPLICATIONS 45

It is not difficult to show that: (γ) α(G) ≤ ρ(G) and ν(G) ≤ Ĳ (G). The triangle Kγ shows that

strict inequalities are possible.

Theorem 1(Gallai’s theorem). If G = (V, E) is a graph without isolated vertices, then

α(G) + Ĳ (G) = |V | = ν(G) + ρ(G).

Proof.

The first equality follows directly from (1).

To see the second equality, first let M be a matching of size ν(G). For each of the |V | −

2|M| vertices v missed by M, add to M an edge covering v. We obtain an edge cover F of

size |M|+(|V |−β|M|) = |V |−|M|. Hence ρ(G) ≤ |F| = |V |−|M| = |V |−ν(G).

Second, let F be an edge cover of size ρ(G). Choose from each component of the graph (V,

F) one edge, to obtain a matching M. As (V, F) has at least |V | − |F| components , we have

ν(G) ≥ |M| ≥ |V | − |F| = |V | − ρ(G).

This proof also shows that if we have a matching of maximum cardinality in any graph G,

then we can derive from it a minimum cardinality edge cover, and conversely.

3. 6 FOUR COLOR PROBLEM

 Every planar graph has a chromatic number of four or less.

 Every triangular planar graph has a chromatic number of four or less.

 The regions of every planar, regular graph of degree three can be colored properly

with four colors.

 4-Colour Theorem:

 If G is a planar graph, then (G) ≤ 4. By the following theorem, each planar graph

can be decomposed into two bipartite graphs.

 Let G = (V, E) be a 4-chromatic graph, (G) ≤ 4.

 Then the edges of G can be partitioned into two subsets E1 and E2 such that (V, E1)

and (V, E2) are both bipartite.

 Proof. Let Vi = α−1
(i) be the set of vertices coloured by i in a proper 4-colouring a

of G.

 The define E1 as the subset of the edges of G that are between the sets V1and

V2;V1 and V4; V3 and V4.

 Let E2 be the rest of the edges, that is, they are between the sets V1 and V3; V2 and

V3; V2 and V4. It is clear that (V, E1) and (V, E2) are bipartite, since the sets Vi are

stable.

CS6702 GRAPH THEORY AND APPLICATIONS 46

 Map colouring*

 The 4-Colour Conjecture was originally stated for maps.

 In the map-colouring problem we are given several countries with common borders

and we wish to colour each country so that no neighboring countries obtain the

same colour.

 How many colors are needed?

 A border between two countries is assumed to have a positive length in

particular,countries that have only one point in common are not allowed in the map

colouring.

 Formally, we define a map as a connected planar (embedding of a) graph with no

bridges. The edges of this graph represent the boundaries between countries.

 Hence a country is a face of the map, and two neighbouring countries share a

common edge (not just a single vertex). We deny bridges, because a bridge in such a

map would be a boundary inside a country.

 The map-colouring problem is restated as follows:

 How many colours are needed for the faces of a plane embedding so that no

adjacent faces obtain the same colour.

 The illustrated map can be 4-coloured, and it cannot be coloured using only 3

colours, because every two faces have a common border.



 Colour map

 Let F1, F2, . . . , Fn be the countries of a map M, and define a graph G with VG = {v1,

v2, . . . , vn} such that vivj ∈ G if and only if the countries Fi and Fjare neighbour’s.

 It is easy to see that G is a planar graph. Using this notion of a dual graph, we can

state the map-colouring problem in new form:

 What is the chromatic number of a planar graph? By the 4-Colour Theorem it is at

most four.

 Map-colouring can be used in rather generic topological setting, where the maps are

defined by curves in the plane.

CS6702 GRAPH THEORY AND APPLICATIONS 47

 As an example, consider finitely many simple closed curves in the plane. These

curves divide the plane into regions. The regions are 2-colourable.

 That is, the graph where the vertices correspond to the regions, and the edges

correspond to the neighbourhood relation, is bipartite.

 To see this, colour a region by 1, if the region is inside an odd number of curves,

and, otherwise, colour it by 2.

State five color theorem

 Every planar map can be properly colored with five colors.

i.e., the vertices of every plannar graph can be properly colored with five colors.

Vertex coloring and region coloring.

 A graph has a dual if and only if it is planar. Therefore, coloring the regions of a

planar graph G is equivalent to coloring the vertices of its dual G* and vice versa.

Regularization of a planar graph

 Remove every vertex of degree one from the graph G does not affect the regions of

a plannar graph.

 Remove every vertex of degree two and merge the two edges in series from the

graph G.

 Such a transformation may be called regularization of a planar graph.

3. 7 DIRECTED GRAPHS

A directed graph (or a digraph, or an oriented graph) G consists of a set of vertices � = {

v1, v2, … }, a set of edges � = { e1, e2, … }, and a mapping � that maps every edge onto

some ordered pair of vertices (vi, vj).

 For example,

CS6702 GRAPH THEORY AND APPLICATIONS 48

isomorphic digraph.

 Among directed graphs, if their labels are removed, two isomorphic graphs are

indistinguishable then these graphs are isomorphic digraph.

 For example,

 Two isomorphic digraphs.

Two non-isomorphic digraphs.

3. 8 TYPES OF DIRECTED GRAPHS

Like undirected graphs , digraphs are also has so many verities. In fact, due to the choice of

assigning a direction to each edge, directed graphs have more varieties than undirected

ones.

Simple Digraphs:

A digraph that has no self-loop or parallel edges is called a simple digraph .

Asymmetric Digraphs:

v1 v2

v3 v4

e1

e3

e2
e4

e5

a c

b d

1

3

2
4

5

CS6702 GRAPH THEORY AND APPLICATIONS 49

Digraphs that have at most one directed edge between a pair of vertices, but are allowed to

have self-loops, are called asymmetric or antisymmetric.

Symmetric Digraphs:

Digraphs in which for every edge (a, b) (i.e., from vertex a to b) there is also an edge (b, a).

A digraph that is both simple and symmetric is called a simple symmetric digraph.

Similarly, a digraph that is both simple and asymmetric is simple asymmetric.

The reason for the terms symmetric and asymmetric will be apparent in the context of

binary relations.

Complete Digraphs:

A complete undirected graph was defined as a simple graph in which every vertex is joined

to every other vertex exactly by one edge.

For digraphs we have two types of complete graphs.

A complete symmetric digraph is a simple digraph in which there is exactly one edge

directed from every vertex to every other vertex, and a complete asymmetric digraph is an

asymmetric digraph in which there is exactly one edge between every pair of vertices.

A complete asymmetric digraph of n vertices contains n(n - 1)/2 edges, but a complete

symmetric digraph of n vertices contains n(n - 1) edges. A complete asymmetric digraph is

also called a tournament or a complete tournament (the reason for this term will be made

clear).

A digraph is said to be balanced if for every vertex v, the in-degree equals the out-degree;

that is, d+(vi) = div,). (A balanced digraph is also referred to as a pseudo symmetric

digraph. or an isograph.) A balanced digraph is said to be regular if every vertex has the

same in-degree and out-degree as every other vertex.

Complete symmetric digraph of four vertices

CS6702 GRAPH THEORY AND APPLICATIONS 50

3. 9 DIGRAPHS AND BINARY RELATIONS

In a set of objects, X, where X={x1, x2, …}, A binary relation R between pairs (xi, xj) can

be written as xi R xj and say that xi has relation R to xj.

 If the binary relation R is reflexive, symmetric, and transitive then R is an

equivalence relation. This produces equivalence classes.

Let A and B be nonempty sets. A (binary) relation R from A to B is a subset of A x B. If R

AxB and(a,b) R, where a A, b B, we say a "is related to" b by R, and we

write aRb. If a is not related to b by R, we write a 0 b. A relation R defined on a set X is a

subset of X x X.

For example, less than, greater than and equality are the relations in the set of real numbers.

The property "is congruent to" defines a relation in the set of all triangles in a plane. Also,

parallelism defines a relation in the set of all lines in a plane.

Let R define a relation on a non empty set X. If R relates every element of X to itself, the

relation R is said to be reflexive. A relation R is said to be symmetric if for all xi xj X,

xi R xj implies xj R xi. A relation R is said to be transitive if for any three elements xi, xj and

xk in X, x,Rx, and xj R xk imply xi /2 xk. A binary relation is called an equivalence relation

if it is reflexive, symmetric and transitive.

A binary relation Ron a set X can always be represented by a digraph. In such a

representation, each xj E X is represented by a vertex xi and whenever there is a relation R

from xi to xj, an arc is drawn from xi to xj, for every pair (xi, xj). The digraph in Figure

represents the relation is less than, on a set consisting of four numbers 2, 3, 4, 6.

We note that every binary relation on a finite set can be represented by a digraph without

parallel edges and vice versa. Clearly, the digraph of a reflexive relation contains a loop at

every vertex Fig. A digraph representing a reflexive binary relation is called a reflexive

digraph.

CS6702 GRAPH THEORY AND APPLICATIONS 51

Example

The digraph of a symmetric relation is a symmetric digraph because for every arc from xi to

xj , there is an arc from xj to xi . Figure shows the digraph of an irreflexive and symmetric

relation on a set of three elements.

Example

A digraph representing a transitive relation on its vertex set is called a transitive digraph.

Figure shows the digraph of a transitive, which is neither reflexive, nor symmetric.

Example

A binary relation R on a set M can also be represented by a matrix, called a relation matrix.

This is a (0, 1), n×n matrix MR = [mi j], where n is the number of elements in M, and is

defined by

In some problems the relation between the objects is not symmetric. For these cases we

need directed graphs, where the edges are oriented from one vertex to another.

Definitions

A digraph (or a directed graph) D = (VD, ED) consists of the vertices VD and (directed)

edges ED ⊆ VD × VD (without loops vv).

We still write uv for (u, v), but note that now uv vu.

For each pair e = uv define the inverse of e as e
−1

 = vu (= (v, u)).

Note that e ∈ D does not imply e
−1

 ∈ D.

Let D be a digraph. Then A is its further classified into:

Subdigraph, if VA ⊆ VD and EA ⊆ ED,

Induced subdigraph, A = D[X], if VA = X and EA = ED ∩ (X × X).

CS6702 GRAPH THEORY AND APPLICATIONS 52

The underlying graph U(D) of a digraph D is the graph on VD such that if e ∈ D, then the

undirected edge with the same ends is in U(D).

A digraph D is an orientation of a graph G, if G = U(D) and e ∈ D implies e
−1

 /∈ D.

In this case, D is said to be an oriented graph.

Example

3. 10 DIRECTED PATHS AND CONNECTEDNESS

A path in a directed graph is called Directed path.

v5 e8 v3 e6 v4 e3 v1 is a directed path from v5 to v1.

Whereas v5 e7 v4 e6 v3 e1 v1 is a semi-path from v5 to v.

 Strongly connected digraph: A digraph G is said to be strongly connected if

there is at least one directed path from every vertex to every other vertex.

Weakly connected digraph: A digraph G is said to be weakly connected if its

corresponding undirected graph is connected. But G is not strongly connected.

The relationship between paths and directed paths is in general rather complicated. This

digraph has a path of length five, but its directed paths are of length one.

There is a nice connection between the lengths of directed paths and the chromatic

number (D) = (U(D)).

CS6702 GRAPH THEORY AND APPLICATIONS 53

Example

Theorem : A digraph D has a directed path of length (D) −1.

Proof. Let A ⊆ ED be a minimal set of edges such that the subdigraph D−A contains no

directed cycles.

Let k be the length of the longest directed path in D−A.

For each vertex v ∈ D, assign a colour α(v) = i, if a longest directed path from v has length i

−1 in D−A. Here 1 ≤ i ≤ k +1.

First we observe that if P = e1e2 . . . er (r ≥ 1) is any directed path u v in D−A, then

α(u) α(v).

Indeed, if a(v) = i, then there exists a directed path Q: v w of length i − 1, and PQ is a

directed path, since D−A does not contain directed cycles.

Since PQ: u w, a(u) i = a(v). In particular, if e = uv ∈ D−A, then α(u) α(v).

Consider then an edge e = vu ∈ A. By the minimality of A, (D−A)+ e contains a directed

cycle C: u v −→ u, where the part u v is a directed path in D−A, and hence

a(u) a(v).

This shows that a is a proper colouring of U(D), and therefore (D) ≤ k + 1, that is, k ≥

(D) − 1.

The bound (D) − 1 is the best possible in the following sense.

Connectedness:

A digraph is said to be disconnected if it is not even weak. A digraph is said to be strictly

weak if it is weak, but not unilateral.

It is strictly unilateral, if it is unilateral but not strong. Two vertices of a digraph D are said

to be

i. 0-connected if there is no semi path joining them,

ii. 1-connected if there is a semi path joining them, but there is no u−v path or v−u path,

iii. 2-connected if there is a u−v or a v−u path, but not both,

iv. 3-connected if there is u−v path and a v−u path.

CS6702 GRAPH THEORY AND APPLICATIONS 54

3. 11 EULER GRAPHS

In a digraph G, a closed directed walk which traverses every edge of G exactly once is

called a directed Euler line. A digraph containing a directed Euler line is called an Euler

digraphs

 For example,

It contains directed Euler line a b c d e f.

teleprinter’s problem.

 Constructing a longest circular sequence of 1’s and 0’s such that no subsequence of

r bits appears more than once in the sequence.

 Teleprinter’s problem was solved in 1940 by I.G. Good using digraph.

Theorem:

A connected graph G is an Euler graph if and only if all vertices of G are of even degree.

Proof : Necessity Let G(V, E) be an Euler graph.

Thus G contains an Euler line Z, which is a closed walk. Let this walk start and end at the

vertex u ∈ V. Since each visit of Z to an intermediate vertex v of Z contributes two to the

degree of v and since Z traverses each edge exactly once, d(v) is even for every such vertex.

Each intermediate visit to u contributes two to the degree of u, and also the initial and final

edges of Z contribute one each to the degree of u. So the degree d(u) of u is also even.

Sufficiency Let G be a connected graph and let degree of each vertex of G be even.

Assume G is not Eulerian and let G contain least number of edges. Since δ ≥ β, G has a

cycle. Let Z be a closed walk in G of maximum length.

Clearly, G−E(Z) is an even degree graph. Let C1 be one of the components of G−E(Z). As

C1 has less number of edges than G, it is Eulerian and has a vertex v in common with Z.

CS6702 GRAPH THEORY AND APPLICATIONS 55

Let Z’ be an Euler line in C1. Then Z’ ∪Z is closed in G, starting and ending at v. Since it

is longer than Z, the choice of Z is contradicted. Hence G is Eulerian.

Second proof for sufficiency Assume that all vertices of G are of even degree.

We construct a walk starting at an arbitrary vertex v and going through the edges of G such

that no edge of G is traced more than once. The tracing is continued as far as possible.

Since every vertex is of even degree, we exit from the vertex we enter and the tracing

clearly cannot stop at any vertex but v. As v is also of even degree, we reach v when the

tracing comes to an end.

If this closed walk Z we just traced includes all the edges of G, then G is an Euler graph.

If not, we remove from G all the edges in Z and obtain a subgraph Z’ of G formed by the

remaining edges. Since both G and Z have all their vertices of even degree, the degrees of

the vertices of Z’ are also even.

Also, Z’ touches Z’ at least at one vertex say u, because G is connected. Starting from u, we

again construct a new walk in Z’ .

As all the vertices of Z’ are of even degree, therefore this walk in Z’ terminates at vertex u.

This walk in Z’combined with Z forms a new walk, which starts and ends at the vertex v

and has more edges than Z. Prepared by G. Appasami, Assistant professor, Dr. pauls

Engineering College.

This process is repeated till we obtain a closed walk that traces all the edges of G. Hence G

is an Euler graph.

Euler graph

CS6702 GRAPH THEORY AND APPLICATIONS 56

UNIT IV PERMUTATIONS & COMBINATIONS

4. 1 FUNDAMENTAL PRINCIPLES OF COUNTING

The Fundamental Counting Principle is a way to figure out the total number of ways

different events can occur.

1. rule of sum.

 If the first task can be performed in m ways, while a second task can be performed

in n ways, and the two tasks cannot be performed simultaneously, then performing either

task can be accomplished in any one of m + n ways.

Example: A college library has 40 books on C++ and 50 books on Java. A student at this

college can select 40+50=90 books to learn programming language.

2. Define rule of Product

If a procedure can be broken into first and second stages, and if there are m possible

outcomes for the first stage and if, for each of these outcomes, there are n possible

outcomes for the second stage, then the total procedure can be carried out, in the designed

order, in mn ways.

Example: A drama club with six men and eight can select male and female role in 6 x 8 =

48 ways.

4. 2 PERMUTATIONS AND COMBINATIONS

Permutations

 For a given collection of n objects, any linear arrangement of these objects is called

a permutation of the collection. Counting the linear arrangement of objects can be done by

rule of product.

For a given collection of n distinct objects, and r is an integer, with 1 ≤ r ≤ n, then

by rule of product, the number of permutations of size r for the n objects is

 �ሺ݊, ሻݎ = ݊ × ሺ݊ − ͳሻ × ሺ݊ − ʹሻ × … × ሺ݊ − ݎ + ͳሻ = ௡!ሺ௡−�ሻ! , Ͳ ൑ ݎ ൑ ݊

Example: In a class of 10 students, five are to be chosen and seated in a row for a picture.

 The total number of arrangements = 10 x 9 x 8 x 7 x 6 = 30240.

CS6702 GRAPH THEORY AND APPLICATIONS 57

Define combinations

For a given collection of n objects, each selection, or combination, of r of these

objects, with no reference to order, corresponds to r! (Permutations of size r from the n

objects). Thus the number of combinations of size r from a collection of size n is �ሺ݊, ሻݎ = �ሺ݊, !ݎሻݎ = !ݎ!݊ ሺ݊ − !ሻݎ , Ͳ ൑ ݎ ൑ ݊

Example: In a test, students are directed to answer 7 questions out of 10. The student can

answer the examination in �ሺ݊, ሻݎ = �ሺͳͲ, ͹ሻ = ͳͲ!͹! ሺͳͲ − ͹ሻ! = ͳͲ × ͻ × ͺ͵ × ʹ × ͳ = ͳʹͲ ݏݕܽݓ

4. 3 BINOMIAL THEOREM

The Binomial theorem: If x and y are variables and n is a positive integer, then ሺݔ + ሻ௡ݕ = ቀͲ݊ቁ ௡ݕ଴ݔ + ቀͳ݊ቁ ௡−ଵݕଵݔ + ቀ݊ʹቁ ௡−ଶݕଶݔ + ⋯

 ቀ ݊݊ − ͳቁ ଵݕ௡−ଵݔ + ቀ݊݊ቁ ଴ݕ௡ݔ = ∑ ቀ�݊ቁ ௡−௞௡௞=଴ݕ௞ݔ

 ቀ�݊ቁ is referred as Binomial coefficient.

Application of permutation and combinations:

 Proof.

In order to get x
 k

, we need to choose x in k of {1, . . . , n}. There are ways of doing

this.

Theorem: 1

CS6702 GRAPH THEORY AND APPLICATIONS 58

Proof.

We prove this by induction on n. It is easy to check the first few, say for n=0,1,2, which

form the base case. σow suppose the theorem is true for n−1, that is,

Then

Using the distributive property,this becomes

These two sums have much in common, but it is slightly disguised by an "offset'': the first

sum starts with an x
n
y

0
 term and ends with an x

1
y

n−1 term, while the corresponding terms

in the second sum are x
n−1

y
1
 and x

0
y

n
.

Let's rewrite the second sum so that they match:

At the next to last step we used the facts that

CS6702 GRAPH THEORY AND APPLICATIONS 59

Here is an interesting consequence of this theorem: Consider

One way we might think of attempting to multiply this out is this: Go through the n factors

(x+y) and in each factor choose either the x or the y; at the end, multiply your choices

together, getting some term like xxyxyy⋯yx=x
i
y

j
, where of course i+j=n.

If we do this in all possible ways and then collect like terms, we will clearly get

We know that the correct expansion has =ai; is that in fact what we will get by this

method? Yes: consider x
n−i

y
i
.

How many times will we get this term using the given method? It will be the number of

times we end up with i y-factors.

Since there are n factors (x+y), the number of times we get i y-factors must be the number

of ways to pick i of the (x+y) factors to contribute a y, namely . This is probably not a

useful method in practice, but it is interesting and occasionally useful.

4. 4 COMBINATIONS WITH REPETITION

If there is a selection with repetition, r of n distinct objects, then the combinations with of n

objects taken r at a time with repetition is �ሺ݊ + ݎ − ͳ, .ሻݎ
 �ሺ݊ + ݎ − ͳ, ሻݎ = ሺ݊ + ݎ − ͳሻ!ݎ! ሺ݊ − ͳሻ! = ቀ݊ + ݎ − ͳݎ ቁ

Example: A donut shop offers 20 kinds of donuts. Assuming that there are at least a dozen

of each kind when we enter the shop. We can select a dozen donuts in �ሺʹͲ + ͳʹ −ͳ, ͳʹሻ= �ሺ͵ͳ, ͳʹሻ = 141120525 ways

We can also have an r-combination of n items with repetition.

Same as other combinations: order doesn't matter.

Same as permutations with repetition: we can select the same thing multiple times.

CS6702 GRAPH THEORY AND APPLICATIONS 60

Example: You walk into a candy store and have enough money for 6 pieces of candy. The

store has chocolate (C), gummies (G), and horrible Chinese candy (H). How many different

selections can you make?

Here are some possible selections you might make:

C C C G G H

C G G G G H

C C C C G G

H H H H H H

Since order doesn't matter, we'll list all of our selections in the same order: C then G then

H.

We don't want our candy to mix: let's separate the types.

C C C | G G | H

C | G G G G | H

C C C C | G G |

| | H H H H H H

Now we don't need the actual identities in the diagram to know what's there:

- - - | - - | -

- | - - - - | -

- - - - | - - |

| | - - - - - -

Now the answer becomes obvious: we have 8 slots there and just have to decide where to

put the two dividers.

There are C(8,2) ways to do that, so C(8,2)=28 possible selections. Or equivalently, there

are C(8,6)=28 ways to place the candy selections.

If we are selecting an r-combination from n elements with repetition, there are

C(n+r−1,r)=C(n+r−1,n−1) ways to do so.

Proof: like with the candy, but not specific to r=6 and n=3.

Example: How many solutions does this equation have in the non-negative

integers?a+b+c=100

In order to satisfy the equation, we have to select 100 “ones”, some that will contribute to a,

some to b, some to c. In other words, we have balls labeled a, b, and c. We select 100 of

them (with repetition) and that gives us a solution to the equation. C(102,2) solutions.

In summary we have these ways to select r things from n possibilities: Prepared by G.

Appasami, Assistant professor, Dr. pauls Engineering College.

CS6702 GRAPH THEORY AND APPLICATIONS 61

4. 5 COMBINATORIAL NUMBERS

The Catalan numbers form a sequence of natural numbers that occur in various

counting problems, often involving recursively-defined objects. They are named after the

Belgian mathematician Eugène Charles Catalan. the nth Catalan number is given directly in

terms of binomial coefficients by

4. 6 PRINCIPLE OF INCLUSION AND EXCLUSION

Very often, we need to calculate the number of elements in the union of certain sets.

Assuming that we know the sizes of these sets, and their mutual intersections, the principle

of inclusion and exclusion allows us to do exactly that.

Suppose that we have two sets A, B.

The size of the union is certainly at most |A| + |B|.

This way, however, we are counting twice all elements in A ∩ B, the intersection of the two

sets. To correct for this, we subtract |A ∩ B| to obtain the following formula:

|A ∪ B| = |A| + |B| − |A ∩ B|.

In general, the formula gets more complicated because we have to take into account

intersections of multiple sets. The following formula is what we call the principle of

inclusion and exclusion

CS6702 GRAPH THEORY AND APPLICATIONS 62

4. 7 DERANGEMENTS

A derangement is a permutation of the elements of a set, such that no element

appears in its original position.

The number of derangements of a set of size n, usually written Dn, dn, or !n, is called

the "derangement number" or "de Montmort number".

Example: The number of derangements of 1, 2, 3, 4 is

 d4 = 4! [1 – 1 + (1/2!)-(1/3!)+(1/4!)] = 9.

4. 8 ARRANGEMENTS WITH FORBIDDEN POSITIONS

The number of acceptable assignments is equal to the number of ways of placing nontaking

rooks on this chessboard so that none of the rooks is in a forbidden position. The key to

determining this number of arrangements is the inclusion- exclusion principle.

Suppose we shuffle a deck of cards; what is the probability that no card is in its original

location?

More generally, how many permutations of [n]={1,β,γ,…,n} have none of the integers in

their "correct'' locations? That is, 1 is not first, 2 is not second, and so on. Such a

permutation is called a derangement of [n].

Let S be the set of all permutations of [n] and Ai be the permutations of [n] in which i is in

the correct place. Then we want to know |⋂ni=1A
c
i|.

For any i, |Ai|=(n−1)!: once i is fixed in position i, the remaining n−1 integers can be placed

in any locations.

What about |Ai∩Aj|? If both i and j are in the correct position, the remaining n−βintegers

can be placed anywhere, so |Ai∩Aj|=(n−β)!.

In the same way, we see that |Ai1∩Ai2∩⋯∩Aik|=(n−k)!.

CS6702 GRAPH THEORY AND APPLICATIONS 63

The last sum should look familiar:

Substituting x=−1 gives

The probability of getting a derangement by chance is then

and when n is bigger than 6, this is quite close toe
−1≈0.γ678.

So in the case of a deck of cards, the probability of a derangement is about 37%.

Let These derangement numbers have some interesting

properties.

The derangements of [n] may be produced as follows: For each i∈{β,γ,…,n}, put i in

position 1 and 1 in position i.

Then permute the numbers {β,γ,…,i−1,i+1,…n} in all possible ways so that none of these

n−β numbers is in the correct place.There are Dn−β ways to do this.

Then, keeping 1 in position i, derange the numbers {i,β,γ,…,i−1,i+1,…n}, with the

"correct'' position of i now considered to be position 1.

CS6702 GRAPH THEORY AND APPLICATIONS 64

There are Dn−1 ways to do this. Thus, Dn=(n−1)(Dn−1+Dn−β).

We explore this recurrence relation a bit:

Dn=nDn−1−Dn−1+(n−1)Dn−β

=nDn−1−(n−β)(Dn−β+Dn−γ)+(n−1)Dn−β

=nDn−1−(n−β)Dn−β−(n−β)Dn−γ+(n−1)Dn−β

=nDn−1+Dn−β−(n−β)Dn−γ

=nDn−1+(n−γ)(Dn−γ+Dn−4)−(n−β)Dn−γ

=nDn−1+(n−γ)Dn−γ+(n−γ)Dn−4−(n−β)Dn−γ

=nDn−1−Dn−γ+(n−γ)Dn−4

=nDn−1−(n−4)(Dn−4+Dn−5)+(n−γ)Dn−4

=nDn−1−(n−4)Dn−4−(n−4)Dn−5+(n−γ)Dn−4

=nDn−1+Dn−4−(n−4)Dn−5.

It appears from the starred lines that the pattern here is that

Dn=nDn−1+(−1)k
Dn−k+(−1)k+1(n−k)Dn−k−1.

If this continues, we should get to

Dn=nDn−1+(−1)n−β
D2+(−1)n−1

(2)D1.

Since D2=1 and D1=0, this would give Dn=nDn−1+(−1)n
,

Since (−1)n=(−1)n−β
. Indeed this is true, and can be proved by induction. This gives a

somewhat simpler recurrence relation, making it quite easy to compute Dn.

CS6702 GRAPH THEORY AND APPLICATIONS 65

UNIT V GENERATING FUNCTIONS

5. 1 GENERATING FUNCTIONS

A generating function describes an infinite sequence of numbers (an) by treating

them like the coefficients of a series expansion. The sum of this infinite series is the

generating function. Unlike an ordinary series, this formal series is allowed to diverge,

meaning that the generating function is not always a true function and the "variable" is

actually an indeterminate.

The generating function for 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., whose ordinary generating

function is ∑ሺݔሻ௡ = ͳͳ − ∞ݔ
௡=଴

The generating function for the geometric sequence 1, a, a
2
, a

3
, ... for any

constant a: ∑ሺ��ሻ� = ૚૚ − ��∞
�=૙

5. 2 PARTITIONS OF INTEGERS

Partitioning a positive n into positive summands and seeking the number of such partitions

without regard to order is called Partitions of integer.

 This number is denoted by p(n). For example

P(1) = 1: 1

P(2) = 2: 2 = 1 + 1

P(3) = 3: 3 = 2 +1 = 1 + 1 +1

P(4) = 5: 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

P(5) = 7: 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1+ 1 = 1 + 1 + 1 + 1 + 1

There is no simple formula for pn, but it is not hard to find a generating function for them.

As with some previous examples, we seek a product of factors so that when the factors are

multiplied out, the coefficient of xn is pn.

https://en.wikipedia.org/wiki/Infinite_sequence
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Series_expansion
https://en.wikipedia.org/wiki/Formal_series
https://en.wikipedia.org/wiki/Divergent_series
https://en.wikipedia.org/wiki/Indeterminate_(variable)
https://en.wikipedia.org/wiki/Geometric_progression

CS6702 GRAPH THEORY AND APPLICATIONS 66

We would like each xn term to represent a single partition, before like terms are collected.

A partition is uniquely described by the number of 1s, number of 2s, and so on, that is, by

the repetition numbers of the multi-set. We devote one factor to each integer:

When this product is expanded, we pick one term from each factor in all possible ways,

with the further condition that we only pick a finite number of "non-1'' terms. For example,

if we pick x
3
 from the first factor, x

3
 from the third factor, x

15
 from the fifth factor, and 1s

from all other factors, we get x
21

.

In the context of the product, this represents 3.1+1.3+3.5, corresponding to the partition

1+1+1+3+5+5+5, that is, three 1s, one 3, and three 5s. Each factor is a geometric series; the

kth factor is

.so the generating function can be

written

Note that if we are interested in some particular pn, we do not need the entire infinite

product, or even any complete factor, since no partition of n can use any integer greater

than n, and also cannot use more than n/k copies of k.

Example 2:Find p8

We expand

(1+x(1+x
2
+x

3
+x

4
+x

5
+x

6
+x

7
+x

8
)(1+x

2
+x

4
+x

6
+x

8
)(1+x

3
+x

6
)+x

4
+x

8
)(1+x

5
)(1+x

6
)(1+x

7
)(1+x

8

)

=1+x+2x
2
+3x

3
+5x

4
+7x

5
+11x

6
+15x

7
+22x

8
+⋯+x

56
,

so p8=22. Note that all of the coefficients prior to this are also correct, but the following

coefficients are not necessarily the corresponding partition numbers.

Partitions of integers have some interesting properties. Let pd(n) be the number of

partitions of n into distinct parts; let po(n) be the number of partitions into odd parts.

CS6702 GRAPH THEORY AND APPLICATIONS 67

5. 3 EXPONENTIAL GENERATING FUNCTION

For a sequence a0, a1, a2, a3,, … of real numbers.

݂ሺݔሻ = ܽ଴ + ܽଵݔ + ܽଶ !ʹଶݔ + ܽଷ !͵ଷݔ + ⋯ = ∑ �� ���! �∞
�=૙

is called the exponential generating function for the given sequence.

Ordinary generating functions arise when we have a (finite or countably in- finite) set of

objects S and a weight function ω : S → σ
r
 .

Then the ordinary generating function Φω S (x) is defined and we can proceed with

calculations. Exponential generating functions arise in a somewhat more complicated

situation. The basic idea is that they are used to enumerate “combinatorial structures on

finite sets”.

Definition 1:(Exponential Generating Functions). Let A be a class of structures. The

exponential generating function of A is

Let’s illustrate this with a few examples for which we already know the answer.

Example:

First, consider the class S of permutations: to each finite set X it associates the finite set SX

of all bijections ı : X → X from X to X.

Condition (i) is easy, and condition (ii) follows from Examples, so that S satisfies above

definition . Way back in Theorem 2 we saw that #Sn = n! for all n ∈ N, so that the

exponential generating function for the class of permutations is

CS6702 GRAPH THEORY AND APPLICATIONS 68

5. 4 SUMMATION OPERATOR

1. aclaurin series expansion of e
x
 and e

-x
. ݁� = ͳ + ݔ + !ʹଶݔ + !͵ଷݔ + !ସͶݔ + ⋯

݁−� = ͳ − ݔ + !ʹଶݔ − !͵ଷݔ + !ସͶݔ − ⋯

Adding these two series together, we get, ݁� + ݁−� = ʹሺͳ + !ʹଶݔ + !ସͶݔ + ⋯ ሻ ݁� + ݁−�ʹ = ͳ + !ʹଶݔ + !ସͶݔ + ⋯

Generating function for a sequence a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3,, … .

For ሺݔሻ = ܽ଴ + ܽଵ ݔ + ܽଶ ݔଶ + ܽଷ ݔଷ + ⋯ ,, consider the function f(x)/(1-x) ݂ሺݔሻͳ − ݔ = ݂ሺݔሻ. ͳͳ − ݔ = [ܽ଴ + ܽଵ ݔ + ܽଶ ݔଶ + ܽଷ ݔଷ + ⋯][ͳ + + ݔ ଶݔ + ଷݔ + ⋯]
 = ܽ଴ + ሺܽ଴ + ܽଵሻݔ + ሺܽ଴ + ܽଵ+ܽଶሻݔଶ + +ሺܽ଴ + ܽଵ+ܽଶ + ܽଷሻݔଷ + ⋯

So f(x)/(1-x) generates the sequence of sums a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3,,

1/(1-x) is called the summation operator

5. 5 RECURRENCE RELATIONS

A recurrence relation is an equation that recursively defines a sequence or

multidimensional array of values, once one or more initial terms are given: each further

term of the sequence or array is defined as a function of the preceding terms.

The term difference equation sometimes (and for the purposes of this article) refers

to a specific type of recurrence relation. However, "difference equation" is frequently used

to refer to any recurrence relation.

Fibonacci numbers and relation

https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Recurrence_relation#Relationship_to_difference_equations_narrowly_defined

CS6702 GRAPH THEORY AND APPLICATIONS 69

The recurrence satisfied by the Fibonacci numbers is the archetype of a

homogeneous linear recurrence relation with constant coefficients (see below). The

Fibonacci sequence is defined using the recurrence

Fn = Fn-1 + Fn-2

with seed values F0 = 0 and F1 = 1

We obtain the sequence of Fibonacci numbers, which begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Recurrence Relation (Epp)

A recurrence relation for a sequence a0, a1, a2, … is a formula that relates each term ak to

certain of its predecessors ak-1, …, ak-i, where i is fixed and k ≥ i. The initial conditions

specify the fixed values of a0, …, ai-1.

Most of the time, though, there is only one fixed value or base value.

However, nothing prevents us from defining a sequence with multiple base values (consider

the two 1s in the Fibonacci sequence), hence the generality with i in the definition above.

There are also two forms of induction to handle this generality. The one we looked at

earlier works when we have one base case. There's another form of induction

called strong induction that proves claims where there are multiple base cases.

We could spend quite a bit of time studying recurrences by themselves. We'll just scratch

the surface and use them a few times in the remainder of the course.

Question: If we have a recurrence relation for a sequence, is it possible to express the

sequence in a way that does not use recursion?

Answer:Sometimes. When we are able to do so, we find what is called the closed form of

the recurrence. It is an algebraic formula or a definition that tells us how to find the nth

term without needing to know any of the preceding terms. The process of finding the closed

form is called solving a recurrence.

There are various methods to "solving" recurrence that are used in practice. Each has its

place, each has a difference sort of output.

Three Methods to Solving Recurrences:

Iteration: Start with the recurrence and keep applying the recurrence equation until we get

a pattern. The result is a guess at the closed form.

Substitution: Guess the solution; prove it using induction. The result here is a proven

closed form. It's often difficult to come up the guess so, in practice, iteration and

substitution are used hand-in-hand.

Master Theorem: Plugging into a formula that gives an approximate bound on the

solution. The result here is only a bound on the closed form. It is not an exact solution.

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Linear_recurrence
https://en.wikipedia.org/wiki/Initial_condition

CS6702 GRAPH THEORY AND APPLICATIONS 70

5. 6 FIRST ORDER

The general form of First order linear homogeneous recurrence relation can be written as

an+1 = d an, n ≥ 0, where d is a constant. The relation is first order since an+1 depends

on an.

 a0 or a1 are called boundary conditions.

5. 7 SECOND ORDER

CS6702 GRAPH THEORY AND APPLICATIONS 71

5. 8 NON-HOMOGENEOUS RECURRENCE RELATIONS

Definition 1. A sequence {an} is given by a linear non homogeneous recurrence relation of

order k if an = c1an−1 + c2an−β + c3an−γ + · · · + ckan−k + p(n) for all n ≥ k. The recurrence

relation bn = c1bn−1 + c2bn−β + c3bn−γ+ · · · + ckbn−k is referred to as the associated linear

homogeneous recurrence relation One result is as easy to show for LNRRs as for LHRRs;

the following can be proven as a very slight variation of the similar proof for LHRRs

Proposition 1. A sequence is uniquely determined by an LNRR of order k and the initial

values a0, a1, a2, . . . , ak−1. However, there is one very important difference between LNRRs

and LHRRs: linear combinations of LNRR-satisfying sequences do no, in general, satisfy

the LNRR. However, we do have the result:

Proposition 2. If {an} satisfies an LNRR, and {bn} satisfies the associated LHRR, then

{an+bn} satisfies the LNRR.

Proof:We know that

an = c1an−1 + c2an−β + c3an−γ + · · · + ckan−k + p(n)

And bn = c1bn−1 + c2bn−β + c3bn−γ + · · · + ckbn−k

Adding these two equations will give (an + bn) = c1(an−1 + bn−1) + c2(an−β + bn−β) + · · · +

ck(an−k + bn−k) + p(n) and thus {an + bn} satisfies the LNRR.

CS6702 GRAPH THEORY AND APPLICATIONS 72

This means that if we have a specific LNRR solution, then we can get a wide range of

LNRR solutions simply by adding the associated LHRR solution. Note that this is very

similar to the method used to solve non homogeneous linear differential equations.

The tricky part of this is, of course, coming up with a solution to the LNRR in the first

place. Let’s try doing that for the example above, where an = 3an−1 + 5
n−1

 . We might do this

by inspired guesswork: since the in homogeneous term is 5
n−1

 , we might think some

multiple of 5
n
 will do the trick, so suppose an = C5

n
 . Then, the recurrence relation gives us

C5
n
 = 3C · 5

n−1
 + 5

n−1
 = (3C + 1)5

n−1

The solution method for solving an LNRR with initial conditions is a very minor variation

on the LHRR solution method. Given a LNRR an = c1an−1+c2an−β +c3an−γ +· · ·+ckan−k +p(n)

with initial conditions a0, . . . , ak−1, this is our process:

1.Find a single sequence {an
 P

 } to the LNRR.

Find the general solution {bn} to the associated LHRR. By the nature of its construction,

{bn} will have k undetermined constants.

The general solution to the LNRR will be {an} = {an
 P

 + bn}. Like {bn}, the sequence {an}

will have k undetermined constants in its expression.

4. Setting the known values of a0, a1, . . . , ak equal to the general-form expressions will

yield k equations in k unknowns. Solve for the unknowns to determine the constants in the

formula for {an}.

5. 9 METHOD OF GENERATING FUNCTIONS.

On solving a recurrence relation, we have the solution in the form of a sequence. Instead of

solving in the form of a sequence, we can also determine the generating function of the

sequence from the recurrence relation. One of the uses of generating function method is to

find the closed form formula for a recurrence relation.

Once the generating function is known, an expression for the value of sequence can easily

be obtained. Before using this method, ensure that the given recurrence equation is in linear

form. A non-linear recurrence equation cannot be solved by the generating method.

We use substitution of variable technique to convert a non-linear recurrence relation into

linear equation. We explain this method by means of the examples.

Example: Solve the recurrence relation

CS6702 GRAPH THEORY AND APPLICATIONS 73

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1

CS6702 GRAPH THEORY AND APPLICATIONS

2 MARKS QUESTIONS AND ANSWERS

UNIT I INTRODUCTION

1. Define Graph.
 A graph G = (V, E) consists of a set of objects V={v1, v2, v3, … } called vertices (also called

points or nodes) and other set E = {e1, e2, e3,} whose elements are called edges (also called lines

or arcs).

The set V(G) is called the vertex set of G and E(G) is the edge set of G.

For example :

A graph G is defined by the sets V(G) = {u, v, w, x, y, z} and E(G) = {uv, uw, wx, xy, xz}.

A graph with p-vertices and q-edges is called a (p, q) graph. The (1, 0) graph is called trivial

graph.

2. Define Simple graph.

 An edge having the same vertex as its end vertices is called a self-loop.

 More than one edge associated a given pair of vertices called parallel edges.

 A graph that has neither self-loops nor parallel edges is called simple graph.

3. Write few problems solved by the applications of graph theory.

 Konigsberg bridge problem

 Utilities problem

 Electrical network problems

 Seating problems

4. Define incidence, adjacent and degree.

 When a vertex vi is an end vertex of some edge ej, vi and ej are said to be incident with each

other. Two non parallel edges are said to be adjacent if they are incident on a common vertex. The

number of edges incident on a vertex vi, with self-loops counted twice, is called the degree (also called

valency), d(vi), of the vertex vi. A graph in which all vertices are of equal degree is called regular

graph.

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

e1 Graph G:

u v

w x y

Simple Graph

u v

w x y

Pseudo Graph

Graph G: Graph H:

u
v

w
x y

z

Graph G:

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 2

 The edges e2, e6 and e7 are incident with vertex v4.

 The edges e2 and e7 are adjacent.

 The edges e2 and e4 are not adjacent.

 The vertices v4 and v5 are adjacent.

The vertices v1 and v5 are not adjacent.

d(v1) = d(v3) = d(v4) = 3. d(v2) = 4. d(v5) = 1.

5. What are finite and infinite graphs?

 A graph with a finite number off vertices as well as a finite number of edges is called a finite

graph; otherwise, it is an infinite graph.

6. Define Isolated and pendent vertex.

 A vertex having no incident edge is called an isolated vertex. In other words, isolated vertices

are vertices with zero degree. A vertex of degree one is called a pendant vertex or an end vertex.

 The vertices v6 and v7 are isolated vertices.

 The vertex v5 is a pendant vertex.

7. Define null graph.

 In a graph G=(V, E), If E is empty (Graph without any edges) Then G is called a null graph.

8. Define Multigraph

In a multigraph, no loops are allowed but more than one edge can join two vertices, these edges

are called multiple edges or parallel edges and a graph is called multigraph.

The edges e5 and e4 are multiple (parallel) edges.

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

Graph G:

v6

v1 v2

v3 v4 v5

Graph G:

v6 v7

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

e1 Graph G:

v6 v7

Finite Graphs
Infinite Graphs

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 3

9. Define complete graph

A simple graph G is said to be complete if every vertex in G is connected with every other

vertex. i.e., if G contains exactly one edge between each pair of distinct vertices.

A complete graph is usually denoted by Kn. It should be noted that Kn has exactly n(n-1)/2

edges.

The complete graphs Kn for n = 1, 2, 3, 4, 5 are show in the following Figure.

10. Define Regular graph

A graph in which all vertices are of equal degree, is called a regular graph.

If the degree of each vertex is r, then the graph is called a regular graph of degree r.

11. Define Cycles

The cycle Cn, n ≥3, consists of n vertices v1, v2, ..., vn and edges {v1, v2}, {v2, v3},, {vn – 1,

vn}, and {vn, v1}.

The cyles c3, c4 and c5 are shown in the following Figures

12. Define Isomorphism.

 Two graphs G and G' are said to be isomorphic to each other if there is a one-to-one

correspondence between their vertices and between their edges such that the incidence relationship is

preserved.

Correspondence of vertices Correspondence of edges

f(a) = v1 f(1) = e1

f(b) = v2 f(2) = e2

f(c) = v3 f(3) = e3

f(d) = v4 f(4) = e4

f(e) = v5 f(5) = e5

Adjacency also preserved. Therefore G and G' are said to be isomorphic.

Graph G':
5

v1
a

b

c

4
1

2

6

d

Graph G:

e

3

e4

v4 v3

v1 v2

e6 e2

e1

e5

e3

v5

v1

v2 v3

v1 v2

v3 v4

v1

v2

v3 v4

v5

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 4

13. What is Subgraph?

 A graph G' is said to be a subgraph of a graph G, if all the vertices and all the edges of G' are

in G, and each edge of G' has the same end vertices in G' as in G.

14. Define Walk, Path and Circuit.

 A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending

with vertices. No edge appears more than once. It is also called as an edge train or a chain.

 An open walk in which no vertex appears more than once is called path. The number of edges

in the path is called length of a path.

 A closed walk in which no vertex (except initial and final vertex) appears more than once is

called a circuit. That is, a circuit is a closed, nonintersecting walk.

 v1 a v2 b v3 c v3 d v4 e v2 f v5 is a walk. v1 and v5 are terminals of walk.

 v1 a v2 b v3 d v4 is a path. a v2 b v3 c v3 d v4 e v2 f v5 is not a path.

 v2 b v3 d v4 e v2 is a circuit.

15. Define connected graph. What is Connectedness?

A graph G is said to be connected if there is at least one path between every pair of vertices in

G. Otherwise, G is disconnected.

16. Define Components of graph.

 A disconnected graph consists of two or more connected graphs. Each of these connected

subgraphs is called a component.

v1 v2

v3 v4 v5

e5 e4
e3 e2

e6

Disconnected Graph H with 3 components

v6

v1 v2

v3 v4 v5

e5 e4

e3

e2

e6 e7

e1

Connected Graph G

v1 v2

v3 v4 v5

e5 e4
e3 e2

e6

Disconnected Graph H

v6

v3
v2

v4 v5

c

d

b

f

h

Graph G:

v1

a g

e

v3
v2

v4 v5

c

d

b

f

h

Open walk

v1

a g

e

v3
v2

v4 v5

c

d

b

f

h

Path of length 3

v1

a g

e

v1 v2

v4 v5 v6

e4 e3

e2

e6

e5

e1 Graph G: v3

e4

v1 v2

v5 v6

e4

e2 e1 Subgraph G' of G:
v3

e4

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 5

17. Define Euler graph.

A path in a graph G is called Euler path if it includes every edges exactly once. Since the path

contains every edge exactly once, it is also called Euler trail / Euler line.

A closed Euler path is called Euler circuit. A graph which contains an Eulerian circuit is called

an Eulerian graph.

 v4 e1 v1 e2 v3 e3 v1 e4 v2 e5 v4 e6 v3 e7 v4 is an Euler circuit. So the above graph is Euler graph.

18. Define Hamiltonian circuits and paths

 A Hamiltonian circuit in a connected graph is defined as a closed walk that traverses every

vertex of graph G exactly once except starting and terminal vertex.

 Removal of any one edge from a Hamiltonian circuit generates a path. This path is called

Hamiltonian path.

19. Define Tree

 A tree is a connected graph without any circuits. Trees with 1, 2, 3, and 4 vertices are shown in

figure.

20. List out few Properties of trees.

1. There is one and only one path between every pair of vertices in a tree T.

2. In a graph G there is one and only one path between every pair of vertices, G is a tree.

3. A tree with n vertices has n-1 edges.

4. Any connected graph with n vertices has n-1 edges is a tree.

5. A graph is a tree if and only if it is minimally connected.

6. A graph G with n vertices has n-1 edges and no circuits are connected.

21. What is Distance in a tree?

 In a connected graph G, the distance d(vi , vj) between two of its vertices vi and vj is the length

of the shortest path.

f

v1 v2

v3 v4 v5

a c

e

h k j

Graph G:

v6

d

b g i

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 6

Paths between vertices v6 and v2 are (a, e), (a, c, f), (b, c, e), (b, f), (b, g, h), and (b, g, i, k).

The shortest paths between vertices v6 and v2 are (a, e) and (b, f), each of length two.

Hence d(v6 , v2) =2

22. Define eccentricity and center.

The eccentricity E(v) of a vertex v in a graph G is the distance from v to the vertex farthest

from v in G; that is, �ሺݒሻ = max��∈� ݀ሺݒ, ሻ�ݒ

 A vertex with minimum eccentricity in graph G is called a center of G

 Distance d(a, b) = 1, d(a, c) =2, d(c, b)=1, and so on.

 Eccentricity E(a) =2, E(b) =1, E(c) =2, and E(d) =2.

 Center of G = A vertex with minimum eccentricity in graph G = b.

23. Define distance metric.

 The function f (x, y) of two variables defines the distance between them. These function must

satisfy certain requirements. They are

1. Non-negativity: f (x, y) ≥ 0, and f (x, y) = 0 if and only if x = y.

2. Symmetry: f (x, y) = f (x, y).

3. Triangle inequality: f (x, y) ≤ f (x, z) + f (z, y) for any z.

24. What are the Radius and Diameter in a tree.

 The eccentricity of a center in a tree is defined as the radius of tree.

 The length of the longest path in a tree is called the diameter of tree.

25. Define Rooted tree

 A tree in which one vertex (called the root) is distinguished from all the others is called a

rooted tree.

 In general tree means without any root. They are sometimes called as free trees (non rooted

trees).

The root is enclosed in a small triangle. All rooted trees with four vertices are shown below.

26. Define Rooted binary tree

There is exactly one vertex of degree two (root) and each of remaining vertex of degree one or three.

 A binary rooted tree is special kind of rooted tree. Thus every binary tree is a rooted tree. A

non pendent vertex in a tree is called an internal vertex. Prepared by G. Appasami, Assistant professor,

Dr. pauls Engineering College.

a

c

Graph G:

b
d

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 7

UNIT II TREES, CONNECTIVITY & PLANARITY

1. Define Spanning trees.

 A tree T is said to be a spanning tree of a connected graph G if T is a subgraph of G and T

contains all vertices (maximal tree subgraph).

2. Define Branch and chord.

 An edge in a spanning tree T is called a branch of T. An edge of G is not in a given spanning

tree T is called a chord (tie or link).

 Edge e1 is a branch of T Edge e5 is a chord of T

3. Define complement of tree.

 If T is a spanning tree of graph G, then the complement of T of G denoted by �̅ is the collection

of chords. It also called as chord set (tie set or cotree) of T

 � ∪ �̅ = �

4. Define Rank and Nullity:

 A graph G with n number of vertices, e number of edges, and k number of components with the

following constraints � − � ൒ Ͳ and ݁ − � + � ൒ Ͳ.

 Rank ݎ = � − �

 Nullity � = ݁ − � + � (Nullity also called as Cyclomatic number or first betti number)

Rank of G = number of branches in any spanning tree of G

Nullity of G = number of chords in G

Rank + Nullity = ݁ = number of edges in G

5. How Fundamental circuits created?

 Addition of an edge between any two vertices of a tree creates a circuit. This is because there

already exists a path between any two vertices of a tree.

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7
v3

v1 v2

v4

e3

e4

e1

Graph G: Spanning Tree T:

v3

v1 v2

v4

e2 e5

e6

e7

�̅:Complement of Tree T

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7 v3

v1 v2

v4

e3

e4

e1

Graph G: Spanning Tree T:

v3

v1 v2

v4

e2 e3

e4

e5

e6

e1

e7 v3

v1 v2

v4

e3

e4

e1

Graph G: Spanning Tree T:

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 8

6. Define Spanning trees in a weighted graph

 A spanning tree in a graph G is a minimal subgraph connecting all the vertices of G. If G is a

weighted graph, then the weight of a spanning tree T of G is defined as the sum of the weights of all

the branches in T.

 A spanning tree with the smallest weight in a weighted graph is called a shortest spanning tree

(shortest-distance spanning tree or minimal spanning tree).

7. Define degree-constrained shortest spanning tree.

 A shortest spanning tree T for a weighted connected graph G with a constraint ݀ሺݒiሻ ൑ � for all

vertices in T. for k=2, the tree will be Hamiltonian path.

8. Define cut sets and give example.

 In a connected graph G, a cut-set is a set of edges whose removal from G leave the graph G

disconnected.

Possible cut sets are {a, c, d, f}, {a, b, e, f}, {a, b, g}, {d, h, f}, {k}, and so on.

{a, c, h, d} is not a cut set, because its proper subset {a, c, h} is a cut set.

{g, h} is not a cut set.

 A minimal set of edges in a connected graph whose removal reduces the rank by one is called

minimal cut set (simple cut-set or cocycle). Every edge of a tree is a cut set.

9. Write the Properties of cut set

 Every cut-set in a connected graph G must contain at least one branch of every spanning tree of G.

 In a connected graph G, any minimal set of edges containing at least one branch of every spanning

tree of G is a cut-set.

 Every circuit has an even number of edges in common with any cut set.

10. Define Fundamental circuits

Adding just one edge to a spanning tree will create a cycle; such a cycle is called

a fundamental cycle (Fundamental circuits). There is a distinct fundamental cycle for each edge;

thus, there is a one-to-one correspondence between fundamental cycles and edges not in the spanning

tree. For a connected graph with V vertices, any spanning tree will have V − 1 edges, and thus, a graph

of E edges and one of its spanning trees will have E − V + 1 fundamental cycles.

11. Define Fundamental cut sets

 Dual to the notion of a fundamental cycle is the notion of a fundamental cutset. By deleting

just one edge of the spanning tree, the vertices are partitioned into two disjoint sets. The fundamental

cutset is defined as the set of edges that must be removed from the graph G to accomplish the same

partition. Thus, each spanning tree defines a set of V − 1 fundamental cutsets, one for each edge of the

spanning tree.

e
d

c b

v1

v3

v2 v5

v4

g

a

h

Graph G:

v6

k

f

e

b

v1

v3

v2 v5

v4

g h v6

k

Disconnected graph G with 2 components

after removing cut set {a, c, d, f}

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 9

12. Define edge Connectivity.

 Each cut-set of a connected graph G consists of certain number of edges. The number of edges

in the smallest cut-set is defined as the edge Connectivity of G.

 The edge Connectivity of a connected graph G is defined as the minimum number of edges

whose removal reduces the rank of graph by one.

 The edge Connectivity of a tree is one.

The edge Connectivity of the above graph G is three.

13. Define vertex Connectivity

 The vertex Connectivity of a connected graph G is defined as the minimum number of

vertices whose removal from G leaves the remaining graph disconnected. The vertex Connectivity of a

tree is one.

The vertex Connectivity of the above graph G is one.

14. Define separable and non-separable graph.

 A connected graph is said to be separable graph if its vertex connectivity is one. All other

connected graphs are called non-separable graph.

15. Define articulation point.

 In a separable graph a vertex whose removal disconnects the graph is called a cut-vertex, a cut-

node, or an articulation point.

v1 is an articulation point.

16. What is Network flows

 A flow network (also known as a transportation network) is a graph where each edge has a

capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the capacity of

the edge.

17. Define max-flow and min-cut theorem (equation).

The maximum flow between two vertices a and b in a flow network is equal to the minimum of

the capacities of all cut-sets with respect to a and b.

v1

v1 v2

Separable Graph G:
Non-Separable Graph H:

v1

v1

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 10

The max. flow between two vertices = Min. of the capacities of all cut-sets.

18. Define component (or block) of graph.

 A separable graph consists of two or more non separable subgraphs. Each of the largest

nonseparable is called a block (or component).

 The above graph has 5 blocks.

19. Define 1-Isomorphism

 A graph G1 was 1-Isomorphic to graph G2 if the blocks of G1 were isomorphic to the blocks of

G2.

Two graphs G1 and G2 are said to be 1-Isomorphic if they become isomorphic to each other

under repeated application of the following operation.

 Operation 1: “Split” a cut-vertex into two vertices to produce two disjoint subgraphs.

Graph G1: Graph G2:

Graph G1 is 1-Isomorphism with Graph G2.

20. Define 2-Isomorphism

Two graphs G1 and G2 are said to be 2-Isomorphic if they become isomorphic after

undergoing operation 1 or operation 2, or both operations any number of times.

 Operation 1: “Split” a cut-vertex into two vertices to produce two disjoint subgraphs.

Operation 2: “Split” the vertex x into x1 and x2 and the vertex y into y1 and y2 such that G is

split into g1 and g2. Let vertices x1 and y1 go with g1 and vertices x2 and y2 go with

g2. Now rejoin the graphs g1 and g2 by merging x1 with y2 and x2 with y1.

21. Briefly explain Combinational and geometric graphs

 An abstract graph G can be defined as G = (�, �, �)

 Where the set V consists of five objects named a, b, c, d, and e, that is, � = { a, b, c, d, e } and the set

E consist of seven objects named 1, 2, 3, 4, 5, 6, and 7, that is, � = { 1, 2, 3, 4, 5, 6, 7}, and the

relationship between the two sets is defined by the mapping �, which consist of

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 11

 �= [1(a, c), 2(c, d) , 3(a, d) , 4(a, b) , 5(b, d) , 6(d, e) , 7(b, e)].

Here the symbol 1(a, c), says that object 1 from set E is mapped onto the pair (a, c) of objects from

set V.

 This combinatorial abstract object G can also be represented by means of a geometric figure.

The figure is one such geometric representation of this graph G.

 Any graph can be geometrically represented by means of such configuration in three

dimensional Euclidian space. Prepared by G. Appasami, Assistant professor, Dr. pauls Engineering

College.

22. Distinguish between Planar and non-planar graphs

 A graph G is said to be planar if there exists some geometric representation of G which can be

drawn on a plan such that no two of its edges intersect.

A graph that cannot be drawn on a plan without crossover its edges is called non-planar.

23. Define embedding graph.

 A drawing of a geometric representation of a graph on any surface such that no edges intersect

is called embedding.

24. Define region in graph.

 In any planar graph, drawn with no intersections, the edges divide the planes into

different regions (windows, faces, or meshes). The regions enclosed by the planar graph are called

interior faces of the graph. The region surrounding the planar graph is called the exterior (or infinite

or unbounded) face of the graph. Prepared by G. Appasami, Assistant professor, Dr. pauls Engineering

College.

Graph G:
Embedded Graph G:

Planar Graph G:
Non-planar Graph H:

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 12

The graph has 6 regions.

25. Why the graph is embedding on sphere.

 To eliminate the distinction between finite and infinite regions, a planar graph is often

embedded in the surface of sphere. This is done by stereographic projection.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 13

UNIT III MATRICES, COLOURING AND DIRECTED GRAPH

1. What is proper coloring?

 Painting all the vertices of a graph with colors such that no two adjacent vertices have the same

color is called the proper coloring (simply coloring) of a graph. A graph in which every vertex has

been assigned a color according to a proper coloring is called a properly colored graph.

2. Define Chromatic number

A graph G that requires k different colors for its proper coloring, and no less, is called k-

chromatic graph, and the number k is called the chromatic number of G.

The minimum number of colors required for the proper coloring of a graph is called Chromatic

number.

 The above graph initially colored with 5 different colors, then 4, and finally 3. So the chromatic

number is 3. i.e., The graph is 3-chromatic.

3. Write the properties of chromatic numbers (observations).

 A graph consisting of only isolated vertices is 1-chromatic.

 Every tree with two or more vertices is 2-chromatic.

 A graph with one or more vertices is at least 2-chromatic.

 A graph consisting of simply one circuit with n ≥ 3 vertices is 2-chromatic if n is even and

3-chromatic if n is odd.

 A complete graph consisting of n vertices is n-chromatic.

4. Define Chromatic partitioning

 A proper coloring of a graph naturally induces a partitioning of the vertices into different

subsets based on colors.

For example, the coloring of the above graph produces the portioning {v1, v4}, {v2}, and {v3, v5}.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 14

5. Define independent set and maximal independent set.

 A set of vertices in a graph is said to be an independent set of vertices or simply independent

set (or an internally stable set) if two vertices in the set are adjacent.

 For example, in the above graph produces {a, c, d} is an independent set.

 A single vertex in any graph constitutes an independent set.

 A maximal independent set is an independent set to which no other vertex can be added

without destroying its independence property.

 {a, c, d, f} is one of the maximal independent set. {b, f} is one of the maximal independent set.

 The number of vertices in the largest independent set of a graph G is called the independence

number (or coefficients of internal stability), denoted by β(G).
 For a K-chromatic graph of n vertices, the independence number β(G) ≥��.

6. Define uniquely colorable graph.

 A graph that has only one chromatic partition is called a uniquely colorable graph. For

example,

7. Define dominating set.

 A dominating set (or an externally stable set) in a graph G is a set of vertices that dominates

every vertex v in G in the following sense: Either v is included in the dominating set or is adjacent to

one or more vertices included in the dominating set.

 {b, g} is a dominating set, {a, b, c, d, f} is a dominating set. A is a dominating set need not be

independent set. Set of all vertices is a dominating set.

 A minimal dominating set is a dominating set from which no vertex can be removed without

destroying its dominance property.

{b, e} is a minimal dominating set.

a e

c

d

b

f

g

a e

c

d

b

f

g

v1

v5 v2

v3 v4

Uniquely colorable graph G:
Not uniquely colorable graph H:

a e

c

d

b

f

g

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 15

8. Define Chromatic polynomial.

 A graph G of n vertices can be properly colored in many different ways using a sufficiently

large number of colors. This property of a graph is expressed elegantly by means of polynomial. This

polynomial is called the Chromatic polynomial of G.

 The value of the Chromatic polynomial Pn(λ) of a graph with n vertices the number of ways of

properly coloring the graph , using λ or fewer colors.

9. Define Matching (Assignment).

 A matching in a graph is a subset of edges in which no two edges are adjacent. A single edge in

a graph is a matching.

 A maximal matching is a matching to which no edge in the graph can be added.

 The maximal matching with the largest number of edges are called the largest maximal

matching.

10. What is Covering?

A set g of edges in a graph G is said to be cover og G if every vertex in G is incident on at least

one edge in g. A set of edges that covers a graph G is said to be a covering (or an edge covering, or a

coverring subgraph) of G.

Every graph is its own covering.

A spanning tree in a connected graph is a covering.

A Hamiltonian circuit in a graph is also a covering.

11. Define minimal cover.

 A minimal covering is a covering from which no edge can be removed without destroying it

ability to cover the graph G.

12. What is dimer covering?

 A covering in which every vertex is of degree one is called a dimer covering or a 1-factor. A

dimmer covering is a maximal matching because no two edges in it are adjacent. Prepared by G.

Appasami, Assistant professor, Dr. pauls Engineering College.

v1 v2

v3 v4

e1

e3

e2
e4

 Graph G

e5

v1 v2

v3 v4

e1

e3

e2
e4

Minimal cover

e5

v1 v2

v3 v4

e1

e3

e2
e4

 Graph G Matching

e5

v1 v2

v3 v4

e1

e3

e2
e4

e5

v1 v2

v3 v4

e1

e3

e2
e4

 Maximal matching

e5

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 16

 Two dimmer coverings.

13. Define four color problem / conjecture.

 Every planar graph has a chromatic number of four or less.

 Every triangular planar graph has a chromatic number of four or less.

 The regions of every planar, regular graph of degree three can be colored properly with four

colors.

14. State five color theorem

 Every planar map can be properly colored with five colors.

i.e., the vertices of every plannar graph can be properly colored with five colors.

15. Write about vertex coloring and region coloring.

 A graph has a dual if and only if it is planar. Therefore, coloring the regions of a planar graph

G is equivalent to coloring the vertices of its dual G* and vice versa.

What is meant by regularization of a planar graph?

 Remove every vertex of degree one from the graph G does not affect the regions of a plannar

graph.

 Remove every vertex of degree two and merge the two edges in series from the graph G.

 Such a transformation may be called regularization of a planar graph.

16. Directed graphs

 A directed graph (or a digraph, or an oriented graph) G consists of a set of vertices � = { v1,

v2, … }, a set of edges � = { e1, e2, … }, and a mapping � that maps every edge onto some ordered

pair of vertices (vi, vj).

 For example,

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 17

17. Define isomorphic digraph.

 Among directed graphs, if their labels are removed, two isomorphic graphs are

indistinguishable then these graphs are isomorphic digraph.

 For example,

 Two isomorphic digraphs.

Two non-isomorphic digraphs.

18. List out some types of directed graphs

 Simple Digraphs

 Asymmetric Digraphs (Anti-symmetric)

 Symmetric Digraphs

 Simple Symmetric Digraphs

 Simple Asymmetric Digraphs

 Complete Digraphs

 Complete Symmetric Digraphs

 Complete Asymmetric Digraphs (tournament)

 Balance digraph (a pseudo symmetric digraph or an isograph)

19. Define binary relations.

 In a set of objects, X, where X={x1, x2, …}, A binary relation R between pairs (xi, xj) can be

written as xi R xj and say that xi has relation R to xj.

 If the binary relation R is reflexive, symmetric, and transitive then R is an equivalence relation.

This produces equivalence classes.

20. What is Directed path?

 A path in a directed graph is called Directed path.

v5 e8 v3 e6 v4 e3 v1 is a directed path from v5 to v1.

Whereas v5 e7 v4 e6 v3 e1 v1 is a semi-path from v5 to v.

v1 v2

v3 v4

e1

e3

e2
e4

e5

a c

b d

1

3

2
4

5

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 18

21. Write the types of connected digraphs

 Strongly connected digraph: A digraph G is said to be strongly connected if there is at

least one directed path from every vertex to every other vertex.

 Weakly connected digraph: A digraph G is said to be weakly connected if its

corresponding undirected graph is connected. But G is not strongly connected.

22. Define Euler digraphs

 In a digraph G, a closed directed walk which traverses every edge of G exactly once is called a

directed Euler line. A digraph containing a directed Euler line is called an Euler digraphs

 For example,

It contains directed Euler line a b c d e f.

23. What is teleprinter’s problem.
 Constructing a longest circular sequence of 1’s and 0’s such that no subsequence of r bits
appears more than once in the sequence.

 Teleprinter’s problem was solved in 1940 by I.G. Good using digraph.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 19

UNIT IV PERMUTATIONS & COMBINATIONS

1. Define Fundamental principles of counting

 The Fundamental Counting Principle is a way to figure out the total number of ways different

events can occur.

 If the first task can be performed in m ways, while a second task can be performed in n ways,

and the two tasks cannot be performed simultaneously, then performing either task can be

accomplished in any one of m + n ways.

 If a procedure can be broken into first and second stages, and if there are m possible outcomes

for the first stage and if, for each of these outcomes, there are n possible outcomes for the second

stage, then the total procedure can be carried out, in the designed order, in mn ways.

2. Define rule of sum.

 If the first task can be performed in m ways, while a second task can be performed in n ways,

and the two tasks cannot be performed simultaneously, then performing either task can be

accomplished in any one of m + n ways.

Example: A college library has 40 books on C++ and 50 books on Java. A student at this college can

select 40+50=90 books to learn programming language.

3. Define rule of Product

If a procedure can be broken into first and second stages, and if there are m possible outcomes

for the first stage and if, for each of these outcomes, there are n possible outcomes for the second

stage, then the total procedure can be carried out, in the designed order, in mn ways.

Example: A drama club with six men and eight can select male and female role in 6 x 8 = 48 ways.

4. Define Permutations

 For a given collection of n objects, any linear arrangement of these objects is called a

permutation of the collection. Counting the linear arrangement of objects can be done by rule of

product.

For a given collection of n distinct objects, and r is an integer, with 1 ≤ r ≤ n, then by rule of
product, the number of permutations of size r for the n objects is

 �ሺ�, ሻݎ = � × ሺ� − ͳሻ × ሺ� − ʹሻ × … × ሺ� − ݎ + ͳሻ = �!ሺ�−�ሻ! , Ͳ ൑ ݎ ൑ �

Example: In a class of 10 students, five are to be chosen and seated in a row for a picture.

 The total number of arrangements = 10 x 9 x 8 x 7 x 6 = 30240.

5. Define combinations

For a given collection of n objects, each selection, or combination, of r of these objects, with

no reference to order, corresponds to r! (Permutations of size r from the n objects). Thus the number of

combinations of size r from a collection of size n is �ሺ�, ሻݎ = �ሺ�, !ݎሻݎ = !ݎ!� ሺ� − !ሻݎ , Ͳ ൑ ݎ ൑ �

Example: In a test, students are directed to answer 7 questions out of 10. The student can answer the

examination in �ሺ�, ሻݎ = �ሺͳͲ, ͹ሻ = ͳͲ!͹! ሺͳͲ − ͹ሻ! = ͳͲ × ͻ × ͺ͵ × ʹ × ͳ = ͳʹͲ ݏݕ�ݓ

6. State Binomial theorem

 The Binomial theorem: If x and y are variables and n is a positive integer, then ሺݔ + �ሻݕ = ቀ�Ͳቁ �ݕ଴ݔ + ቀ�ͳቁ ଵ−�ݕଵݔ + ቀ�ʹቁ ଶ−�ݕଶݔ + ⋯

 ቀ �� − ͳቁ ଵݕଵ−�ݔ + ቀ��ቁ ଴ݕ�ݔ = ∑ ቀ��ቁ ଴=���−�ݕ�ݔ

 ቀ��ቁ is referred as Binomial coefficient.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 20

7. Define combinations with repetition

 If there is a selection with repetition, r of n distinct objects, then the combinations with of n

objects taken r at a time with repetition is �ሺ� + ݎ − ͳ, .ሻݎ
 �ሺ� + ݎ − ͳ, ሻݎ = ሺ� + ݎ − ͳሻ!ݎ! ሺ� − ͳሻ! = ቀ� + ݎ − ͳݎ ቁ

Example: A donut shop offers 20 kinds of donuts. Assuming that there are at least a dozen of each

kind when we enter the shop. We can select a dozen donuts in �ሺʹͲ + ͳʹ − ͳ, ͳʹሻ= �ሺ͵ͳ, ͳʹሻ =

141120525 ways

8. Define Catalan numbers

The Catalan numbers form a sequence of natural numbers that occur in various counting problems,

often involving recursively-defined objects. They are named after the Belgian mathematician Eugène

Charles Catalan. the nth Catalan number is given directly in terms of binomial coefficients by Prepared

by G. Appasami, Assistant professor, Dr. pauls Engineering College.

9. Write the Principle of inclusion and exclusion formula.

For any 2 sets, C1 and C2,

For any 3 sets, C1, C2 and C3,

For any 4 sets, C1, C2 , C2 and C4,

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 21

10. Define Derangements

A derangement is a permutation of the elements of a set, such that no element appears in its

original position.

The number of derangements of a set of size n, usually written Dn, dn, or !n, is called the

"derangement number" or "de Montmort number".

Example: The number of derangements of 1, 2, 3, 4 is

 d4 = 4! [1 – 1 + (1/2!)-(1/3!)+(1/4!)] = 9.

11. What is meant by Arrangements with forbidden (banned) positions.

 The number of acceptable assignments is equal to the number of ways of placing nontaking

rooks on this chessboard so that none of the rooks is in a forbidden position. The key to determining

this number of arrangements is the inclusion- exclusion principle.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 22

UNIT V GENERATING FUNCTIONS

1. Define Generating function.

A generating function describes an infinite sequence of numbers (an) by treating them like

the coefficients of a series expansion. The sum of this infinite series is the generating function. Unlike

an ordinary series, this formal series is allowed to diverge, meaning that the generating function is not

always a true function and the "variable" is actually an indeterminate.

The generating function for 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., whose ordinary generating function is ∑ሺݔሻ� = ͳͳ − ∞ݔ

�=଴

The generating function for the geometric sequence 1, a, a
2
, a

3
, ... for any constant a: ∑ሺ��ሻ� = ૚૚ − ��∞

�=૙

2. What is Partitions of integer?

 Partitioning a positive n into positive summands and seeking the number of such partitions

without regard to order is called Partitions of integer.

 This number is denoted by p(n). For example

P(1) = 1: 1

P(2) = 2: 2 = 1 + 1

P(3) = 3: 3 = 2 +1 = 1 + 1 +1

P(4) = 5: 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

P(5) = 7: 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1+ 1 = 1 + 1 + 1 + 1 + 1

3. Define Exponential generating function

For a sequence a0, a1, a2, a3,, … of real numbers. ݂ሺݔሻ = �଴ + �ଵݔ + �ଶ !ʹଶݔ + �ଷ !͵ଷݔ + ⋯ = ∑ �� ���! �∞

�=૙

is called the exponential generating function for the given sequence.

4. Define Maclaurin series expansion of e
x
 and e

-x
. ݁� = ͳ + ݔ + !ʹଶݔ + !͵ଷݔ + !ସͶݔ + ⋯ ݁−� = ͳ − ݔ + !ʹଶݔ − !͵ଷݔ + !ସͶݔ − ⋯

Adding these two series together, we get, ݁� + ݁−� = ʹሺͳ + !ʹଶݔ + !ସͶݔ + ⋯ ሻ ݁� + ݁−�ʹ = ͳ + !ʹଶݔ + !ସͶݔ + ⋯

5. Define Summation operator

Generating function for a sequence a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3,, … .
For ሺݔሻ = �଴ + �ଵ ݔ + �ଶ ݔଶ + �ଷ ݔଷ + ⋯ ,, consider the function f(x)/(1-x) ݂ሺݔሻͳ − ݔ = ݂ሺݔሻ. ͳͳ − ݔ = [�଴ + �ଵ ݔ + �ଶ ݔଶ + �ଷ ݔଷ + ⋯][ͳ + + ݔ ଶݔ + ଷݔ + ⋯]
 = �଴ + ሺ�଴ + �ଵሻݔ + ሺ�଴ + �ଵ+�ଶሻݔଶ + +ሺ�଴ + �ଵ+�ଶ + �ଷሻݔଷ + ⋯
So f(x)/(1-x) generates the sequence of sums a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3,,

1/(1-x) is called the summation operator.

https://en.wikipedia.org/wiki/Infinite_sequence
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Series_expansion
https://en.wikipedia.org/wiki/Formal_series
https://en.wikipedia.org/wiki/Divergent_series
https://en.wikipedia.org/wiki/Indeterminate_(variable)
https://en.wikipedia.org/wiki/Geometric_progression

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 23

6. What is Recurrence relation?

A recurrence relation is an equation that recursively defines a sequence or multidimensional

array of values, once one or more initial terms are given: each further term of the sequence or array is

defined as a function of the preceding terms.

The term difference equation sometimes (and for the purposes of this article) refers to a

specific type of recurrence relation. However, "difference equation" is frequently used to refer

to any recurrence relation.

7. Write Fibonacci numbers and relation

The recurrence satisfied by the Fibonacci numbers is the archetype of a homogeneous linear

recurrence relation with constant coefficients (see below). The Fibonacci sequence is defined using the

recurrence

Fn = Fn-1 + Fn-2

with seed values F0 = 0 and F1 = 1

We obtain the sequence of Fibonacci numbers, which begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

8. Define First order linear recurrence relation

 The general form of First order linear homogeneous recurrence relation can be written as

an+1 = d an, n ≥ 0, where d is a constant. The relation is first order since an+1 depends on an.

 a0 or a1 are called boundary conditions.

9. Define Second order recurrence relation

https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Recurrence_relation#Relationship_to_difference_equations_narrowly_defined
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Linear_recurrence
https://en.wikipedia.org/wiki/Linear_recurrence
https://en.wikipedia.org/wiki/Initial_condition

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 24

10. Briefly explain Non-homogeneous recurrence relation.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1

CS6702 GRAPH THEORY AND APPLICATIONS

QUESTION BANK

UNIT I INTRODUCTION

PART – A

1. Define Graph.

2. Define Simple graph.

3. Write few problems solved by the applications of graph theory.

4. Define incidence, adjacent and degree.

5. What are finite and infinite graphs?

6. Define Isolated and pendent vertex.

7. Define null graph.

8. Define Multigraph

9. Define complete graph

10. Define Regular graph

11. Define Cycles

12. Define Isomorphism.

13. What is Subgraph?

14. Define Walk, Path and Circuit.

15. Define connected graph. What is Connectedness?

16. Define Euler graph.

17. Define Hamiltonian circuits and paths

18. Define Tree

19. List out few Properties of trees.

20. What is Distance in a tree?

21. Define eccentricity and center.

22. Define distance metric.

23. What are the Radius and Diameter in a tree.

24. Define Rooted tree

25. Define Rooted binary tree

PART – B

1. Explain various applications of graph.

2. Define the following kn, cn, kn,n, dn, trail, walk, path, circuit with an example.

3. Show that a connected graph G is an Euler graph iff all vertices are even degree.

4. Prove that a simple graph with n vertices and k components can have at most (n-k)(n-k+1)/2

edges.

5. Are they isomorphic?

6. Prove that in a complete graph with n vertices there are (n-1)/2 edges-disjoint Hamiltonian

circuits, if n is odd number ≥3.
7. Prove that, there is one and only one path between every pair of vertices in a tree T.

8. Prove the given statement, “A tree with n vertices has n-1 edges”.
9. Prove that, any connected graph with n vertices has n-1 edges is a tree.

10. Show that a graph is a tree if and only if it is minimally connected.

11. Prove that, a graph G with n vertices has n-1 edges and no circuits are connected.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 2

UNIT II TREES, CONNECTIVITY & PLANARITY

PART – A

1. Define Spanning trees.

2. Define Branch and chord.

3. Define complement of tree.

4. Define Rank and Nullity.

5. How Fundamental circuits created?

6. Define Spanning trees in a weighted graph.

7. Define degree-constrained shortest spanning tree.

8. Define cut sets and give example.

9. Write the Properties of cut set

10. Define Fundamental circuits

11. Define Fundamental cut sets

12. Define edge Connectivity.

13. Define vertex Connectivity.

14. Define separable and non-separable graph.

15. Define articulation point.

16. What is Network flows.

17. Define max-flow and min-cut theorem (equation).

18. Define component (or block) of graph.

19. Define 1-Isomorphism.

20. Define 2-Isomorphism.

21. Briefly explain Combinational and geometric graphs.

22. Distinguish between Planar and non-planar graphs.

23. Define embedding graph.

24. Define region in graph.

25. Why the graph is embedding on sphere.

PART – B

1. Find the shortest spanning tree for the following graph.

2. Explain 1 - isomarphism and 2 - isomarphism of graphs with your own example.

3. Prove that a connected graph G with n vertices and e edges has e-n+2 regions.

4. Write all possible spanning tree for K5.

5. Prove that every cut-set in a connected graph G must contain at least one branch of every

spanning tree of G.

6. Prove that the every circuit which has even number of edges in common with any cut-set.

7. Show that the ring sum of any two cut-sets in a graph is either a third cut set or en edge disjoint

union of cut sets.

8. Explain network flow problem in detail.

9. If G1 and G2 are two 1-isomorphic graphs, the rank of G1 equals the rank of G2 and the nullity

of G1 equals the nullity of G2, prove this.

10. Prove that any two graphs are 2-isomorphic if and only if they have circuit correspondence.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 3

UNIT III MATRICES, COLOURING AND DIRECTED GRAPH

PART – A

1. What is proper coloring?

2. Define Chromatic number

3. Write the properties of chromatic numbers (observations).

4. Define Chromatic partitioning

5. Define independent set and maximal independent set.

6. Define uniquely colorable graph.

7. Define dominating set.

8. Define Chromatic polynomial.

9. Define Matching (Assignment).

10. What is Covering?

11. Define minimal cover.

12. What is dimer covering?

13. Define four color problem / conjecture.

14. State five color theorem

15. Write about vertex coloring and region coloring.

16. What is meant by regularization of a planar graph?

17. Define Directed graphs .

18. Define isomorphic digraph.

19. List out some types of directed graphs.

20. Define Simple Digraphs.

21. Define Asymmetric Digraphs (Anti-symmetric).

22. What is meant by Symmetric Digraphs?

23. Define Simple Symmetric Digraphs.

24. Define Simple Asymmetric Digraphs.

25. Give example for Complete Digraphs.

26. Define Complete Symmetric Digraphs.

27. Define Complete Asymmetric Digraphs (tournament).

28. Define Balance digraph (a pseudo symmetric digraph or an isograph).

29. Define binary relations.

30. What is Directed path?

31. Write the types of connected digraphs.

32. Define Euler graphs.

PART – B

1. Prove that any simple planar graph can be embedded in a plane such that every edge is drawn

as a straight line.

2. Show that a connected planar graph with n vertices and e edges has e-n+2 regions.

3. Define chromatic polynomial. Find the chromatic polynomial for the following graph.

4. Explain matching and bipartite graph in detail.

5. Write the observations of minimal covering of a graph.

6. Prove that the vertices of every planar graph can be properly colored with five colors.

7. Explain matching in detail.

8. Prove that a covering g of graph G is minimal iff g contains no path of length three or more.

9. Illustrate four-color problem.

10. Explain Euler digraphs in detail.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 4

UNIT IV PERMUTATIONS & COMBINATIONS

PART – A

1. Define Fundamental principles of counting

2. Define rule of sum.

3. Define rule of Product

4. Define Permutations

5. Define combinations

6. State Binomial theorem

7. Define combinations with repetition

8. Define Catalan numbers

9. Write the Principle of inclusion and exclusion formula.

10. Define Derangements

11. What is meant by Arrangements with forbidden (banned) positions.

PART – B

1. Explain the Fundamental principles of counting.

2. Find the number of ways of ways of arranging the word APPASAMIAP and out of it how

many arrangements have all A’s together.

3. Discuss the rules of sum and product with example.

4. Determine the number of (staircase) paths in the xy-plane from (2, 1) to (7, 4), where each path

is made up of individual steps going 1 unit to the right (R) or one unit upward (U). iv.

Find the coefficient of a
5
b

2
 in the expansion of (2a - 3b)

7
.

5. State and prove binomial theorem.

6. How many times the print statement executed in this program segment?

7. Discuss the Principle of inclusion and exclusion.

8. How many integers between 1 and 300 (inc.) are not divisible by at least one of 5, 6, 8?

9. How 32 bit processors address the content? How many address are possible?

10. Explain the Arrangements with forbidden positions.

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 5

UNIT V GENERATING FUNCTIONS

PART – A

1. Define Generating function.

2. What is Partitions of integer?

3. Define Exponential generating function

4. Define Maclaurin series expansion of e
x
 and e

-x
.

5. Define Summation operator

6. What is Recurrence relation?

7. Write Fibonacci numbers and relation

8. Define First order linear recurrence relation

9. Define Second order recurrence relation

10. Briefly explain Non-homogeneous recurrence relation.

PART – B

1. Explain Generating functions

2. Find the convolution of the sequences 1, 1, 1, 1, ….. and 1,-1,1,-1,1,-1.

3. Find the number of non negative & positive integer solutions of for x1+x2+x3+x4=25.

4. Find the coefficient of x5 in(1-2x)7.

5. The number of virus affected files in a system is 1000 and increases 250% every 2 hours.

6. Explain Partitions of integers

7. Use a recurrence relation to find the number of viruses after one day.

8. Explain First order homogeneous recurrence relations.

9. Solve the recurrence relation an+2-4an+1+3an=-200 with a0=3000 and a1=3300.

10. Solve the Fibonacci relation Fn = Fn-1+Fn-2.

11. Find the recurrence relation from the sequence 0, 2, 6, 12, 20, 30, 42, … .

12. Determine (1+√3i)10.

13. Discuss Method of generating functions.

All the Best – No substitution for hard work.

Mr. G. Appasami SET, NET, GATE, M.Sc., M.C.A., M.Phil., M.Tech., (P.hd.), MISTE, MIETE, AMIE, MCSI, MIAE, MIACSIT, MASCAP,

MIARCS, MISIAM, MISCE, MIMS, MISCA, MISAET, PGDTS, PGDBA, PGDHN, PGDST, (AP / CSE / DRPEC).

 Reg. No.

MODEL EXAMINATION

Department of Computer Science and Engineering

 Subject Name : Graph Theory and Applications Date : 30/09/2016

 Subject Code : CS6702 Duration : 3 Hours

 Year / Sem. : IV / VII Marks : 100

Part-A (10x2=20)

Answer All Questions

1. What are finite and infinite graphs? Give an example.

2. Differentiate regular and complete graph.

3. Define cut sets and give example.

4. Briefly explain Combinational and geometric graphs.

5. Define Chromatic number. Find Chromatic number for K5.

6. Define Matching (Assignment).

7. A donut shop offers 20 kinds of donuts. Assuming that there is at least a dozen of each kind

when we enter the shop. How many ways we can select a dozen donuts?

8. Define Derangements. Find the derangements of 1, 2, 3, 4.

9. What is Partitions of integer?

10. Define Second order recurrence relation. Give an example.

Part-B (5x16=80)

Answer All Questions

11. a. i. Explain various applications of graph. (8)

 ii. Define the following kn, cn, kn,n, dn, trail, walk, path, circuit with an example. (8)

Or

 b. i. Show that a connected graph G is an Euler graph iff all vertices are even degree. (8)

ii. Prove that a simple graph with n vertices and k components can have at most (8)

(n-k)(n-k+1)/2 edges.

12. a. i. Find the shortest spanning tree for the following graph. (8)

 ii. Prove that the every circuit which has even number of edges in common with any cut-set. (8)

Or

 b. i. Explain 1 - isomarphism and 2 - isomarphism of graphs with your own example. (8)

 ii. Prove that a connected graph G with n vertices and e edges has e-n+2 regions (8)

13. a. i. Define chromatic polynomial. Find the chromatic polynomial for the following graph. (8)

 ii. Explain matching and bipartite graph in detail. (8)

Or

 b. i. Write the observations of minimal covering of a graph. (8)

 ii. Prove that the vertices of every planar graph can be properly colored with five colors. (8)

14. a. i. Find the number of ways of ways of arranging the word MASSASAUGA and out of it

 how many arrangements have all A’s together. (4)

 ii. Discuss the rules of sum and product with example. (4)

 iii. Determine the number of (staircase) paths in the xy-plane from (2, 1) to (7, 4), where each

path is made up of individual steps going 1 unit to the right (R) or one unit upward (U). (4)

 iv. Find the coefficient of a
5
b

2
 in the expansion of (2a - 3b)

7
. (4)

Or

 b. i. State and prove binomial theorem. (8)

 ii. How many times the print statement executed in this program segment? (4)

 iii. How many integers between 1 and 300 (inc.) are not divisible by at least one of 5, 6, 8? (4)

15. a. i. Find the convolution of the sequences 1, 1, 1, 1, ….. and 1,-1,1,-1,1,-1. (4)

 ii. Find the number of non negative & positive integer solutions of for x1+x2+x3+x4=25. (4)

 iii. Find the coefficient of x
5
 in(1-2x)

7
. (4)

 iv. The number of virus affected files in a system is 1000 and increases 250% every 2 hours. (4)

 Use a recurrence relation to find the number of viruses after one day.

Or

 b. i. Solve the recurrence relation an+2-4an+1+3an=-200 with a0=3000 and a1=3300. (4)

 ii. Solve the Fibonacci relation Fn = Fn-1+Fn-2. (4)

 iii. Find the recurrence relation from the sequence 0, 2, 6, 12, 20, 30, 42, … . (4)

 iv. Determine (1+√3i)10
. (4)

REFERENCES:

1. Narsingh Deo, “Graph Theory: With Application to Engineering and Computer

Science”, Prentice Hall of India, 2003.

2. Grimaldi R.P. “Discrete and Combinatorial Mathematics: An Applied Introduction”,

Addison Wesley, 1994.

3. Clark J. and Holton D.A, “A First Look at Graph Theory”, Allied Publishers, 1995.

4. Mott J.L., Kandel A. and Baker T.P. “Discrete Mathematics for Computer Scientists

and Mathematicians” , Prentice Hall of India, 1996.

5. Liu C.L., “Elements of Discrete Mathematics”, Mc Graw Hill, 1985.

6. Rosen K.H., “Discrete Mathematics and Its Applications”, Mc Graw Hill, 2007.

Differential Equations

A Differential Equation is an equation with a function and one or more of its derivatives :

dy
dxy x+ 5=

differential equation
(derivative)

Example: an equation with the function y and its derivative
dy

dx

Solving

We solve it when we discover the function y (or set of functions y).

There are many "tricks" to solving Differential Equations (if they can be solved!), but first:
why?

Why Are Differential Equations Useful?

In our world things change, and describing how they change often ends up as a
Differential Equation:

Example: Rabbits!

The more rabbits we have the more baby rabbits we
get. Then those rabbits grow up and have babies too!
The population will grow faster and faster.

The important parts of this are:

the population N at any time t

the growth rate r

the population's rate of change N

Let us imagine some actual values:

the population N is 1000

https://www.mathsisfun.com/sets/function.html
https://www.mathsisfun.com/calculus/derivatives-introduction.html

the growth rate r is 0.01 new rabbits per week for every current rabbit

The population's rate of change N is then 1000×0.01 = 10 new rabbits per

week.

But that is only true at a specific time, and doesn't include that the population is
constantly increasing.

Remember: the bigger the population, the more new rabbits we get!

So it is better to say the rate of change (at any instant) is the growth rate times
the population at that instant:

dN
 = rN

dt

And it is a Differential Equation, because it has a function N(t) and its
derivative.

And how powerful mathematics is! That short equation says "the rate of change of
the population over time equals the growth rate times the population".

Differential Equations can describe how populations change, how heat moves, how springs
vibrate, how radioactive material decays and much more. They are a very natural way to
describe many things in the universe.

What To Do With Them?

On its own, a Differential Equation is a wonderful way to express something, but is hard to
use.

So we try to solve them by turning the Differential Equation into a simpler Algebra­style
equation (without the differential bits) so we can do calculations, make graphs, predict the
future, and so on.

Example: Compound Interest

Money earns interest. The interest can be calculated at fixed times, such as yearly,
monthly, etc. and added to the original amount.

https://www.mathsisfun.com/money/compound-interest.html

This is called compound interest .

But when it is compounded continuously then at any time the
interest gets added in proportion to the current value of the loan (or
investment).

And the bigger the loan the more interest it earns.

Using t for time, r for the interest rate and V for the current value of the loan:

dV
 = rV

dt

And here is a cool thing: it is the same as the equation we got with the Rabbits! It
just has different letters. So mathematics shows us these two things behave the
same.

Solving

The Differential Equation says it well, but is hard to use.

But don't worry, it can be solved (using a special method called Separation of
Variables) and results in:

V = Pert

Where P is the Principal (the original loan).

So a continuously compounded loan of $1,000 for 2 years at an interest rate of
10% becomes:

V = 1000 × e(2×0.1)

V = 1000 × 1.22140...
= $1,221.40 (to nearest cent)

So Differential Equations are great at describing things, but need to be solved to be useful.

https://www.mathsisfun.com/money/compound-interest.html
https://www.mathsisfun.com/calculus/separation-variables.html

x

More Examples of Differential Equations

The Verhulst Equation

Example: Rabbits Again!

Remember our growth Differential Equation:

dN
 = rN

dt

Well, that growth can't go on forever as they will soon run out of available food.

So let's improve it by including:

the maximum population that the food can support k

A guy called Verhulst figured it all out and got this Differential Equation:

dN
 = rN(1­N/k)

dt

The Verhulst Equation

Simple harmonic motion

In Physics, Simple Harmonic Motion is a type of periodic motion where the restoring force is
directly proportional to the displacement. An example of this is given by a mass on a spring.

Example: Spring and Weight

A spring gets a weight attached to it:

the weight is pulled down by gravity,

the tension in the spring increases as it stretches,

then the spring bounces back up,

then back down, up and down, again and again.

Describe this with mathematics!

The weight is pulled down by gravity, and we know from Newton's Second Law
that force equals mass times acceleration:

F = ma

And acceleration is the second derivative of position with respect to time, so:

F = m d
2x

dt2

The spring pulls it back up based on how stretched it is (k is the spring's stiffness,
and x is how stretched it is): F = ­kx

The two forces are always equal:

m d
2x

dt2
 = −kx

We have a differential equation!

It has a function x(t), and it's second derivative
d2x

dt2

Note: we haven't included "damping" (the slowing down of the bounces due to
friction), that is just a little more complicated.

OK, now we want to solve it to find how the spring bounces up and down over
time.

Classify Before Trying To Solve

OK, we want to solve them, but how?

https://www.mathsisfun.com/physics/force.html
https://www.mathsisfun.com/measure/metric-acceleration.html
https://www.mathsisfun.com/calculus/second-derivative.html

Over the years wise people have worked out special methods to solve some
types of Differential Equations.

So we need to know what type of Differential Equation it is first.

It is like travel: different kinds of transport have solved how to get to certain
places. Is it near, so we can just walk? Is there a road so we can take a car?
Is it over water so we need a ship? Or is it in another galaxy and we just can't
get there yet?

So let us classify the Differential Equation.

Ordinary or Partial

The first major grouping is:

"Ordinary Differential Equations" (ODEs) have a single independent variable (like
y)

"Partial Differential Equations" (PDEs) have two or more independent variables.

We are learning about Ordinary Differential Equations here!

Order and Degree

Next we work out the Order and the Degree:

dx
dy
dx

2

2 - 243+ +

Order 2 Degree 3

y = 4xd y

Order

The Order is the highest derivative (is it a first derivative? a second derivative ? etc):

Example:

dy
+ y2 = 5x

dx

https://www.mathsisfun.com/calculus/second-derivative.html

It has only the first derivative
dy

dx
 , so is "First Order"

Example:

d2y
+ xy = sin(x)

dx2

This has a second derivative
d2y

dx2
 , so is "Order 2"

Example:

d3y
+ x

dy
+ y= ex

dx3 dx

This has a third derivative
d3y

dx3
 which outranks the

dy

dx
 , so is "Order 3"

Degree

The degree is the exponent of the highest derivative.

Example:

 (
dy
) 2 + y = 5x2dx

The highest derivative is just dy/dx, and it has an exponent of 2, so this is "Second
Degree"

In fact it is a First Order Second Degree Ordinary Differential Equation

Example:

d3y + (dy) 2 + y = 5x2
dx

https://www.mathsisfun.com/algebra/degree-expression.html

dx3

The highest derivative is d3y/dx3, but it has no exponent (well actually an
exponent of 1 which is not shown), so this is "First Degree".

(The exponent of 2 on dy/dx does not count, as it is not the highest derivative).

So it is a Third Order First Degree Ordinary Differential Equation

Be careful not to confuse order with degree. Some people use the word order
when they mean degree!

Linear

It is Linear when the variable (and its derivatives) has no exponent or other function put on
it.

So no y2, y3, √y, sin(y), ln(y) etc, just plain y (or whatever the variable is).

More formally a Linear Differential Equation is in the form:

dy
 + P(x)y = Q(x)

dx

Solving

OK, we have classified our Differential Equation, the next step is solving.

This is not a complete list of how to solve differential equations, but it should get you
started:

Separation of Variables

Solving First Order Linear Differential Equations

Homogeneous Differential Equations

https://www.mathsisfun.com/calculus/separation-variables.html
https://www.mathsisfun.com/calculus/differential-equations-first-order-linear.html
https://www.mathsisfun.com/calculus/differential-equations-homogeneous.html

Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2015 MathsIsFun.com

https://www.mathsisfun.com/sphider/search.php
https://www.mathsisfun.com/links/index.html
https://www.mathsisfun.com/aboutmathsisfun.html
https://www.mathsisfun.com/contact.php
javascript:Contribute()
javascript:Citation()
https://www.mathsisfun.com/Privacy.htm

Published on STAT 414 / 415 (https://onlinecourses.science.psu.edu/stat414)

Home > Distinguishable Permutations

Distinguishable Permutations
Example

Suppose we toss a gold dollar coin 8 times. What is
the probability that the sequence of 8 tosses yields 3
heads (H) and 5 tails (T)?

Solution. Two such sequences, for example,
might look like this:

H H H T T T T T or this H T H T H T T T

Assuming the coin is fair, and thus that the
outcomes of tossing either a head or tail are equally likely, we can use the classical
approach to assigning the probability. The Multiplication Principle tells us that there are:

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

or 256 possible outcomes in the sample space of 8 tosses. (Can you imagine
enumerating all 256 possible outcomes?) Now, when counting the number of
sequences of 3 heads and 5 tosses, we need to recognize that we are dealing with
arrangements or permutations of the letters, since order matters, but in this case not all
of the objects are distinct. We can think of choosing (note that choice of word!) r = 3
positions for the heads (H) out of the n = 8 possible tosses. That would, of course,
leave then n − r = 8 − 3 = 5 positions for the tails (T). Using the formula for a
combination of n objects taken r at a time, there are therefore:

distinguishable permutations of 3 heads (H) and 5 tails (T). The probability of tossing 3
heads (H) and 5 tails (T) is thus 56/256 = 0.22.

Let's formalize our work here!

Definition. Given n objects with:

r of one type, and
n − r of another type

there are:

() = = 56
8

3

8!

3!5!

()
n!

https://onlinecourses.science.psu.edu/stat414
https://onlinecourses.science.psu.edu/stat414/

distinguishable permutations of the n objects.

Let's take a look at another example that involves counting distinguishable permutations of
objects of two types.

Example

Suppose Dr. DoesBadThings conducts research which involves infecting 20 people with the
swine flu virus. He is interested in studying how many actually end up ill (I) and how many
remain healthy (H).

How many arrangements are there of the 20 people that involve 0 people ill?

Solution. In this case, we can readily determine that there is just 1 way. The sequence
would look like this:

HHHHHHHHHHHHHHHHHHHH

Alternatively, we could use the formula for counting distinguishable permutations. The
formula yields:

How many arrangements are there of the 20 people that involve 1 person ill?

Solution. I think we can readily convince ourselves that there are 20 ways. The first
possible sequence might look like this:

I H H H H H H H H H H H H H H H H H H H

The second possible sequence might look like this:

H I H H H H H H H H H H H H H H H H H H

And, the last possible sequence might look like this:

H H H H H H H H H H H H H H H H H H H I

That must mean that there are 20 possible positions for the one I. Alternatively, we
could use the formula for counting distinguishable permutations. The formula yields:

How may arrangements are there of the 20 people that involve 2 people ill?

= () =nCr
n

r

n!

r!(n − r)!

() = = 1
20

0

20!

0!20!

() = = 20
20

1

20!

1!19!

Solution. I'm going to leave it to you to decide if you want to try to count this one out by
hand! I can tell you that the first possible sequence might look like this:

I I H H H H H H H H H H H H H H H H H H

The formula for counting distinguishable permutations yields:

possible arrangements.

Example

How many ordered arrangements are there of the
letters in MISSISSIPPI?

Solution. Well, there are 11 letters in total:

1 M, 4 I, 4 S and 2 P

We are again dealing with arranging objects that
are not all distinguishable. We couldn't distinguish among the 4 I's in any one
arrangement, for example. In this case, however, we don't have just two, but rather
four, different types of objects. In trying to solve this problem, let's see if we can come
up with some kind of a general formula for the number of distinguishable permutations
of n objects when there are more than two different types of objects.

() = = 190
20

2

20!

2!18!

Let's formalize our work.

Definition. The number of distinguishable permutations of n objects, of which:

n1 are of one type
n2 are of a second type
... and ...
nk are of the last type

and n = n1 + n2 + ... + nk is given by:

Let's take a look at a few more examples involving distinguishable permutations of objects of
more than two types.

Example

How many ordered arrangements are there of the letters in the word PHILIPPINES?

() =
n

…n1n2n3 nk

n!

! ! !… !n1 n2 n3 nk

Solution. The number of ordered arrangements of the letters in the word PHILIPPINES
is:

Example

Fifteen (15) pigs are available to use in a study to
compare three (3) different diets. Each of the diets
(let's say, A, B, C) is to be used on five randomly
selected pigs. In how many ways can the diets be
assigned to the pigs?

Solution. Well, one possible assignment of the
diets to the pigs would be for the first five pigs to
be placed on diet A, the second five pigs to be
placed on diet B, and the last 5 pigs to be placed on diet C. That is:

A A A A A B B B B B C C C C C

Another possible assignment might look like this:

A B C A B C A B C A B C A B C

Upon studying these possible assignments, we see that we need to count the number
of distinguishable permutations of 15 objects of which 5 are of type A, 5 are of type B,
and 5 are of type C. Using the formula, we see that there are:

ways in which 15 pigs can be assigned to the 3 diets. That's a lot of ways!

Source URL: https://onlinecourses.science.psu.edu/stat414/node/31

= 1, 108, 800
11!

3!1!3!1!1!1!1!

= 756756
15!

5!5!5!

https://onlinecourses.science.psu.edu/stat414/node/31

The Doping of Semiconductors
The addition of a small percentage of foreign atoms in the regular crystal lattice of
silicon or germanium produces dramatic changes in their electrical properties, producing
n-type and p-type semiconductors.

Pentavalent impurities
Impurity atoms with 5 valence electrons produce n-type semiconductors by contributing
extra electrons.

Trivalent impurities
Impurity atoms with 3 valence electrons produce p-type semiconductors by producing a
"hole" or electron deficiency.

P- and N- Type Semiconductors

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c5
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c4

N-Type Semiconductor
The addition of pentavalent impurities such
as antimony, arsenic or phosphorous
contributes free electrons, greatly
increasing the conductivity of the intrinsic
semiconductor. Phosphorous may be added
by diffusion of phosphine gas (PH3).

P-Type Semiconductor
The addition of trivalent impurities such as boron,
aluminum or gallium to an intrinsic
semiconductor creates deficiencies of valence
electrons,called "holes". It is typical to use B2H6
diborane gas to diffuse boron into the silicon
material.

Bands for Doped Semiconductors

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dsem.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dsem.html#c3

The application of band theory to n-type and p-type semiconductors shows that extra
levels have been added by the impurities. In n-type material there are electron energy
levels near the top of the band gap so that they can be easily excited into the conduction
band. In p-type material, extra holes in the band gap allow excitation of valence band
electrons, leaving mobile holes in the valence band.

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/band.html#c1

Semiconductor Diodes
electronicshub.org/semiconductor-diodes/

Contents [hide]

1 Introduction

2 Resistivity:

3 Conductors:

4 Insulators:

5 Semiconductors:

6 Pure Silicon Atom Structure:

7 N-Type Semiconductor:

8 N-type Semiconductor Doping:

9 P-Type Semiconductor:

10 P-Type Semiconductor Doping:

11 Semiconductor Basics Summary:

11.1 In N-type Semiconductors:

11.2 In P-type Semiconductors:

12 Related Articles

Introduction

There are two types of semiconductor components in electronic and electrical circuits. They are active and
passive components. Diodes are the foremost active components and resistors are the foremost passive
components in electronic design circuits. Diodes are essentially unidirectional devices having exponential
relationship for the current-voltage characteristics are made from semiconductor materials.

The three necessary materials that are utilized in electronics are insulators, semiconductors and conductors.
These materials are classified in terms of electrical phenomenon. Electrical resistivity conjointly known as
electrical resistance is a measure of how efficiently a material refuses the electrical current to flow through it.
The quality unit of the electrical resistivity is the ohm meter [Ω m]. A material with low electrical resistivity
indicates the effective movement of electrical charge throughout the semiconductor.

Semiconductors are the materials whose resistivity values are in between insulators and conductors. These
materials are neither smart insulators nor smart conductors. They have only a few free electrons because their
atoms are tightly bonded in an exceedingly crystalline form are referred to as a “crystal lattice”. Samples of
semiconductors are silicon and germanium.

1/9

http://www.electronicshub.org/semiconductor-diodes/
http://www.electronicshub.org/wp-content/uploads/2013/07/1.-Energy-Band-Diagram-in-Solids.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/2.-Semiconductor-Doped-with-Group-5-Elements.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/3.-Semiconductor-Doped-with-Group-3-Elements.jpg
http://www.electronicshub.org/wp-content/uploads/2015/01/Different-Conductors-Semiconductors-and-Insulators-Resistivity-Chart.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/4.-Atomic-structure-of-Pure-Silicon.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/5.Silicon-crystal-lattice.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/6.-N-type-semiconductor.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/7.-Antimony-atom-and-Doping-with-Antimony.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/8.-P-type-semi-conductor.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/9.-boron-atom.jpg
http://www.electronicshub.org/wp-content/uploads/2013/07/10-Doping-with-boron-atom.jpg
http://www.electronicshub.org/pn-junction-tutorial/

Semiconductors have high importance in the manufacture of electronic circuits and integrated devices. The
conductivity of semiconductors can be altered easily by varying the temperature and concentration of doping in
the fabrication process. The capability to conduct electricity in semiconductor materials is considerably increased
by a adding definite quantity of impurities to the crystalline lattice producing additional free electrons than holes.

The properties of semiconductor materials change considerably by adding small amounts of impurities to it. The
process of shifting the balance between electrons and holes by incorporating impurity atoms in the silicon crystal
lattice is called as doping. These impurity atoms are known as dopants. Based on the type of doping material
incorporated, semiconductor crystals are classified into two types particularly n-type semiconductors and p-type
semiconductors.

Group –V elements such as phosphorus, antimony and arsenic are usually classified as N-type impurities.
These elements have five valence electrons. When N-type impurities are doped into silicon crystal, four of the
five valence electrons form four strong covalent bonds with adjacent crystal atoms leaving one free electron.
Likewise, every N-type impurity atom produces a free electron in the conduction band which will drift to conduct
electric current if a potential is applied to the material. N-type semiconductors can also be referred as Donors.

2/9

Group–III elements such as boron, aluminium, gallium and indium are usually classified as P-type impurities.
These elements have three valence electrons. When P-type impurities are doped into silicon crystal, all the three
valence electrons form three strong covalent bonds with adjacent crystal atoms. There is a deficit of electrons to
form the fourth covalent bond and this deficiency is termed as holes. Likewise, every P-type impurity atom
produces a hole in the valence band which will drift to conduct electric current if a potential is applied to the
material. P-type semiconductors can also be referred as Acceptors.

BACK TO TOP

Resistivity:

A characteristic property of every material that is helpful in comparing different materials on the basis of their
ability to conduct electric current is known as electrical resistivity. Resistivity can be approximated by multiplying
the resistance R of an electrical wire and the cross sectional area A, divided by the length of the wire L.
Conductivity that is reciprocal of the electrical resistivity conjointly characterizes the materials how well they
permit the electrical current to pass through them. Sensible conductors have lowest electrical resistivity and high
conductivity. Electrical resistivity depends strongly on the presence of impurity atoms within the material and on
the temperature of the material, i.e., at room temperature (20ºC).

For various conductors, semiconductors and insulators, the resistivity values vary linearly with variations in
temperature. The change in electrical resistance per degree Celsius of temperature change is called
the temperature coefficient of resistance. This factor is represented by the letter “alpha” (α). A positive
temperature coefficient for a material means that its resistance increases with an increase in temperature. Pure
conductors will typically have a positive temperature coefficient of resistance. A negative coefficient for a material
means that its resistance decreases with an increase in temperature. Semiconductor materials (carbon, silicon,
and germanium) typically have a negative temperature coefficient of resistance. Different materials with their
resistivity values and temperature coefficients are given in the table below.

3/9

BACK TO TOP

Conductors:

Conductors are built with low resistive materials having resistivity values in the order of micro-ohms per meter
(µΩ/m). Metals with terribly low electrical resistivity of the order of 1 x ohm meters are called as conductors.
These metals have a large number of free electrons. These free electrons leave the valence layer of their
parental atom and form a drift of electrons known as an electric current. Therefore, metals are superb
conductors of electricity.

Metals like copper, aluminium, gold and silver and other non metals such as carbon are ancient conducting
materials. Most of the metallic conductors are good conductors of electricity, having smaller resistance values
and high conduction values. Throughout the process of conduction, heat flows throughout the body. During
conduction this heat flow may be considered as a loss of energy and the loss increases with increase in
temperature after it reaches the room temperature i.e., 25°C.

BACK TO TOP

Insulators:

In distinction to conductors, insulators are made up of non-metals having resistivity values in the order of 1 x
 ohm meters. Non-metals have only a few or no free electrons flowing through it or within the parental atomic
structure as the outermost electrons are tightly bonded in covalent bonds between a pair of atoms. Since the
electrons are negatively charged, the free electrons within the valence layer are easily attracted by the positively
charged particles within the nucleus. Since there are no free electrons, when a positive potential is applied, there
will be no electrical current to flow through the material giving insulating properties. Therefore insulators (non-
metals) are very poor conductors of electricity.

Non-metals like glass, plastic, rubber, wood, sand, quartz and Teflon are sensible examples of insulators. Glass
insulators are used for prime voltage power transmission. Insulators are used as protectors of warmth, sound

4/9

and electricity.

BACK TO TOP

Semiconductors:

Semiconductors have the electrical properties in between insulators and conductors. Smart examples of perfect
semiconductors are silicon (Si), germanium (Ge) and gallium arsenide (GaAs). These elements have only a few
electrons within the parental atomic structure that form a crystal lattice. Silicon, the foremost basic
semiconductor material contains four valence electrons within the outer shell forming four strong covalent bonds
with four adjacent silicon atoms, such that each atom shares an electron with the neighbouring atom creating a
strong covalent bond. The silicon atoms are organized in a lattice form, creating them a crystalline structure.

Conducting electric current is feasible with silicon semiconductor crystal by supplying external potential to the
semiconductor and incorporating the impurity dopants into the semiconductor crystal thereby creating positive
and negative charged holes.

BACK TO TOP

Pure Silicon Atom Structure:

The silicon atom has 14 electrons; however the orbital arrangement has solely 4 valence electrons to be shared
by alternative atoms. These valence electrons play a crucial role in photo voltaic effect. Large number of silicon
atoms bond together to make a crystalline structure. In this structure, each silicon atom shares one of its four
valence electrons with their neighbouring silicon atoms. The solid silicon crystal composed of a regular series of
units of five silicon atoms. This regular and fixed arrangement of silicon atoms are unit is referred to as a crystal
lattice.

5/9

BACK TO TOP

N-Type Semiconductor:

Impurities like phosphorous, arsenic and antimony are
added to the silicon crystalline structure, to transform
intrinsic semiconductor into extrinsic semiconductor.
These impurity atoms are known as pentavalent
impurities as a result of the five valence electrons in
the outermost shell to share the free electrons with the
neighbouring atoms.

Pentavalent impurity atoms are also known as donors
because the five valence electrons in the impurity
atom bond with the four valence electrons of silicon
forming four covalent bonds, leaving one free electron.
Each impurity atom produces a free electron within the
conduction band. Once a positive potential is applied
to the N-type semiconductor, the remaining free
electrons form a drift to produce an electrical current.

An N-type semiconductor is a better conductor than the intrinsic semiconductor material. The majority charge
carriers in N-type semiconductors are electrons and minority charge carriers are holes. The N-type
semiconductors are not negatively charged, because the negative charge of donor impurity atoms is balanced
by the positive charge within the nucleus.

The major contribution to the electric current flow is negatively charged electrons though there is some amount
of contribution by the positively charged holes due to electron-hole pair.

BACK TO TOP

N-type Semiconductor Doping:

If group 5 element, such as Antimony impurity is added to the silicon crystal, the Antimony atom builds four
covalent bonds with four silicon atoms by bonding the valence electrons of antimony with the valence electrons
within the silicon outermost shell, leaving one free electron. Therefore the impurity atom has donated a free
electron to the structure so these impurities are referred to as donor atoms.

6/9

BACK TO TOP

P-Type Semiconductor:

The group 3 elements such as boron, aluminium and indium are supplementary to the silicon crystalline
structure having solely three electrons within the outermost shell, form three closed covalent bonds, leaving the
hole in the covalent bond structure and therefore a hole in the valence band of the energy level diagram. This
action leaves an abundant number of positively charged carriers referred to as holes in the crystalline structure
when there is electron deficiency. These group 3 elements are called as trivalent impurity atoms.

The presence of abundant holes attracts the neighboring electrons to sit in it. As long as the electron fills the
holes in the silicon crystal there will be new holes behind the electron as it goes far from it. The newly created
holes successfully attract the electrons, creating other new holes leads to the movement of holes, creating a
standard electric current flow in the semiconductor.

The movement of holes in the silicon crystal seems the silicon crystal as a positive pole. As long as the impurity
atoms invariably generate holes, group 3 elements are referred to as acceptors as a result of the impurity atoms
are continually accepting the free electrons.

The doping of group 3 elements in silicon crystal leads to P-type semiconductor. In this P-type semiconductor
holes are the majority charge carriers and electrons are the minority charge carriers.

BACK TO TOP

P-Type Semiconductor Doping:

7/9

If group 3 elements such as such as boron, gallium and indium are added to the semiconductor crystal, the
impurity atoms having three valence electrons form three strong covalent bonds with the silicon crystal valence
electrons leaving one vacancy. This vacancy is called as a hole and it is diagrammatically represented by a
small circle or positive sign due to the absence of a negative charge.

BACK TO TOP

Semiconductor Basics Summary:

N-type materials are type of materials formed by adding group 5 elements (pentavalent impurity atoms) to the
semiconductor crystals and conduct the electric current by movement of electrons.

In N-type Semiconductors:

8/9

The impurity atoms are pentavalent elements.

Impurity elements with solid crystal give a large number of free electrons.

Pentavalent impurities are also called as donors.

Doping gives the less number of holes in relation to the number of free electrons.

 Doping with group 5 elements results in positively charged donors and negatively charged free electrons.

P-type materials are a type of materials formed when group 3 elements (trivalent impurity atoms) are added to
the solid crystal. In these semiconductors the current flow is mainly due to the holes.

In P-type Semiconductors:

1. The impurity atoms are trivalent elements.

2. Trivalent elements results in excess number of holes which always accepts electrons. Hence trivalent
impurities are called as acceptors.

3. Doping gives the less number of free electrons in relation to the number of holes.

4. Doping results in negatively charged acceptors and positively charged holes

Both p-type and N-type are electrically neural on their own because the contribution of electrons and holes
required for conducting electrical current are equal due to electron-hole pair. Both boron (B) and antimony (Sb)
are called metalloids because they are the most commonly used doping agents for the intrinsic semiconductor to
improve the properties of conductivity.

9/9

Aviation
esoa.net/services/aviation.asp

Satellite communications provide ultimate connectivity for a consistent global experience for the whole aircraft,
from safety communications to high-speed broadband and live TV in the cabin. Aviation safety is enabled
through data communications with control centres on the ground using the C-band. Communications with the
aircraft themselves are enabled using the L-band. They enable a wide range of uses in the cockpit and the
cabin. These include safety communications, weather and flight-plan updates, as well as passenger connectivity
for email, Internet access, VoIP telephone calls, GSM and SMS messaging.

Satellite communication enables safe and efficient passage of the aircraft to its destination with up-to-date
information, including route, air traffic and airline operational information, supporting all key cockpit applications.

How satellites safeguard your safe passage

Satellite-aided ATC
When an aircraft is out of range of VHF/UHF radio, such as in oceanic airspace, satellite services enable
satellite-aided air traffic control (ATC). The ability to have reliable communications with ground-based
controllers at all times, on all major oceanic routes, is an important safety feature.

Automatic dependent surveillance (ADS)
Satellite communication facilitates the automatic reporting of an aircraft’s real-time position, including
altitude, speed and heading, via satellite to air traffic control centres, helping controllers know where an
aircraft is at all times.

Controller / pilot datalink communications (CPDLC)
Satellite communication also enables the Aircraft Communications Addressing and Reporting System
(ACARS) routing instructions, clearances and other messages that need to be sent directly to the cockpit
as electronic data messages. The benefits are increased flight safety and efficiency through more
effective communications.

Voice services
Satellite services also support air traffic control and critical airline voice communications when the aircraft
is out of VHF radio range. The aircraft systems are set up so that cockpit communications have priority
over any of the passenger communications, so maximising safety and reliability.

Always available, always reliable.

How it works

1/3

https://www.esoa.net/services/aviation.asp

Air Traffic Management

On a typical day, in the height of summer, around 30,000 flights travel through European airspace. In the world,
that means over 100,000 flights every day!

2/3

Satellite networks play an indispensable role in efficient air traffic management. Ka-band satellites using the
Gigahertz frequency spectrum can reach user terminals across most of the populated world. As a result, ATM
based satellite networks can be effectively used to provide real time as well as non-real time communications
services to remote areas. Satellites offer wide geographic coverage including interconnection of “ATM islands”,
multipoint to multipoint communications facilitated by the inherent broadcasting ability of satellites, bandwidth on
demand (Demand Assignment Multiple Access (DAMA) capabilities), and an alternative to fiber optic networks for
disaster recovery options.

Satellites facilitate safe and efficient ATM

3/3

Essential C
By Nick Parlante Copyright 1996-2003, Nick Parlante

This Stanford CS Education document tries to summarize all the basic features of the C
language. The coverage is pretty quick, so it is most appropriate as review or for someone
with some programming background in another language. Topics include variables, int
types, floating point types, promotion, truncation, operators, control structures (if, while,
for), functions, value parameters, reference parameters, structs, pointers, arrays, the pre-
processor, and the standard C library functions.

The most recent version is always maintained at its Stanford CS Education Library URL
http://cslibrary.stanford.edu/101/. Please send your comments to
nick.parlante@cs.stanford.edu.

I hope you can share and enjoy this document in the spirit of goodwill in which it is given
away -- Nick Parlante, 4/2003, Stanford California.

Stanford CS Education Library This is document #101, Essential C, in the Stanford
CS Education Library. This and other educational materials are available for free at
http://cslibrary.stanford.edu/. This article is free to be used, reproduced, excerpted,
retransmitted, or sold so long as this notice is clearly reproduced at its beginning.

Table of Contents
Introduction ...pg. 2

Where C came from, what is it like, what other resources might you look at.

Section 1 Basic Types and Operators ..pg. 3
Integer types, floating point types, assignment operator, comparison operators,
arithmetic operators, truncation, promotion.

Section 2 Control Structures ..pg. 11
If statement, conditional operator, switch, while, for, do-while, break, continue.

Section 3 Complex Data Types ...pg. 15
Structs, arrays, pointers, ampersand operator (&), NULL, C strings, typedef.

Section 4 Functions ..pg. 24
Functions, void, value and reference parameters, const.

Section 5 Odds and Ends ..pg. 29
Main(), the .h/.c file convention, pre-processor, assert.

Section 6 Advanced Arrays and Pointerspg. 33
How arrays and pointers interact. The [] and + operators with pointers, base
address/offset arithmetic, heap memory management, heap arrays.

Section 7 Operators and Standard Library Referencepg. 41
A summary reference of the most common operators and library functions.

The C Language
C is a professional programmer's language. It was designed to get in one's way as little as
possible. Kernighan and Ritchie wrote the original language definition in their book, The
C Programming Language (below), as part of their research at AT&T. Unix and C++
emerged from the same labs. For several years I used AT&T as my long distance carrier
in appreciation of all that CS research, but hearing "thank you for using AT&T" for the
millionth time has used up that good will.

2

Some languages are forgiving. The programmer needs only a basic sense of how things
work. Errors in the code are flagged by the compile-time or run-time system, and the
programmer can muddle through and eventually fix things up to work correctly. The C
language is not like that.

The C programming model is that the programmer knows exactly what they want to do
and how to use the language constructs to achieve that goal. The language lets the expert
programmer express what they want in the minimum time by staying out of their way.

C is "simple" in that the number of components in the language is small-- If two language
features accomplish more-or-less the same thing, C will include only one. C's syntax is
terse and the language does not restrict what is "allowed" -- the programmer can pretty
much do whatever they want.

C's type system and error checks exist only at compile-time. The compiled code runs in a
stripped down run-time model with no safety checks for bad type casts, bad array indices,
or bad pointers. There is no garbage collector to manage memory. Instead the
programmer mangages heap memory manually. All this makes C fast but fragile.

Analysis -- Where C Fits
Because of the above features, C is hard for beginners. A feature can work fine in one
context, but crash in another. The programmer needs to understand how the features work
and use them correctly. On the other hand, the number of features is pretty small.

Like most programmers, I have had some moments of real loathing for the C language. It
can be irritatingly obedient -- you type something incorrectly, and it has a way of
compiling fine and just doing something you don't expect at run-time. However, as I have
become a more experienced C programmer, I have grown to appreciate C's straight-to-the
point style. I have learned not to fall into its little traps, and I appreciate its simplicity.

Perhaps the best advice is just to be careful. Don't type things in you don't understand.
Debugging takes too much time. Have a mental picture (or a real drawing) of how your C
code is using memory. That's good advice in any language, but in C it's critical.

Perl and Java are more "portable" than C (you can run them on different computers
without a recompile). Java and C++ are more structured than C. Structure is useful for
large projects. C works best for small projects where performance is important and the
progammers have the time and skill to make it work in C. In any case, C is a very popular
and influential language. This is mainly because of C's clean (if minimal) style, it's lack
of annoying or regrettable constructs, and the relative ease of writing a C compiler.

Other Resources
• The C Programming Language, 2nd ed., by Kernighan and Ritchie. The thin book

which for years was the bible for all C programmers. Written by the original
designers of the language. The explanations are pretty short, so this book is better as a
reference than for beginners.

• http://cslibrary.stanford.edu/102/ Pointers and Memory -- Much more detail
about local memory, pointers, reference parameters, and heap memory than in this
article, and memory is really the hardest part of C and C++.

• http://cslibrary.stanford.edu//103/ Linked List Basics -- Once you understand the
basics of pointers and C, these problems are a good way to get more practice.

3

Section 1
Basic Types and Operators
C provides a standard, minimal set of basic data types. Sometimes these are called
"primitive" types. More complex data structures can be built up from these basic types.

Integer Types
The "integral" types in C form a family of integer types. They all behave like integers and
can be mixed together and used in similar ways. The differences are due to the different
number of bits ("widths") used to implement each type -- the wider types can store a
greater ranges of values.

char ASCII character -- at least 8 bits. Pronounced "car". As a practical matter
char is basically always a byte which is 8 bits which is enough to store a single
ASCII character. 8 bits provides a signed range of -128..127 or an unsigned range is
0..255. char is also required to be the "smallest addressable unit" for the machine --
each byte in memory has its own address.

short Small integer -- at least 16 bits which provides a signed range of
-32768..32767. Typical size is 16 bits. Not used so much.

int Default integer -- at least 16 bits, with 32 bits being typical. Defined to be
the "most comfortable" size for the computer. If you do not really care about the
range for an integer variable, declare it int since that is likely to be an appropriate
size (16 or 32 bit) which works well for that machine.

long Large integer -- at least 32 bits. Typical size is 32 bits which gives a signed
range of about -2 billion ..+2 billion. Some compilers support "long long" for 64 bit
ints.

The integer types can be preceded by the qualifier unsigned which disallows
representing negative numbers, but doubles the largest positive number representable. For
example, a 16 bit implementation of short can store numbers in the range
-32768..32767, while unsigned short can store 0..65535. You can think of pointers
as being a form of unsigned long on a machine with 4 byte pointers. In my opinion,
it's best to avoid using unsigned unless you really need to. It tends to cause more
misunderstandings and problems than it is worth.

Extra: Portability Problems
Instead of defining the exact sizes of the integer types, C defines lower bounds. This
makes it easier to implement C compilers on a wide range of hardware. Unfortunately it
occasionally leads to bugs where a program runs differently on a 16-bit-int machine than
it runs on a 32-bit-int machine. In particular, if you are designing a function that will be
implemented on several different machines, it is a good idea to use typedefs to set up
types like Int32 for 32 bit int and Int16 for 16 bit int. That way you can prototype a
function Foo(Int32) and be confident that the typedefs for each machine will be set so
that the function really takes exactly a 32 bit int. That way the code will behave the same
on all the different machines.

char Constants
A char constant is written with single quotes (') like 'A' or 'z'. The char constant 'A' is
really just a synonym for the ordinary integer value 65 which is the ASCII value for

4

uppercase 'A'. There are special case char constants, such as '\t' for tab, for characters
which are not convenient to type on a keyboard.

'A' uppercase 'A' character

'\n' newline character

'\t' tab character

'\0' the "null" character -- integer value 0 (different from the char digit '0')

'\012' the character with value 12 in octal, which is decimal 10

int Constants
Numbers in the source code such as 234 default to type int. They may be followed by
an 'L' (upper or lower case) to designate that the constant should be a long such as 42L.
An integer constant can be written with a leading 0x to indicate that it is expressed in
hexadecimal -- 0x10 is way of expressing the number 16. Similarly, a constant may be
written in octal by preceding it with "0" -- 012 is a way of expressing the number 10.

Type Combination and Promotion
The integral types may be mixed together in arithmetic expressions since they are all
basically just integers with variation in their width. For example, char and int can be
combined in arithmetic expressions such as ('b' + 5). How does the compiler deal
with the different widths present in such an expression? In such a case, the compiler
"promotes" the smaller type (char) to be the same size as the larger type (int) before
combining the values. Promotions are determined at compile time based purely on the
types of the values in the expressions. Promotions do not lose information -- they always
convert from a type to compatible, larger type to avoid losing information.

Pitfall -- int Overflow
I once had a piece of code which tried to compute the number of bytes in a buffer with
the expression (k * 1024) where k was an int representing the number of kilobytes
I wanted. Unfortunately this was on a machine where int happened to be 16 bits. Since
k and 1024 were both int, there was no promotion. For values of k >= 32, the product
was too big to fit in the 16 bit int resulting in an overflow. The compiler can do
whatever it wants in overflow situations -- typically the high order bits just vanish. One
way to fix the code was to rewrite it as (k * 1024L) -- the long constant forced the
promotion of the int. This was not a fun bug to track down -- the expression sure looked
reasonable in the source code. Only stepping past the key line in the debugger showed the
overflow problem. "Professional Programmer's Language." This example also
demonstrates the way that C only promotes based on the types in an expression. The
compiler does not consider the values 32 or 1024 to realize that the operation will
overflow (in general, the values don't exist until run time anyway). The compiler just
looks at the compile time types, int and int in this case, and thinks everything is fine.

Floating point Types
float Single precision floating point number typical size: 32 bits

double Double precision floating point number typical size: 64 bits

long double Possibly even bigger floating point number (somewhat obscure)

Constants in the source code such as 3.14 default to type double unless the are suffixed
with an 'f' (float) or 'l' (long double). Single precision equates to about 6 digits of

5

precision and double is about 15 digits of precision. Most C programs use double for
their computations. The main reason to use float is to save memory if many numbers
need to be stored. The main thing to remember about floating point numbers is that they
are inexact. For example, what is the value of the following double expression?

(1.0/3.0 + 1.0/3.0 + 1.0/3.0) // is this equal to 1.0 exactly?

The sum may or may not be 1.0 exactly, and it may vary from one type of machine to
another. For this reason, you should never compare floating numbers to eachother for
equality (==) -- use inequality (<) comparisons instead. Realize that a correct C program
run on different computers may produce slightly different outputs in the rightmost digits
of its floating point computations.

Comments
Comments in C are enclosed by slash/star pairs: /* .. comments .. */ which
may cross multiple lines. C++ introduced a form of comment started by two slashes and
extending to the end of the line: // comment until the line end
The // comment form is so handy that many C compilers now also support it, although it
is not technically part of the C language.

Along with well-chosen function names, comments are an important part of well written
code. Comments should not just repeat what the code says. Comments should describe
what the code accomplishes which is much more interesting than a translation of what
each statement does. Comments should also narrate what is tricky or non-obvious about a
section of code.

Variables
As in most languages, a variable declaration reserves and names an area in memory at run
time to hold a value of particular type. Syntactically, C puts the type first followed by the
name of the variable. The following declares an int variable named "num" and the 2nd
line stores the value 42 into num.

int num;
num = 42;

num 42

A variable corresponds to an area of memory which can store a value of the given type.
Making a drawing is an excellent way to think about the variables in a program. Draw
each variable as box with the current value inside the box. This may seem like a
"beginner" technique, but when I'm buried in some horribly complex programming
problem, I invariably resort to making a drawing to help think the problem through.

Variables, such as num, do not have their memory cleared or set in any way when they
are allocated at run time. Variables start with random values, and it is up to the program
to set them to something sensible before depending on their values.

Names in C are case sensitive so "x" and "X" refer to different variables. Names can
contain digits and underscores (_), but may not begin with a digit. Multiple variables can
be declared after the type by separating them with commas. C is a classical "compile
time" language -- the names of the variables, their types, and their implementations are all
flushed out by the compiler at compile time (as opposed to figuring such details out at run
time like an interpreter).

6

float x, y, z, X;

Assignment Operator =
The assignment operator is the single equals sign (=).

i = 6;
i = i + 1;

The assignment operator copies the value from its right hand side to the variable on its
left hand side. The assignment also acts as an expression which returns the newly
assigned value. Some programmers will use that feature to write things like the following.

y = (x = 2 * x); // double x, and also put x's new value in y

Truncation
The opposite of promotion, truncation moves a value from a type to a smaller type. In
that case, the compiler just drops the extra bits. It may or may not generate a compile
time warning of the loss of information. Assigning from an integer to a smaller integer
(e.g.. long to int, or int to char) drops the most significant bits. Assigning from a
floating point type to an integer drops the fractional part of the number.

char ch;
int i;

i = 321;
ch = i; // truncation of an int value to fit in a char
// ch is now 65

The assignment will drop the upper bits of the int 321. The lower 8 bits of the number
321 represents the number 65 (321 - 256). So the value of ch will be (char)65 which
happens to be 'A'.

The assignment of a floating point type to an integer type will drop the fractional part of
the number. The following code will set i to the value 3. This happens when assigning a
floating point number to an integer or passing a floating point number to a function which
takes an integer.

double pi;
int i;

pi = 3.14159;
i = pi; // truncation of a double to fit in an int
// i is now 3

Pitfall -- int vs. float Arithmetic
Here's an example of the sort of code where int vs. float arithmetic can cause
problems. Suppose the following code is supposed to scale a homework score in the
range 0..20 to be in the range 0..100.

{
int score;

...// suppose score gets set in the range 0..20 somehow

7

score = (score / 20) * 100; // NO -- score/20 truncates to 0
...

Unfortunately, score will almost always be set to 0 for this code because the integer
division in the expression (score/20) will be 0 for every value of score less than 20.
The fix is to force the quotient to be computed as a floating point number...

score = ((double)score / 20) * 100; // OK -- floating point division from cast

score = (score / 20.0) * 100; // OK -- floating point division from 20.0

score = (int)(score / 20.0) * 100; // NO -- the (int) truncates the floating
// quotient back to 0

No Boolean -- Use int
C does not have a distinct boolean type-- int is used instead. The language treats integer
0 as false and all non-zero values as true. So the statement...

i = 0;
while (i - 10) {

...

will execute until the variable i takes on the value 10 at which time the expression (i -
10) will become false (i.e. 0). (we'll see the while() statement a bit later)

Mathematical Operators
C includes the usual binary and unary arithmetic operators. See the appendix for the table
of precedence. Personally, I just use parenthesis liberally to avoid any bugs due to a
misunderstanding of precedence. The operators are sensitive to the type of the operands.
So division (/) with two integer arguments will do integer division. If either argument is
a float, it does floating point division. So (6/4) evaluates to 1 while (6/4.0)
evaluates to 1.5 -- the 6 is promoted to 6.0 before the division.

+ Addition

- Subtraction

/ Division

* Multiplication

% Remainder (mod)

Unary Increment Operators: ++ --
The unary ++ and -- operators increment or decrement the value in a variable. There are
"pre" and "post" variants for both operators which do slightly different things (explained
below)

var++ increment "post" variant

++var increment "pre" variant

8

var-- decrement "post" variant

--var decrement "pre" variant

int i = 42;
i++; // increment on i
// i is now 43
i--; // decrement on i
// i is now 42

Pre and Post Variations
The Pre/Post variation has to do with nesting a variable with the increment or decrement
operator inside an expression -- should the entire expression represent the value of the
variable before or after the change? I never use the operators in this way (see below), but
an example looks like...

int i = 42;
int j;

j = (i++ + 10);
// i is now 43
// j is now 52 (NOT 53)

j = (++i + 10)
// i is now 44
// j is now 54

C Programming Cleverness and Ego Issues
Relying on the difference between the pre and post variations of these operators is a
classic area of C programmer ego showmanship. The syntax is a little tricky. It makes the
code a little shorter. These qualities drive some C programmers to show off how clever
they are. C invites this sort of thing since the language has many areas (this is just one
example) where the programmer can get a complex effect using a code which is short and
dense.

If I want j to depend on i's value before the increment, I write...

j = (i + 10);
i++;

Or if I want to j to use the value after the increment, I write...

i++;
j = (i + 10);

Now then, isn't that nicer? (editorial) Build programs that do something cool rather than
programs which flex the language's syntax. Syntax -- who cares?

Relational Operators
These operate on integer or floating point values and return a 0 or 1 boolean value.

== Equal

9

!= Not Equal

> Greater Than

< Less Than

>= Greater or Equal

<= Less or Equal

To see if x equals three, write something like:

if (x == 3) ...

Pitfall = ==
An absolutely classic pitfall is to write assignment (=) when you mean comparison (==).
This would not be such a problem, except the incorrect assignment version compiles fine
because the compiler assumes you mean to use the value returned by the assignment. This
is rarely what you want

if (x = 3) ...

This does not test if x is 3. This sets x to the value 3, and then returns the 3 to the if for
testing. 3 is not 0, so it counts as "true" every time. This is probably the single most
common error made by beginning C programmers. The problem is that the compiler is no
help -- it thinks both forms are fine, so the only defense is extreme vigilance when
coding. Or write "= ≠ ==" in big letters on the back of your hand before coding. This
mistake is an absolute classic and it's a bear to debug. Watch Out! And need I say:
"Professional Programmer's Language."

Logical Operators
The value 0 is false, anything else is true. The operators evaluate left to right and stop as
soon as the truth or falsity of the expression can be deduced. (Such operators are called
"short circuiting") In ANSI C, these are furthermore guaranteed to use 1 to represent true,
and not just some random non-zero bit pattern. However, there are many C programs out
there which use values other than 1 for true (non-zero pointers for example), so when
programming, do not assume that a true boolean is necessarily 1 exactly.

! Boolean not (unary)

&& Boolean and

|| Boolean or

Bitwise Operators
C includes operators to manipulate memory at the bit level. This is useful for writing low-
level hardware or operating system code where the ordinary abstractions of numbers,
characters, pointers, etc... are insufficient -- an increasingly rare need. Bit manipulation
code tends to be less "portable". Code is "portable" if with no programmer intervention it
compiles and runs correctly on different types of computers. The bitwise operations are

10

typically used with unsigned types. In particular, the shift operations are guaranteed to
shift 0 bits into the newly vacated positions when used on unsigned values.

~ Bitwise Negation (unary) – flip 0 to 1 and 1 to 0 throughout

& Bitwise And

| Bitwise Or

^ Bitwise Exclusive Or

>> Right Shift by right hand side (RHS) (divide by power of 2)

<< Left Shift by RHS (multiply by power of 2)

Do not confuse the Bitwise operators with the logical operators. The bitwise connectives
are one character wide (&, |) while the boolean connectives are two characters wide (&&,
||). The bitwise operators have higher precedence than the boolean operators. The
compiler will never help you out with a type error if you use & when you meant &&. As
far as the type checker is concerned, they are identical-- they both take and produce
integers since there is no distinct boolean type.

Other Assignment Operators
In addition to the plain = operator, C includes many shorthand operators which represents
variations on the basic =. For example "+=" adds the right hand side to the left hand side.
x = x + 10; can be reduced to x += 10;. This is most useful if x is a long
expression such as the following, and in some cases it may run a little faster.

person->relatives.mom.numChildren += 2; // increase children by 2

Here's the list of assignment shorthand operators...

+=, -= Increment or decrement by RHS

*=, /= Multiply or divide by RHS

%= Mod by RHS

>>= Bitwise right shift by RHS (divide by power of 2)

<<= Bitwise left shift RHS (multiply by power of 2)

&=, |=, ^= Bitwise and, or, xor by RHS

11

Section 2
Control Structures
Curly Braces {}
C uses curly braces ({}) to group multiple statements together. The statements execute in
order. Some languages let you declare variables on any line (C++). Other languages insist
that variables are declared only at the beginning of functions (Pascal). C takes the middle
road -- variables may be declared within the body of a function, but they must follow a
'{'. More modern languages like Java and C++ allow you to declare variables on any line,
which is handy.

If Statement
Both an if and an if-else are available in C. The <expression> can be any valid
expression. The parentheses around the expression are required, even if it is just a single
variable.

if (<expression>) <statement> // simple form with no {}'s or else clause

if (<expression>) { // simple form with {}'s to group statements
<statement>
<statement>

}

if (<expression>) { // full then/else form
<statement>

}
else {

<statement>
}

Conditional Expression -or- The Ternary Operator
The conditional expression can be used as a shorthand for some if-else statements. The
general syntax of the conditional operator is:

<expression1> ? <expression2> : <expression3>

This is an expression, not a statement, so it represents a value. The operator works by
evaluating expression1. If it is true (non-zero), it evaluates and returns expression2 .
Otherwise, it evaluates and returns expression3.

The classic example of the ternary operator is to return the smaller of two variables.
Every once in a while, the following form is just what you needed. Instead of...

if (x < y) {
min = x;

}
else {

min = y;
}

12

You just say...

min = (x < y) ? x : y;

Switch Statement
The switch statement is a sort of specialized form of if used to efficiently separate
different blocks of code based on the value of an integer. The switch expression is
evaluated, and then the flow of control jumps to the matching const-expression case. The
case expressions are typically int or char constants. The switch statement is probably
the single most syntactically awkward and error-prone features of the C language.

switch (<expression>) {
case <const-expression-1>:

<statement>
break;

case <const-expression-2>:
<statement>
break;

case <const-expression-3>: // here we combine case 3 and 4
case <const-expression-4>:

<statement>
break;

default: // optional
<statement>

}

Each constant needs its own case keyword and a trailing colon (:). Once execution has
jumped to a particular case, the program will keep running through all the cases from that
point down -- this so called "fall through" operation is used in the above example so that
expression-3 and expression-4 run the same statements. The explicit break statements
are necessary to exit the switch. Omitting the break statements is a common error -- it
compiles, but leads to inadvertent fall-through behavior.

Why does the switch statement fall-through behavior work the way it does? The best
explanation I can think of is that originally C was developed for an audience of assembly
language programmers. The assembly language programmers were used to the idea of a
jump table with fall-through behavior, so that's the way C does it (it's also relatively easy
to implement it this way.) Unfortunately, the audience for C is now quite different, and
the fall-through behavior is widely regarded as a terrible part of the language.

While Loop
The while loop evaluates the test expression before every loop, so it can execute zero
times if the condition is initially false. It requires the parenthesis like the if.

while (<expression>) {
<statement>

}

13

Do-While Loop
Like a while, but with the test condition at the bottom of the loop. The loop body will
always execute at least once. The do-while is an unpopular area of the language, most
everyone tries to use the straight while if at all possible.

do {
<statement>

} while (<expression>)

For Loop
The for loop in C is the most general looping construct. The loop header contains three
parts: an initialization, a continuation condition, and an action.

for (<initialization>; <continuation>; <action>) {
<statement>

}

The initialization is executed once before the body of the loop is entered. The loop
continues to run as long as the continuation condition remains true (like a while). After
every execution of the loop, the action is executed. The following example executes 10
times by counting 0..9. Many loops look very much like the following...

for (i = 0; i < 10; i++) {
<statement>

}

C programs often have series of the form 0..(some_number-1). It's idiomatic in C for the
above type loop to start at 0 and use < in the test so the series runs up to but not equal to
the upper bound. In other languages you might start at 1 and use <= in the test.

Each of the three parts of the for loop can be made up of multiple expressions separated
by commas. Expressions separated by commas are executed in order, left to right, and
represent the value of the last expression. (See the string-reverse example below for a
demonstration of a complex for loop.)

Break
The break statement will move control outside a loop or switch statement. Stylistically
speaking, break has the potential to be a bit vulgar. It's preferable to use a straight
while with a single test at the top if possible. Sometimes you are forced to use a break
because the test can occur only somewhere in the midst of the statements in the loop
body. To keep the code readable, be sure to make the break obvious -- forgetting to
account for the action of a break is a traditional source of bugs in loop behavior.

while (<expression>) {
<statement>
<statement>

if (<condition which can only be evaluated here>)
break;

<statement>
<statement>

}
// control jumps down here on the break

14

The break does not work with if. It only works in loops and switches. Thinking that a
break refers to an if when it really refers to the enclosing while has created some high
quality bugs. When using a break, it's nice to write the enclosing loop to iterate in the
most straightforward, obvious, normal way, and then use the break to explicitly catch
the exceptional, weird cases.

Continue
The continue statement causes control to jump to the bottom of the loop, effectively
skipping over any code below the continue. As with break, this has a reputation as
being vulgar, so use it sparingly. You can almost always get the effect more clearly using
an if inside your loop.

while (<expression>) {
...
if (<condition>)

continue;
...
...
// control jumps here on the continue

}

15

Section 3
Complex Data Types
C has the usual facilities for grouping things together to form composite types-- arrays
and records (which are called "structures"). The following definition declares a type
called "struct fraction" that has two integer sub fields named "numerator" and
"denominator". If you forget the semicolon it tends to produce a syntax error in whatever
thing follows the struct declaration.

struct fraction {
int numerator;
int denominator;

}; // Don't forget the semicolon!

This declaration introduces the type struct fraction (both words are required) as a
new type. C uses the period (.) to access the fields in a record. You can copy two records
of the same type using a single assignment statement, however == does not work on
structs.

struct fraction f1, f2; // declare two fractions

f1.numerator = 22;
f1.denominator = 7;

f2 = f1; // this copies over the whole struct

Arrays
The simplest type of array in C is one which is declared and used in one place. There are
more complex uses of arrays which I will address later along with pointers. The following
declares an array called scores to hold 100 integers and sets the first and last elements.
C arrays are always indexed from 0. So the first int in scores array is scores[0]
and the last is scores[99].

int scores[100];

scores[0] = 13; // set first element
scores[99] = 42; // set last element

16

0

scores

Index 1 2 99

13

Someone else’s memory
off either end of the
array — do not read or
write this memory.

There is space for
each int element in
the scores array —
this element is
referred to as
scores[0].

-5673 22541 42

These elements
have random
values because the
code has not yet
initialized them to
anything.

The name of the array refers to the
whole array. (implementation) it
works by representing a pointer to the
start of the array.

It's a very common error to try to refer to non-existent scores[100] element. C does
not do any run time or compile time bounds checking in arrays. At run time the code will
just access or mangle whatever memory it happens to hit and crash or misbehave in some
unpredictable way thereafter. "Professional programmer's language." The convention of
numbering things 0..(number of things - 1) pervades the language. To best
integrate with C and other C programmers, you should use that sort of numbering in your
own data structures as well.

Multidimensional Arrays
The following declares a two-dimensional 10 by 10 array of integers and sets the first and
last elements to be 13.

int board [10][10];

board[0][0] = 13;
board[9][9] = 13;

The implementation of the array stores all the elements in a single contiguous block of
memory. The other possible implementation would be a combination of several distinct
one dimensional arrays -- that's not how C does it. In memory, the array is arranged with
the elements of the rightmost index next to each other. In other words, board[1][8]
comes right before board[1][9] in memory.

(highly optional efficiency point) It's typically efficient to access memory which is near
other recently accessed memory. This means that the most efficient way to read through a
chunk of the array is to vary the rightmost index the most frequently since that will access
elements that are near each other in memory.

17

Array of Structs
The following declares an array named "numbers" which holds 1000 struct
fraction's.

struct fraction numbers[1000];

numbers[0].numerator = 22; /* set the 0th struct fraction */
numbers[0].denominator = 7;

Here's a general trick for unraveling C variable declarations: look at the right hand side
and imagine that it is an expression. The type of that expression is the left hand side. For
the above declarations, an expression which looks like the right hand side
(numbers[1000], or really anything of the form numbers[...]) will be the type
on the left hand side (struct fraction).

Pointers
A pointer is a value which represents a reference to another value sometimes known as
the pointer's "pointee". Hopefully you have learned about pointers somewhere else, since
the preceding sentence is probably inadequate explanation. This discussion will
concentrate on the syntax of pointers in C -- for a much more complete discussion of
pointers and their use see http://cslibrary.stanford.edu/102/, Pointers and Memory.

Syntax
Syntactically C uses the asterisk or "star" (*) to indicate a pointer. C defines pointer types
based on the type pointee. A char* is type of pointer which refers to a single char. a
struct fraction* is type of pointer which refers to a struct fraction.

int* intPtr; // declare an integer pointer variable intPtr

char* charPtr; // declares a character pointer --
// a very common type of pointer

// Declare two struct fraction pointers
// (when declaring multiple variables on one line, the *
// should go on the right with the variable)
struct fraction *f1, *f2;

The Floating "*"
In the syntax, the star is allowed to be anywhere between the base type and the variable
name. Programmer's have their own conventions-- I generally stick the * on the left with
the type. So the above declaration of intPtr could be written equivalently...

int *intPtr; // these are all the same
int * intPtr;
int* intPtr;

Pointer Dereferencing
We'll see shortly how a pointer is set to point to something -- for now just assume the
pointer points to memory of the appropriate type. In an expression, the unary * to the left
of a pointer dereferences it to retrieve the value it points to. The following drawing shows
the types involved with a single pointer pointing to a struct fraction.

18

struct fraction* f1;

f1
7

22

denominator

numerator

struct fraction*
struct fraction
(the whole
block of
memory)

int
(within
block of
memory)

Expression Type
f1 struct fraction*
*f1 struct fraction
(*f1).numerator int

There's an alternate, more readable syntax available for dereferencing a pointer to a
struct. A "->" at the right of the pointer can access any of the fields in the struct. So the
reference to the numerator field could be written f1->numerator.

Here are some more complex declarations...

struct fraction** fp; // a pointer to a pointer to a struct fraction

struct fraction fract_array[20]; // an array of 20 struct fractions

struct fraction* fract_ptr_array[20]; // an array of 20 pointers to
// struct fractions

One nice thing about the C type syntax is that it avoids the circular definition problems
which come up when a pointer structure needs to refer to itself. The following definition
defines a node in a linked list. Note that no preparatory declaration of the node pointer
type is necessary.

struct node {
int data;
struct node* next;

};

The & Operator
The & operator is one of the ways that pointers are set to point to things. The & operator
computes a pointer to the argument to its right. The argument can be any variable which
takes up space in the stack or heap (known as an "LValue" technically). So &i and
&(f1->numerator) are ok, but &6 is not. Use & when you have some memory, and
you want a pointer to that memory.

19

void foo() {
int* p; // p is a pointer to an integer
int i; // i is an integer

p = &i; // Set p to point to i
*p = 13; // Change what p points to -- in this case i -- to 13

// At this point i is 13. So is *p. In fact *p is i.
}

p

13i

When using a pointer to an object created with &, it is important to only use the pointer so
long as the object exists. A local variable exists only as long as the function where it is
declared is still executing (we'll see functions shortly). In the above example, i exists
only as long as foo() is executing. Therefore any pointers which were initialized with
&i are valid only as long as foo() is executing. This "lifetime" constraint of local
memory is standard in many languages, and is something you need to take into account
when using the & operator.

NULL
A pointer can be assigned the value 0 to explicitly represent that it does not currently
have a pointee. Having a standard representation for "no current pointee" turns out to be
very handy when using pointers. The constant NULL is defined to be 0 and is typically
used when setting a pointer to NULL. Since it is just 0, a NULL pointer will behave like
a boolean false when used in a boolean context. Dereferencing a NULL pointer is an error
which, if you are lucky, the computer will detect at runtime -- whether the computer
detects this depends on the operating system.

Pitfall -- Uninitialized Pointers
When using pointers, there are two entities to keep track of. The pointer and the memory
it is pointing to, sometimes called the "pointee". There are three things which must be
done for a pointer/pointee relationship to work...

(1) The pointer must be declared and allocated

(2) The pointee must be declared and allocated

(3) The pointer (1) must be initialized so that it points to the pointee (2)

The most common pointer related error of all time is the following: Declare and allocate
the pointer (step 1). Forget step 2 and/or 3. Start using the pointer as if it has been setup
to point to something. Code with this error frequently compiles fine, but the runtime
results are disastrous. Unfortunately the pointer does not point anywhere good unless (2)
and (3) are done, so the run time dereference operations on the pointer with * will misuse
and trample memory leading to a random crash at some point.

20

{
int* p;

*p = 13; // NO NO NO p does not point to an int yet
// this just overwrites a random area in memory

}

-14346

p

i

Of course your code won't be so trivial, but the bug has the same basic form: declare a
pointer, but forget to set it up to point to a particular pointee.

Using Pointers
Declaring a pointer allocates space for the pointer itself, but it does not allocate space
for the pointee. The pointer must be set to point to something before you can dereference
it.

Here's some code which doesn't do anything useful, but which does demonstrate (1) (2)
(3) for pointer use correctly...

int* p; // (1) allocate the pointer
int i; // (2) allocate pointee
struct fraction f1; // (2) allocate pointee

p = &i; // (3) setup p to point to i
*p = 42; // ok to use p since it's setup

p = &(f1.numerator); // (3) setup p to point to a different int
*p = 22;

p = &(f1.denominator); // (3)
*p = 7;

So far we have just used the & operator to create pointers to simple variables such as i.
Later, we'll see other ways of getting pointers with arrays and other techniques.

C Strings
C has minimal support of character strings. For the most part, strings operate as ordinary
arrays of characters. Their maintenance is up to the programmer using the standard
facilities available for arrays and pointers. C does include a standard library of functions
which perform common string operations, but the programmer is responsible for the
managing the string memory and calling the right functions. Unfortunately computations
involving strings are very common, so becoming a good C programmer often requires
becoming adept at writing code which manages strings which means managing pointers
and arrays.

21

A C string is just an array of char with the one additional convention that a "null"
character ('\0') is stored after the last real character in the array to mark the end of the
string. The compiler represents string constants in the source code such as "binky" as
arrays which follow this convention. The string library functions (see the appendix for a
partial list) operate on strings stored in this way. The most useful library function is
strcpy(char dest[], const char source[]); which copies the bytes of
one string over to another. The order of the arguments to strcpy() mimics the arguments
in of '=' -- the right is assigned to the left. Another useful string function is
strlen(const char string[]); which returns the number of characters in C
string not counting the trailing '\0'.

Note that the regular assignment operator (=) does not do string copying which is why
strcpy() is necessary. See Section 6, Advanced Pointers and Arrays, for more detail on
how arrays and pointers work.

The following code allocates a 10 char array and uses strcpy() to copy the bytes of the
string constant "binky" into that local array.

{
char localString[10];

strcpy(localString, "binky");
}

b i n k y 0 x x x x

0 1 2 ...

localString

The memory drawing shows the local variable localString with the string "binky"
copied into it. The letters take up the first 5 characters and the '\0' char marks the end of
the string after the 'y'. The x's represent characters which have not been set to any
particular value.

If the code instead tried to store the string "I enjoy languages which have good string
support" into localString, the code would just crash at run time since the 10 character
array can contain at most a 9 character string. The large string will be written passed the
right hand side of localString, overwriting whatever was stored there.

String Code Example
Here's a moderately complex for loop which reverses a string stored in a local array. It
demonstrates calling the standard library functions strcpy() and strlen() and demonstrates
that a string really is just an array of characters with a '\0' to mark the effective end of the
string. Test your C knowledge of arrays and for loops by making a drawing of the
memory for this code and tracing through its execution to see how it works.

22

{

char string[1000]; // string is a local 1000 char array
int len;

strcpy(string, "binky");
len = strlen(string);

/*
 Reverse the chars in the string:
 i starts at the beginning and goes up
 j starts at the end and goes down
 i/j exchange their chars as they go until they meet
*/
int i, j;
char temp;
for (i = 0, j = len - 1; i < j; i++, j--) {

temp = string[i];
string[i] = string[j];
string[j] = temp;

}

// at this point the local string should be "yknib"

}

"Large Enough" Strings
The convention with C strings is that the owner of the string is responsible for allocating
array space which is "large enough" to store whatever the string will need to store. Most
routines do not check that size of the string memory they operate on, they just assume its
big enough and blast away. Many, many programs contain declarations like the
following...

{
char localString[1000];
...

}

The program works fine so long as the strings stored are 999 characters or shorter.
Someday when the program needs to store a string which is 1000 characters or longer,
then it crashes. Such array-not-quite-big-enough problems are a common source of bugs,
and are also the source of so called "buffer overflow" security problems. This scheme has
the additional disadvantage that most of the time when the array is storing short strings,
95% of the memory reserved is actually being wasted. A better solution allocates the
string dynamically in the heap, so it has just the right size.

To avoid buffer overflow attacks, production code should check the size of the data first,
to make sure it fits in the destination string. See the strlcpy() function in Appendix A.

char*
Because of the way C handles the types of arrays, the type of the variable
localString above is essentially char*. C programs very often manipulate strings
using variables of type char* which point to arrays of characters. Manipulating the
actual chars in a string requires code which manipulates the underlying array, or the use

23

of library functions such as strcpy() which manipulate the array for you. See Section 6 for
more detail on pointers and arrays.

TypeDef
A typedef statement introduces a shorthand name for a type. The syntax is...

typedef <type> <name>;

The following defines Fraction type to be the type (struct fraction). C is case
sensitive, so fraction is different from Fraction. It's convenient to use typedef to
create types with upper case names and use the lower-case version of the same word as a
variable.

typedef struct fraction Fraction;

Fraction fraction; // Declare the variable "fraction" of type "Fraction"
// which is really just a synonym for "struct fraction".

The following typedef defines the name Tree as a standard pointer to a binary tree node
where each node contains some data and "smaller" and "larger" subtree pointers.

typedef struct treenode* Tree;
struct treenode {

int data;
Tree smaller, larger; // equivalently, this line could say

}; // "struct treenode *smaller, *larger"

24

Section 4
Functions
All languages have a construct to separate and package blocks of code. C uses the
"function" to package blocks of code. This article concentrates on the syntax and
peculiarities of C functions. The motivation and design for dividing a computation into
separate blocks is an entire discipline in its own.

A function has a name, a list of arguments which it takes when called, and the block of
code it executes when called. C functions are defined in a text file and the names of all
the functions in a C program are lumped together in a single, flat namespace. The special
function called "main" is where program execution begins. Some programmers like to
begin their function names with Upper case, using lower case for variables and
parameters, Here is a simple C function declaration. This declares a function named
Twice which takes a single int argument named num. The body of the function
computes the value which is twice the num argument and returns that value to the caller.

/*
 Computes double of a number.
 Works by tripling the number, and then subtracting to get back to double.
*/
static int Twice(int num) {

int result = num * 3;
result = result - num;
return(result);

}

Syntax
The keyword "static" defines that the function will only be available to callers in the
file where it is declared. If a function needs to be called from another file, the function
cannot be static and will require a prototype -- see prototypes below. The static form
is convenient for utility functions which will only be used in the file where they are
declared. Next , the "int" in the function above is the type of its return value. Next
comes name of the function and its list of parameters. When referring to a function by
name in documentation or other prose, it's a convention to keep the parenthesis () suffix,
so in this case I refer to the function as "Twice()". The parameters are listed with their
types and names, just like variables.

Inside the function, the parameter num and the local variable result are "local" to the
function -- they get their own memory and exist only so long as the function is executing.
This independence of "local" memory is a standard feature of most languages (See
CSLibrary/102 for the detailed discussion of local memory).

The "caller" code which calls Twice() looks like...

int num = 13;
int a = 1;
int b = 2;
a = Twice(a); // call Twice() passing the value of a
b = Twice(b + num); // call Twice() passing the value b+num
// a == 2
// b == 30
// num == 13 (this num is totally independent of the "num" local to Twice()

25

Things to notice...

(vocabulary) The expression passed to a function by its caller is called the "actual
parameter" -- such as "a" and "b + num" above. The parameter storage local to the
function is called the "formal parameter" such as the "num" in "static int Twice(int
num)".

Parameters are passed "by value" that means there is a single copying assignment
operation (=) from each actual parameter to set each formal parameter. The actual
parameter is evaluated in the caller's context, and then the value is copied into the
function's formal parameter just before the function begins executing. The alternative
parameter mechanism is "by reference" which C does not implement directly, but
which the programmer can implement manually when needed (see below). When a
parameter is a struct, it is copied.

The variables local to Twice(), num and result, only exist temporarily while
Twice() is executing. This is the standard definition for "local" storage for
functions.

The return at the end of Twice() computes the return value and exits the function.
Execution resumes with the caller. There can be multiple return statements within a
function, but it's good style to at least have one at the end if a return value needs to be
specified. Forgetting to account of a return somewhere in the middle of a function
is a traditional source of bugs.

C-ing and Nothingness -- void
void is a type formalized in ANSI C which means "nothing". To indicate that a function
does not return anything, use void as the return type. Also, by convention, a pointer
which does not point to any particular type is declared as void*. Sometimes void* is
used to force two bodies of code to not depend on each other where void* translates
roughly to "this points to something, but I'm not telling you (the client) the type of the
pointee exactly because you do not really need to know." If a function does not take any
parameters, its parameter list is empty, or it can contain the keyword void but that style
is now out of favor.

void TakesAnIntAndReturnsNothing(int anInt);

int TakesNothingAndReturnsAnInt();
int TakesNothingAndReturnsAnInt(void); // equivalent syntax for above

Call by Value vs. Call by Reference
C passes parameters "by value" which means that the actual parameter values are copied
into local storage. The caller and callee functions do not share any memory -- they each
have their own copy. This scheme is fine for many purposes, but it has two
disadvantages.

1) Because the callee has its own copy, modifications to that memory are not
communicated back to the caller. Therefore, value parameters do not allow the callee
to communicate back to the caller. The function's return value can communicate some
information back to the caller, but not all problems can be solved with the single
return value.

26

2) Sometimes it is undesirable to copy the value from the caller to the callee because the
value is large and so copying it is expensive, or because at a conceptual level copying
the value is undesirable.

The alternative is to pass the arguments "by reference". Instead of passing a copy of a
value from the caller to the callee, pass a pointer to the value. In this way there is only
one copy of the value at any time, and the caller and callee both access that one value
through pointers.

Some languages support reference parameters automatically. C does not do this -- the
programmer must implement reference parameters manually using the existing pointer
constructs in the language.

Swap Example
The classic example of wanting to modify the caller's memory is a swap() function
which exchanges two values. Because C uses call by value, the following version of
Swap will not work...

void Swap(int x, int y) { // NO does not work
int temp;

temp = x;
x = y; // these operations just change the local x,y,temp
y = temp; // -- nothing connects them back to the caller's a,b

}

// Some caller code which calls Swap()...
int a = 1;
int b = 2;
Swap(a, b);

Swap() does not affect the arguments a and b in the caller. The function above only
operates on the copies of a and b local to Swap() itself. This is a good example of how
"local" memory such as (x, y, temp) behaves -- it exists independent of everything else
only while its owning function is running. When the owning function exits, its local
memory disappears.

Reference Parameter Technique
To pass an object X as a reference parameter, the programmer must pass a pointer to X
instead of X itself. The formal parameter will be a pointer to the value of interest. The
caller will need to use & or other operators to compute the correct pointer actual
parameter. The callee will need to dereference the pointer with * where appropriate to
access the value of interest. Here is an example of a correct Swap() function.

static void Swap(int* x, int* y) { // params are int* instead of int
int temp;

temp = *x; // use * to follow the pointer back to the caller's memory
*x = *y;
*y = temp;

}

27

// Some caller code which calls Swap()...
int a = 1;
int b = 2;

Swap(&a, &b);

Things to notice...

• The formal parameters are int* instead of int.

• The caller uses & to compute pointers to its local memory (a,b).

• The callee uses * to dereference the formal parameter pointers back to get the caller's
memory.

Since the operator & produces the address of a variable -- &a is a pointer to a. In
Swap() itself, the formal parameters are declared to be pointers, and the values of
interest (a,b) are accessed through them. There is no special relationship between the
names used for the actual and formal parameters. The function call matches up the actual
and formal parameters by their order -- the first actual parameter is assigned to the first
formal parameter, and so on. I deliberately used different names (a,b vs x,y) to emphasize
that the names do not matter.

const
The qualifier const can be added to the left of a variable or parameter type to declare that
the code using the variable will not change the variable. As a practical matter, use of
const is very sporadic in the C programming community. It does have one very handy
use, which is to clarify the role of a parameter in a function prototype...

void foo(const struct fraction* fract);

In the foo() prototype, the const declares that foo() does not intend to change the struct
fraction pointee which is passed to it. Since the fraction is passed by pointer, we could
not know otherwise if foo() intended to change our memory or not. Using the const,
foo() makes its intentions clear. Declaring this extra bit of information helps to clarify the
role of the function to its implementor and caller.

28

Bigger Pointer Example
The following code is a large example of using reference parameters. There are several
common features of C programs in this example...Reference parameters are used to allow
the functions Swap() and IncrementAndSwap() to affect the memory of their callers.
There's a tricky case inside of IncrementAndSwap() where it calls Swap() -- no additional
use of & is necessary in this case since the parameters x, y inside InrementAndSwap() are
already pointers to the values of interest. The names of the variables through the
program(a, b, x, y, alice, bob) do not need to match up in any particular way for the
parameters to work. The parameter mechanism only depends on the types of the
parameters and their order in the parameter list -- not their names. Finally this is an
example of what multiple functions look like in a file and how they are called from the
main() function.

static void Swap(int* a, int* b) {
int temp;
temp = *a;
*a = *b;
*b = temp;

}

static void IncrementAndSwap(int* x, int* y) {
(*x)++;
(*y)++;
Swap(x, y); // don't need & here since a and b are already

// int*'s.
}

int main()
{

int alice = 10;
int bob = 20;

Swap(&alice, &bob);
// at this point alice==20 and bob==10

IncrementAndSwap(&alice, &bob);
// at this point alice==11 and bob==21

return 0;
}

29

Section 5
Odds and Ends
main()
The execution of a C program begins with function named main(). All of the files and
libraries for the C program are compiled together to build a single program file. That file
must contain exactly one main() function which the operating system uses as the starting
point for the program. Main() returns an int which, by convention, is 0 if the program
completed successfully and non-zero if the program exited due to some error condition.
This is just a convention which makes sense in shell oriented environments such as Unix
or DOS.

Multiple Files
For a program of any size, it's convenient to separate the functions into several separate
files. To allow the functions in separate files to cooperate, and yet allow the compiler to
work on the files independently, C programs typically depend on two features...

Prototypes
A "prototype" for a function gives its name and arguments but not its body. In order for a
caller, in any file, to use a function, the caller must have seen the prototype for that
function. For example, here's what the prototypes would look like for Twice() and
Swap(). The function body is absent and there's a semicolon (;) to terminate the
prototype...

int Twice(int num);
void Swap(int* a, int* b);

In pre-ANSI C, the rules for prototypes where very sloppy -- callers were not required to
see prototypes before calling functions, and as a result it was possible to get in situations
where the compiler generated code which would crash horribly.

In ANSI C, I'll oversimplify a little to say that...

1) a function may be declared static in which case it can only be used in the same file
where it is used below the point of its declaration. Static functions do not require a
separate prototype so long as they are defined before or above where they are called
which saves some work.

2) A non-static function needs a prototype. When the compiler compiles a function
definition, it must have previously seen a prototype so that it can verify that the two
are in agreement ("prototype before definition" rule). The prototype must also be seen
by any client code which wants to call the function ("clients must see prototypes"
rule).(The require-prototypes behavior is actually somewhat of a compiler option, but
it's smart to leave it on.)

Preprocessor
The preprocessing step happens to the C source before it is fed to the compiler. The two
most common preprocessor directives are #define and #include...

30

#define
The #define directive can be used to set up symbolic replacements in the source. As with
all preprocessor operations, #define is extremely unintelligent -- it just does textual
replacement without understanding. #define statements are used as a crude way of
establishing symbolic constants.

#define MAX 100
#define SEVEN_WORDS that_symbol_expands_to_all_these_words

Later code can use the symbols MAX or SEVEN_WORDS which will be replaced by the
text to the right of each symbol in its #define.

#include
The "#include" directive brings in text from different files during compilation. #include is
a very unintelligent and unstructured -- it just pastes in the text from the given file and
continues compiling. The #include directive is used in the .h/.c file convention below
which is used to satisfy the various constraints necessary to get prototypes correct.

#include "foo.h" // refers to a "user" foo.h file --
// in the originating directory for the compile

#include <foo.h> // refers to a "system" foo.h file --
// in the compiler's directory somewhere

foo.h vs foo.c
The universally followed convention for C is that for a file named "foo.c" containing a
bunch of functions...

• A separate file named foo.h will contain the prototypes for the functions in foo.c
which clients may want to call. Functions in foo.c which are for "internal use
only" and should never be called by clients should be declared static.

• Near the top of foo.c will be the following line which ensures that the function
definitions in foo.c see the prototypes in foo.h which ensures the "prototype
before definition" rule above.
#include "foo.h" // show the contents of "foo.h"

// to the compiler at this point

• Any xxx.c file which wishes to call a function defined in foo.c must include the
following line to see the prototypes, ensuring the "clients must see prototypes" rule
above.
#include "foo.h"

31

#if
At compile time, there is some space of names defined by the #defines. The #if test can
be used at compile-time to look at those symbols and turn on and off which lines the
compiler uses. The following example depends on the value of the FOO #define symbol.
If it is true, then the "aaa" lines (whatever they are) are compiled, and the "bbb" lines are
ignored. If FOO were 0, then the reverse would be true.

#define FOO 1

...

#if FOO
aaa
aaa

#else
bbb
bbb

#endif

You can use #if 0 ...#endif to effectively comment out areas of code you don't
want to compile, but which you want to keeep in the source file.

Multiple #includes -- #pragma once
There's a problem sometimes where a .h file is #included into a file more than one time
resulting in compile errors. This can be a serious problem. Because of this, you want to
avoid #including .h files in other .h files if at all possible. On the other hand, #including
.h files in .c files is fine. If you are lucky, your compiler will support the #pragma once
feature which automatically prevents a single file from being #included more than once in
any one file. This largely solves multiple #include problems.

// foo.h
// The following line prevents problems in files which #include "foo.h"
#pragma once

<rest of foo.h ...>

Assert
Array out of bounds references are an extremely common form of C run-time error. You
can use the assert() function to sprinkle your code with your own bounds checks. A few
seconds putting in assert statements can save you hours of debugging.

Getting out all the bugs is the hardest and scariest part of writing a large piece of
software. Assert statements are one of the easiest and most effective helpers for that
difficult phase.

#include <assert.h>
#define MAX_INTS 100
{

int ints[MAX_INTS];
i = foo(<something complicated>); // i should be in bounds,

// but is it really?
assert(i>=0); // safety assertions
assert(i<MAX_INTS);

ints[i] = 0;

32

Depending on the options specified at compile time, the assert() expressions will be left
in the code for testing, or may be ignored. For that reason, it is important to only put
expressions in assert() tests which do not need to be evaluated for the proper functioning
of the program...

int errCode = foo(); // yes
assert(errCode == 0);

assert(foo() == 0); // NO, foo() will not be called if
// the compiler removes the assert()

33

Section 6
Advanced Arrays and Pointers
Advanced C Arrays
In C, an array is formed by laying out all the elements contiguously in memory. The
square bracket syntax can be used to refer to the elements in the array. The array as a
whole is referred to by the address of the first element which is also known as the "base
address" of the whole array.

{
int array[6];

int sum = 0;
sum += array[0] + array[1]; // refer to elements using []

}

0 1 2 3 4 5

array

Index

array[0] array[1] array[2] . . .

The array name acts like a pointer to the
first element- in this case an (int*).

The programmer can refer to elements in the array with the simple [] syntax such as
array[1]. This scheme works by combining the base address of the whole array with
the index to compute the base address of the desired element in the array. It just requires
a little arithmetic. Each element takes up a fixed number of bytes which is known at
compile-time. So the address of element n in the array using 0 based indexing will be at
an offset of (n * element_size) bytes from the base address of the whole array.

address of nth element = address_of_0th_element + (n * element_size_in_bytes)

The square bracket syntax [] deals with this address arithmetic for you, but it's useful to
know what it's doing. The [] takes the integer index, multiplies by the element size, adds
the resulting offset to the array base address, and finally dereferences the resulting pointer
to get to the desired element.

{
int intArray[6];

intArray[3] = 13;
}

34

0 1 2 3 4 5

intArray (intArray+3)

Index

Offset
in bytes =
 n * elem_size

0 4 8 12 16 20

Assume sizeof(int) = 4i.e. Each array
element takes up 4 bytes.

13

12 bytes of offset

'+' Syntax
In a closely related piece of syntax, a + between a pointer and an integer does the same
offset computation, but leaves the result as a pointer. The square bracket syntax gives the
nth element while the + syntax gives a pointer to the nth element.

So the expression (intArray + 3) is a pointer to the integer intArray[3].
(intArray + 3) is of type (int*) while intArray[3] is of type int. The two
expressions only differ by whether the pointer is dereferenced or not. So the expression
(intArray + 3) is exactly equivalent to the expression (&(intArray[3])). In
fact those two probably compile to exactly the same code. They both represent a pointer
to the element at index 3.

Any [] expression can be written with the + syntax instead. We just need to add in the
pointer dereference. So intArray[3] is exactly equivalent to *(intArray + 3).
For most purposes, it's easiest and most readable to use the [] syntax. Every once in a
while the + is convenient if you needed a pointer to the element instead of the element
itself.

Pointer++ Style -- strcpy()
If p is a pointer to an element in an array, then (p+1) points to the next element in the
array. Code can exploit this using the construct p++ to step a pointer over the elements in
an array. It doesn't help readability any, so I can't recommend the technique, but you may
see it in code written by others.

(This example was originally inspired by Mike Cleron) There's a library function called
strcpy(char* destination, char* source) which copies the bytes of a C
string from one place to another. Below are four different implementations of strcpy()
written in order: from most verbose to most cryptic. In the first one, the normally
straightforward while loop is actually sortof tricky to ensure that the terminating null
character is copied over. The second removes that trickiness by moving assignment into
the test. The last two are cute (and they demonstrate using ++ on pointers), but not really
the sort of code you want to maintain. Among the four, I think strcpy2() is the best
stylistically. With a smart compiler, all four will compile to basically the same code with
the same efficiency.

35

// Unfortunately, a straight while or for loop won't work.
// The best we can do is use a while (1) with the test
// in the middle of the loop.
void strcpy1(char dest[], const char source[]) {

int i = 0;

while (1) {
dest[i] = source[i];
if (dest[i] == '\0') break; // we're done
i++;

}
}

// Move the assignment into the test
void strcpy2(char dest[], const char source[]) {

int i = 0;

while ((dest[i] = source[i]) != '\0') {
i++;

}
}

// Get rid of i and just move the pointers.
// Relies on the precedence of * and ++.
void strcpy3(char dest[], const char source[])
{

while ((*dest++ = *source++) != '\0') ;
}

// Rely on the fact that '\0' is equivalent to FALSE
void strcpy4(char dest[], const char source[])
{

while (*dest++ = *source++) ;
}

Pointer Type Effects
Both [] and + implicitly use the compile time type of the pointer to compute the
element_size which affects the offset arithmetic. When looking at code, it's easy to
assume that everything is in the units of bytes.

int *p;

p = p + 12; // at run-time, what does this add to p? 12?

The above code does not add the number 12 to the address in p-- that would increment p
by 12 bytes. The code above increments p by 12 ints. Each int probably takes 4 bytes, so
at run time the code will effectively increment the address in p by 48. The compiler
figures all this out based on the type of the pointer.

Using casts, the following code really does just add 12 to the address in the pointer p. It
works by telling the compiler that the pointer points to char instead of int. The size of
char is defined to be exactly 1 byte (or whatever the smallest addressable unit is on the
computer). In other words, sizeof(char) is always 1. We then cast the resulting

36

(char*) back to an (int*). The programmer is allowed to cast any pointer type to
any other pointer type like this to change the code the compiler generates.

p = (int*) (((char*)p) + 12);

Arrays and Pointers
One effect of the C array scheme is that the compiler does not distinguish meaningfully
between arrays and pointers-- they both just look like pointers. In the following example,
the value of intArray is a pointer to the first element in the array so it's an (int*).
The value of the variable intPtr is also (int*) and it is set to point to a single integer
i. So what's the difference between intArray and intPtr? Not much as far as the
compiler is concerned. They are both just (int*) pointers, and the compiler is perfectly
happy to apply the [] or + syntax to either. It's the programmer's responsibility to ensure
that the elements referred to by a [] or + operation really are there. Really its' just the
same old rule that C doesn't do any bounds checking. C thinks of the single integer i as
just a sort of degenerate array of size 1.

{
int intArray[6];
int *intPtr;
int i;

intPtr = &i;

intArray[3] = 13; // ok
intPtr[0] = 12; // odd, but ok. Changes i.
intPtr[3] = 13; // BAD! There is no integer reserved here!

}

37

0 1 2 3 4 5

intArray

i

intPtr

(intArray+3)

(intPtr+3)

These bytes exist, but they have not been explicitly reserved.
They are the bytes which happen to be adjacent to the
memory for i. They are probably being used to store
something already, such as a smashed looking smiley face.
The 13 just gets blindly written over the smiley face. This
error will only be apparent later when the program tries to
read the smiley face data.

Index

13

1312

Array Names Are Const
One subtle distinction between an array and a pointer, is that the pointer which represents
the base address of an array cannot be changed in the code. The array base address
behaves like a const pointer. The constraint applies to the name of the array where it is
declared in the code-- the variable ints in the example below.

{
int ints[100]
int *p;
int i;

ints = NULL; // NO, cannot change the base addr ptr
ints = &i; // NO
ints = ints + 1; // NO
ints++; // NO

p = ints; // OK, p is a regular pointer which can be changed
// here it is getting a copy of the ints pointer

p++; // OK, p can still be changed (and ints cannot)
p = NULL; // OK
p = &i; // OK

foo(ints); // OK (possible foo definitions are below)
}

38

Array parameters are passed as pointers. The following two definitions of foo look
different, but to the compiler they mean exactly the same thing. It's preferable to use
whichever syntax is more accurate for readability. If the pointer coming in really is the
base address of a whole array, then use [].

void foo(int arrayParam[]) {
arrayParam = NULL; // Silly but valid. Just changes the local pointer

}

void foo(int *arrayParam) {
arrayParam = NULL; // ditto

}

Heap Memory
C gives programmers the standard sort of facilities to allocate and deallocate dynamic
heap memory. A word of warning: writing programs which manage their heap memory is
notoriously difficult. This partly explains the great popularity of languages such as Java
and Perl which handle heap management automatically. These languages take over a task
which has proven to be extremely difficult for the programmer. As a result Perl and Java
programs run a little more slowly, but they contain far fewer bugs. (For a detailed
discussion of heap memory see http://cslibrary.stanford.edu/102/, Pointers and Memory.)

C provides access to the heap features through library functions which any C code can
call. The prototypes for these functions are in the file <stdlib.h>, so any code which
wants to call these must #include that header file. The three functions of interest are...

void* malloc(size_t size) Request a contiguous block of memory
of the given size in the heap. malloc() returns a pointer to the heap block or NULL if
the request could not be satisfied. The type size_t is essentially an unsigned
long which indicates how large a block the caller would like measured in bytes.
Because the block pointer returned by malloc() is a void* (i.e. it makes no claim
about the type of its pointee), a cast will probably be required when storing the void*
pointer into a regular typed pointer.

void free(void* block) The mirror image of malloc() -- free takes a
pointer to a heap block earlier allocated by malloc() and returns that block to the heap
for re-use. After the free(), the client should not access any part of the block or
assume that the block is valid memory. The block should not be freed a second time.

void* realloc(void* block, size_t size); Take an existing heap
block and try to relocate it to a heap block of the given size which may be larger or
smaller than the original size of the block. Returns a pointer to the new block, or
NULL if the relocation was unsuccessful. Remember to catch and examine the return
value of realloc() -- it is a common error to continue to use the old block pointer.
Realloc() takes care of moving the bytes from the old block to the new block.
Realloc() exists because it can be implemented using low-level features which make
it more efficient than C code the client could write.

Memory Management
All of a program's memory is deallocated automatically when the it exits, so a program
only needs to use free() during execution if it is important for the program to recycle its
memory while it runs -- typically because it uses a lot of memory or because it runs for a

39

long time. The pointer passed to free() must be exactly the pointer which was originally
returned by malloc() or realloc(), not just a pointer into somewhere within the heap block.

Dynamic Arrays
Since arrays are just contiguous areas of bytes, you can allocate your own arrays in the
heap using malloc(). The following code allocates two arrays of 1000 ints-- one in the
stack the usual "local" way, and one in the heap using malloc(). Other than the different
allocations, the two are syntactically similar in use.

{
int a[1000];

int *b;
b = (int*) malloc(sizeof(int) * 1000);
assert(b != NULL); // check that the allocation succeeded

a[123] = 13; // Just use good ol' [] to access elements
b[123] = 13; // in both arrays.

free(b);
}

Although both arrays can be accessed with [], the rules for their maintenance are very
different....

Advantages of being in the heap
• Size (in this case 1000) can be defined at run time. Not so for an array like "a".

• The array will exist until it is explicitly deallocated with a call to free().

• You can change the size of the array at will at run time using realloc(). The following
changes the size of the array to 2000. Realloc() takes care of copying over the old
elements.

...
b = realloc(b, sizeof(int) * 2000);
assert(b != NULL);

Disadvantages of being in the heap
• You have to remember to allocate the array, and you have to get it right.

• You have to remember to deallocate it exactly once when you are done with it, and you
have to get that right.

• The above two disadvantages have the same basic profile: if you get them wrong, your
code still looks right. It compiles fine. It even runs for small cases, but for some input
cases it just crashes unexpectedly because random memory is getting overwritten
somewhere like the smiley face. This sort of "random memory smasher" bug can be a
real ordeal to track down.

40

Dynamic Strings
The dynamic allocation of arrays works very well for allocating strings in the heap. The
advantage of heap allocating a string is that the heap block can be just big enough to store
the actual number of characters in the string. The common local variable technique such
as char string[1000]; allocates way too much space most of the time, wasting
the unused bytes, and yet fails if the string ever gets bigger than the variable's fixed size.

#include <string.h>

/*
 Takes a c string as input, and makes a copy of that string
 in the heap. The caller takes over ownership of the new string
 and is responsible for freeing it.
*/
char* MakeStringInHeap(const char* source) {

char* newString;

newString = (char*) malloc(strlen(source) + 1); // +1 for the '\0'
assert(newString != NULL);
strcpy(newString, source);
return(newString);

}

41

Section 7
Details and Library Functions
Precedence and Associativity

function-call() [] -> . L to R

! ~ ++ -- + - *(ptr deref) sizeof &(addr of) R to L
(all unary ops are the same)

* / % L to R
(the top tier arithmetic binary ops)

+ - L to R
(second tier arithmetic binary ops)

< <= > >= L to R

== != L to R

in order: & ^ | && || L to R
(note that bitwise comes before boolean)

= and all its variants R to L

, (comma) . L to R

A combinations which never works right without parens: *structptr.field
You have to write it as (*structptr).field or structptr->field

Standard Library Functions
Many basic housekeeping funcions are available to a C program in form of standard
library functions. To call these, a program must #include the appropriate .h file. Most
compilers link in the standard library code by default. The functions listed in the next
section are the most commonly used ones, but there are many more which are not listed
here.

stdio.h file input and output

ctype.h character tests

string.h string operations

math.h mathematical functions such as sin() and cos()

stdlib.h utility functions such as malloc() and rand()

assert.h the assert() debugging macro

stdarg.h support for functions with variable numbers of arguments

setjmp.h support for non-local flow control jumps

signal.h support for exceptional condition signals

time.h date and time

42

limits.h, float.h constants which define type range values such as INT_MAX

stdio.h
Stdio.h is a very common file to #include -- it includes functions to print and read strings
from files and to open and close files in the file system.

FILE* fopen(const char* fname, const char* mode);
Open a file named in the filesystem and return a FILE* for it. Mode = "r" read,"w"
write,"a"append, returns NULL on error. The standard files stdout, stdin,
stderr are automatically opened and closed for you by the system.

int fclose(FILE* file);
Close a previously opened file. Returns EOF on error. The operating system closes all
of a program's files when it exits, but it's tidy to do it beforehand. Also, there is
typically a limit to the number of files which a program may have open
simultaneously.

int fgetc(FILE* in);
Read and return the next unsigned char out of a file, or EOF if the file has been
exhausted. (detail) This and other file functions return ints instead of a chars because
the EOF constant they potentially is not a char, but is an int. getc() is an alternate,
faster version implemented as a macro which may evaluate the FILE* expression
more than once.

char* fgets(char* dest, int n, FILE* in)
Reads the next line of text into a string supplied by the caller. Reads at most n-1
characters from the file, stopping at the first '\n' character. In any case, the string is '\0'
terminated. The '\n' is included in the string. Returns NULL on EOF or error.

int fputc(int ch, FILE* out);
Write the char to the file as an unsigned char. Returns ch, or EOF on err. putc() is an
alternate, faster version implemented as a macro which may evaluate the FILE*
expression more than once.

int ungetc(int ch, FILE* in);
Push the most recent fgetc() char back onto the file. EOF may not be pushed back.
Returns ch or EOF on error.

int printf(const char* format_string, ...);
Prints a string with values possibly inserted into it to standard output. Takes a variable
number of arguments -- first a format string followed by a number of matching
arguments. The format string contains text mixed with % directives which mark
things to be inserted in the output. %d = int, %Ld=long int, %s=string, %f=double,
%c=char. Every % directive must have a matching argument of the correct type after
the format string. Returns the number of characters written, or negative on error. If
the percent directives do not match the number and type of arguments, printf() tends
to crash or otherwise do the wrong thing at run time. fprintf() is a variant which takes
an additional FILE* argument which specifies the file to print to. Examples...
printf("hello\n"); prints: hello
printf("hello %d there %d\n", 13, 1+1); prints: hello 13 there 2
printf("hello %c there %d %s\n", 'A', 42, "ok"); prints: hello A there 42 ok

43

int scanf(const char* format, ...)
Opposite of printf() -- reads characters from standard input trying to match elements
in the format string. Each percent directive in the format string must have a matching
pointer in the argument list which scanf() uses to store the values it finds. scanf()
skips whitespace as it tries to read in each percent directive. Returns the number of
percent directives processed successfully, or EOF on error. scanf() is famously
sensitive to programmer errors. If scanf() is called with anything but the correct
pointers after the format string, it tends to crash or otherwise do the wrong thing at
run time. sscanf() is a variant which takes an additional initial string from which it
does its reading. fscanf() is a variant which takes an additional initial FILE* from
which it does its reading. Example...
{

int num;
char s1[1000];
char s2[1000];

scanf("hello %d %s %s", &num, s1, s2);
}
Looks for the word "hello" followed by a number and two words (all separated by
whitespace). scanf() uses the pointers &num, s1, and s2 to store what it finds into the
local variables.

ctype.h
ctype.h includes macros for doing simple tests and operations on characters

isalpha(ch) // ch is an upper or lower case letter

islower(ch), isupper(ch) // same as above, but upper/lower specific

isspace(ch) // ch is a whitepace character such as tab, space, newline, etc.

isdigit(ch) // digit such as '0'..'9'

toupper(ch), tolower(ch) // Return the lower or upper case version of a
alphabetic character, otherwise pass it through unchanged.

44

string.h
None of these string routines allocate memory or check that the passed in memory is the
right size. The caller is responsible for making sure there is "enough" memory for the
operation. The type size_t is an unsigned integer wide enough for the computer's
address space -- most likely an unsigned long.

size_t strlen(const char* string);
Return the number of chars in a C string. EG strlen("abc")==3

char* strcpy(char* dest, const char* source);
Copy the characters from the source string to the destination string.

size_t strlcpy(char* dest, const char* source,
size_t dest_size);

Like strcpy(), but knows the size of the dest. Truncates if necessary. Use this to avoid
memory errors and buffer-overflow security problems. This function is not as
standard as strcpy(), but most sytems have it. Do not use the old strncpy() function --
it is difficult to use correctly.

char *strcat(char* dest, const char* source);
Append the characters from the source string to the end of destination string. (There is
a non-standard strlcat() variant that takes the size of the dest as third argument.)

int strcmp(const char* a, const char* b);
Compare two strings and return an int which encodes their ordering. zero:a==b,
negative:a<b, positive:a>b. It is a common error to think of the result of strcmp() as
being boolean true if the strings are equal which is, unfortunately, exactly backwards.

char* strchr(const char* searchIn, char ch);
Search the given string for the first occurence of the given character. Returns a
pointer to the character, or NULL if none is found.

char* strstr(const char* searchIn, const char* searchFor);
Similar to strchr(), but searches for an entire string instead of a single character. The
search is case sensitive.

void* memcpy(void* dest, const void* source, size_t n);
Copy the given number of bytes from the source to the destination. The source and
destination must not overlap. This may be implemented in a specialized but highly
optimized way for a particular computer.

void* memmove(void* dest, const void* source, size_t n);
Similar to memcpy() but allows the areas to overlap. This probably runs slightly
slower than memcpy().

45

stdlib.h
int rand();

Returns a pseudo random integer in the range 0..RAND_MAX (limits.h) which is at
least 32767.

void srand(unsigned int seed);
The sequence of random numbers returned by rand() is initially controlled by a global
"seed" variable. srand() sets this seed which, by default, starts with the value 1. Pass
the expression time(NULL) (time.h) to set the seed to a value based on the current
time to ensure that the random sequence is different from one run to the next.

void* malloc(size_t size);
Allocate a heap block of the given size in bytes. Returns a pointer to the block or
NULL on failure. A cast may be required to store the void* pointer into a regular
typed pointer. [ed: see the Heap Allocation section above for the longer discussion of
malloc(), free(), and realloc()]

void free(void* block);
Opposite of malloc(). Returns a previous malloc block to the system for reuse

void* realloc(void* block, size_t size);
Resize an existing heap block to the new size. Takes care of copying bytes from the
old block to the new. Returns the new base address of the heap block. It is a common
error to forget to catch the return value from realloc(). Returns NULL if the resize
operation was not possible.

void exit(int status);
Halt and exit the program and pass a condition int back to the operating sytem. Pass 0
to signal normal program termination, non-zero otherwise.

void* bsearch(const void* key, const void* base, size_t len,
size_t elem_size, <compare_function>);
Do a binary search in an array of elements. The last argument is a function which
takes pointers to the two elements to compare. Its prototype should be:
int compare(const void* a, const void* b);, and it should return 0, -1, or 1 as strcmp()
does. Returns a pointer to a found element, or NULL otherwise. Note that strcmp()
itself cannot be used directly as a compare function for bsearch() on an array of char*
strings because strcmp() takes char* arguments and bsearch() will need a comparator
that takes pointers to the array elements -- char**.

void qsort(void* base, size_t len, size_t elem_size,
<compare_function>);
Sort an array of elements. Takes a function pointer just like besearch().

Revision History
11/1998 -- original major version. Based on my old C handout for CS107. Thanks to Jon
Becker for proofreading and Mike Cleron for the original inspiration.

Revised 4/2003 with many helpful typo and other suggestions from Negar Shamma and
A. P. Garcia

First-Order Homogeneous Equations

A function f(x,y) is said to be homogeneous of degree n if the equation

holds for all x,y, and z (for which both sides are defined).

Example 1: The function f(x,y) = x 2

+ y 2 is homogeneous of degree 2, since

Example 2: The function is homogeneous of degree 4, since

Example 3: The function f(x,y) = 2 x + y is homogeneous of degree 1, since

Example 4: The function f(x,y) = x 3 – y 2 is not homogeneous, since

which does not equal z n f(x,y) for any n.

Example 5: The function f(x,y) = x 3 sin (y/x) is homogeneous of degree 3, since

A first‐order differential equation is said to be homogeneous if M(x,y) and
N(x,y) are both homogeneous functions of the same degree.

Example 6: The differential equation

is homogeneous because both M(x,y) = x 2 – y 2 and N(x,y) = xy are homogeneous functions of the
same degree (namely, 2).

The method for solving homogeneous equations follows from this fact:

The substitution y = xu (and therefore dy = xdu + udx) transforms a homogeneous equation into a
separable one.

Example 7: Solve the equation (x 2 – y 2) dx + xy dy = 0.

This equation is homogeneous, as observed in Example 6. Thus to solve it, make the substitutions y =
xu and dy = x dy + u dx:

This final equation is now separable (which was the intention). Proceeding with the solution,

Therefore, the solution of the separable equation involving x and v can be written

To give the solution of the original differential equation (which involved the variables x and y), simply
note that

Replacing v by y/ x in the preceding solution gives the final result:

This is the general solution of the original differential equation.

Example 8: Solve the IVP

Since the functions

are both homogeneous of degree 1, the differential equation is homogeneous. The substitutions y = xv
and dy = x dv + v dx transform the equation into

which simplifies as follows:

The equation is now separable. Separating the variables and integrating gives

The integral of the left‐hand side is evaluated after performing a partial fraction decomposition:

Therefore,

The right‐hand side of (†) immediately integrates to

Therefore, the solution to the separable differential equation (†) is

Now, replacing v by y/ x gives

as the general solution of the given differential equation. Applying the initial condition y(1) = 0
determines the value of the constant c:

Thus, the particular solution of the IVP is

which can be simplified to

as you can check.

Technical note: In the separation step (†), both sides were divided by (v + 1)(v + 2), and v = –1 and v
= –2 were lost as solutions. These need not be considered, however, because even though the
equivalent functions y = – x and y = –2 x do indeed satisfy the given differential equation, they are
inconsistent with the initial condition.

Formation of a Differential Equation

In this page we are going to discuss about formation of a differential equation concept. Below you will get
explanation about formation of a differential equation.

Consider the family of lines represented by y = mx ….(1)

This equation represents infinite number of lines passing through the origin.

Differentiating (1), we get

Substituting this value of m, we get the differential equation.

Consider the family of lines represented by

y = mx + c ….(3)

where m and c are arbitrary constants. Any line on the co­ordinate plane can be represented by (3)

Let us form a differential equation for equation (3)

Differentiating equation (3) , we have

Differentiating again, we have

This is the differential equation which represents the family of straight lines y = mx +c.

The equation y = mx has one arbitrary constant and its differential equation is of order 1. The equation y = mx + c has two

arbitrary constants and its differential equation is of order 2.

In general, if an equation contains n arbitrary constants, then we obtain its differential equation which is of order n, after

eliminate all the n constants.

Equation(1) is called the primitive of Differentiating equation(2).

Equation (3) is called the primitive of Differentiating equation (4).

The formation of a differential equation may be done by differentiating and eliminating arbitrary constants from the given
equation.

The given equation is differentiated as many times as there are arbitrary constants.

Family of Curves

In this section we explained with examples how to form differential equation that represent family of curves .

Suppose a family of curves depending on one constant is given by

F1 : f (x, y, a)= 0 ….(1)

where a R is the parameter

Differentiating (1) with respect to x, we have

g (x, y, y', a) = 0 ….(2)

Now eliminating 'a' from equation (1) and equation (2), we get the required differential equation.

f (x, y, y') = 0 ….(3)

This equation represents the family of curves F1. Equation (1) is called the primitive of the differential equation (3).

In this section, we discuss in general how to form Differential Equation which represent a family of curves.

Let

F2: f (x, y, a, b) = 0 ….(4)

where a, b R

represents a family of curves which depend on two constants (parameters) a, b.

Differentiating (4) with respect to x, we have

g (x, y, y', a, b) = 0 ….(5)

We can not eliminate a and b from equation (4) and equation (5). Therefore we need another equation which can be
obtained by differentiation equation (5).

Differentiating equation (5) with respect to x, we have

h(x, y, y ',y'', a, b) = 0 ….(6)

Now the arbitrary constants can be eliminated from equation (4), (5) and (6), to obtain the differential equation of the
family of curves.

As discussed earlier, the family of curves containing one parameter, is represented by a differential equation of
order 1.

The family of curves which depend on two parameter is represented by differential equation of order 2.

In general, the family of curves which depend on n parameter is represented by differential equation of order 3.

Formation of a Differential Equation Examples

Below are the examples on formation of a differential equation:

Example 1:

Form a differential equations by eliminating 'a' from the family of curves y2=4ax.

Solution:

y2 = 4ax …(1)

Differentiating with respect to x

Substitute for 4a in (1), we get

y ­ 2xy' = 0

Note that the given equation is differentiated only once to obtain the differential equation since it has only one constant.

Example 2:

Form a differential equation by eliminating the parameter A and B from the family of curves given by y =
Ae2x+Be­2x.

Solution:
The given equation has two arbitrary constants.
To obtain the differential equation, we differentiate the given equation twice.
Differentiate with respect to x.

y2 = 4y

y2 ­ 4y = 0 which is the required differential equation.

Formation of a differential equation whose general solution is given
We know that the equation

represents a circle having
centre at (– 1, 2) and radius 1 unit.
Differentiating equation (1) with respect to x, we get

which is a differential
equation. You will find later on that this equation represents the family of circles and one member of the
family is the circle given in equation (1).
Let us consider the equation

By giving different values to
r, we get different members of the family e.g. x2 + y2 = 1, x2 + y2 = 4, x2 + y2 = 9 etc. (see Fig 9.1).

Thus, equation (3) represents
a family of concentric circles centred at the origin and having different radii.
We are interested in finding a differential equation that is satisfied by each member of the family. The
differential equation must be free from r because r is different for different members of the family. This
equation is obtained by differentiating equation (3) with respect to x, i.e.,

which represents the family
of concentric circles given by equation (3).
Again, let us consider the equation

By giving different values to the parameters m and c, we get different members of the family, e.g.,

Thus, equation (5) represents
the family of straight lines, where m, c are parameters.

We are now interested in
finding a differential equation that is satisfied by each member of the family. Further, the equation must be
free from m and c because m and c are different for different members of the family. This is obtained by
differentiating equation (5) with respect to x, successively we get

The equation (6) represents
the family of straight lines given by equation (5).
Note that equations (3) and (5) are the general solutions of equations (4) and (6) respectively.

Procedure to form a differential equation that will represent a given family of curves
(a) If the given family F1 of curves depends on only one parameter then it is represented by an equation of
the form

For example, the family of
parabolas y2 = ax can be represented by an equation of the form f (x, y, a) : y2 = ax.
Differentiating equation (1) with respect to x, we get an equation involving y′, y, x, and a, i.e.,

The required differential
equation is then obtained by eliminating a from equations (1) and (2) as

(b) If the given family F2 of
curves depends on the parameters a, b (say) then it is represented by an equation of the from

Differentiating equation (4)
with respect to x, we get an equation involving y′, x, y, a, b, i.e.,

But it is not possible to
eliminate two parameters a and b from the two equations and so, we need a third equation. This equation is
obtained by differentiating equation (5), with respect to x, to obtain a relation of the form

The required differential
equation is then obtained by eliminating a and b from equations (4), (5) and (6) as

NOTE: The order of a differential equation representing a family of curves is same as the number of
arbitrary constants present in the equation corresponding to the family of curves.

Example Form the differential equation representing the family of curves y = mx, where, m is arbitrary
constant.
Solution We have

Differentiating both sides of
equation (1) with respect to x, we get

Substituting the value of m in

or

which is free from the
parameter m and hence this is the required differential equation.

Example Form the differential equation representing the family of curves y = a sin (x + b), where a, b are
arbitrary constants.
Solution We have

Differentiating both sides of
equation (1) with respect to x, successively we get

Eliminating a and b from
equations (1), (2) and (3), we get

which is free from the
arbitrary constants a and b and hence this the required differential equation.

equation (1) we get

Graph Theory
and

Applications

-6pt-6pt Graph Theory and
Applications

-6pt-6pt

1 / 112

Graph Theory and Applications

Paul Van Dooren
Université catholique de Louvain

Louvain-la-Neuve, Belgium

Dublin, August 2009

Inspired from the course notes of V. Blondel and L. Wolsey (UCL)

Appetizer -6pt-6pt Appetizer

-6pt-6pt

2 / 112

Graph theory started with Euler who was asked to find a
nice path across the seven Köningsberg bridges

The (Eulerian) path
should cross over
each of the seven
bridges exactly once

Appetizer -6pt-6pt Appetizer

-6pt-6pt

3 / 112

Another early bird was Sir William Rowan Hamilton (1805-1865)

In 1859 he developed a toy based on finding a path visiting all
cities in a graph exactly once and sold it to a toy maker in Dublin.
It never was a big success.

Appetizer -6pt-6pt Appetizer

-6pt-6pt

4 / 112

But now graph theory is used for finding communities in networks

where we want to detect hierarchies of substructures

Appetizer -6pt-6pt Appetizer

-6pt-6pt

5 / 112

and their sizes can become quite big ...

Appetizer -6pt-6pt Appetizer

-6pt-6pt

6 / 112

It is also used for ranking (ordering) hyperlinks

Appetizer -6pt-6pt Appetizer

-6pt-6pt

7 / 112

or by your GPS to find the shortest path home ...

Appetizer -6pt-6pt Appetizer

-6pt-6pt

8 / 112

or by your GPS to find the shortest path home ...

Contents -6pt-6pt Contents

-6pt-6pt

9 / 112

What we will cover in this course

I Basic theory about graphs
I Connectivity
I Paths
I Trees
I Networks and flows
I Eulerian and Hamiltonian graphs
I Coloring problems
I Complexity issues

I A number of applications (in large graphs)
I Large scale problems in graphs
I Similarity of nodes in large graphs
I Telephony problems and graphs
I Ranking in large graphs
I Clustering of large graphs

What are
graphs

-6pt-6pt What are graphs

-6pt-6pt

10 / 112

A graph G = (V ,E) is a pair of vertices (or nodes) V and
a set of edges E , assumed finite i.e. |V | = n and |E | = m.

Here V (G) = {v1, v2, . . . , v5} and E(G) = {e1,e2, . . . ,e6}.

An edge ek = (vi , vj) is incident with the vertices vi and vj .

A simple graph has no self-loops or multiple edges like below

What are
graphs

-6pt-6pt What are graphs

-6pt-6pt

11 / 112

Some properties

The degree d(v) of a vertex V is its number of incident edges

A self-loop counts for 2 in the degree function.

An isolated vertex has degree 0.

Proposition The sum of the degrees of a graph G = (V ,E)
equals 2|E | = 2m (trivial)

Corollary The number of vertices of odd degree is even (trivial)

What are
graphs

-6pt-6pt What are graphs

-6pt-6pt

12 / 112

Special graphs

A complete graph Kn is a simple graph with all B(n,2) := n(n−1)
2

possible edges, like the matrices below for n = 2,3,4,5.

A k -regular graph is a simple graph with vertices of equal degree k

Corollary The complete graph Kn is (n − 1)-regular

What are
graphs

-6pt-6pt What are graphs

-6pt-6pt

13 / 112

A bipartite graph is one where V = V1 ∪ V2 such that there are no
edges between V1 and V2 (the black and white nodes below)

A complete bipartite graph is one where all edges between V1 and
V2 are present (i.e. |E | = |V1|.|V2|). It is noted as Kn1,n2 .

When is complete bipartite graph regular ?

What are
graphs

-6pt-6pt What are graphs

-6pt-6pt

14 / 112

When is G bipartite ?

Which graph is bipartite ?

It suffices to find 2 colors that separate the edges as below

What are
graphs

-6pt-6pt What are graphs

-6pt-6pt

15 / 112

When is G bipartite ?

Which graph is bipartite ?

It suffices to find 2 colors that separate the edges as below

The second example is not bipartite because it has a triangle

(to be continued)

Cycles -6pt-6pt Cycles

-6pt-6pt

16 / 112

Walking in a graph

A walk of length k from node v0 to node vk is a non-empty graph
P = (V ,E) of the form

V = {v0, v1, . . . , vk} E = {(v0, v1), . . . , (vk−1, vk)}

where edge j connects nodes j − 1 and j (i.e. |V | = |E |+ 1).

A trail is a walk with all different edges.

A path is a walk with all different nodes (and hence edges).

A walk or trail is closed when v0 = vk .

A cycle is a walk with different nodes except for v0 = vk .

Cycles -6pt-6pt Cycles

-6pt-6pt

17 / 112

Try to prove the following wo (useful) lemmas

Proposition A walk from u to v 6= u contains a path from u to v
Hint : eliminate subcycles

Proposition A closed walk of odd length contains a cycle of odd
length
Hint : decompose recursively into distinct subgraphs and use
induction

Question Is this only for simple graphs ?

Cycles -6pt-6pt Cycles

-6pt-6pt

18 / 112

Directed graphs

In a directed graph or digraph, each edge has a direction.

For e = (vs, vt), vs is the source node and vt is the terminal node.

Each node v has an in-degree din(v) and an out-degree dout (v).

A graph is balanced if din(v) = dout (v) for all nodes.

Cycles -6pt-6pt Cycles

-6pt-6pt

19 / 112

Topological order

Let us now try to order the nodes in a digraph.

Define a bijection ford : V → {1,2, . . . ,n}, then ford (·) is a
topological order for the graph G = (V ,E) iff

ford (i) < ford (j), ∀(i , j) ∈ E

This is apparently possible for the above graph.
It is easy to see that such a graph should have no cycles.

But is this also sufficient ?

Cycles -6pt-6pt Cycles

-6pt-6pt

20 / 112

An acyclic graph is a graph without cycles.

Proposition
Every acyclic graph contains at least one node with zero in-degree

Proof By contradiction.
Assume din(v) > 0 for all nodes, then each node i has a
predecessor p(i) such that (vp(i), vi) ∈ E .

Start from an arbitrary v0 to form a list of predecessors as below

Since |V | is bounded, one must eventually return to a node that
was already visited; hence there is a cycle.

Cycles -6pt-6pt Cycles

-6pt-6pt

21 / 112

Let us use this to find a topological order

Algorithm FindTopOrd(G)
t := 0; G0 := G;
while ∃v ∈ Gt : din(v) = 0 do

Gt+1 := Gt/{v}; order(v) := t + 1; t := t + 1;
end while
if t = n then G is acyclic;

else if t < n then G has a cycle; end if
end if

Let us verify this algorithm on the above example.

Cycles -6pt-6pt Cycles

-6pt-6pt

22 / 112

The only node of in-degree 0 is v4. So for t = 1 we have

After removing v4 there are two nodes of in-degree 0, v1 and v3.
If we pick v3 then we have for t = 2

Further reductions yield the final order {v4, v3, v1, v2, v5, v6}.

What is the complexity of this algorithm ?

Isomorphism -6pt-6pt Isomorphism

-6pt-6pt

23 / 112

Isomorphic graphs

Two graphs G1 and G2 are isomorphic iff there is a bijection
between their respective nodes which make each edge of G1
correspond to exactly one edge of G2, and vice versa.

One must find a label numbering that makes the graphs identical

This problem is still believed to be NP hard

Isomorphism -6pt-6pt Isomorphism

-6pt-6pt

24 / 112

Counting graphs

How many different simple graphs are there with n nodes ?

A graph with n nodes can have B(n,2) := n(n − 1)/2 different
edges and each of them can be present or not.

Hence there can be at most 2n(n−1)/2 graphs with n nodes.
For n = 3 only 4 of the graphs are different
(omitting the isomorphic ones)

With n = 4 one finds eventually 11
different graphs after collapsing the
isomorphic ones

Isomorphism -6pt-6pt Isomorphism

-6pt-6pt

25 / 112

Let there be Tn non-isomorphic (simple) graphs with n nodes.
Then

Ln :=
2n(n−1)/2

n!
≤ Tn ≤ 2n(n−1)/2

Exercise Explain the lower bound

Taking logarithms and using n! < nn yields the bounds

B(n,2)− n log n ≤ log Tn ≤ B(n,2)

which gives an idea of the growth of Tn

n 2 3 4 5 6 7 8
Tn 2 4 11 34 156 1044 12346
dLne 2 2 3 9 46 417 6658

Isomorphism -6pt-6pt Isomorphism

-6pt-6pt

26 / 112

Bipartite revisited

Let us look again at bipartite graphs

Proposition A graph is bipartite iff it has no cycles of odd length
Necessity Trivial : color the nodes of the cycle black and white.
Sufficiency Pick u ∈ V and let f (v) be the length of a shortest
path from u to v (∞ if there is no such path)

A = {v ∈ V |f (v) = odd} B = {v ∈ V |f (v) = even}

Then A and B form a partition of the nodes of V connected to u.

One then needs to show that there
can be no links between any two
nodes of A or any two nodes of B.
If this would be the case, one could
construct a cycle of odd length.
Repeat on each subgraph.

Representing
graphs

-6pt-6pt Representing graphs

-6pt-6pt

27 / 112

Representing graphs

A graph G = (V ,E) is often represented by its adjacency matrix.

It is an n × n matrix A with A(i , j) = 1 iff (i , j) ∈ E . For the graphs

the adjacency matrices are

A1 =


0 0 0 1 0
0 0 1 0 1
0 1 0 1 1
1 0 1 0 1
0 1 1 1 0

 A2 =


0 0 1 0
1 0 0 0
0 1 0 0
0 1 1 0



Representing
graphs

-6pt-6pt Representing graphs

-6pt-6pt

28 / 112

A graph can also be represented by its n ×m incidence matrix T .

For an undirected graph T (i , k) = T (j , k) = 1 iff ek = (vi , vj).
For a directed graph T (i , k) = −1; T (j , k) = 1 iff ek = (vi , vj).
For the graphs

the incidence matrices are

T1 =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1
0 1 0 1 0 1

 T2 =


−1 0 0 0 1

0 1 0 1 −1
1 0 1 −1 0
0 −1 −1 0 0



Representing
graphs

-6pt-6pt Representing graphs

-6pt-6pt

29 / 112

One can also use a sparse matrix representation of A and T .
This is in fact nothing but a list of edges, organized e.g. by nodes.

Notice that the size of the representation of a graph is thus linear
in the number of edges in the graph (i.e. in m = |E |).

To be more precise, one should count the number of bits needed
to represent all entries :

L = (n + m) log n

since one needs log n bits to represent the vertex pointers.

Representing
graphs

-6pt-6pt Representing graphs

-6pt-6pt

30 / 112

Counting degrees

Let 1 be the vector of all ones, then din = AT 1 and dout = A1
are the vectors of in-degrees and out-degrees of the nodes of A
and dout = din = d for undirected graphs.
How should we then take self-loops into account ?
In an adjacency matrix of an undirected graph A(i , i) = 2
In an adjacency matrix of a directed graph A(i , i) = 1

For an undirected graph, we have d = T 1.
For a directed graph one can define Tt and Ts as the matrices
containing the terminal and source nodes : T = Tt − Ts with

Tt :=


0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
0 0 0 0 0

 ,Ts :=


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 1 0 0


Then also we have din = Tt1 and dout = Ts1.

Representing
graphs

-6pt-6pt Representing graphs

-6pt-6pt

31 / 112

Powers of A

Proposition (Ak)ij is the number of walks of length k from i to j
Proof Trivial for k=1; by induction for larger k .
The element (i , j) of Ak+1 = Ak ·A is the sum of the walks of length
k to nodes that are linked to node j via the adjacency matrix A.

One verifies this in the following little example

A =

 0 1 0
0 0 1
1 1 0

 , A2 =

 0 0 1
1 1 0
0 1 1


Corollary In a simple undirected graph one has the identities
tr(A) = 0, tr(A2)/2 = |E | and
tr(A3)/6 equals the number of triangles in G.

Connectivity -6pt-6pt Connectivity

-6pt-6pt

32 / 112

Connected components

In a directed graph G = (V ,E), u and v are strongly connected
if there exists a walk from u to v and from v to u.

This is an equivalence relation and hence leads to equivalence
classes, which are called th connected components of the graph
G.

The graph reduced to its connected components is acyclic (why ?)

This shows up in many applications, e.g. in the dictionary graph.
The connected components are the groups of words that use each
other in their definition (see later).

Connectivity -6pt-6pt Connectivity

-6pt-6pt

33 / 112

After the reduction one has an acyclic graph, which can be
ordered topologically.
What do you obtain then ? Class orderings

An initial class has din(c) = 0. A final class has dout (c) = 0.
The other ones are intermediate.

Connectivity -6pt-6pt Connectivity

-6pt-6pt

34 / 112

Verify (strong) connectivity of a graph based on its adjacency list
Idea : start from node s, explore the graph, mark what you visit

Algorithm GenericSearch(G,s)
mark(s); L := {s}
while L 6= ∅ do

choose u ∈ L;
if ∃(u, v) such that v is unmarked then

mark(v); L := L ∪ {v};
else

L := L\{u};
end if

end while

Connectivity -6pt-6pt Connectivity

-6pt-6pt

35 / 112

Below we marked the chosen nodes and the discovered nodes

L mark
{2} 2
{2, 1} 1
{2, 1, 5} 5
{2, 1, 5, 6} 6
{1, 5, 6}
{1, 5, 6, 4} 4
{5, 6, 4}
{5, 4}
{5, 4, 3} 3
{5, 3}
{5, 3, 7} 7
{5, 3}
{3}
{3, 8} 8
{3}
{}

This algorithm has 2n steps : each node is added once and
removed once. Its complexity is therefore linear in n.

Connectivity -6pt-6pt Connectivity

-6pt-6pt

36 / 112

Because of the choices, this algorithm allows for different versions
Let us use a LIFO list for L (Last In First Out) and choose for u the
last element added to L. This is a depth first search (DFS).

Algorithm DeptFirstSearch(G,s)
mark(s); L := {s};
while L 6= ∅ do

u := last(L)
if ∃(u, v) such that v is unmarked then

choose (u, v) with v of smallest index;
mark(v); L := L ∪ {v};

else
L := L\{u}

end if
end while

Connectivity -6pt-6pt Connectivity

-6pt-6pt

37 / 112

Below we marked the chosen nodes and the discovered nodes

L mark
{2} 2
{2, 1} 1
{2, 1, 4} 4
{2, 1, 4, 3} 3
{2, 1, 4, 3, 7} 7
{2, 1, 4, 3}
{2, 1, 4, 3, 8} 8
{2, 1, 4, 3}
{2, 1, 4}
{2, 1, 4, 6} 6
{2, 1, 4, 6, 5} 5
{2, 1, 4, 6}
{2, 1, 4}
{2, 1}
{2}
{}

This algorithm builds longer paths than the generic one (depth
first).

Connectivity -6pt-6pt Connectivity

-6pt-6pt

38 / 112

We now use a FIFO list for L (First In First Out) and choose for u
the first element added to L. This is a breadth first search (BFS).

Algorithm BreadthFirstSearch(G,s)
mark(s); L := {s};
while L 6= ∅ do

u := first(L)
if ∃(u, v) such that v is unmarked then

choose (u, v) with v of smallest index;
mark(v); L := L ∪ {v};

else
L := L\{u}

end if
end while

Connectivity -6pt-6pt Connectivity

-6pt-6pt

39 / 112

Below we marked the chosen nodes and the discovered nodes

L mark
{2} 2
{2, 1} 1
{2, 1, 5} 5
{1, 5}
{1, 5, 4} 4
{1, 5, 4, 6} 6
{5, 4, 6}
{4, 6}
{4, 6, 3} 3
{6, 3}
{3}
{3, 7}
{3, 7, 8} 8
{7, 8}
{8}
{}

This algorithm builds a wider tree (breadth first).

Connectivity -6pt-6pt Connectivity

-6pt-6pt

40 / 112

Testing connectivity

The exploration algorithm finds the set of all nodes that can be
reached by a path from a given node u ∈ V .

If the graph is undirected, each node in that set can follow a path
back to u. They thus form the connected component C(u) of u.

To find all connected components, repeat this exploration on a
node of V\C(u), etc.

Connectivity -6pt-6pt Connectivity

-6pt-6pt

41 / 112

Testing strong connectivity

Proposition Let G = (V ,E) be a digraph and let u ∈ V .
If ∀v ∈ V there exists a path from u to v and a path from v to u,
then G is strongly connected.

The exploration algorithm finds the set of all nodes that can be
reached by a path from a given node u ∈ V .

How can one find the nodes from which u can be reached ?

Construct for that the inverse graph by reversing all arrows

Show that the adjacency matrix of this graph is just AT .

Connectivity -6pt-6pt Connectivity

-6pt-6pt

42 / 112

Proposition Let G = (V ,E) be a digraph and let u ∈ V .
Let R+(u) be the nodes that can be reached from u
and let R−(u) be the nodes that can reach u,
then the strongly connected component of u is
C(u) = R+(u) ∩ R−(u)

The exploration algorithm applied to the inverse graph, starting
from u finds the set R−(u)

Here R+(v6) = {4,6} while R−(v6) = V hence C(v6) = {4,6}

Find the other connected components.

Shortest path -6pt-6pt Shortest path

-6pt-6pt

43 / 112

Shortest path problems

Find the shortest total length of a path between two nodes of a
directed graph with lengths associated with each edge.

E.g. Find the best piecewise linear approximation of a function

A cost cij = α + β
∑j

k=i (f (xk)− g(xk))2 is associated with each
linear section. This amounts to finding the shortest path in

Shortest path -6pt-6pt Shortest path

-6pt-6pt

44 / 112

Other example : Find the best production policy for a plant with a
monthly demand di , a launching cost fi , a storage cost hi and a
unit price pi , for each period i = 1, . . . ,n.

In the path below, we are e.g. producing in stages 1, 4 and 5.

A cost is associated with each section. For the path (1,4) it is e.g.
c14 = f1 + p1(d1 + d2 + d3) + h1(d2 + d3) + h2(d3) which is the
fixed cost + the production cost in periods 1, 2 and 3 + storage
costs at the end of periods 1 and 2.

The minimization of the total cost amounts to a shortest path
problem in a graph combining paths as above.

Shortest path -6pt-6pt Shortest path

-6pt-6pt

45 / 112

Proposition If there is a shortest walk from s to t , there is also a
shortest path from s to t

Proof
Assume the walk is not a path;
hence there is a recurring node.
Eliminate the cycle between the
first and last occurrence of this
node. Repeat this procedure.

In the above graph the path (7,8,6,3,1,5,6,10,4,6,9) has a
cycle (6,3,1,5,6,10,4,6). After its elimination we have a path
(7,8,6,9).

Corollary If G does not contain cycles of negative length, the
resulting path is one of lower cost.

Proof Trivial

Shortest path -6pt-6pt Shortest path

-6pt-6pt

46 / 112

Dijkstra’s algorithm

This method is for a digraph G that has positive edge lengths.
For undirected graphs one can duplicate each edge as follows

Below, V +(u) denotes the set of children of u.

Algorithm Dijkstra(G,u)
S := {u}; d(u) := 0; d(v) := c(u, v) ∀v 6= u;
while S 6= V do

choose v ′ /∈ S : d(v ′) ≤ d(v) ∀v /∈ S;
S := S ∪ {v ′};
for each v ∈ V +(v ′) do

d(v) = min{d(v),d(v ′) + c(v ′, v)}
end for

end while

Shortest path -6pt-6pt Shortest path

-6pt-6pt

47 / 112

Idea : Update a set S for which we know all shortest paths from u

Let us see the behavior of this
algorithm on an example.

The table below indicates the
steps and the distances
computed for each node

Iter S d(u) d(1) d(2) d(3) d(4)
0 {u} 0 1 3 ∞ 6
1 {u,1} 0 1 2 4 6
2 {u,1,2} 0 1 2 3 6
3 {u,1,2,3} 0 1 2 3 5
4 {u,1,2,3,4} 0 1 2 3 5

We indicate in more detail the exploration of the graph

Shortest path -6pt-6pt Shortest path

-6pt-6pt

48 / 112

S d(u) d(1) d(2) d(3) d(4)
{u} 0 1 3 ∞ 6
{u, 1} 0 1 2 4 6
{u, 1, 2} 0 1 2 3 6
{u, 1, 2, 3} 0 1 2 3 5
{u, 1, 2, 3, 4} 0 1 2 3 5

Below, the node u is blue and the explored nodes are red

Shortest path -6pt-6pt Shortest path

-6pt-6pt

49 / 112

Proposition Dijkstra’s algorithm finds in O(n2) time the shortest
path from u to all other nodes of V .
Proof By induction on the size of S, we show that
1. ∀v ∈ S,d(v) is the length of the shortest path from u to v
2. ∀v ∈ S+ (children of nodes of S), d(v) is the length of the
shortest path from u to v not passing exclusively via nodes of S

Trivial for S = {u},d(u) = 0,d(v) = c(u, v).

Let v ′ /∈ S : d(v ′) = minv /∈S d(v) then the
shortest path to v ′ must lie completely in S.
If not, ∃v ′′ outside S at a shorter distance.

We can update S := S ∪ {v ′} and compute the shortest path
from u to children of v ′ as d(v) = min{d(v),d(v ′) + c(v ′, v))}.
This gives the length of the shortest path to all v ∈ S+.

The other distances are unknown as yet and hence set to∞.

Shortest path -6pt-6pt Shortest path

-6pt-6pt

50 / 112

Variants

For a graph with edge lengths 1 it suffices to do a BFSearch and
to keep track of the path lengths by incrementing them with 1
during the exploration phase. This is thus an O(m) time algorithm.

Algorithm ShortestPathBFS(G,v)
mark(v); S := {v}; d(v) = 0;
while not S = ∅ do

v := first(S)
if ∃(v , v ′) such that v ′ is unmarked then

choose (v , v ′) with v ′ of smallest index;
mark(v ′); S := S ∪ {v ′}; d(v ′) = d(v) + 1;

else
S := S\{v}

end if
end while

Shortest path -6pt-6pt Shortest path

-6pt-6pt

51 / 112

Proposition All nodes at distance exactly k are correctly
identified before proceeding further.

Proof For k = 0 this is trivial (S is the original node u).
Induction step : suppose the statement is correct up to k .
After all nodes at distance k have been found, one finds nodes
that are at a distance larger than k but since they are all
neighboring nodes, they must be at distance exactly k + 1.

Shortest path -6pt-6pt Shortest path

-6pt-6pt

52 / 112

For an acyclic graph, one can just compute the topological order in
O(m) time (see earlier).

To solve the shortest path problem one then uses the algorithm

Algorithm ShortestPathAcyclic(G,v)
d(1) = 0; d(i) :=∞ for i = 2, . . . ,n;
for i = 1 : n − 1 do

for j ∈ V +(i) do
d(j) := minj{d(j),d(i) + c(i , j)};

end for
end for

What is the complexity of this second step ?

One can also see the shortest path problem as a flow problem or
as a linear programming problem.
This leads to other algorithms like the Bellman-Ford Algorithm.

Trees -6pt-6pt Trees

-6pt-6pt

53 / 112

Trees and forests

A tree is an acyclic and
connected graph

A forest is an acyclic
graph (and hence a union
of trees)

Proposition For a graph G = (V ,E) of order n = |V |, the
following are equivalent
1. G is connected and has n − 1 edges
2. G is acyclic and has n − 1 edges
3. G is connected and acyclic
4. ∀u, v ∈ V there is one and only one path from u to v
5. G is acyclic and adding an edge creates one and only one cycle
6. G is connected and removing an arbitrary edge disconnects it

Proofs ?

Trees -6pt-6pt Trees

-6pt-6pt

54 / 112

The following definitions are especially relevant for trees.
The eccentricity ε(u) = maxv∈V d(u, v) of a node is the maximum
distance to any node v ∈ V . The eccentricity of each node is
indicated in the graph below

The radius rad(G) = minu∈V ε(u) of a graph G is the minimal
eccentricity of all nodes in V
The diameter diam(G) = maxu∈V ε(u) of a graph G is the maximal
eccentricity of all nodes in V . It is also the maximal distance
between any two nodes in V
The center of a graph G is the set of nodes in V of minimal
eccentricity (the black node)

Trees -6pt-6pt Trees

-6pt-6pt

55 / 112

A leaf of a tree T is a node of degree 1

Proposition Let T be a tree and let T ′ be the tree obtained by
removing all its leafs, then ε(T ′) = ε(T)− 1 for all nodes of T ′.
Proof ?

Proposition The center of a tree is a single node or a pair of
adjacent nodes.

Proof By induction using the previous proposition.
Show that the center does not change.

Trees -6pt-6pt Trees

-6pt-6pt

56 / 112

Counting trees

How many different (labeled) trees are there with n nodes ?
The following table gives the count for small n

The following theorem of Cayley gives the exact formula.
Proposition
The number of distinct labeled trees of order n equals nn−2

Trees -6pt-6pt Trees

-6pt-6pt

57 / 112

We construct a bijection of Tn with a sequence via the algorithm

Algorithm PrüferSequence(T)
s := (); t := ();
while |E | > 1 do

choose the leaf of smallest index i ;
T := T\{i}; s := (s, i); t := (t ,neighbour(i));

end while

On the graph below, it yields the table next to it

One shows that the graph can be reconstructed from the
sequence ti which are n − 2 numbers from {1, . . . ,n}
and there are exactly nn−2 such sequences.

Trees -6pt-6pt Trees

-6pt-6pt

58 / 112

Spanning tree

Remove from a connected graph as many edges as possible while
remainig connected; this should yield a tree with n − 1 edges.

This is the minimal spanning tree problem solved by the following
algorithm, of time complexity O(m log m)

Algorithm KruskalMST(G)
Eord := sort(E); E ′ := ∅; Erest := Eord ;
while |E ′| > n − 1 do
α := first(Erest); Erest := Erest\{α};
if (V ,E ′ ∪ {α}) is acyclic then

E ′ := E ′ ∪ {α};
end if

end while

The sorting is done efficiently
in O(m log m) time as well.

Let us look at an example

Trees -6pt-6pt Trees

-6pt-6pt

59 / 112

The different steps of the algorithm are

This constructs a tree which is a subgraph with n − 1 edges.

Trees -6pt-6pt Trees

-6pt-6pt

60 / 112

Now we look at an alternative algorithm of time complexity
O((m + n) log n)

The idea is to pick a random node and then grow a minimal tree
from there

Algorithm PrimMST(G)
Choose u ∈ V ; V ′ := {u}; E ′ := ∅;
for i = 1 : n − 1 do

E ′′ := edges linking V to V ′;
choose e = (u, v) ∈ E ′′ of minimal weight and such that
(V ′ ∪ {v},E ′{e} is acyclic;
V ′ := V ′ ∪ {v}; E ′ := E ′ ∪ {e};

end for

Let us look at the same example

Trees -6pt-6pt Trees

-6pt-6pt

61 / 112

The different steps of the algorithm are

The graph (V ,E ′) is a minimal spanning tree with n − 1 edges

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

62 / 112

Planar graphs

When drawing connected graphs one is naturally lead to the
question of crossing edges. One says that a graph is planar if it
can be drawn (or represented) without crossing edges

The above graphs represent K3,3 (not planar) and K4 (planar)

Proposition (Fary, 1948)
Every planar graph can be
represented in the plane using
straight edges only

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

63 / 112

For such graphs, one can now define
faces. These are the regions encircled
by edges that form a cycle. One has to
identify also an exterior face as shown
in this figure with 6 faces

Proposition A planar representation of a graph can be
transformed to another one where any face becomes the exterior
face (a proof comes later)

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

64 / 112

Proposition A graph can be
represented in a plane if and
only if it can be represented on
a sphere (immersion)
Proof
Use a stereographic projection

Every face of the plane is mapped to a sector on the sphere. No
point on the sphere can therefore belong to two different sectors.
The external face is mapped to a sector containing the north pole.

For the external face result, notice that by rotating the sphere, one
can move any point (and hence sector) to the north pole

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

65 / 112

Characterisation

Proposition (Euler formula) Let G be planar, and let n(G) be its
number of vertices, e(G) its number of edges, and f (G) its number
of faces. Then f = e − n + 2.

In the example shown here
n = 8; e = 10; f = 4

Proof Use induction on the number of faces f .
For f = 1 there are no cycles and hence the connected graph is a
three, for which we know e = n − 1 and hence f = e − n + 2.
For f ≥ 2, remove an edge (u, v) between two faces to construct
G′ := G\(u, v). Then f (G′) = f (G)− 1; e(G′) = e(G)− 1 and
n(G′) = n(G). Use the result for smaller f to prove it for f .

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

66 / 112

Some exercices

Proposition Let G be planar with f > 1, then 3f ≤ 2e

Proposition Let G be planar with f > 1 and G have no triangles,
then 2f ≤ e

Proposition Let G be a planar (connected) graph.
If n ≥ 3 then e ≤ 2n − 6

Proposition Let G be a planar (connected) graph.
If G has no triangles or is bipartite, then e ≤ 2n − 4

These help to prove the following lemma

Proposition K5 and K3,3 are not planar.

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

67 / 112

Corollary The average degree of the vertices of a planar
connected graph G is smaller than 6− 12

n

Corollary In a planar (connected) graph there always exists a
vertex such that d(v) ≤ 5

Corollary A planar graph can be colored with 6 colors (see later)

Proposition (Platonic solid) There are only 5 regular polyhedra

These so-called Platonic solids are shown below

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

68 / 112

The Platonic solids are characterized by three equations
nk = 2e, fl = 2e for k , l integers, and n + f = e + 2
Explain why
It then follows that 2e/k + 2e/l − e = 2 hence 2/k + 2/l > 1
or (k − 2)(l − 2) < 4. The integer solutions are given by

Name k l e n f
Tetraeder 3 3 6 4 4
Cube 3 4 12 8 6
Dodecaeder 3 5 30 20 12
Octaeder 4 3 12 6 8
Icosaeder 5 3 30 12 20

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

69 / 112

Test for planar graphs

We first need to introduce subdivisions and subgraphs.

Let us expand a graph G = (V ,E) by a subdivision of one of its
edges e = (u, v) ∈ E . We put a new node w on e and replace it
by two new edges e1 = (u,w) and e2 = (w , v). The new graph is
thus given by G′ = (V ∪ {w},E ∪ {e1,e2}\{e}).

Two graphs are said to be homeomorphic to each other iff one can
be derived from the other via a sequence of subdivisions.

Corollary Homeomorphism is an equivalence relation.

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

70 / 112

A graph G′ = (V ′,E ′) is a subgraph of a graph G = (V ,E) if
V ′ ⊆ V and E ′ ⊆ E (edges must disappear along with nodes)

Proposition (Kuratowsky, 1930) A graph is planar iff it does not
contain a subgraph homeomorphic to K3,3 or K5.

Example : the Petersen graph (subgraph + homeomorphism)

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

71 / 112

Minors

Let e = (u, v) be an edge of a graph G = (V ,E). A contraction of
the edge e consists of eliminating e and merging the nodes u and
v into a new node w . The new graph G′ is thus
G′ = (V\{u, v} ∪ {w},E\{e})

Proposition (Wagner, 1937) A graph is planar iff it does not have
K3,3 or K5 as a minor.

Example :
the Petersen
graph again

Planar graphs -6pt-6pt Planar graphs

-6pt-6pt

72 / 112

Proposition (Robertson-Seymour)
For a graph G, determining if a given graph H is a minor of H, can
be solved in polynomial time (with respect to n(G) and m(G)).

A dual graph G∗ of a planar graph is obtained as follows
1. G∗ has a vertex in each face of G
2. G∗ has an edge between two vertices if G has an edge
between the corresponding faces

This is again a planar graph
but it might be a multigraph
(with more than one edge
betwee two vertices)

Exercise Show that Euler’s formula is preserved

Exercise Show that G = (G∗)∗

Flows -6pt-6pt Flows

-6pt-6pt

73 / 112

Networks and flows

A network is a directed graph N = (V ,E) with a source node s
(with dout (s) > 0) and a terminal node t (with din(t) > 0).
Moreover each edge has a strictly positive capacity c(e) > 0.

A flow f : V 2 → R+ is associated with each edge e = (u, v) s.t.
1. for each edge e ∈ E we have 0 ≤ f (e) ≤ c(e)
2. for each intermediate node v ∈ V\{s, t} the in- and out-flow at
that node

∑
u∈V−(v) f (u, v) =

∑
u∈V +(v) f (v ,u) match

The total flow F of the network is then what leaves s or reaches t

F (N) :=
∑
u∈V

f (s,u)−
∑
u∈V

f (u, s) =
∑
u∈V

f (u, t)−
∑
u∈V

f (t ,u)

Flows -6pt-6pt Flows

-6pt-6pt

74 / 112

Here is an example of a flow

It has a value of F (N) = 7 and the conservation law is verified
inside.

But the flow is not maximal, while the next one is (F (N) = 9) as
we will show later. Notice that one edge is not being used (f = 0)

Flows -6pt-6pt Flows

-6pt-6pt

75 / 112

Cut of a network

A cut of a network is a partition of the vertex set V = P ∪ P into
two disjoint sets P (containing s) and P (containing t)

The capacity of a cut is the sum of the capacities of the edges
(u, v) between P and P

κ(P,P) =
∑

u∈P;v∈P

c(u, v)

which in the above example equals 5 + 3 + 3 + 1 = 9.

We now derive important properties of this capacity.

Flows -6pt-6pt Flows

-6pt-6pt

76 / 112

Proposition Let (P,P) be any cut of a network N = (V ,E)
then the associated flow is given by

F (N) =
∑

u∈P;v∈P

f (u, v)−
∑

u∈P;v∈P

f (v ,u)

Proof First show that F (N) =
∑

u∈P (
∑

v f (u, v)−
∑

v f (v ,u))

by summing all contributions in P and using conservation.
For all v ∈ P the term between brackets is zero (conservation).
Hence we only need to keep the edges across the partition.

Corollary A flow is bounded by the capacity of any cut
F (N) ≤ κ(P,P)

A minimal cut (with minimal capacity) also bounds F (N)

(we will construct one and will see it is in fact equal to F (N))

Flows -6pt-6pt Flows

-6pt-6pt

77 / 112

Applications

The dining problem
Can we seat 4 families with number of members (3,4,3,2) at 4
tables with number of seats (5,2,3,2) so that no two members of a
same family sit at the same table ?

The central edges are the table assignments (a capacity of 1).
The cut shown has a capacity 11 which upper bounds F (N).
We can therefore not seat all 12 members of the four families.

Flows -6pt-6pt Flows

-6pt-6pt

78 / 112

The marriage problem
One wants to find a maximimum number of couplings between
men and women where each couple has expressed whether or
not this coupling was acceptable (central edges that exist or not)

One wants to find a maximum number of disjoint paths in this
directed graph. All the capacities of the existing edges are 1.

Flows -6pt-6pt Flows

-6pt-6pt

79 / 112

Given a network N(V ,E) and a flow f then its residual network Nf
is a network with the same nodes V but with new capacities

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ;
f (v , u) if (v , u) ∈ E
0 otherwise.

An augmenting path is a directed path v0, . . . , vk from S = v0 to
t = vk for which
∆i = c(vi , vi+1)− f (vi , vi+1) > 0 ∀(vi , vi+1) ∈ E or
∆i = c(vi , vi+1)− f (vi+1, vi) > 0 ∀(vi+1, vi) ∈ E
This path is not optimal since the original flow can be increased.

Flows -6pt-6pt Flows

-6pt-6pt

80 / 112

Max-flow Min-cut

Proposition
The flow is optimal if there exists no augmentation path from s to t
Proof Construct a cut (P,P) where u ∈ P if there is an
augmentation path from s to u and u ∈ P otherwise.
Show that (P,P) is a valid cut for which F (N) = κ(P,P).

Proposition In a network N the following are equivalent
1. A flow is optimal
2. The residual graph does not contain an augmenting path
3. F (N) = κ(P,P) for some cut (P,P)
The value of the optimal flow thus equals F (N) = minκ(P,P)

Proof Left to the reader (combine earlier results)

This becomes an LP problem in the flows xij on the edges (i , j)
max

(∑
i:(s,i) xsi =

∑
i:(i,s) xis

)
subject to

∑
i xij =

∑
i xji and 0 ≤ xij ≤ cij

Flows -6pt-6pt Flows

-6pt-6pt

81 / 112

The Ford-Fulkerson algorithm (1956) calculates this optimal flow
using augmentation paths.

Algorithm MaxFlowFF(N,s,t)
f (u, v) := 0 ∀(u, v) ∈ E ;
while Nf contains a path from s to t do

choose an augmentation path Ap from s to t
∆ := min(u,v)∈Ap ∆i
Augment the flow by ∆ along Ap
Update Nf

end while

Finding a path in the residual graph can be implemented with a
BFS or DFS exploration as shown below

At each step we show the graph (left) and the residual graph (right)

Augmentation paths are in red. In 5 steps we find F (N) = 14

Flows -6pt-6pt Flows

-6pt-6pt

82 / 112

Euler -6pt-6pt Euler

-6pt-6pt

83 / 112

Eulerian tour (1756)

An Eulerian cycle (path) is a subgraph Ge = (V ,Ee) of G = (V ,E)
which passes exactly once through each edge of G.
G must thus be connected and all vertices V are visited
(perhaps more than once). One then says that G is Eulerian

Proposition A graph G has an Eulerian cycle iff it is connected
and has no vertices of odd degree
A graph G has an Eulerian path (i.e. not closed) iff it is connected
and has 2 or no vertices of odd degree

This would prove that the above graph is not Eulerian.

Euler -6pt-6pt Euler

-6pt-6pt

84 / 112

Proof (of the first part regarding cycles)
Necessity Since G is Eulerian there is a cycle visiting all nodes.
Each time we visit v ∈ V , we leave it again, hence d(v) is even.
Sufficiency For a single isolated node, it is trivial. For |V | > 1
there must be a cycle φ in the graph. Consider the subgraph H
with the same nodes but with the edges of φ removed.

Each of its components Hi satisfy the even degree condition and
again have an Eulerian cycle φi . By recurrence we then reduce G
to its isolated vertices.

To reconstruct the Eulerian cycle, start from a basic cycle φ.
Each time a node of another cycle φi is encountered, substitute
that cycle to the node (and do this recursively).

Euler -6pt-6pt Euler

-6pt-6pt

85 / 112

Proof (of the second part regarding paths) Left as an exercise

The path problem says if you can draw a graph without lifting your
pen. Apply this to the following examples.

Proposition A directed graph G = V ,Ed has an Eulerian tour Ge
iff it is connected and balanced, i.e. all its nodes have
din(v) = dout (v).

Proof Left as an exercise

Euler -6pt-6pt Euler

-6pt-6pt

86 / 112

The following algorithm of Fleury (1883) reconstructs a cycle C if it
exists. E ′ is the set of edges already visited by the algorithm.

Algorithm FindEulerianCycle(G)
Choose v0 ∈ V ; E ′ := ∅; C := 〈〉;
for i = 1 : m do

choose e = (vi−1, vi) s.t. G′ = (V ,E\E ′) has 1 conn. comp.;
E ′ := E ′ ∪ {e}; C := 〈C,e〉; vi := vi−1;

end for

Exercise
Propose a modification addressing the Eulerian Path Problem

But what if the graph is not Eulerian ? Can we find a mininimum
cost modification of the problem ?

Euler -6pt-6pt Euler

-6pt-6pt

87 / 112

Chinese postman (1962)

We consider a minimum cost modification of the Eulerian cycle
problem. A chinese postman needs to find a tour passing along all
edges of a graph and minimize the length of the path.

The edges have a cost and we need to make the graph Eulerian

Exercise
1. Give a simple lower bound. 2. When can this bound be met ?
3. Is there another solution (or a better one) ?

Euler -6pt-6pt Euler

-6pt-6pt

88 / 112

Solution : find all odd degree vertices and find the shortest paths
between them

Now find a perfect matching of the nodes in this graph.
A perfect matching in a graph is a set of disjoint edges of a graph
to which all vertices are incident.

This can be solved in 0(n3) time with the Hungarian algorithm.

Hamilton -6pt-6pt Hamilton

-6pt-6pt

89 / 112

Hamiltonian cycle (1859)

Was a game sold by Hamilton in 1859 to a toy maker in Dublin.

A Hamiltonian cycle is a cyclic subgraph Gh = (V ,Eh) of
G = (V ,E) which passes exactly once through all nodes

It is a so-called hard problem and there is no general condition
for its existence (in contrast with the Eulerian path problem).
It exists for Platonic solids and complete graphs,
but not for the Petersen graph

Hamilton -6pt-6pt Hamilton

-6pt-6pt

90 / 112

Proposition (Dirac, 1951) A graph G with n ≥ 3 nodes and
d(v) ≥ n/2, ∀v ∈ V , is Hamiltonian
Proof
G is connected, otherwise its smallest component would have all
edges with d(v) < n/2
Then consider a longest path v1v2...vn (with maybe n < |V |)

Because d(v1),d(vn) ≥ n/2, it must also be covered by a cycle
(because all the neigbors of v1 and vn are on that path)

Because of connectedness n = |V | and it is a Hamiltonian cycle.

Hamilton -6pt-6pt Hamilton

-6pt-6pt

91 / 112

Exercise Construct a graph with d(v) < n/2 and yet has a
Hamiltonian cycle

Proposition
If G = (V ,E) has a Hamiltonian cycle, then G − V ′ has at most
|V ′| connected components for any subset of vertices V ′ ⊂ V .
Proof Let H be a Hamiltonian subgraph of G, then H − V ′ has
less than |V ′| connected components. But G − V ′ has the same
vertices as H − V ′ and it has additional edges.

Exercise Does this graph have a Hamiltonian cycle ?

Exercise Prove that a complete bipartite graph Km,n is
Hamiltonian iff m = n

Hamilton -6pt-6pt Hamilton

-6pt-6pt

92 / 112

Traveling Salemen Problem

A traveling salesman is supposed to visit a number of cities
(nodes in a graph) and minimize the travel time (or total length)

This is NP-hard but can often be solved approximately in
reasonable time. Consider a distance graphs with triangle
inequality d(u, v) + d(v ,w) ≥ d(u,w) ∀u, v ,w ∈ V

Construct a minimal weight spanning
tree T and visit the nodes using BFS.
For this example we would have a
cycle (a,b,c,b,h,b,a,d,e,f,e,g,e,a)
Notice that all edges are visited twice.

The optimal path P∗ satisfies the inequalities
cost(T) < cost(P∗) ≤ 2.cost(T)

Exercise Explain why

Hamilton -6pt-6pt Hamilton

-6pt-6pt

93 / 112

Test for planar graph

There is a simple way to test if a Hamiltonian graph is planar

1. Draw G with the Hamiltonian graph H at the outside

The following graph is already drawn
with H = (a,b, c,d ,e, f ,a) outside

2. Define K as the graph whose nodes are the edges e1, . . . ,er
not in H and with an edge between ei and ej if they cross in G.

The following graph has the vertices
(a,d), (b, f),b,e), c,e), (d , f) and
five edges, corresponding to the
crossings in G

Then G is planar iff K is bipartite

Exercise Explain why

Coloring -6pt-6pt Coloring

-6pt-6pt

94 / 112

Four color problem

In 1852 it was conjectured that a country map (like the USA map)
could always be colored with only four colors. There is an
underlying assumption for point borders.

This was proven in 1976 by K. Appel and W. Haken but their proof
used a computer search over 1200 so-called critical cases.

Exercise What property does the underlying graph have ?

Coloring -6pt-6pt Coloring

-6pt-6pt

95 / 112

Coloring nodes

A k -coloring of a graph G = (V ,E) is a mapping f : V → 1, . . . , k
such that f (vi) 6= f (vj) if (vi , vj) ∈ E .
The chromatic number of a graph is the smallest number k for
which there exists a k -coloring.

Some examples of known chromatic numbers are :

Bipartite graph
χ(G) = 2

Even cycle
χ(G) = 2

Odd cycle
χ(G) = 3

Clique
χ(Kn) = n

Petersen Graph
χ(G) = 3

Planar graph
χ(G) = 4

Coloring -6pt-6pt Coloring

-6pt-6pt

96 / 112

The coloring problem for general graphs is NP-complete but
such problems often lead to more interesting applications

Exam scheduling problem

The table on the left gives the exams each student takes
The chromatic number χ(G) of the corresponding graph
gives the minimum numbers of time slots for the exams

Exercise Can you formulate such a slot problem with students
choosing out of k pre-set programs ?

Coloring -6pt-6pt Coloring

-6pt-6pt

97 / 112

Bounds

Proposition
Let G be connected and m = |E |, then χ(G) ≤ 1

2 +
√

2m + 1
4

Proof Let C = {C1, . . . ,Ck} be the partition of V according to
colors. There is at least one edge between two colors, which
implies m > B(k ,2) and hence k2 − k − 2m ≤ 0.

Proposition
Let ∆(G) = max{d(v)|v ∈ V}, then χ(G) ≤ ∆(G) + 1 (trivial)

Proposition (Brooks, 1941)
χ(G) ≤ ∆(G) for any graph different from Kn or an odd cycle

Proposition
χ(G) ≤ 1 + maxi{min(di , i − 1)} when ordering d1 ≥ . . . ≥ dn.

Proof Order the nodes like the di ’s and use the greedy algorithm

Coloring -6pt-6pt Coloring

-6pt-6pt

98 / 112

Greedy algorithm

Algorithm GreedyColor(G)
L := sort(V); c := sort(colors)
for v ∈ V do

choose smallest ci not used by colored neigbors
end for

On a bipartite graph this greedy algorithm is optimal when
numbering the nodes per part but it can be bad for other
numberings, such as {u1, v1,u2, v2,u3, v3,u4, v4}

Exercise
Does each graph have a good numbering for the greedy algorithm

Coloring -6pt-6pt Coloring

-6pt-6pt

99 / 112

Let us come back to the map coloring problem

and try to prove the following (simpler) result

Exercise Every planar graph can be colored with 6 colors

Show that e ≤ 3n − 6

Show then that for planar graphs average(d(v)) ≤ 6− 12/n

Finally prove that there exists a v such that d(v) ≤ 5

Now use induction to prove the proposition (remove nodes)

Coloring -6pt-6pt Coloring

-6pt-6pt

100 / 112

Chromatic polynomial (Birkhoff-Lewis 1918)

The chromatic polynomial of a graph pG(k) indicates how many
different ways a graph can be colored with k colors. E.g.

Exercise Prove the above formulas

Notice that χ(G) = min{p(G)(k) > 0}. Does this help ?

There is a powerful induction theorem using the simpler graphs
G − (u, v) (remove an edge) and G ◦ (u, v) (contract an edge)

Proposition If (u, v) ∈ E then pG(k) = pG−(u,v)(k)− pG◦(u,v)(k)

Proof u and v have different colors in G and the same in G ◦ (u, v)

Coloring -6pt-6pt Coloring

-6pt-6pt

101 / 112

This can be used to compute the chromatic polynomial of more
complex networks

but the problem remains combinatorial and thus hard

Exercise Derive this quicker using the result for a tree

Coloring -6pt-6pt Coloring

-6pt-6pt

102 / 112

Stable sets

An independent or stable set S in a graph G = (V ,E) is a
subgraph of G without any edges, i.e. ∀u, v ∈ S : (u, v) ∈ E

The two sets of black nodes are stable sets of the left graph

Such sets can clearly be colored with only one color, which proves

Proposition If a graph is k -colorable then V can be partitioned as
k stable sets

The independence number α(G) is the size of the largest possible
stable set.

Proposition One has χ(G) · α(G) ≥ n (trivial)

Coloring -6pt-6pt Coloring

-6pt-6pt

103 / 112

The following example requires finding a maximal stable set.
Find the maximum number of projects one can realize when
the table indicates which students are needed for each project.

Notice that it is equivalent
to finding a maximal clique
(or complete subgraph) in
the complementary graph
Gc = (V ,Ec), where Ec is
the complement of E

Complexity -6pt-6pt Complexity

-6pt-6pt

104 / 112

Algorithm complexity

We distinguish problems from algorithms used to solve them.
There is also the issue of time complexity and space complexity.

The function CA(s) of an algorithm is the number of time steps
needed to solve a problem of size s with that algorithm.
A problem is called polynomial if there exists an algorithm with
CA(s) = O(p(n)) for some polynomial p(·), meaning

∃n0 : CA(s) ≤ p(n) ∀n ≥ n0.

The relative times needed to solve problems of different complexity

This shows the importance of having a polynomial problem

Complexity -6pt-6pt Complexity

-6pt-6pt

105 / 112

Better is to look at the size of
the problems one can solve
when the machines speed up
100 or 1000 times

Here are a number of polynomial time problems
Finding the shortest path between 2 vertices
Testing if a graph is planar
Testing if a graph is Eulerian
Finding a spanning tree
Solving the perfect marriage problem

Here are a number of problems that are not polynomial
Finding the chromatic number of a graph
Finding a Hamiltonian cycle in a graph
Finding the largest stable set in a graph
Solving the travelling salesman problem
Testing if two graphs are isomorphic (not known)

Complexity -6pt-6pt Complexity

-6pt-6pt

106 / 112

Comparing problems

A problem Y is reducible (in polynomial time) to a problem X if
X is at least as difficult to solve as Y , denoted as X ≥p Y . Then

X ≥p Y and X ∈ P implies Y ∈ P
X ≥p Y and Y /∈ P implies X /∈ P

Define the problem [LongestPath(u, v ,w ,N)] of finding a path
of length ≥ any N from u to v in a graph with integer weights w

Proposition [HamiltonianCycle] ≤p [LongestPath(u, v ,w ,N)]

Proof Choose unit weights w . Pick an edge e = (u, v).
If there is a longest path of length N = n − 1 in G′ = G\e,
then G is Hamiltonian. Try out all m < n2/2 edges.

Since we know that the Hamiltonian cycle problem in not in P
the longest path problem is also not in P.

Complexity -6pt-6pt Complexity

-6pt-6pt

107 / 112

A Boolean clause is a disjunction of Boolean terms Xi ∈ {0,1} and
their negation X i ∈ {0,1}, e.g. X1 ∨ X 2 ∨ X4 ∨ X 7 is a 4-term.
Define the problem [SAT] as checking if a set of Boolean clauses
can be simultaneously satisfied ([3SAT] involves only 3-terms).
E.g. {X 2 ∨ X2,X 2 ∨ X3 ∨ X 4,X 1 ∨ X4} can be satisfied by choosing
X1 = 1,X2 = 0,X3 = 1,X4 = 0.

Proposition [SAT] ≤p [3SAT] and [3SAT] ≤p [StableSet]

Proof We do not prove the first part involving only 3-terms.

Construct a triangle for
each 3-term and then
connect the negations
across triangles

For a stable set, I can choose only one node in each triangle.
Then there is a stable set of size n/3 iff [3SAT] is satisfiable.

Complexity -6pt-6pt Complexity

-6pt-6pt

108 / 112

NP and NP-complete

A problem is Non-deterministic Polynomial (NP) if the validity of a
solution can be checked in polynomial time.

Checking if a given cycle is Hamiltonian can be solved in
polynomial time, but finding it is difficult.

In P the problem can be solved in polynomial time,
in NP a solution can be checked in polynomial time.

It is still an open question of P = NP (Cray prize = 1 million dollar)

A problem X is NP-complete if X ∈ NP and ∀Y ∈ NP,Y ≤p X .

Corollary If one NP-complete problem is in P then P = NP

Corollary If one NP-complete problem is not in P then P 6= NP

Complexity -6pt-6pt Complexity

-6pt-6pt

109 / 112

[3SAT] is known to be NP-complete.
We now prove that also the [CLIQUE] problem is NP-complete
The [CLIQUE] problem is checking if there exists a clique
(complete subgraph) of size k in a graph G = (V ,E)
Proof Consider {X1 ∨ X 2 ∨ X 3,X 1 ∨ X2 ∨ X3,X1 ∨ X2 ∨ X3}.
Construct a graph with the terms of each clause as nodes.
Then connect all pairs of variable except their negation (partially
done below)

If this graph contains a clique of size 3, the clause is satisfiable.

References -6pt-6pt References

-6pt-6pt

110 / 112

Some useful literature

J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,
(2nd Edition), North Holland, 1976.

Reinhard Diestel, Graph Theory, Graduate Texts in Mathematics,
Vol. 173, Springer Verlag, Berlin, 1991.

Douglas West, Introduction to Graph Theory, (2nd Edition),
Prentice Hall, 2000.

B. Bollobas, Modern Graph Theory, Springer-Verlag.

Fan Cheung and Linyuan Lu, Complex Graphs and Networks,
Regional Conference Series in Mathematics, Vol. 107, AMS, 2004

Dieter Jungnickel, Graphs, Networks and Algorithms, Algorithms
and Computation in Mathematics, Vol. 5, Springer Verlag, Berlin,
2005.

By

Y. Prabhaker Reddy
Asst. Professor of Mathematics
Guru Nanak Engineering College
Ibrahimpatnam, Hyderabad.

MATHEMATICS-I

DIFFERENTIAL EQUATIONS-II
I YEAR B.TECH

SYLLABUS OF MATHEMATICS-I (AS PER JNTU HYD)

Name of the Unit Name of the Topic

Unit-I
Sequences and Series

1.1 Basic definition of sequences and series
1.2 Convergence and divergence.
1.3 Ratio test
1.4 Comparison test
1.5 Integral test
1.6 Cauchy’s root test
1.7 Raabe’s test
1.8 Absolute and conditional convergence

Unit-II
Functions of single variable

2.1 Rolle’s theorem
2.2 Lagrange’s Mean value theorem
2.3 Cauchy’s Mean value theorem
2.4 Generalized mean value theorems
2.5 Functions of several variables
2.6 Functional dependence, Jacobian
2.7 Maxima and minima of function of two variables

Unit-III
Application of single variables

3.1 Radius , centre and Circle of curvature
3.2 Evolutes and Envelopes
3.3 Curve Tracing-Cartesian Co-ordinates
3.4 Curve Tracing-Polar Co-ordinates
3.5 Curve Tracing-Parametric Curves

Unit-IV
Integration and its

applications

4.1 Riemann Sum
4.3 Integral representation for lengths
4.4 Integral representation for Areas
4.5 Integral representation for Volumes
4.6 Surface areas in Cartesian and Polar co-ordinates
4.7 Multiple integrals-double and triple
4.8 Change of order of integration
4.9 Change of variable

Unit-V
Differential equations of first
order and their applications

5.1 Overview of differential equations
5.2 Exact and non exact differential equations
5.3 Linear differential equations
5.4 Bernoulli D.E
5.5 Newton’s Law of cooling
5.6 Law of Natural growth and decay
5.7 Orthogonal trajectories and applications

Unit-VI
Higher order Linear D.E and

their applications

6.1 Linear D.E of second and higher order with constant coefficients
6.2 R.H.S term of the form exp(ax)
6.3 R.H.S term of the form sin ax and cos ax
6.4 R.H.S term of the form exp(ax) v(x)
6.5 R.H.S term of the form exp(ax) v(x)
6.6 Method of variation of parameters
6.7 Applications on bending of beams, Electrical circuits and simple harmonic motion

Unit-VII
Laplace Transformations

7.1 LT of standard functions
7.2 Inverse LT –first shifting property
7.3 Transformations of derivatives and integrals
7.4 Unit step function, Second shifting theorem
7.5 Convolution theorem-periodic function
7.6 Differentiation and integration of transforms
7.7 Application of laplace transforms to ODE

Unit-VIII
Vector Calculus

8.1 Gradient, Divergence, curl
8.2 Laplacian and second order operators
8.3 Line, surface , volume integrals
8.4 Green’s Theorem and applications
8.5 Gauss Divergence Theorem and applications
8.6 Stoke’s Theorem and applications

CONTENTS

UNIT-6

Differential Equations-II

 Linear D.E of second and higher order with constant coefficients

 R.H.S term of the form exp(ax)

 R.H.S term of the form sin ax and cos ax

 R.H.S term of the form exp(ax) v(x)

 Method of variation of parameters

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

A D.E of the form is called as a Linear

Differential Equation of order with constant coefficients, where are Real constants.

Let us denote , then above equation becomes

 which is in the form of , where

.

The General Solution of the above equation is

 (or)

Now, to find Complementary Function , we have to find Auxillary Equation

Auxillary Equation: An equation of the form is called as an Auxillary Equation.

Since is a polynomial equation, by solving this we get roots. Depending upon these

roots we will solve further.

Complimentary Function: The General Solution of is called as Complimentary

Function and it is denoted by

Depending upon the Nature of roots of an Auxillary equation we can define

Case I: If the Roots of the A.E are real and distinct, then proceed as follows

If are two roots which are real and distinct (different) then complementary function is

given by

Generalized condition: If are real and distinct roots of an A.E then

Case II: If the roots of A.E are real and equal then proceed as follows

If then

Generalized condition: If then

Case III: If roots of A.E are Complex conjugate i.e. then

 (Or)

 (Or)

C.F= Complementary Function

P.I= Particular Function

Note: For repeated Complex roots say,

Case IV: If roots of A.E are in the form of Surds i.e. , where is not a perfect square

then,

 (Or)

 (Or)

Note: For repeated roots of surds say,

Particular Integral

The evaluation of is called as Particular Integral and it is denoted by

i.e.

Note: The General Solution of is called as Particular Integral and it is denoted by

Methods to find Particular Integral

Method 1: Method to find P.I of where , where is a constant.

We know that

 if

 if

Depending upon the nature of we can proceed further.

Note: while solving the problems of the type , where Denominator =0, Rewrite the

Denominator quantity as product of factors, and then keep aside the factor which troubles us.

I.e the term which makes the denominator quantity zero, and then solve the remaining quantity.

finally substitute in place of .

Taking outside the operator by replacing with

Directly substitute in place of

Method 2: Method to find P.I of where , a is constant

We know that

Let us consider , then the above equation becomes

Now Substitute if

If then i.e.

Then respectively.

Method 3: Method to find P.I of where

We know that

Now taking Lowest degree term as common in , above relation becomes

Expanding this relation upto derivative by using Binomial expansion and hence get

Important Formulae:

1)

2)

 3)

4)

5)

6)

Method 4: Method to find P.I of where , where is a function
of and is constant

We know that

In such cases, first take term outside the operator, by substituting in place of .

Depending upon the nature of we will solve further.

Method 5: Method to find P.I of where , where , is any
function of (i.e.)

We know that

Case I: Let , then

Case II: Let and

We know that

By using previous methods we will solve
further

Finally substitute

Let and

We know that

By using previous methods we will solve
further

Finally substitute

General Method

To find P.I of where is a function of

We know that

Let then

Similarly, then

Note: The above method is used for the problems of the following type

Cauchy’s Linear Equations (or) Homogeneous Linear Equations

A Differential Equation of the form where

 is called as order Cauchy’s Linear Equation in terms of dependent variable and

independent variable , where are Real constants and .

Substitute and

Then above relation becomes , which is a Linear D.E with constant coefficients. By

using previous methods, we can find Complementary Function and Particular Integral of it, and

hence by replacing with we get the required General Solution of Cauchy’s Linear Equation.

Legendre’s Linear Equation

An D.E of the form is

called as Legendre’s Linear Equation of order , where are Real constants.

Now substituting,

Then, above relation becomes which is a Linear D.E with constant coefficients. By

using previous methods we can find general solution of it and hence substituting

we get the general solution of Legendre’s Linear Equation.

Method of Variation of Parameters

To find the general solution of

Let us consider given D.E (I)

Let the Complementary Function of above equation is

Let the Particular Integral of it is given by , where

Doped Semiconductors
hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html

The Doping of Semiconductors
The addition of a small percentage of foreign atoms in the regular crystal lattice of silicon or germanium
produces dramatic changes in their electrical properties, producing n-type and p-type semiconductors.

Pentavalent impurities
Impurity atoms with 5 valence electrons produce n-type semiconductors by contributing extra electrons.

Trivalent impurities
Impurity atoms with 3 valence electrons produce p-
type semiconductors by producing a "hole" or
electron deficiency.

Bands for Doped Semiconductors
The application of band theory to n-type and p-type semiconductors shows that extra levels have been
added by the impurities. In n-type material there are electron energy levels near the top of the band gap so
that they can be easily excited into the conduction band. In p-type material, extra holes in the band gap allow
excitation of valence band electrons, leaving mobile holes in the valence band.

1/1

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c5
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/band.html#c1

Lecture 1

First Steps in Graph Theory

This lecture introduces Graph Theory, the main subject of the course, and includes
some basic definitions as well as a number of standard examples.

Reading: Some of the material in today’s lecture comes from the beginning of
Chapter 1 in

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition,
which is available online via SpringerLink.

If you are at the university, either physically or via the VPN, you can download the
chapters of this book as PDFs.

1.1 The Königsberg Bridge Problem

Graph theory is usually said to have been invented in 1736 by the great Leon-
hard Euler, who used it to solve the Königsberg Bridge Problem. I used to find this
hard to believe—the graph-theoretic graph is such a natural and useful abstraction
that it’s di�cult to imagine that no one hit on it earlier—but Euler’s paper about
graphs1 is generally acknowledged2 as the first one and it certainly provides a sat-
isfying solution to the bridge problem. The sketch in the left panel of Figure 1.1
comes from Euler’s original paper and shows the main features of the problem. As
one can see by comparing Figures 1.1 and 1.2, even this sketch is already a bit of
an abstraction.

The question is, can one make a walking tour of the city that (a) starts and
finishes in the same place and (b) crosses every bridge exactly once. The short
answer to this question is “No” and the key idea behind proving this is illustrated in
the right panel of Figure 1.1. It doesn’t matter what route one takes while walking
around on, say, the smaller island: all that really matters are the ways in which
the bridges connect the four land masses. Thus we can shrink the small island to a

1L. Euler (1736), Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae
Scientiarum Imperialis Petropolitanae 8, pp. 128–140.

2 See, for example, Robin Wilson and John J. Watkins (2013), Combinatorics: Ancient &
Modern, OUP. ISBN 978-0-19-965659-2.

1.1

http://bit.ly/Jungnickel3

North Bank

East

Island

West

Island

South Bank

Figure 1.1: The panel at left shows the seven bridges and four land masses
that provide the setting for the Königsberg bridge problem, which asks whether it is
possible to make a circular walking tour of the city that crosses every bridge exactly
once. The panel at right includes a graph-theoretic abstraction that helps one prove
that no such tour exists.

Figure 1.2: Königsberg is a real place—a port on the Baltic—and during Euler’s
lifetime it was part of the Kingdom of Prussia. The panel at left is a bird’s-eye view
of the city that shows the celebrated seven bridges. It was made by Matthäus Merian
and published in 1652. The city is now called Kaliningrad and is part of the Russian
Federation. It was bombed heavily during the Second World War: the panel at right
shows a recent satellite photograph and one can still recognize the two islands and
modern versions of some of the bridges, but very little else appears to remain.

point—and do the same with the other island, as well as with the north and south
banks of the river—and then connect them with arcs that represent the bridges.
The problem then reduces to the question whether it is possible to draw a path that
starts and finishes at the same dot, but traces each of over the seven arcs exactly
once.

One can prove that such a tour is impossible by contradiction. Suppose that
one exists: it must then visit the easternmost island (see Figure 1.3) and we are
free to imagine that the tour actually starts there. To continue we must leave the
island, crossing one of its three bridges. Then, later, because we are required to

1.2

West

Island

North Bank

East

Island

South Bank

Figure 1.3: The Königsberg Bridge graph on its own: it is not possible to trace a
path that starts and ends on the eastern island without crossing some bridge at least
twice.

cross each bridge exactly once, we will have to return to the eastern island via a
di↵erent bridge from the one we used when setting out. Finally, having returned
to the eastern island once, we will need to leave again in order to cross the island’s
third bridge. But then we will be unable to return without recrossing one of the
three bridges. And this provides a contradiction: the walk is supposed to start and
finish in the same place and cross each bridge exactly once.

1.2 Definitions: graphs, vertices and edges

The abstraction behind Figure 1.3 turns out to be very powerful: one can draw
similar diagrams to represent “connections” between “things” in a very general way.
Examples include: representations of social networks in which the points are people
and the arcs represent acquaintance; genetic regulatory networks in which the points
are genes and the arcs represent activation or repression of one gene by another and
scheduling problems in which the points are tasks that contribute to some large
project and the arcs represent interdependence among the tasks. To help us make
more rigorous statements, we’ll use the following definition:

Definition. A graph is a finite, nonempty set V , the vertex set, along with a set
E, the edge set, whose elements e 2 E are pairs e = (a, b) with a, b 2 V .

We will often write G(V,E) to mean the graph G with vertex set V and edge
set E. An element v 2 V is called a vertex (plural vertices) while an element e 2 E
is called an edge.

The definition above is deliberately vague about whether the pairs that make
up the edge set E are ordered pairs—in which case (a, b) and (b, a) with a 6= b are
distinct edges—or unordered pairs. In the unordered case (a, b) and (b, a) are just
two equivalent ways of representing the same pair.

Definition. An undirected graph is a graph in which the edge set consists of
unordered pairs.

1.3

a b a b

Figure 1.4: Diagrams representing graphs with vertex set V = {a, b} and edge
set E = {(a, b)}. The diagram at left is for an undirected graph, while the one at
right shows a directed graph. Thus the arrow on the right represents the ordered pair
(a, b).

Definition. A directed graph is a graph in which the edge set consists of ordered
pairs. The term “directed graph” is often abbreviated as digraph.

Although graphs are defined abstractly as above, it’s very common to draw
diagrams to represent them. These are drawings in which the vertices are shown
as points or disks and the edges as line segments or arcs. Figure 1.4 illustrates the
graphical convention used to mark the distinction between directed and undirected
edges: the former are drawn as line segments or arcs, while the latter are shown as
arrows. A directed edge e = (A,B) appears as an arrow that points from A to B.

Sometimes one sees graphs with more than one edge3 connecting the same two
vertices; the Königsberg Bridge graph is an example. Such edges are called multiple
or parallel edges. Additionally, one sometimes sees graphs with edges of the form
e = (v, v). These edges, which connect a vertex to itself, are called loops or self
loops. All these terms are illustrated in Figure 1.5.

v
4

v
1

v
2

v
3

Figure 1.5: A graph whose edge set includes the self loop (v
1

, v
1

) and two parallel
copies of the edge (v

1

, v
2

).

It is important to bear in mind that diagrams such as those in Figures 1.3–1.5
are only illustrations of the edges and vertices. In particular, the arcs representing
edges may cross, but this does not necessarily imply anything: see Figure 1.6.

Remark. In this course when we say “graph” we will normally mean an undirected
graph that contains no loops or parallel edges: if you look in other books you may

3In this case it is a slight abuse of terminology to talk about the edge “set” of the graph, as sets
contain only a single copy of each of their elements. Very scrupulous books (and students) might
prefer to use the term edge list in this context, but I will not insist on this nicety.

1.4

a b

c d

a b

d c

Figure 1.6: Two diagrams for the same graph: the crossed edges in the leftmost
version do not signify anything.

see such objects referred to as simple graphs. By contrast, we will refer to a graph
that contains parallel edges as a multigraph.

Definition. Two vertices a 6= b in an undirected graph G(V,E) are said to be
adjacent or to be neighbours if (a, b) 2 E. In this case we also say that the edge
e = (a, b) is incident on the vertices a and b.

Definition. If the directed edge e = (u, v) is present in a directed graph H(V 0, E 0)
we will say that u is a predecessor of v and that v is a successor of u. We will
also say that u is the tail or tail vertex of the edge (u, v), while v is the tip or tip
vertex.

1.3 Standard examples

In this section I’ll introduce a few families of graphs that we will refer to throughout
the rest of the term.

The complete graphs Kn

The complete graph Kn is the undirected graph on n vertices whose edge set includes
every possible edge. If one numbers the vertices consecutively the edge and vertex
set are

V = {v
1

, v
2

, . . . , vn}
E = {(vj, vk) | 1  j  (n� 1), (j + 1)  k  n} .

There are thus

|E| =

✓

n
2

◆

=
n(n� 1)

2

edges in total: see Figure 1.7 for the first few examples.

The path graphs Pn

These graphs are formed by stringing n vertices together in a path. The word “path”
actually has a technical meaning in graph theory, but you needn’t worry about that

1.5

K
2

K
1

K
4

K
5

K
3

Figure 1.7: The first five members of the family Kn of complete graphs.

P
4

P
5

Figure 1.8: Diagrams for the path graphs P
4

and P
5

.

today. Pn has vertex and edge sets as listed below,

V = {v
1

, v
2

, . . . , vn}
E = {(vj, vj+1

) | 1  j < n} ,

and Figure 1.8 shows two examples.

The cycle graphs Cn

The cycle graph Cn, sometimes also called the circuit graph, is a graph in which
n � 3 vertices are arranged in a ring. If one numbers the vertices consecutively the
edge and vertex set are

V = {v
1

, v
2

, . . . , vn}
E = {(v

1

, v
2

), (v
2

, v
3

), . . . , (vj, vj+1

), . . . , (vn�1

, vn), (vn, v1)} .

Cn has n edges that are often written (vj, vj+1

), where the subscripts are taken to
be defined periodically so that, for example, vn+1

⌘ v
1

. See Figure 1.9 for examples.

v
3

v
2

v
1

v
3

v
2

v
1

v
5

v
4

v
3

v
2

v
1

v
4

C
3

C
4 C

5

Figure 1.9: The first three members of the family Cn of cycle graphs.

1.6

The complete bipartite graphs Km,n

The complete bipartite graph Km,n is a graph whose vertex set is the union of a
set V

1

of m vertices with second set V
2

of n di↵erent vertices and whose edge set
includes every possible edge running between these two subsets:

V = V
1

[V
2

= {u
1

, . . . , um} [{v
1

, . . . , vn}
E = {(u, v) | u 2 V

1

, v 2 V
2

} .

Km,n thus has |E| = mn edges: see Figure 1.10 for examples.

K
1,3

K
2,2

K
2,3

Figure 1.10: A few members of the family Km,n of complete bipartite graphs.
Here the two subsets of the vertex set are illustrated with colour: the white vertices
constitute V

1

, while the red ones form V
2

.

There are other sorts of bipartite graphs too:

Definition 1.1. A graph G(V,E) is said to be a bipartite graph if

• it has a nonempty edge set: E 6= ; and

• its vertex set V can be decomposed into two nonempty, disjoint subsets

V = V
1

[V
2

with V
1

\ V
2

= ; and V
1

6= ; and V
2

6= ;

in such a way that all the edges in E connect a member of V
1

with a member
of V

2

. That is, we need

(u, v) 2 E)
⇢

u 2 V
1

and v 2 V
2

or u 2 V
2

and v 2 V
1

.

The cube graphs Id

These graphs are specified in a way that’s closer to the purely combinatorial, set-
theoretic definition of a graph given above. Id, the d-dimensional cube graph, has
vertices that are strings of d zeroes or ones, and all possible labels occur. Edges
connect those vertices whose labels di↵er in exactly one position. Thus, for example,
I
2

has vertex and edge sets

V = {00, 01, 10, 11} and E = {(00, 01), (00, 10), (01, 11), (10, 11)} .

Figure 1.11 shows diagrams for the first few cube graphs and these go a long way
toward explaining the name. More generally, Id has vertex and edge sets given by

V =
�

w |w 2 {0, 1}d

E = {(w,w0) |w and w0 di↵er in a single position} .

1.7

0 1

00 10

01 11

011010

000

001

011

101

111

100

I2

I1

I3

Figure 1.11: The first three members of the family Id of cube graphs. Notice
that all the cube graphs are bipartite (the red and white vertices are the two disjoint
subsets from Definition 1.1), but that, for example, I

3

is not a complete bipartite
graph.

This means that Id has |V | = 2d vertices, but it’s a bit harder to count the edges.
In the last part of today’s lecture we’ll prove a theorem that enables one to show
that Id has |E| = d 2d�1 edges.

1.4 A first theorem about graphs

I find it wearisome to give, or learn, one damn definition after another and so I’d
like to conclude the lecture with a small, but useful theorem. To do this we need
one more definition:

Definition. In an undirected graph G(V,E) the degree of a vertex v 2 V is the
number of edges that include the vertex. One writes deg(v) for “the degree of v”.

So, for example, every vertex in the complete graph Kn has degree n� 1, while
every vertex in a cycle graph Cn has degree 2; Figure 1.12 provides more examples.
The generalization of degree to directed graphs is slightly more involved. A vertex v
in a digraph has two degrees: an in-degree that counts the number of edges having
v at their tip and an out-degree that counts number of edges having v at their tail.
See Figure 1.13 for an example.

a

b

c

d

e

f
h

g
v a b c d e f g h

deg(v) 1 1 1 2 1 1 4 1

Figure 1.12: The degrees of the vertices in a small graph. Note that the graph
consists of two “pieces”.

1.8

a

bd

c

v deg
in

(v) deg
out

(v)
a 2 0
b 1 1
c 1 1
d 0 2

Figure 1.13: The degrees of the vertices in a small digraph.

Once we have the notion of degree, we can formulate our first theorem:

Theorem 1.2 (Handshaking Lemma, Euler 1736). If G(V,E) is an undirected graph
then

X

v2V

deg(v) = 2|E|. (1.1)

Proof. Each edge contributes twice to the sum of degrees, once for each of the two
vertices on which it is incident.

The following two results are immediate consequences:

Corollary 1.3. In an undirected graph there must be an even number of vertices
that have odd degree.

Corollary 1.4. The cube graph Id has |E| = d 2d�1.

The first is fairly obvious: the right hand side of (1.1) is clearly an even number, so
the sum of degrees appearing on the left must be even as well. To get the formula
for the number of edges in Id, note that it has 2d vertices, each of degree d, so the
Handshaking Lemma tells us that

2|E| =
X

v2V

deg(v) = 2d ⇥ d

and thus |E| = (d⇥ 2d)/2 = d 2d�1.

1.9

Module 3: Ordinary Differential Equations

Lesson 31

Linear Differential Equation of Higher Order

In connection to the last lesson, we discuss solution methodologies of getting particular

integral of the linear differential equations of higher order. In particular, in this lesson

we present operator method which is somewhat easier than other methods for finding

particular integrals.

31.1 Determination of Particular Integral (P.I.)

As we have seen in the earlier lesson that a general nonhomogeneous linear differential

equations with constant coefficients can be written in operator form asf(D)y = F (x).

The operator,1/f(D) is called inverse operator which gives a particular integral when

operated on both the sides of the given differential equation. Hence, a particular integral

of the given differential equation is given as1f(D)F (x). First we give a rather general idea

of getting a particular integral with this method and then state some other useful direct

results. Note that the operatorf(D) can be expressed as(D−α1)(D−α2) . . . (D−αn) and

thus a particular integral is given as

1

f(D)
F (x) =

1

D − α1

1

D − α2
. . .

1

D − αn
F (x) (31.1)

We give a general idea of evaluating an expression of the type
1

D − α
F (x). This procedure

can be repeatedly applied to find a particular integral (31.1). However, applicability of this

method depends upon the form ofF (x).

We give a general theorem that can be applied to any problem for finding particular inte-

gral of a differential equation.

31.1.1 Theorem 1

If F (x) is function of x and α is a constant, then

1

D − α
F (x) = eαx

∫

F (x)e−αxdx.

Linear Differential Equation of Higher Order

Proof: Let us assume that

y =
1

D − α
F (x)

On operating(D − α) both sides, we get

(D − α)y = F (x) ⇒
dy

dx
− αy = F (x)

The above equation is a linear differential equation of firstorder whose integrating factor

is e−
∫
αdx = e−αx. Hence, the solution is given by

ye−αx =

∫

F (x)e−αxdx ⇒ y = eαx
∫

F (x)e−αxdx

Since our interest is finding a particular integrals, the constant of integration is dropped.

Thus,
1

D − α
F (x) = eαx

∫

F (x)e−αxdx.

Now we state some useful result those will be used to find P.I. of certain special forms of

F (x).

31.1.2 Theorem 2

If α is a constant, then f(D)eαx = f(α)eαx

Proof: We know thatDeαx = αeαx and similarlyD2eαx = α2eαx. With induction we can

prove thatDneαx = αneαx for any natural numbern. This proves the resultf(D)eαx =

f(α)eαx.

31.1.3 Theorem 3

If α is a constant and g(x) is any function, then f(D) (eαxg(x)) = eαxf(D + α)g(x)

Proof: We know thatD (eαxg(x)) = αeαxg(x)+eαxDg(x) = eαx(α+D)g(x). Similar to the

proof of previous theorem we can prove with induction thatDneαxg(x) = eαx(α+D)ng(x)

for any natural numbern. This proves the resultf(D) (eαxg(x)) = eαxf(D + α)g(x). This

result is known as shifting property of operatorf(D).

2

Linear Differential Equation of Higher Order

31.1.4 Theorem 4

If α and β are arbitrary constants, then

f(D2) sin(αx+ β) = f(−α2) sin(αx+ β) and f(D2) cos(αx+ β) = f(−α2) cos(αx+ β)

Proof: It can easily be verified thatD2 sin(αx+β) = −α2 sin(αx+β) andD2 cos(αx+β) =

−α2 cos(αx + β). In other words, we can replaceD2 by −α2 and this proves the desired

result.

Now we describe the method for some special form ofF (x).

31.2 Rule I: F (x) is of the form eax

We know from Theorem 31.1.2 thatf(D)eαx = f(α)eαx. Operating on both sides by

1/f(D) we get

eαx =
1

f(D)
f(α)eαx ⇒ eαx = f(α)

1

f(D)
eαx

This implies that
1

f(D)
eαx =

1

f(α)
eαx, provided f(α) 6= 0

If f(α) = 0, then(D − α) is a factor off(D), sayf(D) = (D − α)g(D). Then

1

f(D)
eαx =

1

(D − α)

1

g(D)
eαx =

1

(D − α)

1

g(α)
eαx provided g(α) 6= 0

Now using Theorem 31.1.1, we get

1

f(D)
eαx =

1

g(α)

1

(D − α)
eαx =

1

g(α)
eαxx

In caseg(α) = 0 then , sayf(D) = (D − α)2h(D). In this case we get

1

f(D)
eαx =

1

h(α)

1

(D − α)2
eαx =

1

g(α)

x2

2!
eαx provided h(α) 6= 0

Again, if h(α) = 0, the same procedure can be repeated. To conclude, we have thefollow-

ing results:

(i)
1

f(D)
eαx =

1

f(α)
eαx, wheref(α) 6= 0

3

Linear Differential Equation of Higher Order

(ii) If f(α) = 0, then f(D) must posses a factor of the type(D − α)r, say f(D) =

(D − α)rg(D) whereg(α) 6= 0. Then the following formula is applicable
1

(D − α)r
eαx =

xr

r!
eαx

.

31.3 Example Problems

31.3.1 Problem 1

Find the general solution of the differential equation (D2 − 3D + 2)y = e3x.

Solution: The auxiliary equation is

(m2 − 3m+ 2) = 0 ⇒ (m− 1)(m− 2) = 0 ⇒ m = 1, 2.

The complimentary function is given as

C.F. = c1e
x + c2e

2x

The particular integral is

P.I. =
1

D2 − 3D + 2
e3x =

1

32 − 3.3 + 2
e3x =

1

2
e3x.

The general solution is:y = c1e
x + c2e

2x +
1

2
e3x.

31.3.2 Problem 2

Solve (4D2 − 12D + 9)y = 144e3x/2

Solution: The auxiliary equation is

(4m2 − 12m+ 9) = 0 ⇒ m = 3/2, 3/2.

The complimentary function is

C.F. = (c1 + c2x)e
3x/2

The particular integral is

P.I. =
144

(2D − 3)2
e3x/2 =

144

4

1

(D − 3/2)2
e3x/2 = 36

x2

2!
e3x/2

The required solution is:y = (c1 + c2x)e
3x/2 + 36x

2

2! e
3x/2.

4

Linear Differential Equation of Higher Order

31.4 Rule II: F (x) is of the form cos ax or sin ax

We expressf(D) as a function ofD2, sayf(D) = φ(D2). From Theorem 31.1.4 we know

thatφ(D2) sin(αx+ β) = φ(−α2) sin(αx+ β). Applying [φ(D2)]−1 both sides we obtain

sin(αx+ β) =
1

φ(D2)
φ(−α2) sin(αx+ β)

If φ(−α2) 6= 0, we can divide the above equation byφ(−α2) to get

1

φ(D2)
sin(αx+ β) =

1

φ(−α2)
sin(αx+ β)

Similarly,

1

φ(D2)
cos(αx+ β) =

1

φ(−α2)
cos(αx+ β), provided φ(−α2) 6= 0

In case,φ(−α2) = 0, we can rewritesin(αx + β) = Im(ei(αx+β)) and cos(αx + β) =

Re(ei(αx+β)). Now case I can be applied as

1

f(D)
sin(αx+ β) = Im

(

1

f(D)
ei(αx+β)

)

= Im

(

1

f(iα)
ei(αx+β)

)

provided f(iα) 6= 0

Similarly,

1

f(D)
cos(αx+ β) = Re

(

1

f(iα)
ei(αx+β)

)

provided f(iα) 6= 0

31.5 Example Problems

31.5.1 Problem 1

Solve the differential equation (D2 + 1)y = cos 2x.

Solution: The characteristic equation of the corresponding homogeneous equation is

(m2 + 1) = 0 ⇒ m = ±i

Hence, C.F.= (c1 cosx+ c2 sin x). The particular integral is given by

P.I. =
1

D2 + 1
cos 2x =

1

(−22 + 1)
cos 2x =

1

−3
cos 2x.

The required solution is:y = (c1 cosx+ c2 sin x)−
1

3
cos 2x.

5

Linear Differential Equation of Higher Order

31.5.2 Problem 2

Solve the differential equation (D2 − 4D + 3)y = sin x.

Solution: The roots of the characteristic equations are1 and 3. The complementary

function isC.F. = c1e
x + c2e

3x. The particular integral is

P.I. =
1

D2 − 4D + 3
sin x

ReplacingD2 by −1, we get

P.I. =
1

2− 4D
sin x =

1

2

1

1− 2D
sin x =

1

2

1 + 2D

1− 4D2
sin x

Again, replacingD2 by −1, we obtain

P.I. =
1

10
(1 + 2D) sinx =

1

10
(sin x+ 2 cosx)

Hence the complete solution is

y = c1e
x + c2e

3x +
1

10
(sin x+ 2 cosx),

wherec1 andc2 are arbitrary constants.

Suggested Readings

McQuarrie, D.A. (2009). Mathematical Methods for Scientist and Engineers. First Indian

Edition. Viva Books Pvt. Ltd. New Delhi.

Raisinghania, M.D. (2005). Ordinary & Partial Differential Equation. Eighth Edition. S.

Chand & Company Ltd., New Delhi.

Kreyszig, E. (1993). Advanced Engineering Mathematics. Seventh Edition, John Willey

& Sons, Inc., New York.

Arfken, G.B. (2001). Mathematical Methods for Physicists.Fifth Edition, Harcourt Aca-

demic Press, San Diego.

Grewal, B.S. (2007). Higher Engineering Mathematics. Fourteenth Edition. Khanna

Publishilers, New Delhi.

Edwards, C.H., Penney, D.E. (2007). Elementary Differential Equations with Boundary

Value Problems. Sixth Edition. Pearson Higher Ed, USA.

6

ssssssssssssssssssssssssssssssssss

 ssss

ssssssss� � �

 � �� � � ��

� �

� � � � � m�

� m �� �� � � � �m

 	 �

 � � � 	 � � �

 � � �

 ��� ��� � � � �mm �� �� � � � �m �

� � 	 � � � 	

 �

� m �� �� � � � �m 	 �

 �

� � �

s�s�ssss��s� 	

 � �

� � � � � ��� �� � �� 	 ��

� � ���� ��� ���� ��

�sssssss�

� � ��

 	 �

 �ss�sssssssss�

 � � � 	 � � � 	

 �

� 	 � �

� � 	 � 	

 �

� 	 	 � 	

 	 �

�������� �������� ��������

� 	 �

 	

 	 �

� � � � � ��� �� � �� 	 ��

� � ���� ��� ���� ��

s�s�ssss��s�

 	 �

 �

�sssssss�

� � ��

�

 	 �

 � � � 	 � � � 	

 �

� 	 � �

� � 	 � 	

 �

� 	 	 � 	

� � � � � ��� �� � �� 	 ��

� � ���� ��� ���� ��

 	 �

�� � � ���� �� � ���� �� � � ����

� 	

�

 	

 	 �

� � � 	 � �

� � � � � ��� �� � �� 	 ��

� � ���� ��� ���� ��

sssssssssssssssssssssssssssssssss

 s�ssss�sssss�ss� �� � ��� �� �����	�

������� � � ������� ��� �� ����� � ����

����

� ���� ���	��� �� ���� ������� ��� ��� ��������� � �

�����	� ������� �� ���� �� �� ����� ���� ��� � ���

ssss�s��s�� ��� ������ ���� ��� ��������� �� ��� ��������

� � ��� � ��� ���� � � ��� �����

�kkkkkkkkkkkkkkkkkk� ��� � �� �� � ��� ����� � ����� 	 �

���� ��� �� �� ��� ������� �� �� ���� ������� ��� �

��� ����� ���� ��� � ��������� 	 � �ssssssssssssss�

���� ����� �� ����� � ���� ��� ������ ��� �� ��������

��� ����� � ���� � � ������� ��� ����� �� � ��� �

��� ���� �� �� ��������� � ����� �� ���� � ���� ����� ��

�� ���� �� ��� ��	��� �sssssssssss �� ���� �� �� �

�� ��� � ����� � ���� ����� ���� � � ������ ���� �� �����

� s�sssssssss �� � ���� �����	� ��� ������ ���� � ��

����� �� ��������

���� ��� �� ����� � �� 	��� �� ��� ��	������ ��� �� ���

��� ���� ����� �� ����� � � ���� ��� ��� ��� ��	������

��� �� ��� ���� ��� ��	 � � �������� �� ����

����� �� ���� �� ���� � �� ����� � � ��� �����

$�� �$������ �� ��� � ���� ����� �� � ��� ������� �����

���� ����� �������

���� ����� �� � � ��� �� ����� �� ������������ �����������������	�������

* �� * !�!!� !*! ��*! !

��� ��� � ��� �� ����� �� � ��� ������� �� ��� ��	�� ���� ��� ��	 ������ � � �������� � ���� �

���� ����� 	 ����� � ������ ��� ��� ������� ����

����� �� �� ������� �� ��� ������� ��� �� ����� ���

���� �� � ������� � ��� �� � ���� ����� ��� �� ��� ������

�� ��� ���� ����� �� ����

��� ��� � ��� �� ����� �� ���� �$����� ��� ����

������ �� �������

����� �� ���� ������ �� �������� ��������

���� ����� �� � � ��� �� ����� �� ������������ �����������������	�������

* �� * !�!!� !*! ��*! !

Constellations: Preliminary Design
Because I am way too excited to begin work on this, I thought I'd go ahead and be the first to submit
my idea for the game jam. For those of you who don't know me, please see my previous introduction
for Crossword­Z here!

Title: Constellations
Catchphrase: "Graphs in the Sky"
Type: Puzzle Game!
Inspiration: Flow (Android/Apple top­selling game)

Idea Behind the Game:
Recently I've become very interested in Graph Theory, precisely because it lends itself to so many
different puzzles and interesting questions. I think that there is so much that can be visualized in
Graph Theory that it is a shame that there isn't already an app that allows you to learn by seeing,
touching, and experimenting with graphs. Thus Constellations was born as a solution to this problem.

Theme: The idea for the theme is that the player is looking out her window and tracing graphs
through the stars. I believe that there is so much beauty in graph theory in that it is a powerful tool for
visualizing the relationships of our world. I want the art and style of my game to to capture this beauty,
and there is no more beautiful a graph in nature than the constellations. I want the player to become
immersed in a starry night sky and feel time pass slowly by as she relaxes and observes the
constellations she creates. To make this atmosphere I will use a dark palette with quiet colors and
storybook art and bright white stars in the sky (See the screenshot below for an example). I will also
include some relaxing, non­vocal music playing in the background to fully immerse the player in the
experience. I'm thinking of sampling some tracks by the Japanese band Mono, who have a very quiet,
fantasy sound.

Mechanics: My idea for this game jam is to create a number of interesting levels based around two
different game modes: Create and Traverse.

In the Create puzzles, the player will be given certain restraints (such as a degree
sequence), and then they are told to draw a graph that meets all of the requirements. I
want as many of these puzzles as possible to have multiple solutions, or even some
solutions that better meet the requirement (such as, "a connected graph that has the
fewest possible edges") to allow the player to experiment and improve upon her solutions.

In the Traverse puzzles, the player will be given a Constellation, and told to analyze it in
some way (such as finding the shortest path). Again, for most of these puzzles I want the
player to have the option to experiment and improve upon their solutions. The game will
only tell the player if their solution does not meet the criteria, but it will not tell her if it is
sub­optimal.

The puzzle screen, with an example graph drawn in the sky.

http://machinisludo.blogspot.com/2013/01/philippe-intro-and-game-description.html
http://4.bp.blogspot.com/-IzAJ8JHC34w/UUi846E5Z6I/AAAAAAAAAGY/jb7orQ4RVIg/s1600/Screenshot_1.png

Goals: I want to make this game educational in that playing will serve as an introduction to the
topics and ideas of Graph Theory. However, I don't want the game to feel like a textbook. Instead, I
want the game to be an interactive experiment, where the player can learn herself by pushing for
optimal solutions in each puzzle. To this end, I have a few ideas for how to incorporate an educational
component:

1. Make the many theorems of Graph Theory unlockable as "achievements" when a player
creates a graph that demonstrates knowledge of the theorem.

2. Include narration that comments on each puzzles after a solution is reached. This would just
be enough to get the player curious, but not require a great deal of advanced mathematics to
understand.

3. Include a "Storybook" section that gradually fills with information as levels are cleared. I would
model this book as a student's journal that she gradually fills up with thoughts about the
constellations shes sees. I could even include hints about to how to improve solutions that are
less than optimal.

With all of these elements, I want the game itself to be a guide, not a lecturer. I want all insights to
come from the player, so that she can learn on her own without being taught. I think that interaction
and discovery are the best ways for anybody to learn a subject, and that's what I want this game to be
about.

297

UNIT - V

SECOND ORDER DIFFERENTIAL
EQUATIONS

5.1.�Solution�of�second�order�differential�equations�with�constant�

� coefficients�in�the�form� .0cy
dx
dy

b
dx

yd
a

2

2

=++ �Simple�Problems�

5.2��Solution� of� second� order� differential� equations� in� the� form�

)x(fcy
dx
dy

b
dx

yd
a

2

2

=++ .�Where�a,b�and�c�are�constants�and�

�f(x)�=�emx.�Simple�problems.�
5.3.�Solution� of� second� order� differential� equations� in� the� form�

�).x(fcy
dx
dy

b
dx

yd
a

2

2

=++ �Where�a,b�and�c�are�constants�and��f(x)�=�

� sinmx�or�cosmx.�Simple�problems�

5.1 SECOND ORDER DIFFERENTIAL EQUATIONS

Introduction:

In�the�last�unit,�we�learnt�first�order�differential�equation.�In�this�
unit,�we�will�learn�second�order�differential�equation.�

The�second�order�differential�equation�is�of�the�form�

).x(fcy
dx
dy

b
dx

yd
a

2

2

=++ �� � � � (1)�

Where�a,b�and�c�are�real�numbers�and�f(x)�is�a�function�of�x.�

We�use�differential�operators�Dy,�D2y�in�(1),�we�get�

)x(fy)cbDaD(2 =++ where�D=
dx
d

� � � (2)�

Now,�we�put�f(x)�=�0�in�(1),�we�get�

0cy
dx
dy

b
dx

yd
a

2

2

=++ � � � � � (3)�

298

The�solution�of�(3)�is�called�complementary�function�(CF)�of�(1).�

To�solve�(3),�we�assume�a�trial�solution�y�=�epx�for�some�value�of�

p.�Then� .ep
dx

yd
andpe

dx
dy px2

2

2
px == �

Substituting�these�values�in�(3),�we�get��

0cbpap

0]cbpap[e

0cebpeeap

2

2px

pxpxpx2

=++�

=++�

=++

�� � � (4)�

This�equation�in�p�is�called�the�Auxillary�Equation�(AE)�

Solving�(4),�we�get�two�roots�say�p1�and�p2.�Then�the�following�
three�cases�arise.�

Case (i)

If�the�roots�p1�and�p2�are�real�and�distinct,�then�the�solution�of�(3)�is�

xpxp 21 BeAey += �

Case (ii)

If�the�roots�p1�and�p2�are�real�and�equal,�then�the�solution�of�(3)�is�

)BAx(ey xp1 += �

Case (iii)

If�the�roots� 1p and� 2p �are�complex�say�p1�=� α�+�i�β�and�p2�=�α�-iβ,�then�
the�solution�of�(3)�is�

]xsinBxcosA[ey x β+β= α �

In�all�cases,�A�and�B�are�arbitrary�constants.�

�

�

�

�

299

�

5.1 WORKED EXAMPLES
PART – A

1.� If�roots�of�the�auxillary�equation�are� ,
2
3

i
2
1 ± what�is�the�solution�

of�the�differential�equation?
Solution:

� Here,�the�roots�are�complex�and� ,
2
3

,
2
1 =β=α �

� ...�The�solution�of�differential�equation�is��

]x
2
3

sinBx
2
3

cosA[ey
x

2
1

+= �

2.� Find�the�solution�of�(D2�–�81)�y�=�0�
Solution:

The�auxillary�equation�is�p2�–�81�=�0�

� � � � ��(p+9)�(p-9)�=�0�

� � � � ��p1�=�-9,�p2�=�9�

� Here,�the�roots�are�real�and�distinct��

� ...�The�solution�of�differential�equation�is�

� � � y�=�Ae-9x�+Be x9 �

3.� Solve� 0y64
dx

yd
2

2

=+ �

Solution:

Given� 0y)64D(0y64
dx

yd 2
2

2

=+�=+ �

The�auxillary�equation�is�p2+64=0�

� � � � ��p�=�±�8i�

� Here,�the�roots�are�complex,α=0�and�β�=�8�
� ...�The�solution�is�y�=�A�cos8x�+�B�sin�8x�

300

�

4.� Solve�(D2-2D-3)y=0�

Solution:

The�auxillary�equation�is�p2-2p-3=0�

� � � � ��(p+1)�(p-3)�=�0�

� � � � ��p1�=�-1,�p2�=�3�

� Here,�the�roots�are�real�and�distinct�

� ...�The�solution�is�y�=�Ae-x�+�Be3x�

5.� Solve�(D2-4D-1)�y�=0�

Solution:

The�auxillary�equation�is�p2-4p-1�=�0��

Here�a�=�1,�b�=�-4,�c�=�-1�

� ����P�=�
a2

ac4bb 2 −±−
�

� �������=�
)1(2

)1)(1(4164 −−±
�

� �������=�
2
204 ±

�

� �������=� 52
2

524 ±=±
�

� So,�p1�=�2�+� 5 and� 52p2 −= �

� Here,�the�roots�are�real�and�distinct�

� ...�The�solution�is�

� y�=�Ae(2�+ 5)x�+�Be�(2�-� 5)x�

�

�

301

6.� Solve� 0y9
dx
dy

6
dx

yd
2

2

=+− �

Solution:

Given:� 0y)9D6D(0y9
dx
dy

6
dx

yd 2
2

2

=+−�=+− �

The�auxillary�equation�is�p2�–�6p+9�=�0�

� � � � ��(p-3)(p-3)=0�

� � � � ��p1=3,�p2�=�3�

� Here,�the�roots�are�real�and�equal.�

� ..�The�solution�is�y�=�e3x[Ax+B]�

7.� Solve�(D2+D+2)y�=0�

Solution:

The�auxillary�equation�is�p2+p+2�=�0�

� Here�a�=�1,�b�=�1,�c�=�2�

� � � P�=�
a2

ac4bb 2 −±−
�

� � � ���=�
)1(2

)2)(1(411 −±−
�

� � � ���=�
2

71 −±−
�

� � � ����=�
2

7i1±−
�

� � � ����=�
2
7

i
2
1±−

�

� Here,�the�roots�are�complex,�
2
7

,
2
1 =β−=α �

� ...�The�solution�is�y�=� x
2
7

sinBx
2
7

cosA[e
x

2
1

+
−

�

302

PART – B

1.� Solve�(D2+1)�y�=�0�when�x�=�0,�y�=�2�and�x�=�
2
π
,�y=-2.�

Solution:

The�auxillary�equation�is�p2�+�1�=�0�

� � � � ��p�=�±�i�

� Here,�the�roots�are�complex,�β�=�1�

� ...�The�solution�is�

� y�=�A�cosx�+�B�sinx� � � � � ���…1�

� When�x=0,�y=2,�the�equation�(1)�becomes��

� A�cos0�+�B�sin0�=�2�

� A�+�0�=�2�

� A�=�2�

� When�x�=�
2
π
,�y=-2,�the�equation�(1)�becomes�

� A�cos
2
π
+B�sin�

2
π
�=�-2��

� 0�+�B�=�-2�
� B�=�-2�
� ...�The�required�solution�is�
� y�=�2�cosx�–�2�sinx�

2.� Show�that�the�solution�of�the�equation�(D2�+�3D�+�2)�y�=�0�if�y(0)�
=�1�and�y1(0)�=�0�is�y�=�2e-x�–e-2x�

Solution:

The�auxillary�equation�is�p2+3p+2=0�

� � � � ��(p+1)�(p+2)�=�0�

� � � � ��p1�=�-1,�p2�=�-2�

Here,�the�roots�are�real�and�distinct�

303

...�The�solution�is�y�=�Ae-x�+�Be-2x� � � � ���…1�

� Now,�y′�=�-Ae-x�–�2Be-2x��� � � � ���…2�

� If�y(0)�=�1,�the�equation�(1)�becomes�

� A�+�B�=�1� � � � � �� ���…3�

� If�y’(0)�=0�,�the�equation�(2)�becomes��

� A+2B=0� � � � � � ���…4�

� Solving�(3)�and�(4)�we�get�A=2,�B=-1�

� ∴The�required�solution�is��

� y=2e-x-e-2x�

�

5.2. SOLUTION OF SECOND ORDER EQUATIONS IN THE FORM

)x(fcy
dx
dy

b
dx

yd
a

2

2

=++ WHERE A,B AND C ARE CONSTANTS

AND mxe=�f(x) .�

Introduction:

In�previous�section,�we�find�the�complementary�function�.�In�this�
section,�we�have�to�find�the�particular�integral�(PI)�and�the�general�
solution�of�a�second�order�differential�equation.��

The�Solution�of�Differential�equation�with�Constant�Coefficients�is�
y=CF+PI

Method of finding particular integral

Consider�(aD2+bD+c)y�=�emx�where�m�is�a�constant.�

Let�f(D)�=�aD2+bD+c�

Then�PI�is�given�by�
)m(f

e
e

)D(f
1 mx

mx = � �

Three�cases�arise�in�PI��

Case (i)

)m(f
e

e
)D(f

1
�PI�then0��f(m)�If

mx
mx ==≠ �

304

Case (ii)

)m('f
ex

�PI�then0��(m)'f��and�0f(m)�If
mx

=≠= �

Case (iii)

)m("f
ex

�PI�then0��(m)''f��and�0(m)'f�and��0f(m)�If
mx2

=≠== �

�

5.2 WORKED EXAMPLE

PART – A

1.� Find�the�complementary�function�of�(D2+16)y=�ex�

Solution:

The�auxiliary�equation�is�� p2+16=0��p=±4i�
Here,�the�roots�are�complex�,�β=4�
∴CF�=�A�cos�4x�+�B�sin�4x�

2.�� Find�the�complementary�function�of�(D2-60D+800)y=e40x�

Solution:

The�auxiliary�equation�is� p2-60p+800=0�

� � � � �(p-40)�(P-20)�=0�

� � � � �P1=40,�P2=20�
Here�the�roots�are�real�and�distinct��

∴CF�=�Ae40x�+�Be20x�

3.�� Find�the�particular�integral�of�(D2+1)�y�=1��

Solution:

1
1
1

10
1

e
1D

1

1D

1
PI 0

22

==
+

=

+
=

+
=

�

�
�
�

305

4.�� Find�the�particular�integral�of�(D2+7D+14)�=�8e-x�
Solution:

x
x

2

x

x
2

e
8
e8

14)1(7)1(

e8

e8
14D7D

1
PI

−
−−

−

==
+−+−

=

++
=

�

5.�� Find�the�particular�integral�of�(D2-2D-3)y�=�e-x�
Solution:

x
2

e
3D2D

1
PI −

−−
= �

��� 0)1(fSince
2D2

ex x

=−
−

=
−

�

����
2)1(2

ex x

−−
=

−
�

4
ex x−

−= �

�
PART - B�

1.� Solve�(D2+5D+6)y=30�
Solution:

The�auxiliary�equation�is�� p2+5p+6=0�
� � � � �(p+2)�(P+3)�=0�
� � � � �P1=-2,�P2=-3�
Here,�the�roots�are�real�and�distinct��
∴CF�=�Ae-2x+Be-3x�

5PI
6
30

6)0(50

e30
6D5D

e30

30
6D5D

1
PINow

2

2

2

=

=

++
°=

++
°=

++
=

�

∴�The�Required�solution�is��
Y=CF+PI�=�Ae-2x+Be-3x+5�

306

2.� Solve�(D2+6D+5)�y�=2ex�

Solution:

The�auxiliary�equation�is�� p2+6p+5=0�

� � � � �(p+1)�(P+5)�=0�

� � � � �P1=-1,�P2=-5�
Here�the�roots�are�real�and�distinct��

∴CF�=�Ae-x�+Be-5x�

6
e

PI

12
e2

5)1(61

e2

e2
5D6D

1
PINow

x

x

2

x

x
2

=

=

++
=

++
=

�

∴The�required�solution�is��
Y=CF+PI��

6

e
Be�+�Ae

x
5x-x- + �

3.�� Solve� 2
x

2 ey)D(D =+ �

Solution:

The�auxiliary�equation�is�� p2+p=0�

� � � � �p�(p+1)=0�

� � � � �P1=0,�P2=-1�

Here�the�roots�are�real�and�distinct��

∴CF�=�Ae0�+Be-x�=A+Be-x�

2
x

2
e

DD

1
PINow

+
= �

307

�����������

2
1

2
1

e
2

2
x

+�
�

�
�
�

�
= �

� ���

2
x

2
x

e
3
4

PI

4
3
e

=

=
�

∴The�required�solution�is��
y=CF+PI�

�� ������� 2
x

x- e
4
3

+Be+A= �

4.�� Solve� x42 ey)12D(D =−− �
Solution:

The�auxiliary�equation�is�� p2-p-12=0�
� � � � �(p-4)�(p+3)=0�
� � � � �p1=4,�p2=-3�
Here�the�roots�are�real�and�distinct��
∴CF�=�Ae4x�+Be-3x�

0)4(fSince
1D2

ex

e
12DD

1
PINow

x4

x4
2

=
−

=

−−
=

�

�� �

7
ex

PI

1)4(2
ex

x4

x4

=

−
=

�

∴�The�required�solution�is��
y=CF�+�PI�

�
7
ex

Be+Ae=
4x

3x-4x + �

�

308

5.�� Solve�(D2-2D+1)�y�=ex�

Solution:

The�auxiliary�equation�is�� p2-2p+1=0�

� � � � �(p-1)�(p-1)�=0�

� � � � �p1=1,�p�2=1�

Here�the�roots�are�real�and�equal��

�∴CF�=�ex�(Ax+B)�

0)1('f,0)1(fSincee
2
x

PI

e
1D2D

1
PINow

x
2

x
2

===

+−
=

�

∴The�required�solution�is��

Y=CF+PI��

� () x
2

x e
2
x

BAx�e ++= �

6� xx2
2

2

e5e2y12
dx
dy

13
dx

yd
�Solve +=+− − � �

Solution:

Given� xx2
2

2

e5e2y12
dx
dy

13
dx

yd
� +=+− − �

xx22 e5e2y)12D13D(+=+−�
− �

The�auxilary�equation�is�� p2-13p+12=0�

� � � � �(p-1)�(p-12)�=0�

� � � � �p1=1,�p2=12�
Here�the�roots�are�real�and�distinct��

∴CF�=�Aex+Be12x�

309

11
xe5

13)1(2
xe5

0)1(Sincef
13D2

xe5

e5
12D13D

1
PINow

21
e

12264
e2

12)2(13)2(

e2

e2
12D13D

1
PINow

x

x

x

x
22

x2

x2

2

x2

x2
21

−=

−
=

=
−

=

+−
=

=

++
=

+−−−
=

+−
=

−

−

−

−

�

∴�The�required�solution�is��
Y�=CF+PI1+PI2�

� =
11
xe5

21
e

BeAe
xx2

12xx −++
−

�

�
5.3 SOLUTION OF SECOND ORDER DIFFERENTIALEQUATIONS

IN THE FORM)x(fcy
dx
dy

b
dx

yd
a

2

2

=+− WHERE a,b AND c ARE

CONSTANTS AND f(x) = sin mx or cos mx where m is a
constant ≠ 0�

INTRODUCTION �

In�this�section,�we�have�to�find�the�particular�integral�when�f(x)�
=sin�mx�or�cos�m�x�where�m�is�a�constant��

Methods�of�finding�PI��

Consider�f(x)�=sin�m�x��

310

Case (i)
Express�f(D)�as�function�of�D2,say�φ�(D2)�and�then�replace�D2with�–m2�

If�φ(-m2)≠0,then��

mxsin
)m(

1
PI

mxsin
)D(

1

mxsin
)D(f

1
��=�PI

2

2

−φ
=

φ
= �

Case (ii)
Sometimes�we�cannot�form�φ�(D2)�Then�we�shall�try�to�get��

φ(D,D2)�that�is�a�function�of�D�and�D2.�In�such�cases�we�proceed�as�
follows.�
For�Example��

� x2sin
3D2D

1
PINow

2 ++
= �

� �
x2Sin

1D2
1

2byDplaceRex2sin
3D22

1 22
2

−
=

−
++−

=
�

��� �������

[]x2sinx2cos4
17
1

17
x2sinx2cos4

1)2(4

x2sin)x2(sinD2

1D2bydivideandmultiplyx2sin
1D4

1D2

2

2

+
−

=

−
+=

−−
+=

+
−

+=

�

Now�consider�f(x)�=�cos�m�x��

Case (i):� xmcos
)(-m

1
PI

2φ
= �

Case(ii):� Same�as�sin�m�x�method��
General Solution:

The�general�solution�is�y=�CF+PI�

311

5.3 WORKED EXAMPLE
PART - A

1.� Find�the�complementary�function�of�(D2+49)�y=�cos�4x��
Solution:

The�auxiliary�equation�is�� p2+49=0�
� � � � �p=±7i�
Here,�the�roots�are�complex�,β�=7�
∴�CF�=�A�cos�7x+B�sin�7x�

2.� Find�the�particular�integral�of�(D2+14)�y�=�sin�3x�
Solution:

5
x3sin

x3sin
143

1

x3sin
14D

1
��=�PI

2

2

=

+−
=

+

�

3.�� Find�the�particular�integral�of�(D2+a2)�y�=�Cos�b�x�

Solution:

22

22

22

ba

bxcos

bxcos
ab

1

bxcos
aD

1
��=�PI

−
=

+−
=

+

�

�

PART - B�

1.)�� Solve�() x2siny4D2 =− �

Solution:

The�auxiliary�equation�is� 04p2 =− �

� � �

2p,2p

2p

4p

21

2

−==�

+=�

=�

�

312

Here,�the�roots�are�real�and�distinct��

� � x2x2 BeAeCF −+=∴ ��

Now� ()x2sin
4D

1
PI

2 −
= �

�

8
x2sin

x2sin
42

1
2

−=

−−
=

�

∴�The�Required�solution�is��

8
X2sin

BeAe

PICFy

x2x2 −+=

+=

− �

2.)�� Solve� x4sin16yD2 −= �

Solution:

The�auxiliary�equation�is� 0p2 = �

� � � ����� 0p,0,p 2 ==� �

Here,�the�roots�are�real�and�equal�

� () BAxBAxeCF 0 +=+=∴ �

� � Now� x4sin16
D

1
PI

2
−= �

x4sin16
4

1
2

−
−

= �

PI=�Sin4x�

∴�The�Required�solution�is��

x4SinBAx

PICFy

++=
+=

�

�

313

3.)�� Solve� xcosy16
dx

yd 2
2

2

=+ �

Solution:

Given� xcosy16
dx

yd 2
2

2

=+ �

� �

()
()

x2cos
2
1

e
2
1

2
x2cos

2
1

y16D

xcosy16D

0

2

22

+=

+=+�

=+�

�

The�auxiliary�equation�is� 016p2 =+ �

� � � i4p +=� �

Here,�the�roots�are�complex,� 4=β �

� x4BSinx4cosACF +=∴ �

16D

e
2
1

PI
2

0

1 +
= �

�

32
1

160
e

2
1 0

=

+
=

�

24
x2cos

162

x2cos
.

2
1

16D

x2cos
.

2
1

PI

2

22

=

+−
=

+
=

�

∴�The�Required�solution�is��

�

24
x2cos

32
1

x4BSinx4cosA

PICFy

+++=

+=
�

�
�
�

314

4.)�� Solve�() x2siny2D3D2 =++ �

Solution:

The�auxiliary�equation�is� 02p3p2 =++ �

� � � �
()()

1p,2p

01p2p

21 −=−=�

=++�

�

Here,�the�roots�are�real�and�distinct�

� xx2 BeAeCF −− +=∴ �

� Now,� x2Sin.
2D3D

1
PI

2 ++
= �

� � �

x2Sin.
4D9

2D3

x2Sin.
2D3

1

x2Sin.
2D32

1

2

2

−
+=

−
=

++−
=

�

� �

()

[]x2sinx2cos3
20
1

40
x2sin2x2cos6

40
x2sin2x2sinD3

x2Sin.
436
2D3

+−=

−
+=

−
+=

−−
+=

�

∴�The�Required�solution�is��

� []x2sinx2cos3
20

1
BeAe

PICFy

xx2 +−+=

+=

−− �

�

�

�

�

315

5.)� Solve�() x3cos4y8D2D2 =−− �

Solution:

Solution:�The�auxiliary�equation�is� 08p2p2 =−− �

� � � � �
()()

2p,4p

02p4p

21 −==�

=+−�

�

Here,�the�roots�are�real�and�distinct�

� x2x4 BeAeCF −+=∴ �

� Now,� x3cos4
8D2D

1
PI

2 −−
= �

� � �

�
�

�
�
�

�

+
−=

−−
=

−−−
=

x3cos4
17D2

1
4

x3cos4
17D2

1

x3cos4
8D23

1
2

�

� � �

()

[]x3cos17x3sin6
325
4

325
x3cos17x3sin6

4

325
x3cos17x3cosD2

4

x3cos
289D4

17D2
4

2

+−=

�
�

�
�
�

�

−
−−−=

�
�

�
�
�

�

−
−−=

�
�

�
�
�

�

−
−−=

�

∴�The�Required�solution�is��

� []17cos3x�6sin3x
325

4
BeAe

PICFy

x2x4 +−+=

+=

− �

�

316

EXERCISE�

PART - A

1.)� If�roots�of�the�auxilary�equation�are�2,7�what�is�the�solution�of�the�
� differential�equation?�

2.)� If�roots�of�the�auxilary�equation�are�0,1�what�is�the�solution�of�the�
differential�equation?�

3.)� If�roots�of�the�auxilary�equation�are�-2,±�i,�what�is�the�solution�of�
the�differential�equation?�

4.)� Find�the�solution�of�() 0y1D2 =− �

5.)� Find�the�solution�of� 0y16
dx

yd
2

2

=− �

6.)� Solve�() 0y9D2 =+ �

7.)� Find�the�solution�of�() 0y100D2 =+ �

8.)� Solve�() 0y1020D4D2 =−+ �

9.)� Solve�() 0y2D5D3 2 =+− �

10.)�Solve�() 0y6D7D3 2 =−− �

11.)��Solve 0
dx
dy

dx

yd
2

2

=+ �

12.)�Solve�() 0y1DD2 =−− �

13.)�Solve�() 0y4D4D2 =++ �

14.)�Solve 0y36
dx
dy

12
dx

yd
2

2

=+− �

15.)�Solve�() 0y1DD2 =++ �

16.)�Solve�() 0y1DD3 2 =+− �

17.)��Find�the�Complementary�function�of�() x2 ey90D13D =−+ �

317

18.)�Find�the�Particular�integral�of�() x2 ey2D3D −=+− �

19.)�Find�the�Particular�integral�of�() x22 e10y4DD =++ �

20.)�Find�the�Particular�integral�of�() x32 ey15D8D =+− �

21.)�Find�the�Particular�integral�of�() x52 ey25D10D −=++ �

22.)��Find�the�Complementary�integral�of�() axcosy25D2 =+ �

23.)�Find�the�Particular�integral�of�() Sinxy25D2 =+ �

24.)�Find�the�Particular�integral�of�() x3siny10D2 =+ �

25.)�Find�the�Particular�integral�of� x4cosy4
dx

yd
2

2

=− �

�
PART - B�

1.)� Solve�() 2)0(ywhen0y36D2 ==+ �and� () 120y1 = �

2.)� Solve� 0y
dx

yd
2

2

=+ �given�that� 2
dx
dy = and�y=1�when�x=0�

3.)� Solve� () 0y15D2D2 =−− �given�that� 0
dx
dy = and� 2

dx

yd
2

2

= �when�

� x=0�

4.)� Solve�() 0y20DD2 =−− �given�that�y=5�and� 2
dx
dy −= �when�x=0�

5.)� Solve�() 3y12D7D2 =++ �

6.)� Solve�() x2 e2y2D3D =++ �

7.)� Solve�() x2 ey36D12D =++ �

8.)� Solve�() 2
x2 ey4DD =++ �

9.)� Solve�() x22 ey2D3D =+− �

10.)�Solve�() x42 ey8D6D −=++ �

318

11.)�Solve� x2
2

2

ey4
dx
dy

4
dx

yd =+− �

12.)�Solve�() ax22 eyaaD2D −=++ �

13.)�Solve�() x72 e4y49D14D −=++ �

14.)�Solve�() x2 e35y4D2D −+=+− �

15.)�Solve� x3x3
2

2

eey15
dx
dy

8
dx

yd +=++ − �

16.)�Solve�() x5x52 eey25D10D −+=++ �

17.)�Solve�() x9siny16D2 =+ �

18.)�Solve�() x5siny25D2 =− �

19.)�Solve�() x2cosy100D2 =+ �

20.)�Solve� x3cosy2
dx

yd
2

2

=− �

21.)�Solve�() xsiny3D2D2 =−+ �

22.)�Solve�() x3Siny2DD2 =−+ �

23.)�Solve�() x3cos4y13D4D2 =++ �

24.)�Solve�() x5cos8y9D8D2 =+− �

25.)�Solve�() x2cos4y8D2D2 =−− �

�
ANSWERS�
PART - A

1.)� x7x2 BeAey += � � � 2.)�� xBeAy += �

3.)�� []xsinBxcosAey x2 += − � � 4.)�� xx BeAey −+= �

5.)�� x4x4 BeAey −+= � � � 6.)�� x3sinBx3cosAy += �

7.)�� x10sinBx10cosAy += � � 8.)� x34x30 BeAey −+= �

319

9.)��
x

3
2

x BeAey += � � � 10.)�
x

3
2

x3 BeAey
−

+= �

11.)�
x

BeAy −+= � � �����������12.)�
x

2
51

x
2
51

BeAey
�
�

�

�

�
�

�

� −
�
�

�

�

�
�

�

� +

+= �

13.)� ()BAxey x2 += − � � � 14.)� ()BAxey x6 += �

15.)��
�
�

�

�

�
�

�

�
+=

−
x

2
3

sinBx
2
3

cosAey 2
x

�

16.)��
�
�

�

�

�
�

�

�
+= x

6
11

sinBx
6
11

cosAey 6
x

�

17.)�� x18x5 BeAeCF −+= �� � 18.)�
6
e x−

� 19.)� x2e �

20.)��
2

xe x3

− � � � � 21.)� x5
2

e
2
x − � � �

22.)�CF=Acos5x+Bsin5x�� � 23.)�
24
xsin
�

24.)�Sin3x� � � � 25.)�
20

x4Cos− �

Part - B

1.)� x6sin2x6cos2y += � � 2.)� xsin2xcosy += �

3.)�� x3x5 e
2
1

e
20
1

y −+= � � 4.)� x4x5 e3e2y −+= �

5.)��
4
1

BeAey x3x4 ++= −− � � 6.)�
3

e
BeAey

x
x2x ++= −− �

7.)�� ()
49

e
BAxey

x
x6 ++= − �

8.)� 2
x

2
x

e
19
4

x
2
15

sinBx
2
15

cosAey +
�
�
�

�

�
�
�

�
+=

−
9.)�

x2x2x xeBeAey ++= �

320

10.)��
2

xe
BeAey

x4
x2x4

−
−− −+= �

11.)�� () x2
2

x2 e
2
x

BAxey ++= �

12.)�� () ax
2

ax e
2
x

BAxey −− ++= �

13.)�� () x72x7 ex2BAxey −− ++= �

14.)�� () xx e
7
3

4
5

x3sinBx3cosAey −+++= �

15.)��
48

e

2

xe
BeAey

x3x3
x5x3 +++=

−
−− �

16.)�� ()
2

ex

100

e
BAxey

x52x5
x5

−
− +++= �

17.)��
65

x9sin
x4sinBx4cosAy −+= �

18.)��
50

x5sin
BeAey x5x5 −+= − �

19.)��
96

x2cos
x10sinBx10cosAy ++= �

20.)��
11

x3cos
BeAey x2x2 −+= − �

21.)�� ()xsin2xcos
10
1

BeAey xx3 +−+= − �

22.)�� ()x3sin11x3cos3
130
1

BeAey x2x +−+= − �

23.)�� () x3cosx3sin3
10
1

x3sinBx3cosAey x2 +++= − �

24.)�� () () ()x5cos2x5sin5
29
1

BeAey x74x74 +−+= −+ �

25.)�� ()x2cos3x2sin
10
1

BeAey x2x4 +−+= − �

MAXIMUM POWER TRANSFER THEOREM
tina.com/course/11maxim/maxim

Sometimes in engineering we are asked to design a circuit that will transfer the maximum power to a load from a
given source. According to the maximum power transfer theorem, a load will receive maximum power from a
source when its resistance (RL) is equal to the internal resistance (R I) of the source. If the source circuit is
already in the form of a Thevenin or Norton equivalent circuit (a voltage or current source with an internal
resistance), then the solution is simple. If the circuit is not in the form of a Thevenin or Norton equivalent circuit,
we must first use Thevenin’s or Norton’s theorem to obtain the equivalent circuit.

Here’s how to arrange for the maximum power transfer.

1. Find the internal resistance, RI. This is the resistance one finds by looking back into the two load terminals of
the source with no load connected. As we have shown in the Thevenin’s Theorem and Norton’s Theorem
chapters, the easiest method is to replace voltage sources by short circuits and current sources by open circuits,
then find the total resistance between the two load terminals.

2. Find the open circuit voltage (UT) or the short circuit current (IN) of the source between the two load terminals,
with no load connected.

Once we have found RI, we know the optimal load resistance
(RLopt = RI). Finally, the maximum power can be found

In addition to the maximum power, we might want to know another important
quantity: the efficiency. Efficiency is defined by the ratio of the power received by the
load to the total power supplied by the source. For the Thevenin equivalent:

and for the Norton equivalent:

Using TINA’s Interpreter, it is easy to draw P, P/Pmax, and h as a function of
RL. The next graph shows P/Pmax, the power on RL divided by the
maximum power, Pmax, as a function of RL (for a circuit with internal
resistance RI=50).

1/6

https://www.tina.com/course/11maxim/maxim
https://www.designsoft.biz/orders/order01.php?id=tcloud
https://www.tina.com/course/9thevenin/thevenin
https://www.tina.com/course/10norton/norton
https://www.tina.com/course/9thevenin/thevenin
https://www.tina.com/course/10norton/norton
https://tinacloud.com/tinademo/tina.php?url=http://www.tina.com/English/tina/course/11maxim/maxim 9.TSC
http://www.tina.com/English/tina/course/11maxim/maxim 9.TSC
https://tinacloud.com/tinademo/tina.php?url=http://www.tina.com/English/tina/course/11maxim/maxim 11.TSC
http://www.tina.com/English/tina/course/11maxim/maxim 11.TSC
https://tinacloud.com/tinademo/tina.php?url=http://www.tina.com/English/tina/course/11maxim/maxim 13.TSC
http://www.tina.com/English/tina/course/11maxim/maxim 13.TSC
https://tinacloud.com/tinademo/tina.php?url=http://www.tina.com/English/tina/course/11maxim/maxim 14.TSC
http://www.tina.com/English/tina/course/11maxim/maxim 14.TSC

Now let’s see the efficiency h as a function of RL.

The circuit and the TINA Interpreter program to draw the diagrams above are shown below. Note that we we also
used the editing tools of TINA’s Diagram window to add some text and the dotted line.

2/6

Now let’s explore the efficiency (h) for the case of maximum power transfer, where RL = RTh.

The efficiency is:

which when given as a percentage is only 50%. This is acceptable for some applications
in electronics and telecommunication, such as amplifiers, radio receivers or transmitters
However, 50% efficiency is not acceptable for batteries, power supplies, and certainly not
for power plants.

Another undesirable consequence of arranging a load to achieve maximum power transfer is the 50% voltage
drop on the internal resistance. A 50% drop in source voltage can be a real problem. What is needed, in fact, is a
nearly constant load voltage. This calls for systems where the internal resistance of the source is much lower
than the load resistance. Imagine a 10 GW power plant operating at or close to maximum power transfer. This
would mean that half of the energy generated by the plant would be dissipated in the transmission lines and in
the generators (which would probably burn out). It would also result in load voltages that would randomly
fluctuate between 100% and 200% of the nominal value as consumer power usage varied.

To illustrate the application of the maximum power transfer theorem, let’s find the optimum value of the resistor
RL to receive maximum power in the circuit below.

Click/tap the circuit above to analyze on-line or click this link to
Save under Windows

We get the maximum power if RL= R1, so RL = 1 kohm. The
maximum power:

3/6

A similar problem, but with a current source:

Click/tap the circuit above to analyze on-line or click this
link to Save under Windows

Find the maximum power of the resistor RL .

We get the maximum power if RL = R1 = 8 ohm. The maximum power:

The following problem is more complex, so first we must reduce it to a simpler
circuit.

Find RI to achieve maximum power transfer, and calculate this maximum power.

Click/tap the circuit above to analyze on-line or click this link to Save under Windows

First find the Norton equivalent using TINA.

4/6

Click/tap the circuit above to analyze on-line or click this link to Save under Windows

Finally the maximum power:

{Solution by TINA's Interpreter}
O1:=Replus(R4,(R1+Replus(R2,R3)))/(R+Replus(R4,
(R1+Replus(R2,R3))));
IN:=Vs*O1*Replus(R2,R3)/(R1+Replus(R2,R3))/R3;
RN:=R3+Replus(R2,(R1+Replus(R,R4)));
Pmax:=sqr(IN)/4*RN;
IN=[250u]
RN=[80k]
Pmax=[1.25m]

We can also solve this problem using one of TINA’s most interesting features, the Optimization analysis mode.

To set up for an Optimization, use the Analysis menu or the icons at the top right of the screen and select
Optimization Target. Click on the Power meter to open its dialog box and select Maximum. Next, select Control
Object, click on RI, and set the limits within which the optimum value should be searched.

To carry out the optimization in TINA v6 and above, simply use the Analysis/Optimization/DC Optimization
command from the Analysis menu.

In older versions of TINA, you can set this mode from the menu, Analysis/Mode/Optimization, and then execute
a DC Analysis.

After running Optimization for the problem above, the following screen appears:

5/6

After Optimization, the value of RI is automatically updated to the value found. If we next run an interactive DC
analysis by pressing the DC button, the maximum power is displayed as shown in the following figure.

6/6

Magnetic Circuits

 Outline

•  Ampere’s Law Revisited
•  Review of Last Time: Magnetic Materials
•  Magnetic Circuits
•  Examples

1

Electric Fields Magnetic Fields

∮
� · �dA =

∫
� �εoE ρdV B

S V

∮
· dA = 0

S

= Qenclosed

GAUSS GAUSS

FARADAY AMPERE

∮
d�E · �dl = − � � � �B dA H dl

C dt

(∫
S

·
) ∮

C

·

� · �=

∫
d

J dA+

∫
�εE · �dA

dt
dλ S S

emf = v =
dt

2

Ampere’s Law Revisited

In the case of the magnetic field we can see that ‘our old’ Ampere’s law can
not be the whole story. Here is an example in which current does not gives
rise to the magnetic field:

Consider the case of charging up a capacitor C which is connected to very long wires.
The charging current is I. From the symmetry it is easy to see that an application of
Ampere’s law will produce B fields which go in circles around the wire and whose
magnitude is B(r) = μoI/(2πr). But there is no charge flow in the gap across the capacitor
plates and according to Ampere’s law the B field in the plane parallel to the capacitor
plates and going through the capacitor gap should be zero!
This seems unphysical.

Side
View

�B

�B
�B

�B = 0??

I

I
I I

3

Ampere’s Law Revisited (cont.)

If instead we drew the Amperian surface as sketched below,
we would have concluded that B in non-zero !

�� BB Side
View

I

I I I

�B
Maxwell resolved this problem by adding a term to the Ampere’s Law.
In equivalence to Faraday’s Law,
the changing electric field can generate the magnetic field:

∮
d� � �l

C

· COMPLETE
H d =

∫
AMPERE’S LAW

S

· �J dA+
dt

∫
S

ε �E · d �A
4

Faraday’s Law and Motional emf
What is the emf over the resistor ?

dΦ
emf = − mag

In a short time Δt the bar moves a
distance Δx = v*Δt, and the flux
increases by ΔФmag = B (L v*Δt)

There is an increase in flux through the circuit
as the bar of length L moves to the right

(orthogonal to magnetic field H) at velocity, v.

from Chabay and Sherwood, Ch 22

dt

emf =
ΔΦmag

Δt
= BLv

L

vΔt

v
�B

5

Faraday’s Law for a Coil

from Chabay and Sherwood, Ch 22

Will the current run
CLOCKWISE or ANTICLOCKWISE ?

Rotating a bar of magnet (or the coil)
produces a time-varying magnetic field

inside the coil

Moving a magnet towards a coil produces a
time-varying magnetic field inside the coil

6

The induced emf in a coil of N turns is equal to

N times the rate of change of the magnetic flux on one loop of the coil.

Complex Magnetic Systems

DC Brushless Stepper Motor Reluctance Motor Induction Motor

We need better (more powerful) tools…

Magnetic Circuits: Reduce Maxwell to (scalar) circuit problem

Energy Method: Look at change in stored energy to calculate force

∫
�H

C

· �dl = Ienclosed

∫
�B

S

· � �dA = 0 f = q
(
�v × �B

)

7

 Magnetic Flux Φ [Wb] (Webers)

 Magnetic Flux Density B [Wb/m2] = T (Tesla

 Magnetic Field Intensity H [Amp-turn/m]

due to macroscopic
& microscopic

s)

due to macroscopic
currents

Faraday’s Law

�
(
� � �H

)
�B = μo +M

)
= μo

(
�H + χmH = μoμrH

dΦ
emf = − mag

dt

emf =

∮
�ENC · �dl and Φmag =

∫
� · �B n̂dA

8

Example: Magnetic Write Head

Bit density is limited by how well the field can be localized in write head

Horizontal
Magnetized Bits

Ring Inductive
Write Head

Shield

GMR
Read
Head

Recording Medium

9

Review: Ferromagnetic Materials

hysteresis

0

B

B,J

H

C

r H : coercive magnetic field strength
S B : remanence flux density

B : saturation flux density

H
0

Initial
Magnetization

Curve

Slope =
i Behavior of an initially unmagnetized

material.
Domain configuration during several stages
of magnetization.

�Bs
�Br

− �HC
�HC

− �Br

− �Bs
μ

H > 0

10

Thin Film Write Head

How do we apply Ampere’s Law to this geometry (low symmetry) ?

Recording Current

Magnetic Head Coil

Magnetic Head Core

Recording Magnetic
Field

∫
�H

C

· �dl =

∫
�J

S

· �dA

11

Electrical Circuit Analogy

Charge is conserved… Flux is ‘conserved’…

Electrical

Ф
EQUIVALENT

CIRCUITS

Magnetic

i

i
i

+
V

∫
S

�B · d �A = 0

V

i φ

��R

12

Electrical Circuit Analogy

Electromotive force (charge push)= Magneto-motive force (flux push)=

Electrical

Ф

Magnetic

EQUIVALENT
CIRCUITS

V

i

i

φ

��

∮
C

�H · d�l = Ienclosedv =

∫
�E · d�l

+
V

i
i

R

13

Electrical Circuit Analogy

Material properties and geometry determine flow – push relationship

� �B = μOHM’s LAW � � oμJ = σE rH
DC

�B

Recovering macroscopic variables:

�
I =

∫
V�J · �d = σ

∫
� �A E · dA = σ H

l
A

l ρl
V = I = I = IR

σA A Ni = Φ�

V

i φ

��R

14

Reluctance of Magnetic Bar

Magnetic “OHM’s LAW”

A
φ

l Ni = Φ�

l� =
μA

15

Flux Density in a Toroidal Core

N turn
coil

(of an N-turn coil)
i

Core centerline

H

μNi
R B =
2R

2πR

μNi = 2πRB = lB

lB
mmf = Ni =

μ
= Φ

l

μA

mmf = Φ�

16

Electrical Circuit Analogy

Electrical Magnetic

Voltage v Magnetomotive Force � = Ni

Current i Magnetic Flux φ
Resistance R Reluctance �

1/ρConductivity Permeability μ
Current Density J Magnetic Flux Density B
Electric Field E Magnetic Field Intensity H

17

Toroid with Air Gap

Why is the flux confined mainly to the core ?

Can the reluctance ever be infinite (magnetic insulator) ?

Why does the flux not leak out further in the gap ?

A = cross-section area

Electric
current

Magnetic
flux

18

Fields from a Toroid

A = cross-section area

Electric
current

Magnetic
flux

∫
�H

C

· �dl =

∫
�J

S

· �dA

= Ienclosed

Ni
H =

�B = μo

(
� �H +M

)
Ni

B = μ
2πR 2πR

μA
Φ = BA = Ni

2πR

19

Scaling Magnetic Flux

&

Same answer as Ampere’s Law (slide 9)

A = cross-section area

Electric
current

Ni = Φ� Magnetic
flux

l� =
2πR

=
μA

�
μA

μA
Φ = BA = Ni

2πR

20

i
N=500

2cm 8cm

2cm

0.5cm

Core Thickness = 3cm

Magnetic Circuit for ‘Write Head’

A = cross-section area

+ -

�core �gap

�

φ

l� =
μA

Φ ≈
21

Parallel Magnetic Circuits

A = cross-section area

10cm 10cm

0.5cm 1cm
i

Gap a Gap b

22

A Magnetic Circuit with Reluctances in Series and Parallel

“Shell Type” Transformer

+ +
N1 turns vv 2 N2 turns

1
 - -

Depth A
l2 l1 l=l1+l2

N1i1

N2i2

φa φb

φc

φc

Magnetic Circuit

�1

�3
+ �2

-
+

-

l� 1
1 =

μA
�2 =

l2
μA

23

Faraday Law and Magnetic Circuits

Flux linkage

Step 2: Estimate voltage v2 due to time-varying flux…

+ +
sinusoidal v1 v2

- -

A = cross-section area

Step 1: Estimate voltage v1 due to time-varying flux…

Ф

N1 N2

+

-

i1 i2

Load

Primary Secondary

Laminated Iron Core

dλ
λ = NΦ v =

dt

v2
v1

=

24

Complex Magnetic Systems

DC Brushless Stepper Motor Reluctance Motor Induction Motor

Powerful tools…

Magnetic Circuits: Reduce Maxwell to (scalar) circuit problem

Makes it easy to calculate B, H, λ�

Energy Method: Look at change in stored energy to calculate force

25

Stored Energy in Inductors

In the absence of mechanical displacement…

For a linear inductor:

Stored energy…

dλ
WS =

∫
Pelecdt =

∫
ivdt =

∫
i =
dt

∫
i (λ) dλ

λ
i (λ) =

L
λ

WS =

∫
λ′ λ2

dλ′ =
0 L 2L

26

Relating Stored Energy to Force

Lets use chain rule …

This looks familiar …

Comparing similar terms suggests … ∂W
fr = − S

∂r

WS (Φ, r) ∂WS dΦ ∂WS dr
= +

dt ∂Φ dt ∂r dt

dWS dr
= i

dt
· v − fr

dt
di dr

= iL
dt

− fr
dt

27

Energy Balance

l
dWS

dt

heat

electrica mechanical

For magnetostatic system, dλ=0 no electrical power flow…

dWS dr
=

dt
−fr

dt

i · v dr−fr
dt

dWS (λ, r) ∂WS dλ ∂WS dr
= + neglect heat

dt ∂λ dt ∂r dt

28

Linear Machines: Solenoid Actuator

Coil attached to cone

If we can find the stored energy, we can immediately compute the force…

…lets take all the things we know to put this together…

∂W− S 1 λ2

∂r
|λ WS (λ, r) =

2 L
fr =

x

l

29

KEY TAKEAWAYS
COMPLETE AMPERE’S LAW

RELUCTANCE

Electrical Magnetic

Voltage Magnetomotive Force
Current Magnetic Flux
Resistance Reluctance
Conductivity Permeability
Current Density Magnetic Flux Density
Electric Field Magnetic Field Intensity

R

i

1/ρ

J

E

v � = Ni

φ

�
μ

B

H

∫
C

�H · d�l =
∫
S

�J · d �A+
d

dt

∫
S

ε �E · d �A

� =
l

μA

30

MIT OpenCourseWare
http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

NETWORK THEOREMS
• KIRCHHOFFS	LAWS
• MESH	ANALYSIS
• NODAL	ANALYSIS
• NORTAN
• SUPERPOSITION
• THEVENIN
• MAXIMUM	POWER	TRANSFER

Kirchhoff's		Laws	
Kirchhoff's	circuit	laws are	two equalities that	deal	with	
the conservation	of	charge and	energy	in electrical	circuits.
There	basically	two	Kirchhoff's	law	:-

1.	Kirchhoff's	current	law	(KCL)	– Based	on	principle	of		
conservation	of electric	charge.

2.	Kirchhoff's	voltage	law	(KVL)	- Based	on	principle	of	
conservation	of	energy.

Kirchhoff's	current	law	(KCL)
This	law	is	also	called Kirchhoff's	first	law, Kirchhoff's	point	
rule, Kirchhoff's	junction	rule (or	nodal	rule),	and Kirchhoff's	
first	rule.
The	principle	of	conservation	of electric	charge implies	that:
At	any	node	(junction)	in	an electrical	circuit,	the	sum	
of currents	flowing	into	that	node	is	equal	to	the	sum	of	
currents	flowing	out	of	that	node,	or	The	algebraic	sum	of	
currents	in	a	network	of	conductors	meeting	at	a	point	is	zero.
Strictly	speaking	KCL	only	applies	to	circuits	with	steady	
currents	(DC).
However,	for	AC	circuits	having	dimensions	much	smaller	
than	a	wavelength,	KCL	is	also	approximately	applicable.

The	current	entering	any	junction	is	equal	to	the	
current	leaving	that	junction. i1 + i4 =i2 + i3

Recalling	that	current	is	a	signed	(positive	or	negative)	
quantity	reflecting	direction	towards	or	away	from	a	node,	
this	principle	can	be	stated	as:

å = 0I

Kirchhoff's	voltage	law	(KVL)
This	law	is	also	called Kirchhoff's	second	law, Kirchhoff's	loop	
(or	mesh)	rule,	and Kirchhoff's	second	rule.
The	principle	of	conservation	of	energy	implies	that
The	directed	sum	of	the	electrical potential	
differences (voltage)	around	any	closed	circuit	is	zero,	or
More	simply,	the	sum	of	the emfs in	any	closed	loop	is	
equivalent	to	the	sum	of	the	potential	drops	in	that	loop
Strictly	speaking	KVL	only	applies	to	circuits	with	steady	
currents	(DC).
However,	for	AC	circuits	having	dimensions	much	smaller	than	
a	wavelength,	KVL	is	also	approximately	applicable.

The	algebraic	sum	of	the	products	of	the	resistances	of	the	
conductors	and	the	currents	in	them	in	a	closed	loop	is	equal	
to	the	total emf available	in	that	loop.	Similarly	to	KCL,	it	can	
be	stated	as:

OR	å å= RIVemf Vn
loop

=å 0KVL:

The	sum	of	all	the	voltages	around	the	loop	is	equal	to	
zero.	v1 +	v2 +	v3 - v4 =	0

Mesh	Analysis
Mesh	analysis (or	themesh	current	method)	is	a	method	that	
is	used	to	solve	planar	circuits	for	the currents (and	indirectly	
the voltages)	at	any	place	in	the circuit.	Planar	circuits	are	
circuits	that	can	be	drawn	on	a plane	surface with	
no wires crossing	each	other.
Mesh	analysis	works	by	arbitrarily	assigning	mesh	currents	in	
the	essential	meshes.	An	essential	mesh	is	a	loop	in	the	circuit	
that	does	not	contain	any	other	loop.

Steps	to	Determine	Mesh	Currents:
1. Assign	mesh	currents	i1,	i2,	..,	in to	the	n	meshes.	

Current	direction	need	to	be	same	in	all	meshes	
either	clockwise	or	anticlockwise.

2. Apply	KVL	to	each	of	the	n	meshes.	Use	Ohm’s	
law	to	express	the	voltages	in	terms	of	the	mesh	
currents.

3. Solve	the	resulting	n simultaneous	equations	to	
get	the	mesh	currents

Example
A	circuit	with	two	meshes.

Apply	KVL	to	each	mesh.	For	mesh	1,

For	mesh	2,

123131

213111

)(
0)(

ViRiRR
iiRiRV
=-+
=-++-

223213

123222

)(
0)(
ViRRiR

iiRViR
-=++-
=-++

Solve	for	the	mesh	currents.

Use	i for	a	mesh	current	and	I for	a	branch	
current.	It’s	evident	from	Fig.	3.17	that

úû
ù

êë
é
-=úû

ù
êë
é
úû
ù

êë
é

+-
-+

2

1

2

1

323

331

V
V

i
i

RRR
RRR

2132211 , , iiIiIiI -===

Nodal	Analysis
In	electric	circuits	analysis, nodal	analysis, node-voltage	
analysis,	or	the branch	current	method is	a	method	of	
determining	the	voltage	(potential	difference)	between	
"nodes"	(points	where	elements	or	branches	connect)	in	
an electrical	circuit in	terms	of	the	branch	currents.
Nodal	analysis	is	possible	when	all	the	circuit	elements		
branch	constitutive	relations	have	an	admittance	
representation.
Kirchhoff’s	current	law	is	used	to	develop	the	method	
referred	to	as	nodal	analysis

STEPS	FOR	NODAL	ANALYSIS:-
• Note	all	connected	wire	segments	in	the	circuit.	These	are	

the nodes of	nodal	analysis.
• Select	one	node	as	the	ground	reference.	The	choice	does	not	

affect	the	result	and	is	just	a	matter	of	convention.	Choosing	
the	node	with	most	connections	can	simplify	the	analysis.

• Assign	a	variable	for	each	node	whose	voltage	is	unknown.	If	
the	voltage	is	already	known,	it	is	not	necessary	to	assign	a	
variable.

• For	each	unknown	voltage,	form	an	equation	based	on	
Kirchhoff's	current	law.	Basically,	add	together	all	currents	
leaving	from	the	node	and	mark	the	sum	equal	to	zero.

• If	there	are	voltage	sources	between	two	unknown	
voltages,	join	the	two	nodes	as	a super	node.	The	
currents	of	the	two	nodes	are	combined	in	a	single	
equation,	and	a	new	equation	for	the	voltages	is	
formed.

• Solve	the	system	of simultaneous	equations for	each	
unknown	voltage.

1.	Reference	Node

The	reference	node	is	called	the	ground node	
where	V =	0

+

–

V 500W

500W

1kW

500W

500W
I1 I2

Example

V1,	V2,	and	V3 are	unknowns	for	which	we	solve	
using	KCL

500W

500W

1kW

500W

500W
I1 I2

1 2 3

V1 V2 V3

Steps	of	Nodal	Analysis
1. Choose	a	reference	(ground)	node.
2. Assign	node	voltages	to	the	other	nodes.
3. Apply	KCL	to	each	node	other	than	the	reference	

node;	express	currents	in	terms	of	node	voltages.
4. Solve	the	resulting	system	of	linear	equations	for	

the	nodal	voltages.

Currents	and	Node	Voltages

500W

V1
500WV1 V2

W
-

500
21 VV

W500
1V

3.	KCL	at	Node	1

500W

500W
I1

V1 V2

W
+

W
-

=
500500

121
1

VVVI

3.	KCL	at	Node	2

500W

1kW

500W V2 V3V1

0
500k1500

32212 =
W
-

+
W

+
W
- VVVVV

3.	KCL	at	Node	3

2
323

500500
IVVV

=
W

+
W

-500W

500W

I2

V2 V3

Superposition	Theorem
• It	is	used	to	find	the	solution	to	networks	with	two	or	more	

sources	that	are	not	in	series	or	parallel
• The	current	through,	or	voltage	across,	an	element	in	a	linear	

bilateral	network	is	equal	to	the	algebraic	sum	of	the	currents	
or	voltages	produced	independently	by	each	source.

• For	a	two-source	network,	if	the	current	produced	by	one	
source	is	in	one	direction,	while	that	produced	by	the	other	is	in	
the	opposite	direction	through	the	same	resistor,	the	resulting	
current	is	the	difference	of	the	two	and	has	the	direction	of	the	
larger

• If	the	individual	currents	are	in	the	same	direction,	the	
resulting	current	is	the	sum	of	two	in	the	direction	of	either	
current

Superposition	Theorem
• The	total	power	delivered	to	a	resistive	element	must	be	

determined	using	the	total	current	through	or	the	total	voltage	
across	the	element	and	cannot	be	determined	by	a	simple	sum	
of	the	power	levels	established	by	each	source

For	applying	Superposition	theorem:-
• Replace	all	other	independent voltage	sources with	a short	

circuit (thereby	eliminating	difference	of	potential.	i.e.	V=0,	
internal	impedance	of	ideal voltage	source is	ZERO	(short	
circuit)).

• Replace	all	other	independent current	sources with	an open	
circuit (thereby	eliminating	current.	i.e.	I=0,	internal	impedance	
of	ideal current	source is	infinite	(open	circuit).

Example:- Determine	the	branches	current	
using	Superposition	theorem.

Solution:

• The	application	of	the	superposition	theorem	is	shown	in	
Figure	1,	where	it	is	used	to	calculate	the	branch	current.		We	
begin	by	calculating	the	branch	current	caused	by	the	voltage	
source	of	120	V.		By	substituting	the	ideal	current	with	open	
circuit,	we	deactivate	the	current	source,	as	shown	in	Figure	
2.

120 V 3 W

6 W

12 A4 W

2 W

i1 i2
i3

i4

Figure	1

• To	calculate	the	branch	current,	the	node	voltage	across	
the	3Ω	resistor	must	be	known.	Therefore

120 V 3 W

6 W

4 W

2 W

i'1 i'2
i'3 i'4

v1

Figure	2

42
v

3
v

6
120v 111

+
++

-
= 0

where v1 =	30	V

The equations for the current in each branch,

6
30120 - =	15	A

i'2 = 3
30

=	10	A

i'3 =	i'4 =
6
30 =	5	A

In	order	to	calculate	the	current	cause	by	the	current	source,	we	
deactivate	the	ideal	voltage	source	with	a	short	circuit,	as	

shown

3 W

6 W

12 A4 W

2 W

i1"

i2"
i3"

i4"

i'1 =

To	determine	the	branch	current,	solve	the	node	
voltages	across	the	3Ω	dan	4Ω	resistors	as	shown	in	
Figure	4

The	two	node	voltages	are

3 W

6 W

12 A4 W

2 W

v3
v4

+

-

+

-

263
4333 vvvv -

++

12
4
v

2
vv 434 ++

- =	0

=	0

• By	solving	these	equations,	we	obtain
v3 =	-12	V
v4 =	-24	V

Now	we	can	find	the	branches	current,

To	find	the	actual	current	of	the	circuit,	add	the	currents	due	to	
both	the	current	and	voltage	source,

Thevenin's	theorem
Thevenin's	theorem for	linear electrical	networks	states	that	
any	combination	of voltage	sources, current	sources,	
and resistors with	two	terminals	is	electrically	equivalent	to	a	
single	voltage	source V and	a	single	series	resistor R.
Any	two-terminal,	linear	bilateral	dc	network	can	be	replaced	
by	an	equivalent	circuit	consisting	of	a	voltage	source	and	a	
series	resistor

Thévenin’s	Theorem
The	Thévenin	equivalent	circuit	provides	an	equivalence	at	
the	terminals	only	– the	internal	construction	and	
characteristics	of	the	original	network	and	the	Thévenin	
equivalent	are	usually	quite	different

• This	theorem	achieves	two	important	objectives:
– Provides	a	way	to	find	any	particular	voltage	or	current	
in	a	linear	network	with	one,	two,	or	any	other	number	
of	sources

– We	can	concentration	on	a	specific	portion	of	a	network	
by	replacing	the	remaining	network	with	an	equivalent	
circuit

Calculating	the	Thévenin	equivalent
• Sequence	to	proper	value	of	RTh and	ETh

• Preliminary
– 1.		Remove	that	portion	of	the	network	across	which	
the	Thévenin	equation	circuit	is	to	be	found.	In	the	
figure	below,	this	requires	that	the	load	resistor	RL be	
temporarily	removed	from	the	network.

– 2.		Mark	the	terminals	of	the	remaining	two-
terminal	network.	(The	importance	of	this	step	will	
become	obvious	as	we	progress	through	some	
complex	networks)

– RTh:
– 3.		Calculate	RTh by	first	setting	all	sources	to	zero	
(voltage	sources	are	replaced	by	short	circuits,	and	
current	sources	by	open	circuits)	and	then	finding	
the	resultant	resistance	between	the	two	marked	
terminals.	(If	the	internal	resistance	of	the	voltage	
and/or	current	sources	is	included	in	the	original	
network,	it	must	remain	when	the	sources	are	set	to	
zero)

• ETh:
– 4.		Calculate	ETh by	first	returning	all	sources	to	their	
original	position	and	finding	the	open-circuit	voltage	
between	the	marked	terminals.	(This	step	is	
invariably	the	one	that	will	lead	to	the	most	
confusion	and	errors.		In	all	cases,	keep	in	mind	that	
it	is	the	open-circuit	potential	between	the	two	
terminals	marked	in	step	2)

• Conclusion:
– 5.		Draw	the	Thévenin	
equivalent	circuit	with	
the	portion	of	the	circuit	
previously	removed	
replaced	between	the	
terminals	of	the	
equivalent	circuit.		This	
step	is	indicated	by	the	
placement	of	the	resistor	
RL between	the	terminals	
of	the	Thévenin	
equivalent	circuit

Insert Figure 9.26(b)

Another	way	of	Calculating	the	Thévenin	
equivalent

• Measuring	VOC and	ISC
– The	Thévenin	voltage	is	again	determined	by	
measuring	the	open-circuit	voltage	across	the	
terminals	of	interest;	that	is,	ETh =	VOC.	To	determine	
RTh,	a	short-circuit	condition	is	established	across	the	
terminals	of	interest	and	the	current	through	the	
short	circuit	Isc is	measured	with	an	ammeter

– Using	Ohm’s	law:

RTh =	Voc /	Isc

Example:- find	the	Thevenin	
equivalent	circuit.

Solution

• In	order	to	find	the	Thevenin	equivalent	circuit	for	the	circuit	
shown	in	Figure1	,	calculate	the	open	circuit	voltage,	Vab.	Note	
that	when	the	a,	b	terminals	are	open,	there	is	no	current	flow	
to	4Ω	resistor.	Therefore,	the	voltage	vab	is	the	same	as	the	
voltage	across	the	3A	current	source,	labeled	v1.	

• To	find	the	voltage	v1,	solve	the	equations	for	the	singular	node	
voltage.		By	choosing	the	bottom	right	node	as	the	reference	
node,

25 V 20 W

+

-

v13 A

5 W 4 W
+

-

vab

a

b

• By	solving	the	equation,	v1	=	32	V.	Therefore,	the	Thevenin	
voltage	Vth	for	the	circuit	is	32	V.

• The	next	step	is	to	short	circuit	the	terminals	and	find	the	
short	circuit	current	for	the	circuit	shown	in	Figure	2.	Note	
that	the	current	is	in	the	same	direction	as	the	falling	voltage	
at	the	terminal.	

03
20
v

5
25v 11 =-+

-

25 V 20 W

+

-

v23 A

5 W 4 W
+

-

vab

a

b

isc

Figure	2

0
4
v3

20
v

5
25v 222 =+-+

-

Current	isc can	be	found	if	v2 is	known.	By	using	the	bottom
right	node	as	the	reference	node,	the	equationfor	v2 becomes

By	solving	the	above	equation,	v2 =	16	V.	Therefore,	the	short	
circuit
current	isc is

The	Thevenin	resistance	RTh is

Figure 3 shows the Thevenin equivalent circuit for the Figure 1.

Figure	3

Norton	theorem
Norton's	theorem for	linear electrical	networks	states	that	
any	collection	of voltage	sources, current	sources,	
and resistors	with	two	terminals	is	electrically	equivalent	to	an	
ideal	current	source, I,	in	parallel	with	a	single	resistor.
Any	two	linear	bilateral	dc	network	can	be	replaced	by	an	
equivalent	circuit	consisting	of	a	current	and	a	parallel	
resistor.

Calculating	the	Norton	equivalent

• The	steps	leading	to	the	proper	values	of	IN
and	RN

• Preliminary
– 1.		Remove	that	portion	of	the	network	across	
which	the	Norton	equivalent	circuit	is	found

– 2.		Mark	the	terminals	of	the	remaining	two-
terminal	network

• RN:
– 3.		Calculate	RN by	first	setting	all	sources	to	zero	
(voltage	sources	are	replaced	with	short	circuits,	and	
current	sources	with	open	circuits)	and	then	finding	
the	resultant	resistance	between	the	two	marked	
terminals.		(If	the	internal	resistance	of	the	voltage	
and/or	current	sources	is	included	in	the	original	
network,	it	must	remain	when	the	sources	are	set	to	
zero.)		Since	RN =	RTh the	procedure	and	value	
obtained	using	the	approach	described	for	Thévenin’s	
theorem	will	determine	the	proper	value	of	RN

Norton’s	Theorem
• IN :
– 4.		Calculate	IN by	first	returning	all	the	sources	to	
their	original	position	and	then	finding	the	short-
circuit	current	between	the	marked	terminals.		It	is	
the	same	current	that	would	be	measured	by	an	
ammeter	placed	between	the	marked	terminals.

– Conclusion:
– 5.		Draw	the	Norton	equivalent	circuit	with	the	
portion	of	the	circuit	previously	removed	replaced	
between	the	terminals	of	the	equivalent	circuit

Example	
Derive	the	Norton	equivalent	circuit
Solution
Step 1: Source transformation (The 25V voltage source

is converted to a 5 A current source.)

25 V 20 W 3 A

5 W 4 W a

b

20 W 3 A5 W

4 W a

b

5 A

4 W8 A

4 W a

b

Step	3:	Source	transformation	(combined	serial	resistance	to	
produce	the	Thevenin	equivalent	circuit.)

8 W

32 V

a

b

Step	2:	Combination	of	parallel	source	and	parallel	resistance

• Step	4:	Source	transformation	(To	produce	the	Norton	
equivalent	circuit.	The	current	source	is	4A	(I	=	V/R	=	32	
V/8	W))

Norton	equivalent	circuit.		

8	Ω
a

b

4	A

Maximum	power	transfer	theorem

Themaximum	power	transfer	theorem states	that,	to	
obtain maximum external	power	from	a	source	with	a	finite	
internal resistance,	the	resistance	of	the	load	must	be	equal	
to	the	resistance	of	the	source	as	viewed	from	the	output	
terminals.

A	load	will	receive	maximum	power	from	a	linear	bilateral	
dc	network	when	its	total	resistive	value	is	exactly	equal	to	
the	Thévenin	resistance	of	the	network	as	“seen”	by	the	
load

RL =	RTh

Resistance	network	
which	contains	
dependent and	
independent	sources

L

2
Th

R4
V

()2L

L
2

Th

R2
RV

pmax =	 =	

• Maximum	power	transfer	happens	when	the	load	
resistance	RL is	equal	to	the	Thevenin	equivalent	
resistance,	RTh.	To	find	the	maximum	power	delivered	to	
RL,

Application	of	Network	Theorems
• Network	theorems	are	useful	in	simplifying	analysis	of	some	

circuits.	But	the	more	useful	aspect	of	network	theorems	is	
the	insight	it	provides	into	the	properties	and	behaviour	of	
circuits

• Network	theorem	also	help	in	visualizing	the	response	of	
complex	network.

• The Superposition Theorem finds	use	in	the	
study of alternating	current	(AC)	circuits,	and	semiconductor	
(amplifier)	circuits,	where	sometimes	AC	is	often	mixed	
(superimposed)	with	DC

© 2008, 2016 Zachary S Tseng B-1 - 1

Second Order Linear Differential Equations

Second order linear equations with constant coefficients; Fundamental
solutions; Wronskian; Existence and Uniqueness of solutions; the
characteristic equation; solutions of homogeneous linear equations;
reduction of order; Euler equations

In this chapter we will study ordinary differential equations of the standard
form below, known as the second order linear equations:

y″ + p(t) y′ + q(t) y = g(t).

Homogeneous Equations: If g(t) = 0, then the equation above becomes

 y″ + p(t) y′ + q(t) y = 0.

It is called a homogeneous equation. Otherwise, the equation is
nonhomogeneous (or inhomogeneous).

Trivial Solution: For the homogeneous equation above, note that the
function y(t) = 0 always satisfies the given equation, regardless what p(t) and
q(t) are. This constant zero solution is called the trivial solution of such an
equation.

© 2008, 2016 Zachary S Tseng B-1 - 2

Second Order Linear Homogeneous Differential Equations

with Constant Coefficients

For the most part, we will only learn how to solve second order linear
equation with constant coefficients (that is, when p(t) and q(t) are constants).
Since a homogeneous equation is easier to solve compares to its
nonhomogeneous counterpart, we start with second order linear
homogeneous equations that contain constant coefficients only:

a y″ + b y′ + c y = 0.

Where a, b, and c are constants, a ≠ 0.

A very simple instance of such type of equations is

 y″ − y = 0.

 The equation’s solution is any function satisfying the equality

y″ = y. Obviously y1 = e
t is a solution, and so is any constant multiple

of it, C1 e
t. Not as obvious, but still easy to see, is that y2 = e

−t is
another solution (and so is any function of the form C2 e

−t
).

 It can be easily verified that any function of the form

 y = C1 e

 t + C2 e
 −t

will satisfy the equation. In fact, this is the general solution of the
above differential equation.

Comment: Unlike first order equations we have seen previously, the general
solution of a second order equation has two arbitrary coefficients.

© 2008, 2016 Zachary S Tseng B-1 - 3

Principle of Superposition: If y1 and y2 are any two solutions of the
homogeneous equation
 y″ + p(t) y′ + q(t) y = 0.

Then any function of the form y = C1 y1 + C2 y2 is also a solution of the
equation, for any pair of constants C1 and C2.

That is, for a homogeneous linear equation, any multiple of a solution is
again a solution; any sum/difference of two solutions is again a solution; and
the sum / difference of the multiples of any two solutions is again a solution.
(This principle holds true for a homogeneous linear equation of any order; it
is not a property limited only to a second order equation. It, however, does
not hold, in general, for solutions of a nonhomogeneous linear equation.)

Note: However, while the general solution of y″ + p(t) y′ + q(t) y = 0 will
always be in the form of C1 y1 + C2 y2, where y1 and y2 are some solutions of
the equation, the converse is not always true. Not every pair of solutions y1
and y2 could be used to give a general solution in the form y = C1 y1 + C2 y2.
We shall see shortly the exact condition that y1 and y2 must satisfy that
would give us a general solution of this form.

Fact: The general solution of a second order equation contains two arbitrary
constants / coefficients. To find a particular solution, therefore, requires two
initial values. The initial conditions for a second order equation will appear
in the form: y(t0) = y0, and y′(t0) = y′0.

Question: Just by inspection, can you think of two (or more) functions that
satisfy the equation y″ + 4 y = 0? (Hint: A solution of this equation is a
function φ such that φ″ = −4 φ.)

© 2008, 2016 Zachary S Tseng B-1 - 4

Example: Find the general solution of

 y″ − 5 y′ = 0.

There is no need to “guess” an answer here. We actually know a way
to solve the equation already. Observe that if we let u = y′, then
u′ = y″. Substitute them into the equation and we get a new equation:

 u′ − 5 u = 0.

 This is a first order linear equation with p(t) = −5 and g(t) = 0. (!)

 The integrating factor is µ = e−5t.

 () () () ttt CeCedtedttgt
t

tu 555 0)()(
)(

1
)(==== ∫∫µµ

The actual solution y is given by the relation u = y′, and can be found
by integration:

 2
5

12
55

5
)()(CeCCe

C
dtCedttuty ttt +=+=== ∫ ∫ .

The method used in the above example can be used to solve any second
order linear equation of the form y″ + p(t) y′ = g(t), regardless whether its
coefficients are constant or nonconstant, or it is a homogeneous equation or
nonhomogeneous.

© 2008, 2016 Zachary S Tseng B-1 - 5

Equations of nonconstant coefficients with missing y-term

If the y-term (that is, the dependent variable term) is missing in a second
order linear equation, then the equation can be readily converted into a first
order linear equation and solved using the integrating factor method.

Example: t y″ + 4 y′ = t2

 The standard form is ty
t

y =′+′′
4

.

 Substitute: tu
t

u =+′
4

 → t
tp

4
)(= , g(t) = t

 Integrating factor is µ = t4.

 () 42645
4 6

1

6

11
)(−− +=







 +== ∫ tCtCttdtt
t

tu

 Finally,

2
3

1
3

2
33

18
1

318
1

)()(CtCtCt
C

tdttuty ++=+−== −−∫

Comment: Notice the above solution is not in the form of y = C1 y1 + C2 y2.
There is nothing wrong with this, because this equation is not homogeneous.
The general solution of a nonhomogeneous linear equation has a slightly
different form. We will learn about the solutions of nonhomogeneous linear
equations a bit later.

© 2008, 2016 Zachary S Tseng B-1 - 6

In general, given a second order linear equation with the y-term missing

 y″ + p(t) y′ = g(t),

we can solve it by the substitutions u = y′ and u′ = y″ to change the
equation to a first order linear equation. Use the integrating factor method to
solve for u, and then integrate u to find y. That is:

1. Substitute : u′ + p(t) u = g(t)

2. Integrating factor: ∫=
dttp

et
)(

)(µ

3. Solve for u:
()

)(

)()(
)(

t

Cdttgt
tu

µ

µ∫ +
=

4. Integrate: y(t) = ∫ u(t) dt

This method works regardless whether the coefficients are constant or
nonconstant, or if the equation is nonhomogeneous.

© 2008, 2016 Zachary S Tseng B-1 - 7

The Characteristic Polynomial

Back to the subject of the second order linear homogeneous equations with
constant coefficients (note that it is not in the standard form below):

 a y″ + b y′ + c y = 0, a ≠ 0. (*)

We have seen a few examples of such an equation. In all cases the solutions
consist of exponential functions, or terms that could be rewritten into
exponential functions†. With this fact in mind, let us derive a (very simple,
as it turns out) method to solve equations of this type. We will start with the
assumption that there are indeed some exponential functions of unknown
exponents that would satisfy any equation of the above form. We will then
devise a way to find the specific exponents that would give us the solution.

Let y = e

rt be a solution of (*), for some as-yet-unknown constant r.
Substitute y, y′ = r e

rt, and y″ = r2
 e

rt into (*), we get

 a r2

 e
rt + b r e

rt + c e
rt = 0, or

 e

rt
 (a r2 + b r + c) = 0.

Since e

rt is never zero, the above equation is satisfied (and therefore y = e
rt

is a solution of (*)) if and only if a r2 + b r + c = 0. Notice that the
expression a r2 + b r + c is a quadratic polynomial with r as the unknown. It
is always solvable, with roots given by the quadratic formula. Hence, we
can always solve a second order linear homogeneous equation with constant
coefficients (*).

† Sine and cosine are related to exponential functions by the identities

i

ee ii

2
sin

θθ

θ
−−

= and
2

cos
θθ

θ
ii ee −+

= .

© 2008, 2016 Zachary S Tseng B-1 - 8

This polynomial, a r2 + b r + c, is called the characteristic polynomial of the
differential equation (*). The equation

a r2 + b r + c = 0

is called the characteristic equation of (*). Each and every root, sometimes
called a characteristic root, r, of the characteristic polynomial gives rise to a
solution y = e rt of (*).

We will take a more detailed look of the 3 possible cases of the solutions
thusly found:

 1. (When b2 − 4 ac > 0) There are two distinct real roots r1, r2.
 2. (When b2 − 4 ac < 0) There are two complex conjugate roots
 r = λ ± µi.
 3. (When b2 − 4 ac = 0) There is one repeated real root r.

Note: There is no need to put the equation in its standard form when solving
it using the characteristic equation method. The roots of the characteristic
equation remain the same regardless whether the leading coefficient is 1 or
not.

© 2008, 2016 Zachary S Tseng B-1 - 9

Case 1 Two distinct real roots

When b2 − 4 ac > 0, the characteristic polynomial have two distinct real

roots r1, r2. They give two distinct‡ solutions
tr

ey 1

1 = and
tr

ey 2

2 = . Therefore, a general solution of (*) is

trtr
eCeCyCyCy 21

212211 +=+= .

It is that easy.

Example: y″ + 5 y′ + 4 y = 0

The characteristic equation is r2 + 5 r + 4 = (r + 1)(r + 4) = 0, the roots
of the polynomial are r = −1 and −4. The general solution is then

 y = C1 e

−t + C2 e
−4t.

Suppose there are initial conditions y(0) = 1, y′(0) = −7. A unique particular
solution can be found by solving for C1 and C2 using the initial conditions.
First we need to calculate y′ = −C1 e −t − 4C2 e −4t, then apply the initial values:

 1 = y(0) = C1 e 0 + C2 e 0 = C1 + C2

 −7 = y′(0) = −C1 e 0 − 4C2 e 0 = −C1 − 4C2

The solution is C1 = −1, and C2 = 2 → y = −e −t + 2 e −4t.

‡ We shall see the precise meaning of distinctness in the next section. For
now just think that the two solutions are not constant multiples of each other.

© 2008, 2016 Zachary S Tseng B-1 - 10

Question: Suppose the initial conditions are instead y(10000) = 1,
y′(10000) = −7. How would the new t0 change the particular solution?

Apply the initial conditions as before, and we see there is a little
complication. Namely, the simultaneous system of 2 equations that we have
to solve in order to find C1 and C2 now comes with rather inconvenient
irrational coefficients:

 1 = y(10000) = C1 e −10000 + C2 e −40000

 −7 = y′(10000) = −C1 e −10000 − 4C2 e −40000

With some good bookkeeping, systems like this can be solved the usual way.
However, there is an easier method to simplify the inconvenient coefficients.
The idea is translation (or time-shift). What we will do is to first construct a
new coordinate axis, say Ť-axis. The two coordinate-axes are related by the
equation Ť = t − t0. (Therefore, when t = t0, Ť = 0; that is, the initial t-value
t0 becomes the new origin.) In other words, we translate (or time-shift) t-
axis by t0 units to make it Ť-axis. In this example, we will accordingly set Ť
= t − 10000. The immediate effect is that it makes the initial conditions to
be back at 0: y(0) = 1, y′(0) = −7, with respect to the new Ť-coordinate. We
then solve the translated system of 2 equations to find C1 and C2. What we
get is the (simpler) system

 1 = y(0) = C1 e 0 + C2 e 0 = C1 + C2

 −7 = y′(0) = −C1 e 0 − 4C2 e 0 = −C1 − 4C2

As we have seen on the previous page, the solution is C1 = −1, and C2 = 2.
Hence, the solution, in the new Ť-coordinate system, is y(Ť) = −e −Ť + 2 e −4Ť.

Lastly, since this solution is in terms of Ť, but the original problem was in
terms of t, we should convert it back to the original context. This conversion
is easily achieved using the translation formula used earlier, Ť = t − t0 = t −
10000. By replacing every occurrence of Ť by t − 1000 in the solution, we
obtain the solution, in its proper independent variable t.

 y(t) = −e −(t − 10000) + 2 e −4(t − 10000).

© 2008, 2016 Zachary S Tseng B-1 - 11

Example: Consider the solution y(t) of the initial value problem

 y″ − 2 y′ − 8 y = 0, y(0) = α, y′(0) = 2π.

Depending on the value of α, as t → ∞, there are 3 possible behaviors of y(t).
Explicitly determine the possible behaviors and the respective initial value α
associated with each behavior.

The characteristic equation is r2 − 2 r − 8 = (r + 2)(r − 4) = 0. Its roots
are r = −2 and 4. The general solution is then

 y = C1 e

−2t + C2 e
4t.

Notice that the long-term behavior of the solution is dependent on the
coefficient C2 only, since the C1 e

 −2t term tends to 0 as t → ∞,
regardless of the value of C1.

Solving for C2 in terms of α, we get

 y(0) = α = C1 + C2
 y′(0) = 2π = −2C1 + 4C2

 2α + 2π = 6C2 → 32

πα +
=C .

 Now, if C2 > 0 then y tends to ∞ as t → ∞. This would happen when

α > − π. If C2 = 0 then y tends to 0 as t → ∞. This would happen
when α = − π. Lastly, if C2 < 0 then y tends to −∞ as t → ∞. This
would happen when α < − π. In summary:

When α > − π, C2 > 0, ∞=
∞→

)(lim ty
t

.

When α = − π, C2 = 0, 0)(lim =
∞→

ty
t

.

When α < − π, C2 < 0, −∞=
∞→

)(lim ty
t

.

© 2008, 2016 Zachary S Tseng B-1 - 12

The Existence and Uniqueness (of the solution of a second

order linear equation initial value problem)

A sibling theorem of the first order linear equation Existence and
Uniqueness Theorem…

Theorem: Consider the initial value problem

 y″ + p(t) y′ + q(t) y = g(t), y(t0) = y0, y′(t0) = y′0.

If the functions p, q, and g are continuous on the interval I: α < t < β
containing the point t = t0. Then there exists a unique solution y = φ(t) of the
problem, and that this solution exists throughout the interval I.

That is, the theorem guarantees that the given initial value problem will
always have (existence of) exactly one (uniqueness) twice-differentiable
solution, on any interval containing t0 as long as all three functions p(t), q(t),
and g(t) are continuous on the same interval. Conversely, neither existence
nor uniqueness of a solution is guaranteed at a discontinuity of p(t), q(t), or
g(t).

Examples: For each IVP below, find the largest interval on which a unique
solution is guaranteed to exist.

 (a) (t + 2) y″ + t y′ + cot(t) y = t2 + 1, y(2) = 11, y′(2) = −2.

 The standard form is 2

1

)sin()2(

)cos(

2

2

+
+

=
+

+′
+

+′′
t

t
y

tt

t
y

t

t
y , and

t0 = 2. The discontinuities of p, q, and g are t = −2, 0, ±π, ±2π, ±3π…
The largest interval that contains t0 = 2 but none of the discontinuities
is, therefore, (0, π).

© 2008, 2016 Zachary S Tseng B-1 - 13

(b) 0)cos()1ln(16 2 =+′++′′− ytytyt , y(0) = 2, y′(0) = 0.

The standard form is 0
16

)cos(

16

)1ln(
22

=
−

+′
−

+
+′′ y

t

t
y

t

t
y , p(t) is only

defined (and is continuous) on the interval (−1, 4), and similarly q(t) is
only continuously defined on the interval (−4, 4); g(t) is continuous
everywhere. Combining them we see that p, q, and g have
discontinuities at any t such that t ≤ −1 or t ≥ 4. That is, they are all
continuous only on the interval (−1, 4). Since that interval contains
t0 = 0, it must be the largest interval on which the solution is
guaranteed to exist uniquely. Therefore, the answer is (−1, 4)

Similar to the previous instance (first order linear equation version) of the
Existence and Uniqueness Theorem, the only time that a unique solution is
not guaranteed to exist anywhere is whenever the initial time t0 occurs at a
discontinuity of either p(t), q(t), or g(t).

Initial Value Problem vs. Boundary Value Problem

It might seem that there are more than one ways to present the initial
conditions of a second order equation. Instead of locating both initial
conditions y(t0) = y0 and y′(t0) = y′0 at the same point t0, couldn’t we take
them at different points, for examples y(t0) = y0 and y(t1) = y1; or y′(t0) = y′0
and y′(t1) = y′1? The answer is NO. All the initial conditions in an initial
value problem must be taken at the same point t0. The sets of conditions
above where the values are taken at different points are known as boundary
conditions. A boundary value problem where a differential equation is
bundled with (two or more) boundary conditions does not have the existence
and uniqueness guarantee.

Example: Every function of the form y = C sin(t), where C is a real number
satisfies the boundary value problem y″ + y = 0, y(0) = 0 and y(π) = 0.
Therefore, the problem has infinitely many solutions, even though p(t) = 0,
q(t) = 1, and g(t) = 0 are all continuous everywhere.

© 2008, 2016 Zachary S Tseng B-1 - 14

Exercises B.1-1:

1 – 4 Find the general solution of each equation.
1. y″ + 10 y′ = t2

2. y″ − 9y = 0

3. y″ + 4y′ − 5y = 0

4. 6y″ + y′ − y = 0

5 – 9 Solve each initial value problem. For each problem, state the largest
interval in which the solution is guaranteed to uniquely exist.
5. y″ + y′ = 3 e

t

/

2, y(0) = 4, y′(0) = 3

6. y″ + 2y′ = t e

−

t

 , y(0) = 6, y′(0) = −1

7. t y″ − y′ = t2 + t, y(1) = 1, y′(1) = 5

8. y″ − y′ − 2y = 0, y(0) = 2, y′(0) = 7

9. (t2 + 9) y″ + 2ty′ = 0, y(3) = 2π, y′(3) = 2/3

10 – 15 Solve each initial value problem.
10. y″ + y′ − 12y = 0, y(0) = −2, y′(0) = −20

11. y″ + y′ − 12y = 0, y(π) = −2, y′(π) = −20

12. y″ + 2y′ − 3y = 0, y(0) = 1, y′(0) = 13

13. y″ + 2y′ − 3y = 0, y(2π) = 1, y′(2π) = 13

14. y″ + 2y′ − 4y = 0, y(0) = 6, y′(0) = −6

15. y″ + 2y′ − 4y = 0, y(18) = 6, y′(18) = −6

© 2008, 2016 Zachary S Tseng B-1 - 15

16. Without solving the given initial value problem, what is the largest
interval in which a unique solution is guaranteed to exist?
 (t + 10) y″ − (5 − t) y′ + ln | t | y = e2t

 cos t,
(a) y(1) = −1, y′(1) = 0
(b) y(−9) = 3, y′(−9) = −2
(c) y(−12.5) = 1, y′(−12.5) = 4

17. Prove the Principle of Superposition: If y1 and y2 are any two solutions
of the homogeneous equation
 y″ + p(t) y′ + q(t) y = 0.
Then any function of the form y = C1 y1 + C2 y2 is also a solution of the
equation, for any pair of constants C1 and C2.

© 2008, 2016 Zachary S Tseng B-1 - 16

Answers B-1.1:

1. 2
10

1

23

50010030
CeC

ttt
y t +++−= −

2. y = C1 e
3t + C2 e

−3t
3. y = C1 e

t + C2 e
−5t

4. y = C1 e
t /3 + C2 e

–t /2
5. y = − e

−t + 1 + 4 e
t

/

2, (−∞, ∞)

6. y = −t e
−

t
 + 6, (−∞, ∞)

7.
12

13
ln

24

7

3

223

−++= t
ttt

y , (0, ∞)

8. y = 3e
2t − e

−t, (−∞, ∞)

9. π+






= −

3
tan4 1 t

y , (−∞, ∞)

10. y = −4e
3t + 2e

−4t
11. y = −4e

3(t − π) + 2e
−4(t − π)

12. y = 4e
t − 3e

−3t
13. y = 4e

t − 2π − 3e
−3(t − 2π)

14. tt eey)51()51(33 −−+− +=

15.)18()51()18()51(33 −−−−+− += tt eey
16. (a) (0, ∞), (b) (−10, 0), (c) (−∞, −10)

© 2008, 2016 Zachary S Tseng B-1 - 17

Fundamental Solutions

We have seen that the general solution of a second order homogeneous
linear equation is in the form of y = C1 y1 + C2 y2

§, where y1 and y2 are two
“distinct” functions both satisfying the given equation (as a result, y1 and y2
are themselves particular solutions of the equation). Now we will examine
the circumstance under which two arbitrary solutions y1 and y2 could give us
a general solution.

Suppose y1 and y2 are two solutions of some second order homogeneous
linear equation such that their linear combinations y = C1 y1 + C2 y2 give a
general solution of the equation. Then, according to the Existence and
Uniqueness Theorem, for any pair of initial conditions y(t0) = y0 and y′(t0) =
y′0 there must exist uniquely a corresponding pair of coefficients C1 and C2
that satisfies the system of (algebraic) equations

)()(

)()(

0220110

0220110

tyCtyCy

tyCtyCy

′+′=′

+=

From linear algebra, we know that for the above system to always have a
unique solution (C1, C2) for any initial values y0 and y′0, the coefficient
matrix of the system must be invertible, or, equivalently, the determinant of
the coefficient matrix must be nonzero**. That is

0)()()()(
)()(

)()(
det 02010201

0201

0201 ≠′−′=







′′

tytytyty
tyty

tyty

This determinant above is called the Wronskian or the Wronskian
determinant. It is a function of t as well, denoted W(y1, y2)(t), and is given
by the expression

W(y1, y2)(t) = y1 y′2 − y′1 y2.

§ The expression y = C1 y1 + C2 y2 is called a linear combination of the
functions y1 and y2.
** By nonzero it means that the Wronskian is not the constant zero function.

© 2008, 2016 Zachary S Tseng B-1 - 18

On the other hand, at each point t0 where W(y1, y2)(t0) = 0, a unique pair of
coefficients C1 and C2 that satisfies the previous system of equations cannot
always be found (see any linear algebra textbook for a proof of this). This
could be due to one of two reasons. The first reason is that y = C1 y1 + C2 y2
is really not a general solution of our equation. Or, the second possibility is
that t0 is a discontinuity of either p(t), q(t), or g(t). This second reason is, of
course, a consequence of the Existence and Uniqueness theorem.

Assuming that not every point is a discontinuity of either p(t), q(t), or g(t),
then the fact that W(y1, y2)(t) is constant zero implies that y = C1 y1 + C2 y2 is
not a general solution of the given equation. Otherwise, if W(y1, y2)(t) is
nonzero at some points t0 on the real line, then y = C1 y1 + C2 y2 will,
together with different combinations of initial condition y(t0) = y0 and y′(t0) =
y′0, give uniquely all the possible particular solutions, on some open
intervals containing t0. That is, y = C1 y1 + C2 y2 is a general solution of the
given equation. Hence, our interest in knowing whether or not W(y1, y2)(t) is
the constant zero function.

Formally, if W(y1, y2)(t) ≠ 0, then the functions y1, y2 are said to be linearly
independent. Else they are called linearly dependent if W(y1, y2)(t) = 0.††

Note: In the simple instance of two functions, as is the case presently, their
linear independence could equivalently be determined by the fact that two
functions are linearly independent if and only if they are not constant
multiples of each other.

Suppose y1 and y2 are two linearly independent solutions of a second order
homogeneous linear equation

y″ + p(t) y′ + q(t) y = 0.

That is, y1 and y2 both satisfy the equation, and W(y1, y2)(t) ≠ 0. Then (and
only then) their linear combination y = C1 y1 + C2 y2 forms a general solution
of the differential equation. Therefore, a pair of such linearly independent
solutions y1 and y2 is called a set of fundamental solutions, because they are

†† Since W(y1, y2)(t) = −W(y2, y1)(t), they are either both zero or both nonzero. Therefore, the order of the 2
functions y1and y2 does not matter in the Wronskian calculation.

© 2008, 2016 Zachary S Tseng B-1 - 19

essentially the basic building blocks of all particular solutions of the
equation.

To summarize, suppose y1 and y2 are two solutions of a second order
homogeneous linear equation, then:

 W(y1, y2)(t) is not the constant zero function

 ↕

y1, y2 are linearly independent

 ↕

y1, y2 are fundamental solutions

 ↕

y = C1 y1 + C2 y2 is a general solution of the equation

Example: Let
tr

ey 1

1 = and
tr

ey 2

2 = , r1 ≠ r2, be any two different
exponential function. Then

trtrtrtr

trtr

trtr

eereer
erer

ee
yyW 2121

21

21

12

21

21 det),(−=









=

 0)(21

12 ≠−= trtr
eerr , for all t.

Therefore, any two different exponential-function solutions of a second
order homogeneous linear equation (as those found using its characteristic
equation) are always linearly independent, thus they will always give a
general solution. Better yet, in this case since the Wronskian is never zero
for all real numbers, a unique solution can always be found.

© 2008, 2016 Zachary S Tseng B-1 - 20

Lastly, here is an interesting (and, as we shall see shortly, useful)
relationship between the Wronskian of any two solutions of a second order
linear equation with its coefficient function p(t).

Abel’s Theorem: If y1 and y2 are any two solutions of the equation

 y″ + p(t) y′ + q(t) y = 0,

where p and q are continuous on an open interval I. Then the Wronskian
W(y1, y2)(t) is given by

∫=

− dttp
eCtyyW

)(

21))(,(,

where C is a constant that depends on y1 and y2, but not on t. Further,
W(y1, y2)(t) is either zero for all t in I (if C = 0) or else is never zero in I (if
C ≠ 0).

© 2008, 2016 Zachary S Tseng B-1 - 21

Exercises B-1.2:

1. Previously, we have found that the equation y″ − y = 0 has a general
solution y = C1 e

 t + C2 e
 −t. (a) Construct another general solution by first

verifying that
2

cosh1

tt ee
ty

−+
== and

2
sinh2

tt ee
ty

−−
== also form a pair

of fundamental solutions. Conclude that a general solution is not unique for
this equation. (b) For each of the two general solutions, find the solution
corresponding to the initial conditions y(0) = 1 and y′(0) = 2. Show that the
two particular solutions are identical.

2. Suppose y1 and y2 are two solutions of the equation
t2 y″ + 2t3

 y′ – t
−2

 y = 0. Find W(y1, y2)(t).

3. Suppose y1 and y2 are two solutions of the equation
t y″ – (t + 4) y′ + e

−3t
 y = 0, such that W(y1, y2)(1) = 10. Find W(y1, y2)(t).

4. Suppose y1 = t and y2 = t e

4t are both solutions of a certain equation
y″ + p(t) y′ + q(t) y = 0. (a) Compute W(y1, y2)(t). (b) What is a general
solution of this equation? (c) Does there exist a unique solution satisfying
the initial conditions y(0) = 0, y′(0) = 0? (Use part b in your computation, is
there a unique pair of coefficients C1 and C2?) (d) Find the solution
satisfying the initial conditions y(1) = 1, y′(1) = 5. (e) What is the largest
interval on which the solution from part d is guaranteed to exist uniquely?

5. Suppose y1 = 2 + 3 e

−t and y2 = 3 − 2 e
−t are both solutions of a certain

equation y″ + p(t) y′ + q(t) y = 0. (a) Compute W(y1, y2)(t). (b) What is a
general solution of this equation? (c) Find the solution satisfying the initial
conditions y(0) = 2, y′(0) = 3. (d) What is the largest interval on which the
solution from part d is guaranteed to exist uniquely?

© 2008, 2016 Zachary S Tseng B-1 - 22

Answers B-1.2:
1. (a) Another general solution is y = C1 cosh t + C2 sinh t .

2. W(y1, y2)(t) =
2teC −=

3. W(y1, y2)(t) = 10t4
 e

t −1
4. (a) W(y1, y2)(t) = 4t2

 e
4t, (b) y = C1 t + C2 t e

4t, (c) Since W(y1, y2)(0) = 0,
there is no existence or uniqueness guarantee for a particular solution. As it
turns out, there are infinitely many solutions satisfying the given initial
conditions: any function of the form y = C1 t + C2 t e

4t, where C1 = −C2.
(d) y = e−4

 t e
4t, (e) (0, ∞).

5. (a) W(y1, y2)(t) = 13e
−t, (b) y = C1 (2 + 3 e

−t) + C2 (3 − 2 e
−t), which can

be simplified to y = K1 + K2 e
−t, (c) y = 5 − 3e

−t, (d) (−∞, ∞).

© 2008, 2016 Zachary S Tseng B-1 - 23

Case 2 Two complex conjugate roots

When b2 − 4 ac < 0, the characteristic polynomial has two complex roots,
which are conjugates, r1 = λ + µi and r2 = λ − µi (λ, µ are real numbers,

µ > 0). As before they give two linearly independent solutions
tr

ey 1

1 = and
tr

ey 2

2 = . Consequently the linear combination
trtr

eCeCy 21

21 += will be
a general solution. At this juncture you might have this question: “but aren’t
r1 and r2 complex numbers; what would become of the exponential function
with a complex number exponent?” The answer to that question is given by
the Euler’s formula.

Euler’s formula For any real number θ,

 e

θ i = cos θ + i sin θ .

Hence, when r is a complex number λ + µi, the exponential function e

rt
becomes
 e rt = e (λ + µ i)t = e λ t e µ i t = e λ t (cos µt + i sin µt)

Similarly, when r = λ − µi , e

rt becomes

e (λ − µ i)t = e λ t e −µ i t = e λ t (cos(−µt) + i sin(−µt))
= e λ t (cos µt − i sin µt)

Hence, the general solution found above is then

 y = C1 e

 λ t (cos µt + i sin µt) + C2 e
 λ t (cos µt − i sin µt)

© 2008, 2016 Zachary S Tseng B-1 - 24

However, this general solution is a complex-valued function (meaning that,
given a real number t, the value of the function y(t) could be complex). It
represents the general form of all particular solutions with either real or
complex number coefficients. What we seek here, instead, is a real-valued
expression that gives only the set of all particular solutions with real number
coefficients only. In other words, we would like to “filter out” all functions
containing coefficients with an imaginary part, that satisfy the given
differential equation, keeping only those whose coefficients are real numbers.

Define u(t) = e

λ t cos µ t
v(t) = e

λ t sin µ t

It is easy to verify that both u and v satisfy the differential equation (one way
to see this is to observe that u can be obtain from the complex-valued
general solution by setting C1 = C2 = 1/2; and v can be obtained similarly by
setting C1 = 1/2i and C2 = −1/2i). Their Wronskian is W(u, v) = µ e

2λ

t is

never zero. Therefore, the functions u and v are linearly independent
solutions of the equation. They form a pair of real-valued fundamental
solutions and the linear combination is a desired real-valued general solution:

y = C1 e
λ t cos µ t + C2 e

λ t sin µ t.

When r = λ ± µi, µ > 0, are two complex roots of the characteristic
polynomial.

© 2008, 2016 Zachary S Tseng B-1 - 25

Example: y″ + 4 y = 0

 Answer: y = C1 cos 2t + C2 sin 2t

Example: y″ + 2 y′ + 5 y = 0, y(0) = 4, y′(0) = 6

The characteristic equation is r2 + 2r + 5 = 0, which has solutions
r = −1 ± 2i. So λ = −1 and µ = 2. Therefore, the general solution is

 y = C1 e

−

t

 cos 2t + C2 e
−

t

 sin 2t

 Apply the initial conditions to find that C1 = 4 and C2 = 5. Hence,

 y = 4e − t

 cos 2t + 5e − t
 sin 2t.

Question: What would the solution be if the initial conditions are
y(25000) = 4, and y′(25000) = 6 instead?

Answer: y = 4e −(t − 25000) cos 2(t − 25000) + 5e −(t − 25000) sin 2(t − 25000)

© 2008, 2016 Zachary S Tseng B-1 - 26

Case 3 One repeated real root

When b2 − 4 ac = 0, the characteristic polynomial has a single repeated real

root,
a

b
r

2

−
= . This causes a problem, because unlike the previous two cases

the roots of characteristic polynomial presently only give us one distinct
solution y1 = e

rt. It is not enough to give us a general solution. We would
need to come up with a second solution, linearly independent with y1, on our
own. How do we find a second solution?

Take what we have: a solution y1 = e
rt, where

a

b
r

2

−
= . Let y2 be another

solution of the same equation a y″ + b y′ + c y = 0. The standard form of this

equation is 0=+′+′′ y
a

c
y

a

b
y , where p(t) =

a

b
. Compute the Wronskian

two different ways:

22

2

2
21 det),(yreye

yre

ye
yyW rtrt

rt

rt

−′=








′
= , a

b
r

2

−
=

and

t

a

b
dt

a

b
dttp

eCeCeCyyW
−

−−
=∫=∫=

)(

21),(, C ≠ 0.

By the Abel’s Theorem, the fact C ≠ 0 guarantees that y1 and y2 are going to
be linearly independent. Now, we have two expressions for the Wronskian
of the same pair of solutions. The two expressions must be equal:

t

a

b
t

a

b
t

a

b

eCye
a

b
ye

−−−

=+′ 2
2

2
2

2 , C ≠ 0.

This is a first order linear differential equation with y2 as the unknown!

© 2008, 2016 Zachary S Tseng B-1 - 27

Put it into its standard form and solve by the integrating factor method.

t

a

b

eCy
a

b
y 2

22 2

−

=+′

The integrating factor is
t

a

b
dt

a

b

ee 22 =∫=µ .

Hence,

trtr
t

a

b
t

a

b

t
a

b
t

a

b
t

a

b
t

a

b

t
a

b

eCteCeCteC

CtCedtCedtCee

e

y

1
2

1
2

1
2222

2

2)(
1

+=+=

+===

−−

−−−

∫∫

Any such a function would be a second, linearly independent solution of the
differential equation. We just need one instance of such a function. The
only condition for the coefficients in the above expression is C ≠ 0. Pick,
say, C = 1, and C1 = 0 would work nicely. Thus y2 = t e

rt.

Therefore, the general solution in the case of a repeated real root r is

y = C1 e
rt + C2 t e

rt.

© 2008, 2016 Zachary S Tseng B-1 - 28

Example: y″ − 4y′ + 4y = 0, y(0) = 4, y′(0) = 5

The characteristic equation is r2 − 4r + 4 = (r − 2)2 = 0, which has
solution r = 2 (repeated). Thus, the general solution is

 y = C1 e

2t + C2 t e
2t.

 Differentiate,

 y′ = 2C1 e

2t + C2 (2t e
2t + e

2t
).

Apply the initial conditions to find that C1 = 4 and C2 = −3:

 y = 4 e

2t − 3t e
2t.

© 2008, 2016 Zachary S Tseng B-1 - 29

Summary

Given a second order linear equation with constant coefficients

a y″ + b y′ + c y = 0, a ≠ 0.

Solve its characteristic equation a r2 + b r + c = 0. The general solution
depends on the type of roots obtained (use the quadratic formula to find the
roots if you are unable to factor the polynomial!):

1. When b2 − 4 ac > 0, there are two distinct real roots r1, r2.

trtr

eCeCy 21

21 += .

2. When b2 − 4 ac < 0, there are two complex conjugate roots r = λ ± µi.
Then
 y = C1 e

λ

t

 cos µ t + C2 e
λ

t

 sin µ t.

3. When b2 − 4 ac = 0, there is one repeated real root r. Then

y = C1 e
rt + C2 t e

rt.

Since p(t) = b/a and q(t) = c/a, being constants, are continuous for every real
number, therefore, according to the Existence and Uniqueness Theorem, in
each case above there is always a unique solution valid on (−∞, ∞) for any
pair of initial conditions y(t0) = y0 and y′(t0) = y′0.

© 2008, 2016 Zachary S Tseng B-1 - 30

Exercises B-1.3:

1. Verify that y = t e rt,
a

b
r

2

−
= , is a solution of the equation

a y″ + b y′ + c y = 0 if b2 − 4 ac = 0; and it is not a solution if b2 − 4 ac ≠ 0.

2 − 10 For each of the following equations (a) find its general solution, (b)
find the particular solution satisfying the initial conditions y(0) = 2, y′(0) =
−1, and (c) find the limit, as t → ∞, of the solution found in (b).
2. y″ + 9y′ + 8y = 0

3. y″ − 6y′ + 25y = 0

4. y″ − 6y′ + 8y = 0

5. 2y″ + 5y′ − 3y = 0

6. 2y″ − 16y′ + 32y = 0

7. y″ + 4y′ + 13y = 0

8. 2y″ − y′ = 0

9. 2y″ + 5y′ + 2y = 0

10. 16y″ − 8y′ + y = 0

11 – 15 Solve each initial value problem.
11. y″ + 9y′ + 14y = 0, y(5π) = 4, y′(5π) = 2

12. 2y″ − 16y′ + 32y = 0, y(−2) = 2, y′(−2) = −1

13. 9y″ + y = 0, y(0) = −2, y′(0) = 2

14. y″ + 6y′ + 34y = 0, y(10) = 5, y′(10) = −5

15. 10y″ − 7y′ + y = 0, y(0) = −8, y′(0) = −1

© 2008, 2016 Zachary S Tseng B-1 - 31

16 – 21 Find a second order linear equation with constant coefficients that
has the indicated solution. (The answer is not unique.)
16. The general solution is y = C1 e t + C2 t e t.

17. The general solution is y = C1 e 5t + C2 e −2t.

18. The general solution is y = C1 cos 10t + C2 sin 10t.

19. A particular solution is y = 7 e 3t − e −2t.

20. A particular solution is y = 12 e π − t sin 2t.

21. A particular solution is y = −2π t e −5t.

22. Consider all the nonzero solutions of the equation y″ + 12y′ + 36y = 0,
determine their behavior as t → ∞.

23. Consider all the nonzero solutions of the equation y″ − 2y′ + 10y = 0,
determine their behavior as t → ∞.

© 2008, 2016 Zachary S Tseng B-1 - 32

Answers B-1.3:

2. tt eCeCy 8
21

−− += ,
tt eey 8

7

1

7

15 −− −= , 0

3. teCteCy tt 4sin4cos 3
2

3
1 += , tetey tt 4sin

4

7
4cos2 33 −= , none

4. tt eCeCy 4
2

2
1 += ,

tt eey 42

2

5

2

9
−= , − ∞

5. tt eCeCy 3
2

2/
1

−+= ,
tt eey 32/

7

4

7

10 −+= , ∞

6. tt etCeCy 4
2

4
1 += , tt etey 44 92 −= , − ∞

7. teCteCy tt 3sin3cos 2
2

2
1

−− += , tetey tt 3sin3cos2 22 −− += , 0
8. y = C1 e t / 2 + C2 , y = −2e t / 2 + 4, − ∞
9. y = C1 e −t / 2 + C2 e −2t, y = 2e −t / 2 , 0

10. 4/
2

4/
1

tt etCeCy += ,
4/4/

2

3
2 tt etey −= , − ∞

11. y = 6e −2(t − 5π) − 2e −7(t − 5π)
12. 8484)2(4)2(4 916)2(92 ++++ −−=+−= tttt eteetey

13.
3

sin6
3

cos2
tt

y +−=

14. y = 5e −3 (t − 10) cos 5(t − 10) + 2e −3 (t − 10) sin 5(t − 10)
15. 5/2/ 102 tt eey −=
16. y″ − 2y′ + y = 0
17. y″ − 3y′ − 10y = 0
18. y″ + 100y = 0
19. y″ − y′ − 6y = 0
20. y″ + 2y′ + 5y = 0
21. y″ + 10y′ + 25y = 0
22. The solutions are of the form y = C1 e −6t + C2 t e −6t, they all approach 0
as t → ∞.
23. The solutions are of the form y = C1 e t cos 3t + C2 e

 t sin 3t. The zero
solution (i.e. when C1 = C2 = 0) approaches 0, all the nonzero solutions
oscillate with an increasing amplitude and do not reach a limit.

© 2008, 2016 Zachary S Tseng B-1 - 33

Reduction of Order

Problem: Given a second order, homogeneous, linear differential equation
(with non-constant coefficients) and a known nonzero solution y1, find the
general solution of the given equation.

To start, assume that there exists a second solution in the form of
y2 = y1 v(t), for some differentiable function v(t).

First we want to make sure the equation is written in the standard form with
leading coefficient 1:

y″ + p(t)y′ + q(t)y = 0.

Next, we will compute the Wronskian W(y1, y2)(t) two different ways, using
the two methods that we know. By the definition of Wronskian:

)()()()(
)()(

)(
det),(2

111
2

111
111

11
21 tvytvyytvytvyy

tvytvyy

tvyy
yyW ′=′−′+′=








′+′′

=

By the Abel’s Theorem:

∫=

− dttp
eCyyW

)(

21),(, where C ≠ 0.

The fact that C ≠ 0 is important, because it guarantees the linear
independence of y1 and y2.

© 2008, 2016 Zachary S Tseng B-1 - 34

The two expressions computed above are the Wronskian of the same two
functions, therefore, the two expressions must be the same. Equate them:

∫=′

− dttp
eCtvy

)(2
1)(.

Therefore, 2
1

)(

)(
y

e
Ctv

dttp∫
=′

−

, C ≠ 0.

Integrate the right-hand side to find v(t). Choose any convenient nonzero
value for C. Letting C = 1 would work nicely, although it may not be the
most convenient choice. Then find y2 = y1 v(t).

The general solution is still, of course, in the form y = C1 y1 + C2 y2.
Therefore,

 y = C1 y1 + C2 y2 = C1 y1 + C2 y1 v(t).

Note: It is actually not necessary to assume that y2 = y1 v(t). Although
doing so makes the resulting first order differential equation easier to solve.

© 2008, 2016 Zachary S Tseng B-1 - 35

Example: If it is known that y1 = t is a solution of

 t2 y″ − t(t + 2) y′ + (t + 2) y = 0, t > 0.

Find its general solution.

 Rewrite the equation into the standard form

 0
22

2 =
+

+′
+

−′′ y
t

t
y

t

t
y

 Identify t

t
tp

2
)(

+
−= . Let y2 = y1 v(t)= t v(t).

)()()()(
)()(1

)(
det),(22

21 tvttvttvttvt
tvttv

tvtt
yyW ′=−′+=








′+

= ,

 and,

ttt

dt
t

dt
t

t

etCeCeCeCyyW 2)ln(
2

12

21

2

),(==
∫

=∫= +








++

,

where C ≠ 0.

 Equating both parts:
tetCvt 22 =′

 v′ = C e t → v = C e t + C1

Choose C = 1 and C1 = 0 → v = e t. Therefore, y2 = y1 v(t)= t e t.

 The general solution is

 y = C1 y1 + C2 y2 = C1 t + C2 t e t.

© 2008, 2016 Zachary S Tseng B-1 - 36

Example: Find the general solution of the equation below, given that
y1 = t2

 cos(ln t) is a known solution.

 t2 y″ − 3t y′ + 5 y = 0, t > 0.

 Rewrite the equation into the standard form

 0
53
2 =+′−′′ y

t
y

t
y

 Identify t
tp

3
)(−= . Let y2 = y1 v(t)= t2

 cos(ln t) v(t).

)()(lncos),(24
21 tvttyyW ′= ,

and,

3)ln()ln(3

3

21

3

),(tCCeeCeCyyW tt
dt

t ===∫= , C ≠ 0.

 Equating both parts:
324)(lncos tCvtt =′

 t

tC

tt

C
v

)(lnsec
)(lncos

2

2 ==′

11

2

)cos(ln
)sin(ln

)tan(ln
)(lnsec

C
t

t
CCtCdt

t

t
Cv +=+== ∫

Choose C = 1 and C1 = 0 → v = tan(ln t).

y2 = y1 v(t)= t2
 cos(ln t) tan(ln t) = t2

 sin(ln t).

 The general solution is

 y = C1 y1 + C2 y2 = C1 t2

 cos(ln t) + C2 t2
 sin(ln t).

© 2008, 2016 Zachary S Tseng B-1 - 37

Exercises B-1.4:

1 – 7 For each equation below, a known solution is given. Find a second,
linearly independent solution of the equation, and find the general solution.
1. t2

 y″ − 2t y′ + 2 y = 0, t > 0, y1 = t
2.

2. t2

 y″ − t y′ − 3 y = 0, t > 0, y1 = t −1.

3. t y″ + y′ = 0, t > 0, y1 = 1.

4. t2

 y″ − 5t y′ + 8 y = 0, t > 0, y1 = t
4.

5. t2

 y″ − t y′ + 10 y = 0, t > 0, y1 = t sin(3 ln t).

6. (t − 5)2

 y″ − 2(t − 5) y′ + 2 y = 0, t > 5, y1 = (t − 5)2.

7. (t + 2)2

 y″ + 3(t + 2) y′ + y = 0, t > −2, y1 = (t + 2)−1.

8. Solve the initial value problem
 t2

 y″ − 3t y′ + 4 y = 0, t > 0, y(1) = −2, y′(1) = 1.
Given that y1 = t

2ln t is a known solution.

9. (a) Find the general solution of t2

 y″ − 2 y = 0, t > 0, given y1 = t
2.

(b) Find the particular solution satisfying y(1) = 6 and y′(1) = 9.
(c) Show that the initial value problem t2

 y″ − 2 y = 0, y(0) = 0 and y′(0) = 0,
do not have a unique solution by verifying that any of the infinitely many
functions of the form y = C t

2 is a solution, regardless of the value of C.
Does this fact violate the Existence and Uniqueness Theorem?

© 2008, 2016 Zachary S Tseng B-1 - 38

Answers B-1.4:
1. y = C1 t

2 + C2 t
2. y = C1 t −1 + C2 t

3
3. y = C1 + C2 ln t
4. y = C1 t 4 + C2 t

2
5. y = C1 t sin(3 ln t) + C2 t cos(3 ln t)
6. y = C1(t − 5)2 + C2 (t − 5)

7.
2

)2ln(

2

1
21 +

+
+

+
=

t

t
C

t
Cy

8. y = 5t
2ln t − 2t

2
9. (a) y = C1 t

2 + C2 t −1, (b) y = 5t
2 + t −1

© 2008, 2016 Zachary S Tseng B-1 - 39

(Optional topic) Euler Equations

A second order Euler equation (also known as an Euler-Cauchy equation) is
a second order homogeneous linear equation of the form

t2 y″ + αt y′ + β y = 0, (**)

or, in standard form

 02 =+′+′′ y
t

y
t

y
βα

.

In a course at this level, variations of the Euler equation most frequently
appear as examples and exercises in lectures about reduction of order. In
this context we have seen a few of them in the previous section. This type of
equations, however, is very interesting in its own right. Despite the non-
constant nature of their coefficients, Euler equations can be easily solved in
a way that is analogous to the characteristic equation method of solving
constant coefficient homogeneous linear equations. We shall develop this
solution technique for Euler equations in this section.

By visual inspection (or by peeking back at the exercises previously
encountered in the section about reduction of order technique) we might
deduce that a function of the form y = t r could be a solution of (**), t ≠ 0.
Therefore, similar to how we have previously derived the characteristic
equation method, we will assume that, for some power, r, yet to be
determined, there exists a solution y = t r. We then substitute it into (**) to
get a better idea about what r should be.

For the time being, let us consider only the case of t > 0. Start with the trial
solution y = t

r, then yʹ = rt
r − 1 and yʺ = r(r – 1)t

r − 2. Plug them into (**):

© 2008, 2016 Zachary S Tseng B-1 - 40

r(r – 1)t r – 2 + 2 + α rt r – 1 + 1 + β t r = 0,

(r2 – r + αr + β) t r = 0,

 (r2 + (α − 1)r + β) t r = 0.

Since t

r ≠ 0, it follows that r2 + (α − 1)r + β = 0. This quadratic
equation is the “characteristic equation” of (**). Whatever value of r, real or
complex, that satisfies the characteristic equation will yield a nontrivial
solution of (**) in the form y = t r.

As you might have suspected, depending on the number and type of roots r
of the characteristic equation, the equation (**) will have different forms of
(real-valued) general solution. We will look at each case in turn.

Case I: There are two distinct real roots r1 and r2.

In this case 1

1
r

ty = and 2

2
r

ty = are two solutions linearly independent
everywhere on the interval (0, ∞). (Exercise: check that their Wronskian is
nonzero for t ≠ 0.) Therefore, a general solution of (**) is

21

212211
rr

tCtCyCyCy +=+= .

Case II: There are two complex conjugate roots r = λ ± µi, µ > 0.

In this case 1

1
r

ty = and 2

2
r

ty = remain two solutions linearly independent
everywhere on the interval (0, ∞). They are complex-valued functions,
however:

))lnsin()ln(cos()(ln
1 tittetttty itii µµλµλµλµλ +==== +

))lnsin()ln(cos()(ln
2 tittetttty itii µµλµλµλµλ −==== −−−

© 2008, 2016 Zachary S Tseng B-1 - 41

In the same fashion as we have done for the constant coefficients second
order linear equation earlier, we can produce the following pair of real-
valued, linearly independent solutions using linear combinations.

u = (y1 + y2) / 2 = t
λ cos(µ ln t)

v = (y1 − y2) / 2i = t

λ sin(µ ln t)

Therefore, a real-valued general solution is

y = C1 t
λ cos(µ ln t) + C2 t

λ sin(µ ln t).

Case III: There is a repeated real root r.

Initially, we have only
rty =1 as a solution. The second solution can be

readily found by the method of reduction of order to be tty r ln2 = .

To wit: If r = k is a repeated root, then the characteristic equation have

coefficients α – 1 = −2k, i.e.,
t

k

t
tp

12
)(

+−
==

α
; and β = k2. Now,

let
kty =1 and vty k=2 .

It follows that)()(),(22
121 tvttvyyyW k ′=′= , and by Abel’s theorem, it is

also
12)ln()12(

12

21),(−−
−

==∫= ktk
dt

t

k

tCeCeCyyW , C ≠ 0.

Hence,
122)(−=′ kk tCtvt → t

C
tv =′)(, C ≠ 0.

Integrate to obtain v(t) = C ln t + C1, then set C = 1 and C1 = 0.

We have v(t) = ln t.

© 2008, 2016 Zachary S Tseng B-1 - 42

Consequently,
rk tty ==1 , and tttyy r lnln12 == , are the two required

fundamental solutions.

Therefore, a general solution is

ttCtCy
rr ln21 += .

For t < 0, the general solution will take the same forms described above,
except each formula will be in terms of | t |.

Example: Find the general solution of

 t2 y″ − 3t y′ + 20 y = 0, t > 0.

 The characteristic equation is r2 − 4r + 20 = 0, which has roots
r = 2 ± 4i. Therefore, the general solution is

 y = C1 t

 2 cos(4 ln t) + C2 t
 2 sin(4 ln t).

Example: Find the general solution of

 t2 y″ + 7t y′ + 9 y = 0, t < 0.

 The characteristic equation is r2 + 6r + 9 = (r + 3)2 = 0, which has a
repeated root r = –3. Therefore, with t < 0, the general solution is

 y = C1 | t |–3 + C2 | t |–3

 ln | t |.

© 2008, 2016 Zachary S Tseng B-1 - 43

Solution by substitution

Alternatively, the Euler equation can also be solved by a simple substitution.
This approach seeks to convert an Euler equation into one with constant
coefficients, thus establish a direct relation between their characteristic
equations discussed previously.

Define t = ex, thus x = ln t, for t > 0. (Similarly, let | t | = ex, thus
x = ln |t |, for t < 0.)

It follows that t
dt

dy
e

dt

dy

dx

dt

dt

dy

dx

dy x === , and

.2
2

2

2

2

2

2

t
dt

dy
t

dt

yd

dx

dt

dt

dy
t

dx

dt

dt

yd
t

dt

dy

dx

d

dx

yd
+=+=







=

That is,

 dx

dy

dt

dy
t = , and

 dx

dy

dx

yd
t

dt

dy

dx

yd

dt

yd
t −=−=

2

2

2

2

2

2
2

.

Therefore, in terms of x, equation (**) becomes

0
2

2

=++







− y

dx

dy

dx

dy

dx

yd
βα .

Or,

.0)1(
2

2

=+−+ y
dx

dy

dx

yd
βα

The equation now has constant coefficients, which can be solved using its
characteristic equation r2 + (α − 1)r + β = 0.

© 2008, 2016 Zachary S Tseng B-1 - 44

Depending on the number and type of the roots of the characteristic equation,
we have:

Case I: There are two distinct real roots r1 and r2.

212121

21
ln

2
ln

121
rrtrtrxrxr tCtCeCeCeCeCy +=+=+= .

Case II: There are two complex conjugate roots r = λ ± µi, µ > 0.

 y = C1 e
λx

 cos µ x + C2 e
λx

 sin µ x
 = C1 e

λln

t

 cos(µ ln t) + C2 e
λln

t

 sin(µ ln t)
 = C1 t

λ cos(µ ln t) + C2 t
λ sin(µ ln t).

Case III: There is a repeated real root r.

 ttCtCxeCeCy
rrrxrx ln2121 +=+= .

As can be seen, the two methods arrive at the identical results.

© 2008, 2016 Zachary S Tseng B-1 - 45

Summary

Given a second order Euler equation

t2 y″ + αt y′ + β y = 0, t > 0.

Solve its characteristic equation r2 + (α − 1)r + β = 0. The general
solution depends on the type of roots obtained:

1. When there are two distinct real roots r1, r2.

21

21
rr

tCtCy += .

2. When there are two complex conjugate roots r = λ ± µi.

 y = C1 t

λ cos(µ ln t) + C2 t
λ sin(µ ln t).

3. When there is one repeated real root r.

y = C1 t
r

 + C2 t
r

 ln t.

With t = 0 being the only discontinuity of p(t) and q(t), when t0 > 0, in each
case above there is always a unique solution valid everywhere on (0, ∞) for
any pair of initial conditions y(t0) = y0 and y′(t0) = y′0. When t0 < 0, replace
every t in each formula above by | t |, and a unique solution valid everywhere
on (−∞, 0) can always be found.

© 2008, 2014 Zachary S Tseng B-4 - 1

Higher Order Linear Equations with Constant Coefficients

The solutions of linear differential equations with constant coefficients of

the third order or higher can be found in similar ways as the solutions of

second order linear equations. For an n-th order homogeneous linear

equation with constant coefficients:

 an y
(n)

 + an−1 y
(n−1)

 + … + a2 y″ + a1 y′ + a0 y = 0, an ≠ 0.

It has a general solution of the form

y = C1 y1 + C2 y2 + … + C n−1 yn−1 + Cn yn

where y1, y2, … , yn−1, yn are any n linearly independent solutions of the

equation. (Thus, they form a set of fundamental solutions of the differential

equation.) The linear independence of those solutions can be determined by

their Wronskian, i.e., W(y1, y2, … , yn−1, yn)(t) ≠ 0.

Note 1: In order to determine the n unknown coefficients Ci, each n-th order

equation requires a set of n initial conditions in an initial value problem:

y(t0) = y0, y′(t0) = y′0, y″(t0) = y″0, and y
(n−1)

(t0) = y
(n−1)

0.

Note 2: The Wronskian W(y1, y2, … , yn−1, yn)(t) is defined to be the

determinant of the following n × n matrix























−−−)1()1(

2

)1(

1

21

21

21

....

:::

"....""

'....''

....

n

n

nn

n

n

n

yyy

yyy

yyy

yyy

.

© 2008, 2014 Zachary S Tseng B-4 - 2

Such a set of linearly independent solutions, and therefore, a general solution

of the equation, can be found by first solving the differential equation’s

characteristic equation:

an r
 n
 + an−1 r

 n−1
 + … + a2 r

 2
 + a1 r + a0 = 0.

This is a polynomial equation of degree n, therefore, it has n real and/or

complex roots (not necessarily distinct). Those necessary n linearly

independent solutions can then be found using the four rules below.

(i). If r is a distinct real root, then y = e
r

t
 is a solution.

(ii). If r = λ ± µi are distinct complex conjugate roots, then

 y = e
λ t

cos µt and y = e
λ t

sin µt are solutions.

(iii). If r is a real root appearing k times, then y = e
r

t
, y = te

r

t
,

 y = t
2
e

r

t
, … , and y = t

k−1
 e

r

t
 are all solutions.

(iv). If r = λ ± µi are complex conjugate roots each appears k times,

 then

 y = e
λ t

 cos µt, y = e
λ t

sin µt,

 y = t e
λ t

 cos µt, y = t e
 λ t

 sin µt,

 y = t
2

 e
λ t

 cos µt, y = t
2

 e
 λ t

 sin µt,
 : :

 : :

 y = t
 k−1

 e
λ t

cos µt, and y = t
 k−1

 e
λ t

sin µt,

 are all solutions.

© 2008, 2014 Zachary S Tseng B-4 - 3

Example: y
(4)

 − y = 0

The characteristic equation is r
4
 − 1 = (r

2
 + 1)(r + 1)(r − 1) = 0,

which has roots r = 1, −1, i, −i. Hence, the general solution is

 y = C1 e
 t
 + C2 e

 −t
 + C3

 cos t + C4
 sin t.

Example: y
(5)

 − 3 y
(4)

 + 3 y
(3)

 − y″ = 0

The characteristic equation is r
5
 − 3r

4
 + 3r

3
 − r

2
 = r

2
(r − 1)

3
 = 0,

which has roots r = 0 (a double root), and 1 (a triple root). Hence, the

general solution is

 y = C1e
0

t
 + C2 t e

0

t
 + C3 e

t
 + C4 t e

t
 + C5 t

2
 e

 t

 = C1 + C2 t + C3 e
t
 + C4 t e

t
 + C5 t

2
 e

 t
.

Example: y
(4)

 + 4 y
(3)

 + 8 y″ + 8 y′ + 4 y = 0

The characteristic equation is r
4
 + 4r

3
 + 8r

2
 + 8r + 4 = (r

2
 + 2r + 2)

2

= 0, which has roots r = −1 ± i (repeated). Hence, the general solution

is

y = C1 e
 − t

 cos t + C2 e
 − t

 sin t + C3
 t e

 − t
cos t + C4

t e

 − t
sin t .

© 2008, 2014 Zachary S Tseng B-4 - 4

Example: What is a 4th order homogeneous linear equation whose general

solution is

y = C1 e
t
 + C2 e

2t
 + C3 e

3t
 + C4 e

4t
 ?

The solution implies that r = 1, 2, 3, and 4 are the four roots of the

characteristic equation. Therefore, r − 1, r − 2, r − 3, and r − 4 are its

factors. Consequently, the characteristic equation is

 (r − 1)(r − 2)(r − 3)(r − 4) = 0

 r
4
 − 10r

3
 + 35r

2
 − 50r + 24 = 0

 Hence, an equation is

 y
(4)

 − 10 y
(3)

 + 35 y″ − 50 y′ + 24 y = 0.

Note: The above answer is not unique. Every nonzero constant multiple of

the above equation also has the same general solution. However, the

indicated equation is the only equation in the standard form that has the

given general solution.

© 2008, 2014 Zachary S Tseng B-4 - 5

Exercises B-4.1:

1 – 8 Find the general solution of each equation.

1. y
(3)

 + 25y′ = 0

2. y
(3)

 + 27y = 0

3. y
(4)

 − 18 y″ + 81y = 0

4. y
(4)

 − 3 y″ − 4 y = 0

5. y
(4)

 + 32 y″ + 256 y = 0

6. y
(5)

 + 5y
(4)

 + 10y
(3)

 + 10y″ + 5y′ + y = 0

7. y
(5)

 + 2y
(4)

 + 5y
(3)

 = 0

8. y
(6)

 − y = 0

9 – 12 Solve each initial value problem.

9. y
(3)

 + 4 y″ − 5 y′ = 0, y(0) = 4, y′(0) = −7, y″(0) = 23

10. y
(3)

 + 3 y″ + 3 y′ + y = 0, y(0) = 7, y′(0) = −7, y″(0) = 11

11. y
(4)

 − 10y″ + 9y = 0, y(0) = 5, y′(0) = −1, y″(0) = 21, y
(3)

(0) = −49

12. y
(4)

 + 13y″ + 36y = 0, y(0) = 0, y′(0) = −3, y″(0) = 5, y
(3)

(0) = −3

13. Same as #10, except with initial conditions y(6561) = 7,

y′(6561) = −7, y″(6561) = 11.

14. Same as #12, except with initial conditions y(247) = 0, y′(247) = −3,

y″(247) = 5, y
(3)

(247) = −3

15. Find a 3rd order homogeneous linear equation which has a particular

solution y = e
t
 − 2e

−2t
 + 5t e

−2t
.

16. Find a 5th order homogeneous linear equation whose general solution is

 y = C1 e
−t

 + C2 t e
−t

 + C3 t
2

 e
−t

 + C4 cos t + C5 sin t.

© 2008, 2014 Zachary S Tseng B-4 - 6

17. Find a 6th order homogeneous linear equation whose general solution is

y = C1 + C2 t + C3 e
−2 t

 cos t + C4 e
−2 t

 sin t + C5

t e

−2 t
cos t + C6

t e

−2 t
sin t.

[Hint: the polynomial, with leading coefficient 1, that has complex conjugate

roots λ ± µi has the form r
2
 − 2λr + (λ

2
 + µ

2
).]

18. Find a 6th order homogeneous linear equation whose general solution is

y = C1 cos 2t + C2
 sin 2t + C3

t

cos 2t + C4

t sin 2t + C5

t
2
cos 2t + C6

t
2

 sin 2t.

© 2008, 2014 Zachary S Tseng B-4 - 7

Answers B-4.1:

1. y = C1 + C2 cos 5t + C3 sin 5t

2. teCteCeCy
tt

t

2

33
sin

2

33
cos 2

3

3
2

3

2

3

1 ++= −

3. y = C1 e
3t

 + C2 e
−3t

 + C3 t e
3t

 + C4 t e
−3t

4. y = C1 e
2t

 + C2 e
−2t

 + C3 cos t + C4 sin t

5. y = C1 cos 4t + C2 sin 4t + C3 t cos 4t + C4 t sin 4t

6. y = C1 e
 −t

 + C2 t e
 −t

 + C3 t
2

 e
 −t

 + C4 t
3

 e
 −t

 + C5 t
4

 e
 −t

7. y = C1 + C2 t + C3 t
2
 + C4 e

−t
 cos 2t + C5 e

−t
 sin 2t.

8. teCeCteCteCeCeCy
tttt

tt

2

3
sin

2

3
cos

2

3
sin

2

3
cos 2

1

6
2

1

5
2

1

4
2

1

321

−−
− +++++=

9. y = 5 − 2e
t
 + e

−5t

10. y = 7e
−t

 + 2t
2
e

−t

11. y = 4e
t
 − e

−t
 + 2e

−3t

12. y = cos 2t − 3sin 2t − cos 3t + sin 3t

13. y = 7e
– t + 6561

 + 2(t – 6561)
2
e

– t + 6561

14. y = cos 2(t – 247) − 3sin 2(t – 247) − cos 3(t – 247) + sin 3(t – 247)

15. y
(3)

 + 3y″ − 4y = 0

16. y
(5)

 + 3y
(4)

 + 4y
(3)

 + 4y″ + 3y′ + y = 0

17. y
(6)

 + 8y
(5)

 + 26y
(4)

 + 40y
(3)

 + 25y″ = 0

18. y
(6)

 + 12y
(4)

 + 48y″ + 64y = 0

© 2008, 2014 Zachary S Tseng B-4 - 8

Lastly, here is an example of an application of a very simple 4th order

nonhomgeneous linear equation that might be familiar to many engineering

students.

The static deflection of a uniform beam

Consider a horizontal beam of length L, of uniform cross section and made

of homogeneous material, acted upon by a vertical force. The beam is

positioned along the x-axis, with its left end at the origin. The deflection of

the beam (its vertical displacement relative to the horizontal axis) at any

point x is given by, according to the Euler–Bernoulli beam equation
*
,

 EI u
(4)

 = W(x), 0 < x < L.

The positive constants E and I are, respectively, the Young’s modulus of

elasticity of the material of the beam, and the beam’s cross-sectional

moment of inertia about the horizontal axis (i.e., the second moment of the

cross-sectional area). The value of the product EI is a measurement of the

beam’s stiffness. The forcing function W describes the load/force that the

beam bears per unit length. If the beam is not bearing external load, then

W(x) = w, which is the weight-density of the beam itself (acting downwards,

which is the positive direction per our usual convention).

The equation then becomes

EI u
(4)

 = w.

It is a (very) simple 4th order nonhomgeneous linear equation. It could be

solved simply by integrating both sides four times with respect to x.

However it is certainly more illustrative for our purpose to solve it using the

general procedure that we have learned, namely by characteristic equation

and undetermined coefficients methods to obtain both parts of the solution of

this nonhomogeneous linear equation, in the form of u = uc + U.

*
 The equation is originally)()(

2

2

2

2

xW
dx

ud
EI

dx

d
= . When EI is constant, it simplifies to)(

4

4

xW
dx

ud
EI = .

© 2008, 2014 Zachary S Tseng B-4 - 9

Its characteristic equation is EI r
 4
 = 0, which has zero as a (quadruple) root.

The complementary solution is, therefore, uc = C1 + C2 x + C3 x
2
 + C4 x

3
.

The particular solution can be found using the method of Undetermined

Coefficients that we have already learned. What form would the particular

solution of the equation take?

The general solution of this deflection equation is

43

4

2

321
24

)(x
IE

w
xCxCxCCxu ++++= .

The graph of the deflection function is called the deflection curve or elastic

curve of the beam.

Another interesting aspect of this problem is that this equation does not

come with initial conditions. Instead, it comes paired with four boundary

conditions – describing the physical conditions at the two ends, at x = 0 and

x = L, of the beam. For example, if the beam is securely embedded into

walls on both ends, the deflection function above must satisfy the boundary

conditions:

 u(0) = u′(0) = u(L) = u′(L) = 0.

In this case the four conditions tell us that the displacement, u(x), is zero at

both ends, and that the slope of the beam, u′(x), is also zero at the two ends –

hence the beam is securely fixed at both ends (by embedding into the walls).

Notice that there are four conditions, which are necessary to solve the four

unknown coefficients present in the general solution of this fourth order

equation.

Being a fourth order equation, the boundary conditions in a beam problem

frequently involve u″ and uʺʹ. Physically, u″ represents the bending moment

and uʺʹ represents the shear force experienced by the beam at a given point.

© 2008, 2014 Zachary S Tseng B-4 - 10

For a simply supported beam, as another example, where a beam is either

pinned or hinged at both ends (having no displacement nor resistance to

rotation at the two ends), the required boundary conditions are, therefore,

 u(0) = u″(0) = u(L) = u″(L) = 0.

We will study simple boundary value problems, in a quite different context,

later in the course.

© 2008, 2014 Zachary S Tseng B-4 - 11

Exercises B-4.2:

1. Deflection curves of uniformly loaded beams Based on the earlier

calculation, a beam bearing a uniformly distributed load of density w has a

deflection curve in the form

43

4

2

321
24

)(x
IE

w
xCxCxCCxu ++++= .

Find the deflection curve of each set of boundary conditions below.

(i) Beam with both ends embedded: u(0) = u′(0) = u(L) = u′(L) = 0.

(ii) Simply supported beam: u(0) = u″(0) = u(L) = u″(L) = 0.

(iii) Cantilever beam (left end embedded, right end free): u(0) = u′(0)

= u″(L) = u′″(L) = 0.

2. Consider a beam of length L bearing a load that is proportional to the

distance from the left endpoint, i.e. W(x) = wx, for some positive constant w.

(i) Find the general solution of its deflection curve.

(ii) Find the deflection curve given u(0) = u′(0) = u(L) = u′(L) = 0.

(iii) Find the deflection curve given u(0) = u″(0) = u(L) = u″(L) = 0.

(iv) Find the deflection curve given u(0) = u′(0) = u″(L) = u′″(L) = 0.

3. Consider a cantilever beam of length L bearing a load that is proportional

to the distance from the right endpoint, i.e. W(x) = w(L – x), for some

positive constant w. Find its deflection curve given that u(0) = u′(0)

= u″(L) = u′″(L) = 0.

© 2008, 2014 Zachary S Tseng B-4 - 12

Answers B-4.2:

1. (i) ()4322 2
24

)(xLxxL
IE

w
xu +−=

 (ii) ()433 2
24

)(xLxxL
IE

w
xu +−=

 (iii) ()4322 46
24

)(xLxxL
IE

w
xu +−=

2. (i)
53

4

2

321
120

)(x
EI

w
xCxCxCCxu ++++=

 (ii) ()53223 32
120

)(xxLxL
IE

w
xu +−=

 (iii) ()5324 3107
360

)(xxLxL
IE

w
xu +−=

 (iv) ()53223 1020
120

)(xxLxL
IE

w
xu +−=

3. The general solution is

543

4

2

321
12024

)(x
EI

w
x

IE

wL
xCxCxCCxu −++++= .

The cantilever beam’s deflection curve is

 ()543223 51010
120

)(xLxxLxL
IE

w
xu −+−= .

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Application of Graph Theory in Electrical Network
Berdewad O. K.1, Dr. Deo S. D.2

1Department of Mathematics, NES College, Bhadrawati, Dist. Chandrapur, India

2Gondwana University, Gadachiroli, MS, India

Abstract: Graph theory is helpful in various practical problems solving in circuit or network analysis and data structure. It leads to
graph practically not possible to analyze without the aid of computer. In electrical engineering the word is used for edge, node for vertex
and loop for circuit. An electrical network is the set of electronic components i.e. resistors, inductors and capacitors etc. Electric network
analysis and synthesis are the study of network topology. Electric network problem can be represented by drawing graphs. In this paper,
we present a circuit network in the concept of graph theory application and how to apply graph theory to model the circuit network.

Keywords: Graph theory, adjacency matrix, electrical circuit and analysis

1. Introduction

A connected graph without closed path i.e. tree was
implemented by G.Kirchhoff in 1847 and he employed
graph theoretical concept in the calculation of currents in
network or circuits and was improved upon J.C.Maxwell in
1892.[4] Ever since, graph theory has been applied in
electrical network analysis .An electrical network is a
collection of components and device interconnected
electrically .The network components are idealized of
physical device and system, in order to for them to represent
several properties, they must obey the Kirchhoff’s law of
currents and voltage.[1]A graph representation of electrical
network in terms of line segments or arc called edges or
branches and points called vertices or terminals.

2. Basic Definition of Graph Theory

Graphs are amenable for pictorial representation of a system
using two basic components vertex and edges. A vertex is
represented by a dot and an edge is represented by line
segment connecting the dots associated with the edge. If the
edges of a graph direct one vertex to the other vertex, then
the graph is called as a directed graph. Otherwise graph is
called an undirected graph. [2] Formally, a graph G= (V, E)
contains a finite set V= (v1, v2,…..,vn) of elements called
vertices and a finite set (e1 ,e2,…..,em) of elements called
edges. In an undirected graph G= (V, E), the edges are
unordered pairs, and each edge e1 in E is associated with two
vertices v1 and v2, and it is written as either e1= (v1,v2) or
e1= (v2, v1).But, In a directed graph, each edge e1 in E is
associated with an ordered pairs of vertices (v1, v2) and it is
denoted the directed edge e1 from v1 to v2. Two vertices v1
and v2 of a graph are adjacent, if there is an edge, v1v2
connecting them, then vertices are them considered incident
to the edge v1v2 . [5]

3. Analysis of Electrical Circuit

Ohm’s law states that for an edge ‘e’,the current flowing
across that edge Ie is given by ie =

𝑝𝑐

𝑟𝑐
 = pc.ce

We see that this means that i{uv} = -i{vu} and the negative
current as positive currents flowing the different way. The
weight of an edge as the conductance of that edge, which

denote Ce for a given edge e .The resistance of an edge re is
defined as re = 1

𝑐𝑒
 .[3]

Both the resistance and conductance are independent of edge
such as r(vu) = r(uv) and c(uv) = c(vu).

4. Kirchhoff’s Circuit Law

Kirchhoff’s voltage law states that for a closed loop SV=0 or
SV rise is equal to SV drops.[1] The total resistance of ‘n’
resistors in series is RT= R1+R2+R3+………+Rn and the
total power are
PT= P1+P2+P3+…….Pn

In series, So that the same current flows through all the
components but a different potential voltage can exist across
every one. In parallel, so that the same potential difference
exists across every components but each component may
carry a different current.

Representation of circuit and its graph:
A graph model is used to represented circuit network inn
graph by tracing the nodes of the circuit and edges contain in
circuit.

Figure 1

Here is the graph of the circuit,

Paper ID: NOV162021 981

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Network graph

A circuit is a path which ends at the vertex it begins. An
electric circuit is a closed loop formed by source, wires,
load, and a switch, when switch is turned on the electrical
circuit is complete and current flows from negative terminals
of the power source. An electrical circuit is categories in to
three type namely series, parallel and series and parallel
circuit. The representation of graph in circuit network are
one of the type of representation of graph in which the
current flows in circuit and present the linking of connection
between resistors series and parallel connection are
determined in the circuit.[4] The representation is

Figure 3

The schematic figure of the electric circuit is as follows,

Figure 4

The electrical features of individual network components
can be representing suitably in the form of primitive network
matrix that describe the performance of interconnected
network.

5. Graph Representation of Matrix

A graph can actually be represented using matrices method
the two of the most widely used matrices for graph
representation is adjacency and incidence matrices. An
adjacency matrix is a square matrix in which each row and
column is represented by a vertex [5].
Consider figure 4, as an example it has three vertices V={
R1, R2,R3} this mean that the square matrix must be 3x3 let
each row and column is represented by each of the six
vertices in V.

R1 R2 R3
R1 0 1 0
R2 1 0 1
R3 0 1 0
R4 0 0 1
R5 0 0 0
R6 0 1 1

The adjacency matrix of 3×3 matrix square matrix
represented as follows

G =

0 1 0
1 0 1
0 1 0

 
 
 
  

6. Conclusion

In this research we focus on the application of graph theory
to electrical network analysis and matrix approach as an
electrical network analysis. Graph theory is a very
interesting topic in mathematics due to numerous
applications in various fields especially in computer and
electrical engineering. We use the graph theory concept and
techniques that we have developed to study electrical
networks. Thus, graph theory has more practical application
particulars in solving electric network.

References

[1] A. Sudhakaran, Electrical circuit analysis, Tata Mc
Grow-Hill Pvt ltd.

[2] B.Bollobas, Modern Graph Theory, Springer 1998.
[3] F.Kirchoff’s,Ubar die Auflosung der Gleichungen,auf

welche man bei der Untersuchung der linearen
Verteilung galvanischer Strome gefuhrt
wird,Ann.Phys.chem. 72(1847),497-508

[4] Introductory Graph Theory for Electrical and Electronics
Engineers,IEEE MULTIDISCIPLINARY
ENGINEERING EDUCATION MAGAZINE.

[5] Narasih Deo, Graph theory & its Application to computer
science.

Paper ID: NOV162021 982

1 Ordinary Differential Equations—Separation of Variables

1.1 Introduction

Calculus is fundamentally important for the simple reason that almost everything we study is subject

to change. In many if not most such problems, the problem is modeled by an equation that involves

derivations. Such an equation is called a differential equation.

Differential equations take many forms but one of the simplest examples is

dy

dx
= 6x.

The equation is formed using two variables x and y. The variable x is known as the independent variable

and the variable y as the dependent variable.

The aim is to get an equation for y in terms of x, i.e. of the form y = f(x); which of course can be solved

by integration:

dy

dx
= 6x∫

dy =

∫
6x dx

y = 3x2 + C.

Therefore the general solution of dy
dx = 6x is y = 3x2 + C where C is an arbitrary constant.

Hence we need a boundary condition (typically in the form of an initial condition y(0) = something) in

order to obtain a unique solution.

For example, suppose that we specify the boundary condition that y = 4 when x = 1, written y(1) = 4.

Then 4 = 3(1) + c ⇒ c = 4− 3 = 1. Therefore we get the unique solution y = 3x2 + 1.

Before we look at different types of differential equations (DE), we introduce some terminology.

Order

The order of a DE is the order of the highest derivative in the equation:

For example, give the order of the following DE’s:

(i) dy
dx = 2y

(ii) d2y
dx2 −

(
dy
dx

)4
+ y = 0

1

(iii) d4y
dx4 = x2y.

The DE’s are:

(i) First order;

(ii) Second order;

(iii) Fourth order.

Linear

A DE is said to be linear if the dependent variable and its derivatives occur to the first power only and

if there are no products involving the dependent variable and/or its derivatives.

Example. Which of the following DEs are linear?

a) dy
dx = x2 Yes.

b) dy
dx + 2y = cosx Yes.

c) y dydx = x3 No.

d) dy
dx + 4y2x = sinx No.

e) sinx dydx + y cosx = sinx Yes.

2

1.2 First-order ODEs (Ordinary differential equations)

These are differential equations involving just one variable and its derivatives, such as,

(a)
dy

dx
= y, (b)

dy

dx
= 2x+ 4 (c)

dy

dx
= 2 cos 2x and (d)

dy

dx
= 2 cos 2x+ y2.

The examples (a,b,c) are all fairly straightforward to solve, although there is a slight twist in (a), so I

will leave that one until later. We will also see how to solve examples like (d) later in this course.

(b) dy
dx = 2x+ 4.

By integration
∫
dy =

∫
(2x+ 4) dx and so y = x2 + 4x+A.

(c) dy
dx = 2 cos 2x.

By integration
∫
dy =

∫
2 cos(2x) dx. Therefore y = 2[12 sin(2x)] + c and hence y = sin(2x) + c.

In more complicated examples it might be necessary to use substitution in the integration step.

For example, suppose that dy
dx = cos x sin2 x and we have the boundary condition that y

(
π
2

)
= 4

3 .

Then by integration, ∫
dy =

∫
cos x sin2 x dx

Use the substitution u = sin x. Then du
dx = cos x, and so,

∫
dy =

∫
u2du from which we get y = 1

3u
3 +C.

It is then necessary to rewrite the equation in terms of x. Therefore y = 1
3 sin3 x+ C.

But y = 4
3 when x = π

2 . Thus 4
3 = 1

3 sin3
(
π
2

)
+ C, and so,

4

3
− 1

3
= C ⇒ C = 1.

Hence the unique solution is y = 1
3 sin3 x+ 1.

3

1.3 Separation of variables

First order ODEs (and higher order ODEs for that matter) fall into various categories. Separation of

variables forms a general category which are straightforward to solve.

For separation of variables we require that the equation can be (re)written in the form:

dy

dx
= f(x)g(y)

where f(x) is only a function of x and g(y) is only a function of y.

Then the general solution of the first order ODE

dy

dx
= f(x)g(y)

is given by ∫
1

g(y)
dy =

∫
f(x) dx.

Often we need to rewrite the equation so that it is in the correct form.

For example, the ODE

y
dy

dx
− 3 = x

can be rewritten as y dydx = x+ 3 and then as

dy

dx
=
x+ 3

y
= f(x)g(y)

where f(x) = x+ 3 and g(y) = 1
y .

Therefore the equation y
dy

dx
− 3 = x can be solved using separation of variables.

Examples. Which of the following ODEs can be solved by separation of variables?

a) dy
dx = cosx sin y Yes.

b) sin y × dy
dx + x2 = 0 Yes since

dy

dx
= − x2

sin y
.

c) dy
dx = x2 + y No.

4

General Approach

The general approach to solving a first order ODE using separation of variables is as follows:

a) Rewrite (if necessary) the equation in the required form:

dy

dx
= f(x)g(y)

b) Find the general solution for ∫
1

g(y)
dy =

∫
f(x) dx

c) If boundary conditions are given, solve to find the unique solution.

Example. Solve the ODE

1

y2
dy

dx
+ x2 = 0

subject to the initial condition y(0) = 2.

a)
dy

dx
= −x2y2.

b) Thus

∫
y−2 dy =

∫
−x2dx and so −y−1 = − 1

3x
3 + c.

c) Use the boundary condition y(0) = 2, to obtain c = − 1
2 and hence

y−1 =
1

3
x3 +

1

2
.

It is quite often the case (as is true here) that one has an implicit function of y rather than an

explicit one. We could rewrite the solution as y =
1

1
3x

3 + 1
2

but I do not think this is any nicer than

the previous expression.

5

Here is a particular ODE that turns up a lot:

1.3.1 Important Fact

The ODE
dy

dt
= k(y − b) has general solution

y = b+ Cekt where C is a constant that can take any real value.

Reason: There is a slight subtlety here so let us work it out carefully. As usual we can separate variables

and get ∫
dy

y − b
=

∫
kdt,

from which ln |y − b| = kt+B, for some constant B and hence |y − b| = ekt+B . Therefore,

y − b = ±ekt+B = ±eBekt = Cekt,

where C = ±eB can take any real value. QED

Exercise: Check that the function y = b+ Cekt does indeed satisfy
dy

dt
= k(y − b).

It is illustrative to see what happens to our solution y as the parity of k and the value of C are varied.

The relevant sketches appear on the next page.

6

7

1.4 Newton’s Law of Cooling

Problem. Sherlock Holmes finds a body at 1am with temperature 30◦C. An hour later the body has

temperature 25◦C. If the room temperature is 10◦C, when did the person die?

The basic fact we need to solve this problem is:

Newton’s Law of Cooling: The rate of change of temperature of a body is proportional to the difference

between the temperature of the body and the ambient temperature.

So, returning to our problem, we let T denote the temperature of our body at time t. From Newton’s

Law of Cooling 1.4, we get the rate of change in T ; that is
dT

dt
, is proportional to T − 10. Written

mathematically:

dT

dt
= k(T − 10) for some constant k. (1.1)

As an aside, note that here k will be negative since the temperature will decrease. You could also write

dT

dt
= −k(T − 10), with k > 0. It obviously does not matter which way we do it!

So, now I can apply (1.3.1) to (1.1) to get

y = 10 + Cekt.

Now I should decide my units for t. Certainly I should measure t in hours, since that is the question is

naturally phrased. More importantly, it is best to take t = 0 to be 1am, since that will make it easiest

to apply our initial conditions. Thus, at t = 0 we have T = 30 and so 30 = 10 + Ce0 or C = 20. Thus

y = 10 + 20ekt. Next we have T (1) = 25 from which 25 = 10 + 20ek or ek = 15/20 and k = −0.29; thus

y = 10 + 20e−0.29t.

Note that we have indeed found that k is negative, which fits with our intuition and suggests we are on

the right track.

Now finally we can solve the problem: the person died when the body temperature was 37; thus when

37 = 10 + 20e0.29t. In other words e0.29t = 27/20 and t =
ln(27/20)

0.29
= −1.03.

In other words the person died at time t = −1.03 or (just before) midnight.

Another example—interest payments: Suppose that you are paying interest on your student loan

at a rate of 5%pa, compounded continuously (where pa means per year). So, if the amount of the loan is

8

£y(t) at time t (in years) then
dy

dt
=

5

100
y. (Do you see why this is true?) This has solution y = Cet/20.

In other words, the amount you owe grows exponentially.

Now lets make the question harder.

Question: Again you are paying 5% interest, compounded continuously but suppose you also pay it off

at a continuous rate of of £500pa. If you took out a loan of £3, 000 how quickly will you pay it off?

Answer: Now there are two changes in y. As before, you are paying interest at a rate of 5% which gives

a contribution to
dy

dt
of 1/20y. But now you are also decreasing y by 500 each year. Thus

dy

dt
=

1

20
y − 500.

If we rewrite this in the form
dy

dt
=

1

20
(y − 10, 000), then we can apply (1.3.1) and we get

y = 10, 000 + Cet/20.

From y(0) = 3000 we get C = −7, 000 and so

y = 10, 000− 7, 000et/20.

Finally the loan is paid off when y = 0 or et/20 = 10/7, which gives t = 20 ln(10/7) = 7.13. So, you pay

if off in 7.13 years.

You can of course repeat this question for different values of the amount y(0) you borrow. The sketches

are given on the next page. For y(0) < 10, 000 it decreases exponentially, but for y(0) > 10, 000 it

increases exponentially.

9

10

Example: Population density. (i) First a rather general question. Consider the population density y(t)

of a certain population of animals at time t. The rate of change of y(t) depends upon two constraints:

First the excess of birth rate over death rate; this is proportional to the number of animals present.

Secondly extra deaths due to overcrowding is proportional to the square of the number of animals present.

Write down a differential equation that models this.

Answer: Note that the number of animals is proportional to the density of animals, so the question

tells us that the birth rate is also proportional to y(t); this gives a contribution to
dy

dt
of the form αy for

some α. Similarly the excess death rate gives a contribution to
dy

dt
of the form βy2 for some β. Thus the

equation we want is

dy

dt
= αy + βy2.

Comment: We actually know that α > 0 (since extra births increase the population) and β < 0 (since

extra deaths decrease the population. Fortunately we do not need to put in ± signs as they will always

come out in the wash.

(ii) A more explicit version: Suppose in the above equation that α = 1, 000, β = −1 and y(0) = 500. Find

a formula for the population density y(t) and sketch your solution.

Answer: We now have the equation
dy

dt
= 1, 000y − y2 and we can separate variables to give∫

dy

1, 000y − y2
=

∫
dt. (1.2)

To solve the LHS we need to use partial fractions; so write

1

1, 000y − y2
=

1

y(1, 000− y)
=
A

y
+

B

1000− y
=
A(1000− y) + yB

y(1000− y)
.

From this we obtain 1 = 1000A− yA+ yB and so A = 10−3 = B. Thus∫
dy

1, 000y − y2
=

∫
10−3

y
dy +

∫
10−3

1000− y
dy = 10−3 ln |y| − 10−3 ln |103 − y| = 10−3 ln

∣∣∣∣ y

1000− y

∣∣∣∣ .
Hence the solution to (1.2) is

10−3 ln

(
y

1000− y

)
=

∫
dt = t+ C,

for some constant C. Substituting in y(0) = 500 gives C = 10−3 ln(500/500) = 0. Therefore,

10−3ln

(
y

1000− y

)
=

∫
dt = t.

11

Equivalently, y
1000−y = e1000t. If you want you can solve this equation for y, giving

y =
1000e1000y

1 + e1000y
,

but I do not think that this is much nicer. The sketch (for a range of different initial conditions) is given

on page 10.

Exercise: Solve the equation from part (i) of the Population Density Question, for β = −1 but arbitrary

α and arbitrary initial conditions. You should find that y = αAeαt

(1+Aeαt) . Here, A will depend upon the

initial conditions. Whatever they are, you will see that y(t)→ α as t→∞.

So the same rough sketch applies as for the explicit case.

Example: Suppose that the height of a wave satisfies the following ODE:

dy

dt
= −ky cos(t)

where k > 0.

Suppose that initially (i.e. at time t = 0) the wave is 2 units high and at time t = π
2 the wave is 1 unit

high. Find an expression for the height of the wave for all time.

Solution. Separation of variables gives ∫
dy

y
=

∫
−k cos t dt

Thus ln(y) = −k sin t+ c which has solution

y = exp(−k sin t+ c) = ec exp(−k sin t).

At time t = 0, sin t = 0. Therefore 2 = ece−k(0) and so, 2 = ec. Thus

y(t) = 2 exp(−k sin t)

Next at time t = π
2 , sin t = 1. Therefore 1 = 2e−k and so, 1

2 = e−k which can be solved to give

k = − ln
(
1
2

)
.

Thus k = ln(2) = 0.693 and the unique solution for the wave is

y(t) = 2 exp(−0.693 sin t).

12

Order and degree of a differential equation
Order of a differential equation
order of a differential equation is defined as the order of the highest order derivative of the dependent
variable with respect to the independent variable involved in the given differential equation.
Consider the following differential equations:

The equations (6), (7) and (8)
involve the highest derivative of first, second and third order respectively. Therefore, the order of these
equations are 1, 2 and 3 respectively.

Degree of a differential equation
To study the degree of a differential equation, the key point is that the differential equation must be a
polynomial equation in derivatives, i.e., y′, y″, y″′ etc. Consider the following differential equations:

We observe that equation (9)
is a polynomial equation in y″′, y″ and y′, equation (10) is a polynomial equation in y′ (not a polynomial in y
though). Degree of such differential equations can be defined. But equation (11) is not a polynomial equation
in y′ and degree of such a differential equation can not be defined.

By the degree of a differential equation, when it is a polynomial equation in derivatives, we mean the highest
power (positive integral index) of the highest order derivative involved in the given differential equation.

In view of the above definition, one may observe that differential equations (6), (7), (8) and (9) each are of
degree one, equation (10) is of degree two while the degree of differential equation (11) is not defined.

NOTE: Order and degree (if defined) of a differential equation are always positive integers.

Example Find the order and degree, if defined, of each of the following differential equations:

Solution

(i) The highest order derivative present in the differential equation is

, so its order is one. It is
a polynomial equation in y′ and the highest power raised to

is one, so its degree is one.

(ii) The highest order derivative present in the given differential equation is

, so its order is two. It is a

polynomial equation in and

and the highest power raised

 its degree is
one.

(iii) The highest order derivative present in the differential equation is y′′′ , so its order is three. The given
differential equation is not a polynomial equation in its derivatives and so its degree is not defined.

to is one, so

Working Rules For Finding Complementary Function of Linear Differential Equation
Case 1: ­
If the roots are unequal (m = m1, m2, m3) then the complementary function is

C.F = c1em1x + c2em2x + c3em3x

Case 2: ­
If the roots are equal (m = m1, m1, m1) then the complementary function is

C.F = (c1 + c2x + c3x2) em1x

Case 3: ­
If the roots are complex (m = a ± ib) then the complementary function is
C.F = eax (c1cos bx + c2 sin bx), c1eax cos(bx + c2) or, c1eax sin (bx + c2)
And if the two equal part of complex roots (m = a ± ib, a ± ib) then the complementary function is
C.F = eax {(c1 + c2x) cos bx + (c3 + c4x) sin bx}
Case 4: ­
If the roots are “a ± √b” then the complementary function is
C.F = eax (c1cos x√b + c2 sin x√b), c1 eax cosh (x√b + c2) or, c1eax sinh (x√b + c2)

Partial derivatives

Notice: this material must not be used as a substitute for attending
the lectures

1

0.1 Recall: ordinary derivatives

If y is a function of x then dy
dx

is the derivative meaning the gradient (slope of the
graph) or the rate of change with respect to x.

0.2 Functions of 2 or more variables

Functions which have more than one variable arise very commonly. Simple examples
are

• formula for the area of a triangle A = 1
2
bh is a function of the two variables,

base b and height h

• formula for electrical resistors in parallel:

R =
(

1

R1

+
1

R2

+
1

R3

)−1

is a function of three variables R1, R2 and R3, the resistances of the individual
resistors.

Let’s talk about functions of two variables here. You should be used to the notation
y = f(x) for a function of one variable, and that the graph of y = f(x) is a curve.
For functions of two variables the notation simply becomes

z = f(x, y)

where the two independent variables are x and y, while z is the dependent variable.
The graph of something like z = f(x, y) is a surface in three-dimensional space. Such
graphs are usually quite difficult to draw by hand.
Since z = f(x, y) is a function of two variables, if we want to differentiate we have
to decide whether we are differentiating with respect to x or with respect to y (the
answers are different). A special notation is used. We use the symbol ∂ instead of d
and introduce the partial derivatives of z, which are:

• ∂z
∂x is read as “partial derivative of z (or f) with respect to x”, and means
differentiate with respect to x holding y constant

• ∂z
∂y means differentiate with respect to y holding x constant

Another common notation is the subscript notation:

zx means
∂z

∂x

zy means
∂z

∂y

Note that we cannot use the dash ′ symbol for partial differentiation because it would
not be clear what we are differentiating with respect to.

2

0.3 Example

Calculate ∂z
∂x and ∂z

∂y when z = x2 + 3xy + y − 1.

Solution. To find ∂z
∂x treat y as a constant and differentiate with respect to x. We

have z = x2 + 3xy + y − 1 so
∂z

∂x
= 2x + 3y

Similarly
∂z

∂y
= 3x + 1

0.4 Example

Calculate ∂z
∂x and ∂z

∂y when z = 1 − x − 1
2
y. Interpret your answers and draw the

graph.
Solution. The graph of z = 1−x− 1

2
y is a plane passing through the points (x, y, z) =

(1, 0, 0), (0, 2, 0) and (0, 0, 1). The partial derivatives are:

∂z

∂x
= −1,

∂z

∂y
= −1

2

Interpretation: ∂z
∂x is the slope you will notice if you walk on the surface in a direction

keeping your y coordinate fixed. ∂z
∂y is the slope you will notice if you walk on the

surface in such a direction that your x coordinate remains the same. There are, of
course, many other directions you could walk, and the slope you will notice when

walking in some other direction can be worked out knowing both ∂z
∂x and ∂z

∂y . It’s

like when you walk on a mountain, there are many directions you could walk and
each one will have its own slope.

0.5 Other examples of evaluating partial derivatives

(i) z = ln(x2 − y). Then ∂z
∂x = 2x

x2 − y
and ∂z

∂y = −1
x2 − y

. [To deduce these results

we used the fact that if y = ln f(x) then dy
dx =

f ′(x)
f(x)

].

(ii) z = x cos y + yex. Then ∂z
∂x = cos y + yex and ∂z

∂y = −x sin y + ex.

(iii) z = y sin xy. Then ∂z
∂x = y(y cos xy) = y2 cos xy and ∂z

∂y = yx cos xy + sin xy.

For the second result we used the product rule.

(iv) If x2 + y2 + z2 = 1 find the rate at which z is changing with respect to y at

the point (2
3
, 1

3
, 2

3
). Solution. We have z = (1− x2 − y2)1/2. We want ∂z

∂y when

3

(x, y) = (2
3
, 1

3
). But

∂z

∂y
= 1

2
(1− x2 − y2)−1/2(−2y) = − y

(1− x2 − y2)1/2

Putting in (x, y) = (2
3
, 1

3
) gives

∂z

∂y
= − 1/3

(1− (2/3)2 − (1/3)2)1/2
= −1

2
.

0.6 Functions of 3 or more variables

The general notation would be something like

w = f(x, y, z)

where x, y and z are the independent variables. For example, w = x sin(y + 3z).
Partial derivatives are computed similarly to the two variable case. For example,
∂w/∂x means differentiate with respect to x holding both y and z constant and so,
for this example, ∂w/∂x = sin(y + 3z). Note that a function of three variables does
not have a graph.

0.7 Second order partial derivatives

Again, let z = f(x, y) be a function of x and y.

• ∂2z
∂x2 means the second derivative with respect to x holding y constant

• ∂2z
∂y2 means the second derivative with respect to y holding x constant

• ∂2z
∂x∂y means differentiate first with respect to y and then with respect to x.

The “mixed” partial derivative ∂2z
∂x∂y is as important in applications as the others.

It is a general result that
∂2z

∂x∂y
=

∂2z

∂y∂x

i.e. you get the same answer whichever order the differentiation is done.

0.8 Example

Let z = 4x2 − 8xy4 + 7y5 − 3. Find all the first and second order partial derivatives
of z.

4

Solution.

∂z

∂x
= 8x− 8y4

∂z

∂y
= −8x(4y3) + 35y4 = −32xy3 + 35y4

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
= 8

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)

=
∂

∂y
(−32xy3 + 35y4) = −32x(3y2) + 140y3

= −96xy2 + 140y3

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
=

∂

∂x
(−32xy3 + 35y4) = −32y3

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y
(8x− 8y4) = −32y3

0.9 Example

Find all the first and second order partial derivatives of the function z = sin xy.
Solution.

∂z

∂x
= y cos xy

∂z

∂y
= x cos xy

∂2z

∂x2
= −y2 sin xy

∂2z

∂y2
= −x2 sin xy

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
=

∂

∂x
(x cos xy) = x(−y sin xy) + cos xy = −xy sin xy + cos xy

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y
(y cos xy) = y(−x sin xy) + cos xy = −xy sin xy + cos xy

0.10 Subscript notation for second order partial derivatives

If z = f(x, y) then

• zxx means ∂2z
∂x2

• zyy means ∂2z
∂y2

5

• zxy means ∂2z
∂x∂y or ∂2z

∂y∂x

0.11 Important point

Unlike ordinary derivatives, partial derivatives do not behave like fractions, in par-
ticular

∂x

∂z
6= 1

∂z/∂x

0.12 Small changes

Let
z = f(x, y)

Imagine we change x to x + δx and y to y + δy with δx and δy very small. We ask:
what is the corresponding change in z? The answer is that the change is δz, given by

δz ≈ ∂z

∂x
δx +

∂z

∂y
δy (0.1)

This formula requires δx and δy to be very small and even then the formula is only an
approximate one. However, it becomes more and more exact as δx → 0 and δy → 0.
This fact is sometimes expressed by saying

dz =
∂z

∂x
dx +

∂z

∂y
dy

where dx, dy and dz are infinitesimal increments.
Let’s give some idea where formula (0.1) comes from. Let’s recall the analogous result
for a function of one variable and its derivation. For a function of one variable the
notation would be y = g(x) and the graph of this is a curve with a gradient dy/dx
at each point x. If consider two points on this curve, (x, y) and a neighbouring point
(x + δx, y + δy) then if this neighbouring point is sufficiently close the line joining
the two points, which has gradient δy/δx, is a good approximation to the tangent
line at (x, y) which has gradient dy/dx. This means that δy/δx ≈ dy/dx so that
δy ≈ (dy/dx)δx.
We want to generalise this idea to a function z = f(x, y) of two variables, whose
graph will be a surface.
In the (x, y) plane let A be the point with coordinates (x, y), let B be the point with
coordinates (x + δx, y), and C the point with coordinates (x + δx, y + δy).
The overall change in height, δz, from A to C is given by

δz = (change in height A to B) + (change in height B to C)

In calculating the change in height from A to B we are travelling across the surface
from A to B along a curve in which y is held fixed, so by the result for curves,

change in height A to B ≈ ∂z

∂x
δx

6

Similarly

change in height B to C ≈ ∂z

∂y
δy

Therefore

δz ≈ ∂z

∂x
δx +

∂z

∂y
δy

and we have derived formula (0.1).

0.13 Example

A cylindrical tank is 1 m high and 0.3 m radius. If height is increased by 5 cm and
radius by 1 cm what is the effect on volume?
Solution. Let the radius be r and height be h. Then the volume V is given by

V = πr2h

so that ∂V
∂r = 2πrh and ∂V

∂h = πr2. Therefore in the notation of the present problem

formula (0.1) becomes

δV ≈ ∂V

∂r
δr +

∂V

∂h
δh

= 2πrh δr + πr2h δh

In our case r = 0.3, h = 1, δr = 1 cm = 0.01 m, δh = 5 cm = 0.05 m so

δV ≈ 2π(0.3)(1)(0.01) + π(0.3)2(0.05) = 0.033 m3

0.14 Example

The angle of elevation of the top of a tower is found to be 30o±0.5o from a point
300±0.1 m from the base. Estimate the towers height.
Solution. One could imagine that this sort of problem would arise when a surveyor
is unable to take completely accurate readings and wants to know the likely margin
of error.
Let θ be the angle of elevation, h the towers height and x the distance from tower to
observer. Then

h = x tan θ

so that ∂h
∂x = tan θ and ∂h

∂θ = x sec2 θ. Therefore

δh ≈ ∂h

∂x
δx +

∂h

∂θ
δθ

= tan θ δx + x sec2 θ δθ

Now θ = 30o = π/6 radians and δθ = 0.5o = 0.008727 radians. Also x = 300 m and
δx = 0.1 m. Therefore

δh ≈ (tan π/6)(0.1) + 300(sec2 π/6)(0.008727) = 3.55 m

7

From h = x tan θ, we get h = 173.21 m. Our conclusion is that the height is 173.21±
3.55 m.
NB: If you had not converted degrees to radians your final answer would
be wrong.

0.15 Absolute, relative and percentage change

• absolute change is δz

• relative change is δz
z

• percentage change is δz
z × 100

0.16 Example on percentage change

Length and width of a rectangle are measured with errors of at most 3% and 5%
respectively. Estimate the maximum percentage error in the area.
Solution. Let x = length, y = width and A = area. Then, of course, A = xy. So
∂A
∂x = y and ∂A

∂y = x. Therefore

δA ≈ ∂A

∂x
δx +

∂A

∂y
δy

= y δx + x δy

We want percentage change in A, which is relative change multiplied by 100 so let’s
work out relative change first. This is given by

δA

A
≈ yδx

A
+

xδy

A

=
δx

x
+

δy

y

since A = xy. What we are told is that

−0.03 ≤ δx

x
≤ 0.03 and − 0.05 ≤ δy

y
≤ 0.05

What we need to do now is identify the worst case scenario, i.e. the maximum
possible value for δA/A given the above constraints. This happens when δx/x = 0.03
and δy/y = 0.05, giving δA/A = 0.08. This is relative error, so the (worst) percentage
error is 8%.
NB: in some problems the worst case scenario is obtained by setting one
of δx/x or δy/y to be its most negative (rather than most positive) possible
value.

8

0.17 Chain rule for partial derivatives

Recall the chain rule for ordinary derivatives:

if y = f(u) and u = g(x) then
dy

dx
=

dy

du

du

dx

In the above we call u the intermediate variable and x the independent variable.
For partial derivatives the chain rule is more complicated. It depends on how many
intermediate variables and how many independent variables are present. Below three
formulae are given which it is hoped indicate the general points. Essentially, every
intermediate variable has to have a term corresponding to it in the right hand side
of the chain rule formula. For example in the second one below there are three
intermediate variables x, y and z and three terms in the RHS.
Formula 3 below illustrates a case when there are 2 intermediate and 2 independent
variables.

(1) if z = f(x, y) and x and y are functions of t (x = x(t) and y = y(t)) then z is
ultimately a function of t only and

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

(2) if w = f(x, y, z) and x = x(t), y = y(t), z = z(t) then w is ultimately a function
of t only and

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

(3) if z = f(x, y) and x = x(u, v), y = y(u, v) then z is a function of u and v and

∂z
∂u = ∂z

∂x
∂x
∂u + ∂z

∂y
∂y
∂u

∂z
∂v = ∂z

∂x
∂x
∂v + ∂z

∂y
∂y
∂v

0.18 Example

Let z = x2y, x = t2 and y = t3. Calculate dz/dt by (a) the chain rule, (b) expressing
z as a function of t and finding dz/dt directly.
Solution. (a) by the chain rule

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

= (2xy)(2t) + (x2)(3t2)

= 4xyt + 3x2t2

= 4t2t3t + 3t4t2

= 7t6

(b) z = x2y and x = t2, y = t3 so z = t4t3 = t7. Differentiating gives dz/dt = 7t6.

9

It might be tempting to say that approach (b) is clearly easier so why bother with the
chain rule? But the fact remains that the chain rule is of fundamental importance
in many applications of partial derivatives. We shall see below the use of the chain
rule in studying rates of change. And the chain rule is also of importance in the
derivation of the partial differential equations that govern many physical processes
(eg the Navier Stokes equations of fluid dynamics); in such cases you are not simply
playing around with trivial functions but dealing with unknown functions.

0.19 Example

Let w = xy + z with x = cos t, y = sin t and z = t. Calculate dw/dt.
Solution.

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

= y(− sin t) + x(cos t) + (1)(1)

= − sin2 t + cos2 t + 1

0.20 Example

Let u = x2 − 2xy + 2y3 with x = s2 ln t and y = 2st3. Find ∂u/∂s and ∂u/∂t.
Solution. This time u is a function of 2 variables x and y, each of which is itself a
function of 2 variables s and t.

∂u

∂s
=

∂u

∂x

∂x

∂s
+

∂u

∂y

∂y

∂s

= (2x− 2y)(2s ln t) + (−2x + 6y2)(2t3)

= (2s2 ln t− 4st3)(2s ln t) + (−2s2 ln t + 24s2t6)(2t3)

∂u

∂t
=

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t

= (2x− 2y)

(
s2

t

)
+ (−2x + 6y2)(6st2)

= (2s2 ln t− 4st3)

(
s2

t

)
+ (−2s2 ln t + 24s2t6)(6st2)

0.21 Rates of change: an application of the chain rule

We will do some applications of the chain rule to rates of change.
Example. What rate is the area of a rectangle changing if its length is 15 m and
increasing at 3 ms−1 while its width is 6 m and increasing at 2 ms−1.
Solution. Let x be the length, y the width, A the area and t = time. The information
given tells us that

dx

dt
= 3 ms−1,

dy

dt
= 2 ms−1

10

Obviously A = xy. We want dA/dt when x = 15 and y = 6. This is given by the
chain rule as follows:

dA

dt
=

∂A

∂x

dx

dt
+

∂A

∂y

dy

dt
= y

dx

dt
+ x

dy

dt
= (6)(3) + (15)(2) = 48 m2s−1.

Example. The height of a tree increases at a rate of 2 ft per year and the radius
increases at 0.1 ft per year. What rate is the volume of timber increasing at when
the height is 20 ft and the radius is 1.5 ft. (Assume the tree is a circular cylinder).
Solution. The volume V is given by V = πr2h. The chain rule gives

dV

dt
=

∂V

∂r

dr

dt
+

∂V

∂h

dh

dt

= 2πrh
dr

dt
+ πr2 dh

dt

We are told that dh/dt = 2 ft per year and dr/dt = 0.1 ft per year. So, when h = 20
and r = 1.5,

dV

dt
= 2π(1.5)(20)(0.1) + π(1.5)2(2) = 32.99 ft3/year

0.22 The chain rule and implicit differentiation

Suppose we cannot find y explicitly as a function of x, only implicitly through the
equation F (x, y) = 0 (for example, F (x, y) might be an awkward expression such that
F (x, y) = 0 cannot in practice be solved to give y in terms of x). We want a formula
for dy/dx.
We know that F (x, y) = 0 defines y as a function of x, y = y(x), even if we cannot
in practice find the expression for y in terms of x. This means that we could write
F (x, y) = 0 as F (x, y(x)) = 0. Differentiating both sides of this, using the chain rule
on the left hand side, gives

∂F

∂x
(1) +

∂F

∂y

dy

dx
= 0

Hence
dy

dx
= −∂F/∂x

∂F/∂y

As an example of the use of this formula, let us find dy/dx for the function y defined
by x2 + xy + y3− 7 = 0. Let F (x, y) = x2 + xy + y3− 7. Then by the above formula,

dy

dx
= −∂F/∂x

∂F/∂y
= −(2x + y)

x + 3y2

Alternatively you could deduce this result by using implicit differentiation (a tech-
nique which you should know about from previous study). It should, of course, give
the same answer.
As an extension of the above idea, let the equation f(x, y, z) = 0 define z as a
function of x and y, so that x and y are viewed as independent variables. We want

11

to find ∂z/∂x and ∂z/∂y. The calculation here is a somewhat subtle one, in which
x actually plays the role of both an intermediate variable and an independent one.
Differentiating the equation f(x, y, z) = 0 with respect to x using the chain rule gives

∂f

∂x
(1) +

∂f

∂y

∂y

∂x
+

∂f

∂z

∂z

∂x
= 0

Now ∂y/∂x is, in fact, zero. The reason is that y and x are independent of each other.
So

∂f

∂x
+

∂f

∂z

∂z

∂x
= 0

Hence
∂z

∂x
= −∂f/∂x

∂f/∂z

and similarly
∂z

∂y
= −∂f/∂y

∂f/∂z

0.23 Transforming to polars

Let u = u(x, y) be a function of x and y. Let

x = r cos θ, y = r sin θ

Our aim is to show that

∂2u

∂x2
+

∂2u

∂y2
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
(0.2)

which is the expression for the Laplacian operator in plane polar coordinates. It
is useful for solving, for example, the steady state heat equation in situations with
circular geometry.
By the chain rule,

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r

i.e.
∂u

∂r
= cos θ

∂u

∂x
+ sin θ

∂u

∂y

Differentiating the above expression with respect to r gives

∂2u

∂r2
= cos θ

∂

∂r

(
∂u

∂x

)
+ sin θ

∂

∂r

(
∂u

∂y

)

= cos θ

(
∂2u

∂x2

∂x

∂r
+

∂2u

∂x∂y

∂y

∂r

)
+ sin θ

(
∂2u

∂x∂y

∂x

∂r
+

∂2u

∂y2

∂y

∂r

)

= cos2 θ
∂2u

∂x2
+ sin θ cos θ

∂2u

∂x∂y
+ sin θ cos θ

∂2u

∂x∂y
+ sin2 θ

∂2u

∂y2
.

12

Also

∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ

= −r sin θ
∂u

∂x
+ r cos θ

∂u

∂y

and, after a long calculation,

∂2u
∂θ2 = r2 sin2 θ∂2u

∂x2 + r2 cos2 θ∂2u
∂y2 − 2r2 sin θ cos θ ∂2u

∂x∂y

−r cos θ∂u
∂x − r sin θ∂u

∂y

It follows that

∂2u
∂r2 + 1

r
∂u
∂r + 1

r2
∂2u
∂θ2 = cos2 θ∂2u

∂x2 + 2 sin θ cos θ ∂2u
∂x∂y + sin2 θ∂2u

∂y2

+ 1
r

(
cos θ∂u

∂x + sin θ∂u
∂y

)

+ 1
r2

(
r2 sin2 θ∂2u

∂x2 + r2 cos2 θ∂2u
∂y2 − 2r2 sin θ cos θ ∂2u

∂x∂y − r cos θ∂u
∂x − r sin θ∂u

∂y

)

= ∂2u
∂x2 + ∂2u

∂y2

so that (0.2) is proved.

13

Published on STAT 414 / 415 (https://onlinecourses.science.psu.edu/stat414)

Home > Permutations

Permutations
Example

How many ways can four people fill four executive
positions?

Solution. For the sake of concreteness, let's name
the four people Tom, Rick, Harry, and Mary, and
the four executive positions President, Vice
President, Treasurer and Secretary. I think you'll
agree that the Multiplication Principle yields a
straightforward solution to this problem. If we fill
the President position first, there are 4 possible people (Tom, Rick, Harry, and Mary).
 Let's suppose Mary is named the President. Then, since Mary can't fill more than one
position at a time, when we fill the Vice President position, there are only 3 possible
people (Tom, Rick, and Harry). If Tom is named the Vice President, when we fill the
Treasurer position, there are only 2 possible people (Rick and Harry). Finally, if Rick is
named Treasurer, when we fill the Secretary position, there is only 1 possible person
(Harry). Putting all of this together, the Multiplication Principle tells us that there are:

4 × 3 × 2 × 1

or 24 possible ways to fill the four positions.

Alright, alright now... enough of these kinds of examples, eh?! The main point of this example is
not to see yet another application of the Multiplication Principle, but rather to introduce the counting
of the number of permutations as a generalization of the Multiplication Principle.

A Generalization of the Multiplication Principle

Suppose there are n positions to be filled with n different objects, in which there are:

n choices for the 1st position
n − 1 choices for the 2nd position
n − 2 choices for the 3rd position
... and ...
1 choice for the last position

The Multiplication Principle tells us there are then in general:

https://onlinecourses.science.psu.edu/stat414
https://onlinecourses.science.psu.edu/stat414/

n × (n − 1) × (n − 2) × ... × 1 = n!

ways of filling the n positions. The symbol n! is read as "n-factorial," and by definition 0! equals 1.

Definition. A permutation of n objects is an ordered arrangement of the n objects.

We often call such a permutation a “permutation of n objects taken n at a time,” and denote it
as nPn. That is:

 nPn = n × (n − 1) × (n − 2) × ... × 1 = n!

Not that it really matters in this situation (since they are the same), but the first subscripted n
represents the number of objects you are wanting to arrange, while the second subscripted n
represents the number of positions you have for the objects to fill.

Example

The draft lottery of 1969 for military service ranked all 366
days (Jan 1, Jan 2, ..., Feb 29, ..., Dec 31) of the year. The
men who were eligible for service whose birthday was
selected first were the first to be drafted. Those whose
birthday was selected second were the second to be drafted.
 And so on. How many possible ways can the 366 days be
ranked?

Solution. Well, we have 366 objects (days) and 366 positions (1st spot, 2nd spot, ... ,
366th spot) to arrange them. Therefore, there are 366! ("366 factorial") ways of ranking
the 366 possible birthdays of the eligible men.

What is the probability that your birthday
would be ranked first?

(After you've thought of how you'd solve our problem, click on the icon to reveal one possible
solution.)

Example

In how many ways can 7 different books be arranged on a shelf?

Solution. We could use the Multiplication Principle to
solve this problem. We have seven positions that we
can fill with seven books. There are 7 possible books
for the first position, 6 possible books for the second
position, five possible books for the third position, and
so on. The Multiplication Principle tells us therefore
that the books can be arranged in:

7 × 6 × 5 × 4 × 3 × 2 × 1

or 5,040 ways. Alternatively, we can use the simple
rule for counting permutations. That is, the number of
ways to arrange 7 distinct objects is simply 7P7 = 7! =
5,040.

Example

With 6 names in a bag, randomly select a name. How many ways can the 6 names be assigned to 6 job
assignments? If we assume that each person can only be assigned to one job, then we must select (or
sample) the names without replacement. That is, once we select a name, it is set aside and not returned to
the bag.

Definition. Sampling without replacement occurs when an object is not replaced after it has been
selected.

Solution. If we sample without replacement, the problem reduces to simply determining
the number of ways the 6 names can be arranged. We have 6 objects taken 6 at a time,
and hence the number of ways is 6! = 720 possible job assignments. In this case, each
person is assigned to one and only one job.

What if the 6 names were sampled with replacement? That is, once we select a name, it is returned to the
bag.

Definition. Sampling with replacement occurs when an object is selected and then replaced before the
next object has been selected.

Solution. If we sample with replacement, we have 6 choices for each of the 6 jobs.
Applying the Multiplication Principle, there are:

6 × 6 × 6 × 6 × 6 × 6 = 46,656

possible job assignments. In this case, each person is allowed to perform more than one job.
There's even the possibility that one (rather unlucky) person gets assigned to all six jobs!

The take-home message from this example is that you'll always want to ask yourself whether or not
the problem involves sampling with or without replacement. Incidentally, it's not all that different
from asking yourself whether or not replication is allowed. Right?

Example

Okay, let's throw a (small) wrench into our work. How
many ways can 4 people fill 3 chairs?

Solution. Again, for the sake of concreteness, let's
name the four people Tom, Rick, Harry, and Mary
and the chairs Left, Middle, and Right. If we fill the
Left chair first, there are 4 possible people (Tom,
Rick, Harry, and Mary). Let's suppose Tom is
selected for the Left chair. Then, since Tom can't sit in more than one chair at a time,
when we fill the Middle chair, there are only 3 possible people (Rick, Harry, and Mary). If
Rick is selected for the Middle chair, when we fill the Right chair, there are only 2 possible
people (Harry and Mary). Putting all of this together, the Multiplication Principle tells us
that there are:

4 × 3 × 2

or 24 possible ways to fill the three chairs.

Okay, okay! The main distinction between this example and the first example on this page is that
the first example involves arranging all 4 people, whereas this example involves leaving one
person out and arranging just 3 of the 4 people. This example allows us to introduce another
generalization of the Multiplication Principle, namely the counting of the number
of permutations of n objects taken r at a time, where r ≤ n.

Another Generalization of the Multiplication Principle

Suppose there are r positions to be filled with n different objects, in which there are:

n choices for the 1st position
n − 1 choices for the 2nd position
n − 2 choices for the 3rd position
... and ...
n − (r − 1) choices for the last position

The Multiplication Principle tells us there are in general:

n × (n − 1) × (n − 2) × ... × [n − (r − 1)]

ways of filling the r positions. We can easily show that, in general, this quantity equals:

n!

Here's how it works:

And, formally:

Definition. A permutation of n objects taken r at a time is an ordered arrangement of n different
objects in r positions. The number of such permutations is:

The subscripted n represents the number of objects you are wanting to arrange, while the
subscripted r represents the number of positions you have for the objects to fill.

Example

An artist has 9 paintings. How many ways can he hang 4 paintings side-by-side on a gallery wall?

n!

(n − r)!

=nPr

n!

(n − r)!

Source URL: https://onlinecourses.science.psu.edu/stat414/node/29

https://onlinecourses.science.psu.edu/stat414/node/29

1

A TUTORIAL ON POINTERS AND ARRAYS IN C

by Ted Jensen
Version 1.2 (PDF Version)

Sept. 2003
This material is hereby placed in the public domain

Available in various formats via
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

TABLE OF CONTENTS

PREFACE 2

INTRODUCTION 4

CHAPTER 1: What is a pointer? 5

CHAPTER 2: Pointer types and Arrays 9

CHAPTER 3: Pointers and Strings 14

CHAPTER 4: More on Strings 19

CHAPTER 5: Pointers and Structures 22

CHAPTER 6: Some more on Strings, and Arrays of Strings 26

CHAPTER 7: More on Multi-Dimensional Arrays 30

CHAPTER 8: Pointers to Arrays 32

CHAPTER 9: Pointers and Dynamic Allocation of Memory 34

CHAPTER 10: Pointers to Functions 42

EPILOG 53

2

PREFACE
This document is intended to introduce pointers to beginning programmers in the C
programming language. Over several years of reading and contributing to various
conferences on C including those on the FidoNet and UseNet, I have noted a large
number of newcomers to C appear to have a difficult time in grasping the fundamentals
of pointers. I therefore undertook the task of trying to explain them in plain language with
lots of examples.

The first version of this document was placed in the public domain, as is this one. It was
picked up by Bob Stout who included it as a file called PTR-HELP.TXT in his widely
distributed collection of SNIPPETS. Since that original 1995 release, I have added a
significant amount of material and made some minor corrections in the original work.

I subsequently posted an HTML version around 1998 on my website at:

 http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

After numerous requests, I’ve finally come out with this PDF version which is identical
to that HTML version cited above, and which can be obtained from that same web site.

Acknowledgements:

There are so many people who have unknowingly contributed to this work because of the
questions they have posed in the FidoNet C Echo, or the UseNet Newsgroup
comp.lang.c, or several other conferences in other networks, that it would be impossible
to list them all. Special thanks go to Bob Stout who was kind enough to include the first
version of this material in his SNIPPETS file.

About the Author:

Ted Jensen is a retired Electronics Engineer who worked as a hardware designer or
manager of hardware designers in the field of magnetic recording. Programming has been
a hobby of his off and on since 1968 when he learned how to keypunch cards for
submission to be run on a mainframe. (The mainframe had 64K of magnetic core
memory!).

Use of this Material:

Everything contained herein is hereby released to the Public Domain. Any person may
copy or distribute this material in any manner they wish. The only thing I ask is that if
this material is used as a teaching aid in a class, I would appreciate it if it were distributed
in its entirety, i.e. including all chapters, the preface and the introduction. I would also
appreciate it if, under such circumstances, the instructor of such a class would drop me a

3

note at one of the addresses below informing me of this. I have written this with the hope
that it will be useful to others and since I'm not asking any financial remuneration, the
only way I know that I have at least partially reached that goal is via feedback from those
who find this material useful.

By the way, you needn't be an instructor or teacher to contact me. I would appreciate a
note from anyone who finds the material useful, or who has constructive criticism to
offer. I'm also willing to answer questions submitted by email at the addresses shown
below.

Ted Jensen
Redwood City, California
tjensen@ix.netcom.com
July 1998

4

INTRODUCTION
If you want to be proficient in the writing of code in the C programming language, you
must have a thorough working knowledge of how to use pointers. Unfortunately, C
pointers appear to represent a stumbling block to newcomers, particularly those coming
from other computer languages such as Fortran, Pascal or Basic.

To aid those newcomers in the understanding of pointers I have written the following
material. To get the maximum benefit from this material, I feel it is important that the
user be able to run the code in the various listings contained in the article. I have
attempted, therefore, to keep all code ANSI compliant so that it will work with any ANSI
compliant compiler. I have also tried to carefully block the code within the text. That
way, with the help of an ASCII text editor, you can copy a given block of code to a new
file and compile it on your system. I recommend that readers do this as it will help in
understanding the material.

5

CHAPTER 1: What is a pointer?
One of those things beginners in C find difficult is the concept of pointers. The purpose
of this tutorial is to provide an introduction to pointers and their use to these beginners.

I have found that often the main reason beginners have a problem with pointers is that
they have a weak or minimal feeling for variables, (as they are used in C). Thus we start
with a discussion of C variables in general.

A variable in a program is something with a name, the value of which can vary. The way
the compiler and linker handles this is that it assigns a specific block of memory within
the computer to hold the value of that variable. The size of that block depends on the
range over which the variable is allowed to vary. For example, on PC's the size of an
integer variable is 2 bytes, and that of a long integer is 4 bytes. In C the size of a variable
type such as an integer need not be the same on all types of machines.

When we declare a variable we inform the compiler of two things, the name of the
variable and the type of the variable. For example, we declare a variable of type integer
with the name k by writing:

 int k;

On seeing the "int" part of this statement the compiler sets aside 2 bytes of memory (on a
PC) to hold the value of the integer. It also sets up a symbol table. In that table it adds the
symbol k and the relative address in memory where those 2 bytes were set aside.

Thus, later if we write:

 k = 2;

we expect that, at run time when this statement is executed, the value 2 will be placed in
that memory location reserved for the storage of the value of k. In C we refer to a
variable such as the integer k as an "object".

In a sense there are two "values" associated with the object k. One is the value of the
integer stored there (2 in the above example) and the other the "value" of the memory
location, i.e., the address of k. Some texts refer to these two values with the nomenclature
rvalue (right value, pronounced "are value") and lvalue (left value, pronounced "el
value") respectively.

In some languages, the lvalue is the value permitted on the left side of the assignment
operator '=' (i.e. the address where the result of evaluation of the right side ends up). The
rvalue is that which is on the right side of the assignment statement, the 2 above. Rvalues
cannot be used on the left side of the assignment statement. Thus: 2 = k; is illegal.

6

Actually, the above definition of "lvalue" is somewhat modified for C. According to
K&R II (page 197): [1]

"An object is a named region of storage; an lvalue is an expression
referring to an object."

However, at this point, the definition originally cited above is sufficient. As we become
more familiar with pointers we will go into more detail on this.

Okay, now consider:

 int j, k;

 k = 2;
 j = 7; <-- line 1
 k = j; <-- line 2

In the above, the compiler interprets the j in line 1 as the address of the variable j (its
lvalue) and creates code to copy the value 7 to that address. In line 2, however, the j is
interpreted as its rvalue (since it is on the right hand side of the assignment operator '=').
That is, here the j refers to the value stored at the memory location set aside for j, in this
case 7. So, the 7 is copied to the address designated by the lvalue of k.

In all of these examples, we are using 2 byte integers so all copying of rvalues from one
storage location to the other is done by copying 2 bytes. Had we been using long integers,
we would be copying 4 bytes.

Now, let's say that we have a reason for wanting a variable designed to hold an lvalue (an
address). The size required to hold such a value depends on the system. On older desk top
computers with 64K of memory total, the address of any point in memory can be
contained in 2 bytes. Computers with more memory would require more bytes to hold an
address. Some computers, such as the IBM PC might require special handling to hold a
segment and offset under certain circumstances. The actual size required is not too
important so long as we have a way of informing the compiler that what we want to store
is an address.

Such a variable is called a pointer variable (for reasons which hopefully will become
clearer a little later). In C when we define a pointer variable we do so by preceding its
name with an asterisk. In C we also give our pointer a type which, in this case, refers to
the type of data stored at the address we will be storing in our pointer. For example,
consider the variable declaration:

 int *ptr;

ptr is the name of our variable (just as k was the name of our integer variable). The '*'
informs the compiler that we want a pointer variable, i.e. to set aside however many bytes
is required to store an address in memory. The int says that we intend to use our pointer

7

variable to store the address of an integer. Such a pointer is said to "point to" an integer.
However, note that when we wrote int k; we did not give k a value. If this definition is
made outside of any function ANSI compliant compilers will initialize it to zero.
Similarly, ptr has no value, that is we haven't stored an address in it in the above
declaration. In this case, again if the declaration is outside of any function, it is initialized
to a value guaranteed in such a way that it is guaranteed to not point to any C object or
function. A pointer initialized in this manner is called a "null" pointer.

The actual bit pattern used for a null pointer may or may not evaluate to zero since it
depends on the specific system on which the code is developed. To make the source code
compatible between various compilers on various systems, a macro is used to represent a
null pointer. That macro goes under the name NULL. Thus, setting the value of a pointer
using the NULL macro, as with an assignment statement such as ptr = NULL, guarantees
that the pointer has become a null pointer. Similarly, just as one can test for an integer
value of zero, as in if(k == 0), we can test for a null pointer using if (ptr == NULL).

But, back to using our new variable ptr. Suppose now that we want to store in ptr the
address of our integer variable k. To do this we use the unary & operator and write:

 ptr = &k;

What the & operator does is retrieve the lvalue (address) of k, even though k is on the
right hand side of the assignment operator '=', and copies that to the contents of our
pointer ptr. Now, ptr is said to "point to" k. Bear with us now, there is only one more
operator we need to discuss.

The "dereferencing operator" is the asterisk and it is used as follows:

 *ptr = 7;

will copy 7 to the address pointed to by ptr. Thus if ptr "points to" (contains the address
of) k, the above statement will set the value of k to 7. That is, when we use the '*' this
way we are referring to the value of that which ptr is pointing to, not the value of the
pointer itself.

Similarly, we could write:

 printf("%d\n",*ptr);

to print to the screen the integer value stored at the address pointed to by ptr;.

One way to see how all this stuff fits together would be to run the following program and
then review the code and the output carefully.

------------ Program 1.1 ---------------------------------

/* Program 1.1 from PTRTUT10.TXT 6/10/97 */

8

#include <stdio.h>

int j, k;
int *ptr;

int main(void)
{
 j = 1;
 k = 2;
 ptr = &k;
 printf("\n");
 printf("j has the value %d and is stored at %p\n", j, (void *)&j);
 printf("k has the value %d and is stored at %p\n", k, (void *)&k);
 printf("ptr has the value %p and is stored at %p\n", ptr, (void
*)&ptr);
 printf("The value of the integer pointed to by ptr is %d\n", *ptr);

 return 0;
}

Note: We have yet to discuss those aspects of C which require the use of the (void *)
expression used here. For now, include it in your test code. We'll explain the reason
behind this expression later.

To review:

• A variable is declared by giving it a type and a name (e.g. int k;)
• A pointer variable is declared by giving it a type and a name (e.g. int *ptr) where

the asterisk tells the compiler that the variable named ptr is a pointer variable and
the type tells the compiler what type the pointer is to point to (integer in this
case).

• Once a variable is declared, we can get its address by preceding its name with the
unary & operator, as in &k.

• We can "dereference" a pointer, i.e. refer to the value of that which it points to, by
using the unary '*' operator as in *ptr.

• An "lvalue" of a variable is the value of its address, i.e. where it is stored in
memory. The "rvalue" of a variable is the value stored in that variable (at that
address).

References for Chapter 1:

1. "The C Programming Language" 2nd Edition
B. Kernighan and D. Ritchie
Prentice Hall
ISBN 0-13-110362-8

9

CHAPTER 2: Pointer types and Arrays
Okay, let's move on. Let us consider why we need to identify the type of variable that a
pointer points to, as in:

 int *ptr;

One reason for doing this is so that later, once ptr "points to" something, if we write:

 *ptr = 2;

the compiler will know how many bytes to copy into that memory location pointed to by
ptr. If ptr was declared as pointing to an integer, 2 bytes would be copied, if a long, 4
bytes would be copied. Similarly for floats and doubles the appropriate number will be
copied. But, defining the type that the pointer points to permits a number of other
interesting ways a compiler can interpret code. For example, consider a block in memory
consisting if ten integers in a row. That is, 20 bytes of memory are set aside to hold 10
integers.

Now, let's say we point our integer pointer ptr at the first of these integers. Furthermore
lets say that integer is located at memory location 100 (decimal). What happens when we
write:

 ptr + 1;

Because the compiler "knows" this is a pointer (i.e. its value is an address) and that it
points to an integer (its current address, 100, is the address of an integer), it adds 2 to ptr
instead of 1, so the pointer "points to" the next integer, at memory location 102.
Similarly, were the ptr declared as a pointer to a long, it would add 4 to it instead of 1.
The same goes for other data types such as floats, doubles, or even user defined data
types such as structures. This is obviously not the same kind of "addition" that we
normally think of. In C it is referred to as addition using "pointer arithmetic", a term
which we will come back to later.

Similarly, since ++ptr and ptr++ are both equivalent to ptr + 1 (though the point in the
program when ptr is incremented may be different), incrementing a pointer using the
unary ++ operator, either pre- or post-, increments the address it stores by the amount
sizeof(type) where "type" is the type of the object pointed to. (i.e. 2 for an integer, 4 for a
long, etc.).

Since a block of 10 integers located contiguously in memory is, by definition, an array of
integers, this brings up an interesting relationship between arrays and pointers.

10

Consider the following:

 int my_array[] = {1,23,17,4,-5,100};

Here we have an array containing 6 integers. We refer to each of these integers by means
of a subscript to my_array, i.e. using my_array[0] through my_array[5]. But, we could
alternatively access them via a pointer as follows:

 int *ptr;
 ptr = &my_array[0]; /* point our pointer at the first
 integer in our array */

And then we could print out our array either using the array notation or by dereferencing
our pointer. The following code illustrates this:

----------- Program 2.1 -----------------------------------

/* Program 2.1 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>

int my_array[] = {1,23,17,4,-5,100};
int *ptr;

int main(void)
{
 int i;
 ptr = &my_array[0]; /* point our pointer to the first
 element of the array */
 printf("\n\n");
 for (i = 0; i < 6; i++)
 {
 printf("my_array[%d] = %d ",i,my_array[i]); /*<-- A */
 printf("ptr + %d = %d\n",i, *(ptr + i)); /*<-- B */
 }
 return 0;
}

Compile and run the above program and carefully note lines A and B and that the
program prints out the same values in either case. Also observe how we dereferenced our
pointer in line B, i.e. we first added i to it and then dereferenced the new pointer. Change
line B to read:

 printf("ptr + %d = %d\n",i, *ptr++);

and run it again... then change it to:

 printf("ptr + %d = %d\n",i, *(++ptr));

11

and try once more. Each time try and predict the outcome and carefully look at the actual
outcome.

In C, the standard states that wherever we might use &var_name[0] we can replace that
with var_name, thus in our code where we wrote:

 ptr = &my_array[0];

we can write:

 ptr = my_array;

to achieve the same result.

This leads many texts to state that the name of an array is a pointer. I prefer to mentally
think "the name of the array is the address of first element in the array". Many beginners
(including myself when I was learning) have a tendency to become confused by thinking
of it as a pointer. For example, while we can write

 ptr = my_array;

we cannot write

 my_array = ptr;

The reason is that while ptr is a variable, my_array is a constant. That is, the location at
which the first element of my_array will be stored cannot be changed once my_array[]
has been declared.

Earlier when discussing the term "lvalue" I cited K&R-2 where it stated:

"An object is a named region of storage; an lvalue is an expression
referring to an object".

This raises an interesting problem. Since my_array is a named region of storage, why is
my_array in the above assignment statement not an lvalue? To resolve this problem,
some refer to my_array as an "unmodifiable lvalue".

Modify the example program above by changing

 ptr = &my_array[0];

to

 ptr = my_array;

and run it again to verify the results are identical.

12

Now, let's delve a little further into the difference between the names ptr and my_array
as used above. Some writers will refer to an array's name as a constant pointer. What do
we mean by that? Well, to understand the term "constant" in this sense, let's go back to
our definition of the term "variable". When we declare a variable we set aside a spot in
memory to hold the value of the appropriate type. Once that is done the name of the
variable can be interpreted in one of two ways. When used on the left side of the
assignment operator, the compiler interprets it as the memory location to which to move
that value resulting from evaluation of the right side of the assignment operator. But,
when used on the right side of the assignment operator, the name of a variable is
interpreted to mean the contents stored at that memory address set aside to hold the value
of that variable.

With that in mind, let's now consider the simplest of constants, as in:

 int i, k;
 i = 2;

Here, while i is a variable and then occupies space in the data portion of memory, 2 is a
constant and, as such, instead of setting aside memory in the data segment, it is imbedded
directly in the code segment of memory. That is, while writing something like k = i; tells
the compiler to create code which at run time will look at memory location &i to
determine the value to be moved to k, code created by i = 2; simply puts the 2 in the code
and there is no referencing of the data segment. That is, both k and i are objects, but 2 is
not an object.

Similarly, in the above, since my_array is a constant, once the compiler establishes
where the array itself is to be stored, it "knows" the address of my_array[0] and on
seeing:

 ptr = my_array;

it simply uses this address as a constant in the code segment and there is no referencing
of the data segment beyond that.

This might be a good place explain further the use of the (void *) expression used in
Program 1.1 of Chapter 1. As we have seen we can have pointers of various types. So far
we have discussed pointers to integers and pointers to characters. In coming chapters we
will be learning about pointers to structures and even pointer to pointers.

Also we have learned that on different systems the size of a pointer can vary. As it turns
out it is also possible that the size of a pointer can vary depending on the data type of the
object to which it points. Thus, as with integers where you can run into trouble
attempting to assign a long integer to a variable of type short integer, you can run into
trouble attempting to assign the values of pointers of various types to pointer variables of
other types.

13

To minimize this problem, C provides for a pointer of type void. We can declare such a
pointer by writing:

void *vptr;

A void pointer is sort of a generic pointer. For example, while C will not permit the
comparison of a pointer to type integer with a pointer to type character, for example,
either of these can be compared to a void pointer. Of course, as with other variables, casts
can be used to convert from one type of pointer to another under the proper
circumstances. In Program 1.1. of Chapter 1 I cast the pointers to integers into void
pointers to make them compatible with the %p conversion specification. In later chapters
other casts will be made for reasons defined therein.

Well, that's a lot of technical stuff to digest and I don't expect a beginner to understand all
of it on first reading. With time and experimentation you will want to come back and re-
read the first 2 chapters. But for now, let's move on to the relationship between pointers,
character arrays, and strings.

14

CHAPTER 3: Pointers and Strings
The study of strings is useful to further tie in the relationship between pointers and arrays.
It also makes it easy to illustrate how some of the standard C string functions can be
implemented. Finally it illustrates how and when pointers can and should be passed to
functions.

In C, strings are arrays of characters. This is not necessarily true in other languages. In
BASIC, Pascal, Fortran and various other languages, a string has its own data type. But in
C it does not. In C a string is an array of characters terminated with a binary zero
character (written as '\0'). To start off our discussion we will write some code which,
while preferred for illustrative purposes, you would probably never write in an actual
program. Consider, for example:

 char my_string[40];

 my_string[0] = 'T';
 my_string[1] = 'e';
 my_string[2] = 'd':
 my_string[3] = '\0';

While one would never build a string like this, the end result is a string in that it is an
array of characters terminated with a nul character. By definition, in C, a string is an
array of characters terminated with the nul character. Be aware that "nul" is not the same
as "NULL". The nul refers to a zero as defined by the escape sequence '\0'. That is it
occupies one byte of memory. NULL, on the other hand, is the name of the macro used to
initialize null pointers. NULL is #defined in a header file in your C compiler, nul may not
be #defined at all.

Since writing the above code would be very time consuming, C permits two alternate
ways of achieving the same thing. First, one might write:

 char my_string[40] = {'T', 'e', 'd', '\0',};

But this also takes more typing than is convenient. So, C permits:

 char my_string[40] = "Ted";

When the double quotes are used, instead of the single quotes as was done in the previous
examples, the nul character ('\0') is automatically appended to the end of the string.

In all of the above cases, the same thing happens. The compiler sets aside an contiguous
block of memory 40 bytes long to hold characters and initialized it such that the first 4
characters are Ted\0.

Now, consider the following program:

15

------------------program 3.1-------------------------------------

/* Program 3.1 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes";
char strB[80];

int main(void)
{

 char *pA; /* a pointer to type character */
 char *pB; /* another pointer to type character */
 puts(strA); /* show string A */
 pA = strA; /* point pA at string A */
 puts(pA); /* show what pA is pointing to */
 pB = strB; /* point pB at string B */
 putchar('\n'); /* move down one line on the screen */
 while(*pA != '\0') /* line A (see text) */
 {
 *pB++ = *pA++; /* line B (see text) */
 }
 pB = '\0'; / line C (see text) */
 puts(strB); /* show strB on screen */
 return 0;
}

--------- end program 3.1 -------------------------------------

In the above we start out by defining two character arrays of 80 characters each. Since
these are globally defined, they are initialized to all '\0's first. Then, strA has the first 42
characters initialized to the string in quotes.

Now, moving into the code, we declare two character pointers and show the string on the
screen. We then "point" the pointer pA at strA. That is, by means of the assignment
statement we copy the address of strA[0] into our variable pA. We now use puts() to
show that which is pointed to by pA on the screen. Consider here that the function
prototype for puts() is:

 int puts(const char *s);

For the moment, ignore the const. The parameter passed to puts() is a pointer, that is the
value of a pointer (since all parameters in C are passed by value), and the value of a
pointer is the address to which it points, or, simply, an address. Thus when we write
puts(strA); as we have seen, we are passing the address of strA[0].

Similarly, when we write puts(pA); we are passing the same address, since we have set
pA = strA;

16

Given that, follow the code down to the while() statement on line A. Line A states:

While the character pointed to by pA (i.e. *pA) is not a nul character (i.e. the terminating
'\0'), do the following:

Line B states: copy the character pointed to by pA to the space pointed to by pB, then
increment pA so it points to the next character and pB so it points to the next space.

When we have copied the last character, pA now points to the terminating nul character
and the loop ends. However, we have not copied the nul character. And, by definition a
string in C must be nul terminated. So, we add the nul character with line C.

It is very educational to run this program with your debugger while watching strA, strB,
pA and pB and single stepping through the program. It is even more educational if
instead of simply defining strB[] as has been done above, initialize it also with something
like:

 strB[80] = "12345678901234567890123456789012345678901234567890"

where the number of digits used is greater than the length of strA and then repeat the
single stepping procedure while watching the above variables. Give these things a try!

Getting back to the prototype for puts() for a moment, the "const" used as a parameter
modifier informs the user that the function will not modify the string pointed to by s, i.e.
it will treat that string as a constant.

Of course, what the above program illustrates is a simple way of copying a string. After
playing with the above until you have a good understanding of what is happening, we can
proceed to creating our own replacement for the standard strcpy() that comes with C. It
might look like:

 char *my_strcpy(char *destination, char *source)
 {
 char *p = destination;
 while (*source != '\0')
 {
 *p++ = *source++;
 }
 *p = '\0';
 return destination;
 }

In this case, I have followed the practice used in the standard routine of returning a
pointer to the destination.

Again, the function is designed to accept the values of two character pointers, i.e.
addresses, and thus in the previous program we could write:

17

 int main(void)
 {
 my_strcpy(strB, strA);
 puts(strB);
 }

I have deviated slightly from the form used in standard C which would have the
prototype:

 char *my_strcpy(char *destination, const char *source);

Here the "const" modifier is used to assure the user that the function will not modify the
contents pointed to by the source pointer. You can prove this by modifying the function
above, and its prototype, to include the "const" modifier as shown. Then, within the
function you can add a statement which attempts to change the contents of that which is
pointed to by source, such as:

 *source = 'X';

which would normally change the first character of the string to an X. The const modifier
should cause your compiler to catch this as an error. Try it and see.

Now, let's consider some of the things the above examples have shown us. First off,
consider the fact that *ptr++ is to be interpreted as returning the value pointed to by ptr
and then incrementing the pointer value. This has to do with the precedence of the
operators. Were we to write (*ptr)++ we would increment, not the pointer, but that which
the pointer points to! i.e. if used on the first character of the above example string the 'T'
would be incremented to a 'U'. You can write some simple example code to illustrate this.

Recall again that a string is nothing more than an array of characters, with the last
character being a '\0'. What we have done above is deal with copying an array. It happens
to be an array of characters but the technique could be applied to an array of integers,
doubles, etc. In those cases, however, we would not be dealing with strings and hence the
end of the array would not be marked with a special value like the nul character. We
could implement a version that relied on a special value to identify the end. For example,
we could copy an array of positive integers by marking the end with a negative integer.
On the other hand, it is more usual that when we write a function to copy an array of
items other than strings we pass the function the number of items to be copied as well as
the address of the array, e.g. something like the following prototype might indicate:

 void int_copy(int *ptrA, int *ptrB, int nbr);

where nbr is the number of integers to be copied. You might want to play with this idea
and create an array of integers and see if you can write the function int_copy() and make
it work.

18

This permits using functions to manipulate large arrays. For example, if we have an array
of 5000 integers that we want to manipulate with a function, we need only pass to that
function the address of the array (and any auxiliary information such as nbr above,
depending on what we are doing). The array itself does not get passed, i.e. the whole
array is not copied and put on the stack before calling the function, only its address is
sent.

This is different from passing, say an integer, to a function. When we pass an integer we
make a copy of the integer, i.e. get its value and put it on the stack. Within the function
any manipulation of the value passed can in no way effect the original integer. But, with
arrays and pointers we can pass the address of the variable and hence manipulate the
values of the original variables.

19

CHAPTER 4: More on Strings
Well, we have progressed quite a way in a short time! Let's back up a little and look at
what was done in Chapter 3 on copying of strings but in a different light. Consider the
following function:

 char *my_strcpy(char dest[], char source[])
 {
 int i = 0;
 while (source[i] != '\0')
 {
 dest[i] = source[i];
 i++;
 }
 dest[i] = '\0';
 return dest;
 }

Recall that strings are arrays of characters. Here we have chosen to use array notation
instead of pointer notation to do the actual copying. The results are the same, i.e. the
string gets copied using this notation just as accurately as it did before. This raises some
interesting points which we will discuss.

Since parameters are passed by value, in both the passing of a character pointer or the
name of the array as above, what actually gets passed is the address of the first element of
each array. Thus, the numerical value of the parameter passed is the same whether we use
a character pointer or an array name as a parameter. This would tend to imply that
somehow source[i] is the same as *(p+i).

In fact, this is true, i.e wherever one writes a[i] it can be replaced with *(a + i) without
any problems. In fact, the compiler will create the same code in either case. Thus we see
that pointer arithmetic is the same thing as array indexing. Either syntax produces the
same result.

This is NOT saying that pointers and arrays are the same thing, they are not. We are only
saying that to identify a given element of an array we have the choice of two syntaxes,
one using array indexing and the other using pointer arithmetic, which yield identical
results.

Now, looking at this last expression, part of it.. (a + i), is a simple addition using the +
operator and the rules of C state that such an expression is commutative. That is (a + i) is
identical to (i + a). Thus we could write *(i + a) just as easily as *(a + i).

20

But *(i + a) could have come from i[a] ! From all of this comes the curious truth that if:

 char a[20];
 int i;

writing

 a[3] = 'x';

is the same as writing

 3[a] = 'x';

Try it! Set up an array of characters, integers or longs, etc. and assigned the 3rd or 4th
element a value using the conventional approach and then print out that value to be sure
you have that working. Then reverse the array notation as I have done above. A good
compiler will not balk and the results will be identical. A curiosity... nothing more!

Now, looking at our function above, when we write:

 dest[i] = source[i];

due to the fact that array indexing and pointer arithmetic yield identical results, we can
write this as:

 *(dest + i) = *(source + i);

But, this takes 2 additions for each value taken on by i. Additions, generally speaking,
take more time than incrementations (such as those done using the ++ operator as in i++).
This may not be true in modern optimizing compilers, but one can never be sure. Thus,
the pointer version may be a bit faster than the array version.

Another way to speed up the pointer version would be to change:

 while (*source != '\0')

to simply

 while (*source)

since the value within the parenthesis will go to zero (FALSE) at the same time in either
case.

21

At this point you might want to experiment a bit with writing some of your own programs
using pointers. Manipulating strings is a good place to experiment. You might want to
write your own versions of such standard functions as:

 strlen();
 strcat();
 strchr();

and any others you might have on your system.

We will come back to strings and their manipulation through pointers in a future chapter.
For now, let's move on and discuss structures for a bit.

22

CHAPTER 5: Pointers and Structures
As you may know, we can declare the form of a block of data containing different data
types by means of a structure declaration. For example, a personnel file might contain
structures which look something like:

 struct tag {
 char lname[20]; /* last name */
 char fname[20]; /* first name */
 int age; /* age */
 float rate; /* e.g. 12.75 per hour */
 };

Let's say we have a bunch of these structures in a disk file and we want to read each one
out and print out the first and last name of each one so that we can have a list of the
people in our files. The remaining information will not be printed out. We will want to do
this printing with a function call and pass to that function a pointer to the structure at
hand. For demonstration purposes I will use only one structure for now. But realize the
goal is the writing of the function, not the reading of the file which, presumably, we
know how to do.

For review, recall that we can access structure members with the dot operator as in:

--------------- program 5.1 ------------------

/* Program 5.1 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>
#include <string.h>

struct tag {
 char lname[20]; /* last name */
 char fname[20]; /* first name */
 int age; /* age */
 float rate; /* e.g. 12.75 per hour */
};

struct tag my_struct; /* declare the structure my_struct */

int main(void)
{
 strcpy(my_struct.lname,"Jensen");
 strcpy(my_struct.fname,"Ted");
 printf("\n%s ",my_struct.fname);
 printf("%s\n",my_struct.lname);
 return 0;
}

-------------- end of program 5.1 --------------

23

Now, this particular structure is rather small compared to many used in C programs. To
the above we might want to add:

 date_of_hire; (data types not shown)
 date_of_last_raise;
 last_percent_increase;
 emergency_phone;
 medical_plan;
 Social_S_Nbr;
 etc.....

If we have a large number of employees, what we want to do is manipulate the data in
these structures by means of functions. For example we might want a function print out
the name of the employee listed in any structure passed to it. However, in the original C
(Kernighan & Ritchie, 1st Edition) it was not possible to pass a structure, only a pointer
to a structure could be passed. In ANSI C, it is now permissible to pass the complete
structure. But, since our goal here is to learn more about pointers, we won't pursue that.

Anyway, if we pass the whole structure it means that we must copy the contents of the
structure from the calling function to the called function. In systems using stacks, this is
done by pushing the contents of the structure on the stack. With large structures this
could prove to be a problem. However, passing a pointer uses a minimum amount of
stack space.

In any case, since this is a discussion of pointers, we will discuss how we go about
passing a pointer to a structure and then using it within the function.

Consider the case described, i.e. we want a function that will accept as a parameter a
pointer to a structure and from within that function we want to access members of the
structure. For example we want to print out the name of the employee in our example
structure.

Okay, so we know that our pointer is going to point to a structure declared using struct
tag. We declare such a pointer with the declaration:

 struct tag *st_ptr;

and we point it to our example structure with:

 st_ptr = &my_struct;

Now, we can access a given member by de-referencing the pointer. But, how do we de-
reference the pointer to a structure? Well, consider the fact that we might want to use the
pointer to set the age of the employee. We would write:

 (*st_ptr).age = 63;

24

Look at this carefully. It says, replace that within the parenthesis with that which st_ptr
points to, which is the structure my_struct. Thus, this breaks down to the same as
my_struct.age.

However, this is a fairly often used expression and the designers of C have created an
alternate syntax with the same meaning which is:

 st_ptr->age = 63;

With that in mind, look at the following program:

------------ program 5.2 ---------------------

/* Program 5.2 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>
#include <string.h>

struct tag{ /* the structure type */
 char lname[20]; /* last name */
 char fname[20]; /* first name */
 int age; /* age */
 float rate; /* e.g. 12.75 per hour */
};

struct tag my_struct; /* define the structure */
void show_name(struct tag *p); /* function prototype */

int main(void)
{
 struct tag *st_ptr; /* a pointer to a structure */
 st_ptr = &my_struct; /* point the pointer to my_struct */
 strcpy(my_struct.lname,"Jensen");
 strcpy(my_struct.fname,"Ted");
 printf("\n%s ",my_struct.fname);
 printf("%s\n",my_struct.lname);
 my_struct.age = 63;
 show_name(st_ptr); /* pass the pointer */
 return 0;
}

void show_name(struct tag *p)
{
 printf("\n%s ", p->fname); /* p points to a structure */
 printf("%s ", p->lname);
 printf("%d\n", p->age);
}

-------------------- end of program 5.2 ----------------

Again, this is a lot of information to absorb at one time. The reader should compile and
run the various code snippets and using a debugger monitor things like my_struct and p

25

while single stepping through the main and following the code down into the function to
see what is happening.

26

CHAPTER 6: Some more on Strings, and Arrays of
Strings
Well, let's go back to strings for a bit. In the following all assignments are to be
understood as being global, i.e. made outside of any function, including main().

We pointed out in an earlier chapter that we could write:

 char my_string[40] = "Ted";

which would allocate space for a 40 byte array and put the string in the first 4 bytes (three
for the characters in the quotes and a 4th to handle the terminating '\0').

Actually, if all we wanted to do was store the name "Ted" we could write:

 char my_name[] = "Ted";

and the compiler would count the characters, leave room for the nul character and store
the total of the four characters in memory the location of which would be returned by the
array name, in this case my_name.

In some code, instead of the above, you might see:

 char *my_name = "Ted";

which is an alternate approach. Is there a difference between these? The answer is.. yes.
Using the array notation 4 bytes of storage in the static memory block are taken up, one
for each character and one for the terminating nul character. But, in the pointer notation
the same 4 bytes required, plus N bytes to store the pointer variable my_name (where N
depends on the system but is usually a minimum of 2 bytes and can be 4 or more).

In the array notation, my_name is short for &myname[0] which is the address of the
first element of the array. Since the location of the array is fixed during run time, this is a
constant (not a variable). In the pointer notation my_name is a variable. As to which is
the better method, that depends on what you are going to do within the rest of the
program.

Let's now go one step further and consider what happens if each of these declarations are
done within a function as opposed to globally outside the bounds of any function.

void my_function_A(char *ptr)
{
 char a[] = "ABCDE"
 .
 .
}

27

void my_function_B(char *ptr)
{
 char *cp = "FGHIJ"
 .
 .
}

In the case of my_function_A, the content, or value(s), of the array a[] is considered to
be the data. The array is said to be initialized to the values ABCDE. In the case of
my_function_B, the value of the pointer cp is considered to be the data. The pointer has
been initialized to point to the string FGHIJ. In both my_function_A and
my_function_B the definitions are local variables and thus the string ABCDE is stored
on the stack, as is the value of the pointer cp. The string FGHIJ can be stored anywhere.
On my system it gets stored in the data segment.

By the way, array initialization of automatic variables as I have done in my_function_A
was illegal in the older K&R C and only "came of age" in the newer ANSI C. A fact that
may be important when one is considering portability and backwards compatibility.

As long as we are discussing the relationship/differences between pointers and arrays,
let's move on to multi-dimensional arrays. Consider, for example the array:

 char multi[5][10];

Just what does this mean? Well, let's consider it in the following light.

 char multi[5][10];

Let's take the underlined part to be the "name" of an array. Then prepending the char and
appending the [10] we have an array of 10 characters. But, the name multi[5] is itself an
array indicating that there are 5 elements each being an array of 10 characters. Hence we
have an array of 5 arrays of 10 characters each..

Assume we have filled this two dimensional array with data of some kind. In memory, it
might look as if it had been formed by initializing 5 separate arrays using something like:

 multi[0] = {'0','1','2','3','4','5','6','7','8','9'}
 multi[1] = {'a','b','c','d','e','f','g','h','i','j'}
 multi[2] = {'A','B','C','D','E','F','G','H','I','J'}
 multi[3] = {'9','8','7','6','5','4','3','2','1','0'}
 multi[4] = {'J','I','H','G','F','E','D','C','B','A'}

At the same time, individual elements might be addressable using syntax such as:

 multi[0][3] = '3'
 multi[1][7] = 'h'
 multi[4][0] = 'J'

28

Since arrays are contiguous in memory, our actual memory block for the above should
look like:

 0123456789abcdefghijABCDEFGHIJ9876543210JIHGFEDCBA
 ^
 |_____ starting at the address &multi[0][0]

Note that I did not write multi[0] = "0123456789". Had I done so a terminating '\0'
would have been implied since whenever double quotes are used a '\0' character is
appended to the characters contained within those quotes. Had that been the case I would
have had to set aside room for 11 characters per row instead of 10.

My goal in the above is to illustrate how memory is laid out for 2 dimensional arrays.
That is, this is a 2 dimensional array of characters, NOT an array of "strings".

Now, the compiler knows how many columns are present in the array so it can interpret
multi + 1 as the address of the 'a' in the 2nd row above. That is, it adds 10, the number of
columns, to get this location. If we were dealing with integers and an array with the same
dimension the compiler would add 10*sizeof(int) which, on my machine, would be 20.
Thus, the address of the 9 in the 4th row above would be &multi[3][0] or *(multi + 3) in
pointer notation. To get to the content of the 2nd element in the 4th row we add 1 to this
address and dereference the result as in

 ((multi + 3) + 1)

With a little thought we can see that:

 ((multi + row) + col) and
 multi[row][col] yield the same results.

The following program illustrates this using integer arrays instead of character arrays.

------------------- program 6.1 ----------------------

/* Program 6.1 from PTRTUT10.HTM 6/13/97*/

#include <stdio.h>
#define ROWS 5
#define COLS 10

int multi[ROWS][COLS];

int main(void)
{
 int row, col;
 for (row = 0; row < ROWS; row++)
 {
 for (col = 0; col < COLS; col++)
 {
 multi[row][col] = row*col;
 }

29

 }

 for (row = 0; row < ROWS; row++)
 {
 for (col = 0; col < COLS; col++)
 {
 printf("\n%d ",multi[row][col]);
 printf("%d ",*(*(multi + row) + col));
 }
 }

 return 0;
}
----------------- end of program 6.1 ---------------------

Because of the double de-referencing required in the pointer version, the name of a 2
dimensional array is often said to be equivalent to a pointer to a pointer. With a three
dimensional array we would be dealing with an array of arrays of arrays and some might
say its name would be equivalent to a pointer to a pointer to a pointer. However, here we
have initially set aside the block of memory for the array by defining it using array
notation. Hence, we are dealing with a constant, not a variable. That is we are talking
about a fixed address not a variable pointer. The dereferencing function used above
permits us to access any element in the array of arrays without the need of changing the
value of that address (the address of multi[0][0] as given by the symbol multi).

30

CHAPTER 7: More on Multi-Dimensional Arrays
In the previous chapter we noted that given

 #define ROWS 5
 #define COLS 10

 int multi[ROWS][COLS];

we can access individual elements of the array multi using either:

 multi[row][col]

or

 ((multi + row) + col)

To understand more fully what is going on, let us replace

 *(multi + row)

with X as in:

 *(X + col)

Now, from this we see that X is like a pointer since the expression is de-referenced and
we know that col is an integer. Here the arithmetic being used is of a special kind called
"pointer arithmetic" is being used. That means that, since we are talking about an integer
array, the address pointed to by (i.e. value of) X + col + 1 must be greater than the
address X + col by and amount equal to sizeof(int).

Since we know the memory layout for 2 dimensional arrays, we can determine that in the
expression multi + row as used above, multi + row + 1 must increase by value an
amount equal to that needed to "point to" the next row, which in this case would be an
amount equal to COLS * sizeof(int).

That says that if the expression *(*(multi + row) + col) is to be evaluated correctly at run
time, the compiler must generate code which takes into consideration the value of COLS,
i.e. the 2nd dimension. Because of the equivalence of the two forms of expression, this is
true whether we are using the pointer expression as here or the array expression
multi[row][col].

Thus, to evaluate either expression, a total of 5 values must be known:

1. The address of the first element of the array, which is returned by the expression
multi, i.e., the name of the array.

2. The size of the type of the elements of the array, in this case sizeof(int).
3. The 2nd dimension of the array
4. The specific index value for the first dimension, row in this case.
5. The specific index value for the second dimension, col in this case.

31

Given all of that, consider the problem of designing a function to manipulate the element
values of a previously declared array. For example, one which would set all the elements
of the array multi to the value 1.

 void set_value(int m_array[][COLS])
 {
 int row, col;
 for (row = 0; row < ROWS; row++)
 {
 for (col = 0; col < COLS; col++)
 {
 m_array[row][col] = 1;
 }
 }
 }

And to call this function we would then use:

 set_value(multi);

Now, within the function we have used the values #defined by ROWS and COLS that set
the limits on the for loops. But, these #defines are just constants as far as the compiler is
concerned, i.e. there is nothing to connect them to the array size within the function. row
and col are local variables, of course. The formal parameter definition permits the
compiler to determine the characteristics associated with the pointer value that will be
passed at run time. We really don’t need the first dimension and, as will be seen later,
there are occasions where we would prefer not to define it within the parameter
definition, out of habit or consistency, I have not used it here. But, the second dimension
must be used as has been shown in the expression for the parameter. The reason is that
we need this in the evaluation of m_array[row][col] as has been described. While the
parameter defines the data type (int in this case) and the automatic variables for row and
column are defined in the for loops, only one value can be passed using a single
parameter. In this case, that is the value of multi as noted in the call statement, i.e. the
address of the first element, often referred to as a pointer to the array. Thus, the only way
we have of informing the compiler of the 2nd dimension is by explicitly including it in
the parameter definition.

In fact, in general all dimensions of higher order than one are needed when dealing with
multi-dimensional arrays. That is if we are talking about 3 dimensional arrays, the 2nd
and 3rd dimension must be specified in the parameter definition.

32

CHAPTER 8: Pointers to Arrays
Pointers, of course, can be "pointed at" any type of data object, including arrays. While
that was evident when we discussed program 3.1, it is important to expand on how we do
this when it comes to multi-dimensional arrays.

To review, in Chapter 2 we stated that given an array of integers we could point an
integer pointer at that array using:

 int *ptr;
 ptr = &my_array[0]; /* point our pointer at the first
 integer in our array */

As we stated there, the type of the pointer variable must match the type of the first
element of the array.

In addition, we can use a pointer as a formal parameter of a function which is designed to
manipulate an array. e.g.

Given:

 int array[3] = {'1', '5', '7'};
 void a_func(int *p);

Some programmers might prefer to write the function prototype as:

 void a_func(int p[]);

which would tend to inform others who might use this function that the function is
designed to manipulate the elements of an array. Of course, in either case, what actually
gets passed is the value of a pointer to the first element of the array, independent of which
notation is used in the function prototype or definition. Note that if the array notation is
used, there is no need to pass the actual dimension of the array since we are not passing
the whole array, only the address to the first element.

We now turn to the problem of the 2 dimensional array. As stated in the last chapter, C
interprets a 2 dimensional array as an array of one dimensional arrays. That being the
case, the first element of a 2 dimensional array of integers is a one dimensional array of
integers. And a pointer to a two dimensional array of integers must be a pointer to that
data type. One way of accomplishing this is through the use of the keyword "typedef".
typedef assigns a new name to a specified data type. For example:

 typedef unsigned char byte;

causes the name byte to mean type unsigned char. Hence

 byte b[10]; would be an array of unsigned characters.

33

Note that in the typedef declaration, the word byte has replaced that which would
normally be the name of our unsigned char. That is, the rule for using typedef is that the
new name for the data type is the name used in the definition of the data type. Thus in:

 typedef int Array[10];

Array becomes a data type for an array of 10 integers. i.e. Array my_arr; declares
my_arr as an array of 10 integers and Array arr2d[5]; makes arr2d an array of 5 arrays
of 10 integers each.

Also note that Array *p1d; makes p1d a pointer to an array of 10 integers. Because
*p1d points to the same type as arr2d, assigning the address of the two dimensional
array arr2d to p1d, the pointer to a one dimensional array of 10 integers is acceptable.
i.e. p1d = &arr2d[0]; or p1d = arr2d; are both correct.

Since the data type we use for our pointer is an array of 10 integers we would expect that
incrementing p1d by 1 would change its value by 10*sizeof(int), which it does. That is,
sizeof(*p1d) is 20. You can prove this to yourself by writing and running a simple short
program.

Now, while using typedef makes things clearer for the reader and easier on the
programmer, it is not really necessary. What we need is a way of declaring a pointer like
p1d without the need of the typedef keyword. It turns out that this can be done and that

 int (*p1d)[10];

is the proper declaration, i.e. p1d here is a pointer to an array of 10 integers just as it was
under the declaration using the Array type. Note that this is different from

 int *p1d[10];

which would make p1d the name of an array of 10 pointers to type int.

34

CHAPTER 9: Pointers and Dynamic Allocation of
Memory
There are times when it is convenient to allocate memory at run time using malloc(),
calloc(), or other allocation functions. Using this approach permits postponing the
decision on the size of the memory block need to store an array, for example, until run
time. Or it permits using a section of memory for the storage of an array of integers at
one point in time, and then when that memory is no longer needed it can be freed up for
other uses, such as the storage of an array of structures.

When memory is allocated, the allocating function (such as malloc(), calloc(), etc.)
returns a pointer. The type of this pointer depends on whether you are using an older
K&R compiler or the newer ANSI type compiler. With the older compiler the type of the
returned pointer is char, with the ANSI compiler it is void.

If you are using an older compiler, and you want to allocate memory for an array of
integers you will have to cast the char pointer returned to an integer pointer. For example,
to allocate space for 10 integers we might write:

 int *iptr;
 iptr = (int *)malloc(10 * sizeof(int));
 if (iptr == NULL)

 { .. ERROR ROUTINE GOES HERE .. }

If you are using an ANSI compliant compiler, malloc() returns a void pointer and since a
void pointer can be assigned to a pointer variable of any object type, the (int *) cast
shown above is not needed. The array dimension can be determined at run time and is not
needed at compile time. That is, the 10 above could be a variable read in from a data file
or keyboard, or calculated based on some need, at run time.

Because of the equivalence between array and pointer notation, once iptr has been
assigned as above, one can use the array notation. For example, one could write:

 int k;
 for (k = 0; k < 10; k++)
 iptr[k] = 2;

to set the values of all elements to 2.

Even with a reasonably good understanding of pointers and arrays, one place the
newcomer to C is likely to stumble at first is in the dynamic allocation of multi-
dimensional arrays. In general, we would like to be able to access elements of such arrays
using array notation, not pointer notation, wherever possible. Depending on the
application we may or may not know both dimensions at compile time. This leads to a
variety of ways to go about our task.

35

As we have seen, when dynamically allocating a one dimensional array its dimension can
be determined at run time. Now, when using dynamic allocation of higher order arrays,
we never need to know the first dimension at compile time. Whether we need to know the
higher dimensions depends on how we go about writing the code. Here I will discuss
various methods of dynamically allocating room for 2 dimensional arrays of integers.

First we will consider cases where the 2nd dimension is known at compile time.

METHOD 1:

One way of dealing with the problem is through the use of the typedef keyword. To
allocate a 2 dimensional array of integers recall that the following two notations result in
the same object code being generated:

 multi[row][col] = 1; *(*(multi + row) + col) = 1;

It is also true that the following two notations generate the same code:

 multi[row] *(multi + row)

Since the one on the right must evaluate to a pointer, the array notation on the left must
also evaluate to a pointer. In fact multi[0] will return a pointer to the first integer in the
first row, multi[1] a pointer to the first integer of the second row, etc. Actually, multi[n]
evaluates to a pointer to that array of integers that make up the n-th row of our 2
dimensional array. That is, multi can be thought of as an array of arrays and multi[n] as
a pointer to the n-th array of this array of arrays. Here the word pointer is being used to
represent an address value. While such usage is common in the literature, when reading
such statements one must be careful to distinguish between the constant address of an
array and a variable pointer which is a data object in itself.

Consider now:

--------------- Program 9.1 --------------------------------

/* Program 9.1 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>
#include <stdlib.h>

#define COLS 5

typedef int RowArray[COLS];
RowArray *rptr;

int main(void)
{
 int nrows = 10;
 int row, col;
 rptr = malloc(nrows * COLS * sizeof(int));
 for (row = 0; row < nrows; row++)

36

 {
 for (col = 0; col < COLS; col++)
 {
 rptr[row][col] = 17;
 }
 }

 return 0;
}
------------- End of Prog. 9.1 --------------------------------

Here I have assumed an ANSI compiler so a cast on the void pointer returned by malloc()
is not required. If you are using an older K&R compiler you will have to cast using:

 rptr = (RowArray *)malloc(.... etc.

Using this approach, rptr has all the characteristics of an array name name, (except that
rptr is modifiable), and array notation may be used throughout the rest of the program.
That also means that if you intend to write a function to modify the array contents, you
must use COLS as a part of the formal parameter in that function, just as we did when
discussing the passing of two dimensional arrays to a function.

METHOD 2:

In the METHOD 1 above, rptr turned out to be a pointer to type "one dimensional array
of COLS integers". It turns out that there is syntax which can be used for this type
without the need of typedef. If we write:

 int (*xptr)[COLS];

the variable xptr will have all the same characteristics as the variable rptr in METHOD
1 above, and we need not use the typedef keyword. Here xptr is a pointer to an array of
integers and the size of that array is given by the #defined COLS. The parenthesis
placement makes the pointer notation predominate, even though the array notation has
higher precedence. i.e. had we written

 int *xptr[COLS];

we would have defined xptr as an array of pointers holding the number of pointers equal
to that #defined by COLS. That is not the same thing at all. However, arrays of pointers
have their use in the dynamic allocation of two dimensional arrays, as will be seen in the
next 2 methods.

METHOD 3:

Consider the case where we do not know the number of elements in each row at compile
time, i.e. both the number of rows and number of columns must be determined at run
time. One way of doing this would be to create an array of pointers to type int and then
allocate space for each row and point these pointers at each row. Consider:

37

-------------- Program 9.2 ------------------------------------

/* Program 9.2 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int nrows = 5; /* Both nrows and ncols could be evaluated */
 int ncols = 10; /* or read in at run time */
 int row;
 int **rowptr;
 rowptr = malloc(nrows * sizeof(int *));
 if (rowptr == NULL)
 {
 puts("\nFailure to allocate room for row pointers.\n");
 exit(0);
 }

 printf("\n\n\nIndex Pointer(hex) Pointer(dec) Diff.(dec)");

 for (row = 0; row < nrows; row++)
 {
 rowptr[row] = malloc(ncols * sizeof(int));
 if (rowptr[row] == NULL)
 {
 printf("\nFailure to allocate for row[%d]\n",row);
 exit(0);
 }
 printf("\n%d %p %d", row, rowptr[row],
rowptr[row]);
 if (row > 0)
 printf(" %d",(int)(rowptr[row] - rowptr[row-1]));
 }

 return 0;
}

--------------- End 9.2 ------------------------------------

In the above code rowptr is a pointer to pointer to type int. In this case it points to the
first element of an array of pointers to type int. Consider the number of calls to malloc():

 To get the array of pointers 1 call
 To get space for the rows 5 calls

 Total 6 calls

If you choose to use this approach note that while you can use the array notation to access
individual elements of the array, e.g. rowptr[row][col] = 17;, it does not mean that the
data in the "two dimensional array" is contiguous in memory.

38

You can, however, use the array notation just as if it were a continuous block of memory.
For example, you can write:

 rowptr[row][col] = 176;

just as if rowptr were the name of a two dimensional array created at compile time. Of
course row and col must be within the bounds of the array you have created, just as with
an array created at compile time.

If you want to have a contiguous block of memory dedicated to the storage of the
elements in the array you can do it as follows:

METHOD 4:

In this method we allocate a block of memory to hold the whole array first. We then
create an array of pointers to point to each row. Thus even though the array of pointers is
being used, the actual array in memory is contiguous. The code looks like this:

----------------- Program 9.3 -----------------------------------

/* Program 9.3 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int **rptr;
 int *aptr;
 int *testptr;
 int k;
 int nrows = 5; /* Both nrows and ncols could be evaluated */
 int ncols = 8; /* or read in at run time */
 int row, col;

 /* we now allocate the memory for the array */

 aptr = malloc(nrows * ncols * sizeof(int));
 if (aptr == NULL)
 {
 puts("\nFailure to allocate room for the array");
 exit(0);
 }

 /* next we allocate room for the pointers to the rows */

 rptr = malloc(nrows * sizeof(int *));
 if (rptr == NULL)
 {
 puts("\nFailure to allocate room for pointers");
 exit(0);
 }

39

 /* and now we 'point' the pointers */

 for (k = 0; k < nrows; k++)
 {
 rptr[k] = aptr + (k * ncols);
 }

 /* Now we illustrate how the row pointers are incremented */
 printf("\n\nIllustrating how row pointers are incremented");
 printf("\n\nIndex Pointer(hex) Diff.(dec)");

 for (row = 0; row < nrows; row++)
 {
 printf("\n%d %p", row, rptr[row]);
 if (row > 0)
 printf(" %d",(rptr[row] - rptr[row-1]));
 }
 printf("\n\nAnd now we print out the array\n");
 for (row = 0; row < nrows; row++)
 {
 for (col = 0; col < ncols; col++)
 {
 rptr[row][col] = row + col;
 printf("%d ", rptr[row][col]);
 }
 putchar('\n');
 }

 puts("\n");

 /* and here we illustrate that we are, in fact, dealing with
 a 2 dimensional array in a contiguous block of memory. */
 printf("And now we demonstrate that they are contiguous in
memory\n");

 testptr = aptr;
 for (row = 0; row < nrows; row++)
 {
 for (col = 0; col < ncols; col++)
 {
 printf("%d ", *(testptr++));
 }
 putchar('\n');
 }

 return 0;
}

------------- End Program 9.3 -----------------

Consider again, the number of calls to malloc()

 To get room for the array itself 1 call
 To get room for the array of ptrs 1 call

 Total 2 calls

40

Now, each call to malloc() creates additional space overhead since malloc() is generally
implemented by the operating system forming a linked list which contains data
concerning the size of the block. But, more importantly, with large arrays (several
hundred rows) keeping track of what needs to be freed when the time comes can be more
cumbersome. This, combined with the contiguousness of the data block that permits
initialization to all zeroes using memset() would seem to make the second alternative the
preferred one.

As a final example on multidimensional arrays we will illustrate the dynamic allocation
of a three dimensional array. This example will illustrate one more thing to watch when
doing this kind of allocation. For reasons cited above we will use the approach outlined in
alternative two. Consider the following code:

------------------- Program 9.4 -------------------------------------

/* Program 9.4 from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

int X_DIM=16;
int Y_DIM=5;
int Z_DIM=3;

int main(void)
{
 char *space;
 char ***Arr3D;
 int y, z;
 ptrdiff_t diff;

 /* first we set aside space for the array itself */

 space = malloc(X_DIM * Y_DIM * Z_DIM * sizeof(char));

 /* next we allocate space of an array of pointers, each
 to eventually point to the first element of a
 2 dimensional array of pointers to pointers */

 Arr3D = malloc(Z_DIM * sizeof(char **));

 /* and for each of these we assign a pointer to a newly
 allocated array of pointers to a row */

 for (z = 0; z < Z_DIM; z++)
 {
 Arr3D[z] = malloc(Y_DIM * sizeof(char *));

 /* and for each space in this array we put a pointer to
 the first element of each row in the array space
 originally allocated */

41

 for (y = 0; y < Y_DIM; y++)
 {
 Arr3D[z][y] = space + (z*(X_DIM * Y_DIM) + y*X_DIM);
 }
 }

 /* And, now we check each address in our 3D array to see if
 the indexing of the Arr3d pointer leads through in a
 continuous manner */

 for (z = 0; z < Z_DIM; z++)
 {
 printf("Location of array %d is %p\n", z, *Arr3D[z]);
 for (y = 0; y < Y_DIM; y++)
 {
 printf(" Array %d and Row %d starts at %p", z, y,
Arr3D[z][y]);
 diff = Arr3D[z][y] - space;
 printf(" diff = %d ",diff);
 printf(" z = %d y = %d\n", z, y);
 }
 }
 return 0;
}

------------------- End of Prog. 9.4 ----------------------------

If you have followed this tutorial up to this point you should have no problem
deciphering the above on the basis of the comments alone. There are a couple of points
that should be made however. Let's start with the line which reads:

 Arr3D[z][y] = space + (z*(X_DIM * Y_DIM) + y*X_DIM);

Note that here space is a character pointer, which is the same type as Arr3D[z][y]. It is
important that when adding an integer, such as that obtained by evaluation of the
expression (z*(X_DIM * Y_DIM) + y*X_DIM), to a pointer, the result is a new pointer
value. And when assigning pointer values to pointer variables the data types of the value
and variable must match.

42

CHAPTER 10: Pointers to Functions
Up to this point we have been discussing pointers to data objects. C also permits the
declaration of pointers to functions. Pointers to functions have a variety of uses and some
of them will be discussed here.

Consider the following real problem. You want to write a function that is capable of
sorting virtually any collection of data that can be stored in an array. This might be an
array of strings, or integers, or floats, or even structures. The sorting algorithm can be the
same for all. For example, it could be a simple bubble sort algorithm, or the more
complex shell or quick sort algorithm. We'll use a simple bubble sort for demonstration
purposes.

Sedgewick [1] has described the bubble sort using C code by setting up a function which
when passed a pointer to the array would sort it. If we call that function bubble(), a sort
program is described by bubble_1.c, which follows:

/*-------------------- bubble_1.c --------------------*/

/* Program bubble_1.c from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>

int arr[10] = { 3,6,1,2,3,8,4,1,7,2};

void bubble(int a[], int N);

int main(void)
{
 int i;
 putchar('\n');
 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int a[], int N)
{
 int i, j, t;
 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)

43

 {
 if (a[j-1] > a[j])
 {
 t = a[j-1];
 a[j-1] = a[j];
 a[j] = t;
 }
 }
 }
}

/*---------------------- end bubble_1.c -----------------------*/

The bubble sort is one of the simpler sorts. The algorithm scans the array from the second
to the last element comparing each element with the one which precedes it. If the one that
precedes it is larger than the current element, the two are swapped so the larger one is
closer to the end of the array. On the first pass, this results in the largest element ending
up at the end of the array. The array is now limited to all elements except the last and the
process repeated. This puts the next largest element at a point preceding the largest
element. The process is repeated for a number of times equal to the number of elements
minus 1. The end result is a sorted array.

Here our function is designed to sort an array of integers. Thus in line 1 we are
comparing integers and in lines 2 through 4 we are using temporary integer storage to
store integers. What we want to do now is see if we can convert this code so we can use
any data type, i.e. not be restricted to integers.

At the same time we don't want to have to analyze our algorithm and the code associated
with it each time we use it. We start by removing the comparison from within the
function bubble() so as to make it relatively easy to modify the comparison function
without having to re-write portions related to the actual algorithm. This results in
bubble_2.c:

/*---------------------- bubble_2.c -------------------------*/

/* Program bubble_2.c from PTRTUT10.HTM 6/13/97 */

 /* Separating the comparison function */

#include <stdio.h>

int arr[10] = { 3,6,1,2,3,8,4,1,7,2};

void bubble(int a[], int N);
int compare(int m, int n);

int main(void)
{
 int i;
 putchar('\n');

44

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int a[], int N)

{
 int i, j, t;
 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (compare(a[j-1], a[j]))
 {
 t = a[j-1];
 a[j-1] = a[j];
 a[j] = t;
 }
 }
 }
}

int compare(int m, int n)
{
 return (m > n);
}
/*--------------------- end of bubble_2.c -----------------------*/

If our goal is to make our sort routine data type independent, one way of doing this is to
use pointers to type void to point to the data instead of using the integer data type. As a
start in that direction let's modify a few things in the above so that pointers can be used.
To begin with, we'll stick with pointers to type integer.

/*----------------------- bubble_3.c -------------------------*/

/* Program bubble_3.c from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>

int arr[10] = { 3,6,1,2,3,8,4,1,7,2};

void bubble(int *p, int N);
int compare(int *m, int *n);

int main(void)
{

45

 int i;
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int *p, int N)
{
 int i, j, t;
 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (compare(&p[j-1], &p[j]))
 {
 t = p[j-1];
 p[j-1] = p[j];
 p[j] = t;
 }
 }
 }
}

int compare(int *m, int *n)
{
 return (*m > *n);
}

/*------------------ end of bubble3.c -------------------------*/

Note the changes. We are now passing a pointer to an integer (or array of integers) to
bubble(). And from within bubble we are passing pointers to the elements of the array
that we want to compare to our comparison function. And, of course we are dereferencing
these pointer in our compare() function in order to make the actual comparison. Our next
step will be to convert the pointers in bubble() to pointers to type void so that that
function will become more type insensitive. This is shown in bubble_4.

/*------------------ bubble_4.c ----------------------------*/

/* Program bubble_4.c from PTRTUT10,HTM 6/13/97 */

#include <stdio.h>

46

int arr[10] = { 3,6,1,2,3,8,4,1,7,2};

void bubble(int *p, int N);
int compare(void *m, void *n);

int main(void)
{
 int i;
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int *p, int N)
{
 int i, j, t;
 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (compare((void *)&p[j-1], (void *)&p[j]))
 {
 t = p[j-1];
 p[j-1] = p[j];
 p[j] = t;
 }
 }
 }
}

int compare(void *m, void *n)
{
 int *m1, *n1;
 m1 = (int *)m;
 n1 = (int *)n;
 return (*m1 > *n1);
}

/*------------------ end of bubble_4.c ---------------------*/

Note that, in doing this, in compare() we had to introduce the casting of the void pointer
types passed to the actual type being sorted. But, as we'll see later that's okay. And since
what is being passed to bubble() is still a pointer to an array of integers, we had to cast
these pointers to void pointers when we passed them as parameters in our call to
compare().

47

We now address the problem of what we pass to bubble(). We want to make the first
parameter of that function a void pointer also. But, that means that within bubble() we
need to do something about the variable t, which is currently an integer. Also, where we
use t = p[j-1]; the type of p[j-1] needs to be known in order to know how many bytes to
copy to the variable t (or whatever we replace t with).

Currently, in bubble_4.c, knowledge within bubble() as to the type of the data being
sorted (and hence the size of each individual element) is obtained from the fact that the
first parameter is a pointer to type integer. If we are going to be able to use bubble() to
sort any type of data, we need to make that pointer a pointer to type void. But, in doing so
we are going to lose information concerning the size of individual elements within the
array. So, in bubble_5.c we will add a separate parameter to handle this size information.

These changes, from bubble4.c to bubble5.c are, perhaps, a bit more extensive than those
we have made in the past. So, compare the two modules carefully for differences.

/*---------------------- bubble5.c ---------------------------*/

/* Program bubble_5.c from PTRTUT10.HTM 6/13/97 */

#include <stdio.h>
#include <string.h>

long arr[10] = { 3,6,1,2,3,8,4,1,7,2};

void bubble(void *p, size_t width, int N);
int compare(void *m, void *n);

int main(void)
{
 int i;
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr, sizeof(long), 10);
 putchar('\n');

 for (i = 0; i < 10; i++)
 {
 printf("%ld ", arr[i]);
 }

 return 0;
}

void bubble(void *p, size_t width, int N)
{
 int i, j;
 unsigned char buf[4];
 unsigned char *bp = p;

48

 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (compare((void *)(bp + width*(j-1)),
 (void *)(bp + j*width))) /* 1 */
 {
/* t = p[j-1]; */
 memcpy(buf, bp + width*(j-1), width);
/* p[j-1] = p[j]; */
 memcpy(bp + width*(j-1), bp + j*width , width);
/* p[j] = t; */
 memcpy(bp + j*width, buf, width);
 }
 }
 }
}

int compare(void *m, void *n)
{
 long *m1, *n1;
 m1 = (long *)m;
 n1 = (long *)n;
 return (*m1 > *n1);
}

/*--------------------- end of bubble5.c ---------------------*/

Note that I have changed the data type of the array from int to long to illustrate the
changes needed in the compare() function. Within bubble() I've done away with the
variable t (which we would have had to change from type int to type long). I have added
a buffer of size 4 unsigned characters, which is the size needed to hold a long (this will
change again in future modifications to this code). The unsigned character pointer *bp is
used to point to the base of the array to be sorted, i.e. to the first element of that array.

We also had to modify what we passed to compare(), and how we do the swapping of
elements that the comparison indicates need swapping. Use of memcpy() and pointer
notation instead of array notation work towards this reduction in type sensitivity.

Again, making a careful comparison of bubble5.c with bubble4.c can result in improved
understanding of what is happening and why.

We move now to bubble6.c where we use the same function bubble() that we used in
bubble5.c to sort strings instead of long integers. Of course we have to change the
comparison function since the means by which strings are compared is different from that
by which long integers are compared. And,in bubble6.c we have deleted the lines within
bubble() that were commented out in bubble5.c.

/*--------------------- bubble6.c ---------------------*/
/* Program bubble_6.c from PTRTUT10.HTM 6/13/97 */

49

#include <stdio.h>
#include <string.h>

#define MAX_BUF 256

char arr2[5][20] = { "Mickey Mouse",
 "Donald Duck",
 "Minnie Mouse",
 "Goofy",
 "Ted Jensen" };

void bubble(void *p, int width, int N);
int compare(void *m, void *n);

int main(void)
{
 int i;
 putchar('\n');

 for (i = 0; i < 5; i++)
 {
 printf("%s\n", arr2[i]);
 }
 bubble(arr2, 20, 5);
 putchar('\n\n');

 for (i = 0; i < 5; i++)
 {
 printf("%s\n", arr2[i]);
 }
 return 0;
}

void bubble(void *p, int width, int N)
{
 int i, j, k;
 unsigned char buf[MAX_BUF];
 unsigned char *bp = p;

 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 k = compare((void *)(bp + width*(j-1)), (void *)(bp +
j*width));
 if (k > 0)
 {
 memcpy(buf, bp + width*(j-1), width);
 memcpy(bp + width*(j-1), bp + j*width , width);
 memcpy(bp + j*width, buf, width);
 }
 }
 }
}

int compare(void *m, void *n)

50

{
 char *m1 = m;
 char *n1 = n;
 return (strcmp(m1,n1));
}

/*------------------- end of bubble6.c ---------------------*/

But, the fact that bubble() was unchanged from that used in bubble5.c indicates that that
function is capable of sorting a wide variety of data types. What is left to do is to pass to
bubble() the name of the comparison function we want to use so that it can be truly
universal. Just as the name of an array is the address of the first element of the array in
the data segment, the name of a function decays into the address of that function in the
code segment. Thus we need to use a pointer to a function. In this case the comparison
function.

Pointers to functions must match the functions pointed to in the number and types of the
parameters and the type of the return value. In our case, we declare our function pointer
as:

 int (*fptr)(const void *p1, const void *p2);

Note that were we to write:

 int *fptr(const void *p1, const void *p2);

we would have a function prototype for a function which returned a pointer to type int.
That is because in C the parenthesis () operator have a higher precedence than the pointer
* operator. By putting the parenthesis around the string (*fptr) we indicate that we are
declaring a function pointer.

We now modify our declaration of bubble() by adding, as its 4th parameter, a function
pointer of the proper type. It's function prototype becomes:

 void bubble(void *p, int width, int N,
 int(*fptr)(const void *, const void *));

When we call the bubble(), we insert the name of the comparison function that we want
to use. bubble7.c illustrate how this approach permits the use of the same bubble()
function for sorting different types of data.

/*------------------- bubble7.c ------------------*/

/* Program bubble_7.c from PTRTUT10.HTM 6/10/97 */

#include <stdio.h>
#include <string.h>

#define MAX_BUF 256

51

long arr[10] = { 3,6,1,2,3,8,4,1,7,2};
char arr2[5][20] = { "Mickey Mouse",
 "Donald Duck",
 "Minnie Mouse",
 "Goofy",
 "Ted Jensen" };

void bubble(void *p, int width, int N,
 int(*fptr)(const void *, const void *));
int compare_string(const void *m, const void *n);
int compare_long(const void *m, const void *n);

int main(void)
{
 int i;
 puts("\nBefore Sorting:\n");

 for (i = 0; i < 10; i++) /* show the long ints */
 {
 printf("%ld ",arr[i]);
 }
 puts("\n");

 for (i = 0; i < 5; i++) /* show the strings */
 {
 printf("%s\n", arr2[i]);
 }
 bubble(arr, 4, 10, compare_long); /* sort the longs */
 bubble(arr2, 20, 5, compare_string); /* sort the strings */
 puts("\n\nAfter Sorting:\n");

 for (i = 0; i < 10; i++) /* show the sorted longs */
 {
 printf("%d ",arr[i]);
 }
 puts("\n");

 for (i = 0; i < 5; i++) /* show the sorted strings */
 {
 printf("%s\n", arr2[i]);
 }
 return 0;
}

void bubble(void *p, int width, int N,
 int(*fptr)(const void *, const void *))
{
 int i, j, k;
 unsigned char buf[MAX_BUF];
 unsigned char *bp = p;

 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 k = fptr((void *)(bp + width*(j-1)), (void *)(bp +
j*width));

52

 if (k > 0)
 {
 memcpy(buf, bp + width*(j-1), width);
 memcpy(bp + width*(j-1), bp + j*width , width);
 memcpy(bp + j*width, buf, width);
 }
 }
 }
}

int compare_string(const void *m, const void *n)
{
 char *m1 = (char *)m;
 char *n1 = (char *)n;
 return (strcmp(m1,n1));
}

int compare_long(const void *m, const void *n)
{
 long *m1, *n1;
 m1 = (long *)m;
 n1 = (long *)n;
 return (*m1 > *n1);
}

/*----------------- end of bubble7.c -----------------*/

References for Chapter 10:

1. "Algorithms in C"
Robert Sedgewick
Addison-Wesley
ISBN 0-201-51425-7

53

EPILOG
I have written the preceding material to provide an introduction to pointers for
newcomers to C. In C, the more one understands about pointers the greater flexibility one
has in the writing of code. The above expands on my first effort at this which was entitled
ptr_help.txt and found in an early version of Bob Stout's collection of C code SNIPPETS.
The content in this version has been updated from that in PTRTUTOT.ZIP included in
SNIP9510.ZIP.

I am always ready to accept constructive criticism on this material, or review requests for
the addition of other relevant material. Therefore, if you have questions, comments,
criticisms, etc. concerning that which has been presented, I would greatly appreciate your
contacting me via email me at tjensen@ix.netcom.com.

dx
dy dxx5=y

dy
dxy 5= x

dy
dx 5= yx

y

Separation of Variables

Separation of Variables is a special method to solve some Differential Equations

A Differential Equation is an equation with a function and one or more of
its derivatives :

dy
dx 5=

differential equation
(derivative)

yx

Example: an equation with the function y and its derivative
dy

dx

When Can I Use it?

Separation of Variables can be used when:

All the y terms (including dy) can be moved to one side of the
equation, and

All the x terms (including dx) to the other side.

Method

Three Steps:

Step 1 Move all the y terms (including dy) to one side of the equation and all the x
terms (including dx) to the other side.

Step 2 Integrate one side with respect to y and the other side with respect to x.
Don't forget "+ C" (the constant of integration).

Step 3 Simplify

Example: Solve this (k is a constant)

https://www.mathsisfun.com/calculus/differential-equations.html
https://www.mathsisfun.com/sets/function.html
https://www.mathsisfun.com/calculus/derivatives-introduction.html

 dy
dx
 = ky

Step 1 Separate the variables by moving all the y terms to one side of the
equation and all the x terms to the other side.

Multiply both sides by dx: dy = ky dx

Divide both sides by y:
dy
y
 = k dx

Step 2 Integrate both sides of the equation separately:

Put the integral sign in front: ∫ dy
y
 = ∫k dx

Integrate left side: ln(y) + C = ∫k dx
Integrate right side: ln(y) + C = kx + D

C is the constant of integration. And we use D for the other, as it is a different
constant.

Step 3 Simplify

We can roll the two constants into one (a=D−C): ln(y) = kx + a

e(ln(y)) = y , so let's take exponents on both sides: y = ekx + a

And ekx + a = ekx ea so we get: y = ekx ea

ea is just a constant so we replace it with c y = cekx

We have solved it:

y = cekx

This is a general type of first order differential equation which turns up in all sorts
of unexpected places in real world examples.

We used y and x, but the same method works for other variable names, like this:

Example: Rabbits!

https://www.mathsisfun.com/calculus/integration-introduction.html
https://www.mathsisfun.com/algebra/exponents-logarithms.html

The more rabbits you have the more baby rabbits you
will get. Then those rabbits grow up and have babies
too! The population will grow faster and faster.

The important parts of this are:

the population N at any time t

the growth rate r

the population's rate of change
dN
dt

The rate of change at any time equals the growth rate times the population:

dN
dt
 = rN

But hey! This is the same as the equation we just solved! It just has different
letters:

N instead of y

t instead of x

r instead of k

So we can jump to a solution:

N = cert

And here is an example, the graph of N = 0.3e2t:

Exponential Growth

https://www.mathsisfun.com/money/compound-interest.html

There are other equations that follow this pattern such as continuous compound interest .

More Examples

OK, on to some different examples of separating the variables:

Example: Solve this

dy
 =

1

dx y

Step 1 Separate the variables by moving all the y terms to one side of the
equation and all the x terms to the other side.

Multiply both sides by dx: dy = (1/y) dx
Multiply both sides by y: y dy = dx

Step 2 Integrate both sides of the equation separately:

Put the integral sign in front: ∫y dy = ∫dx
Integrate each side: (y2)/2 = x + C

We integrated both sides in the one line, and used just one constant of integration
C. This saves time, and is perfectly OK as we could have +D on one, +E on the
other and just say that C = E−D.

Step 3 Simplify

Multiply both sides by 2: y2 = 2(x + C)
Square root of both sides: y = ±√(2(x + C))

Note: This is not the same as y = √(2x) + C, because the C was added before we
took the square root. This happens a lot with differential equations. We cannot just
add the C at the end of the process. It is added when doing the integration.

We have solved it:

https://www.mathsisfun.com/money/compound-interest.html
https://www.mathsisfun.com/calculus/integration-introduction.html

y = ±√(2(x + C))

A harder example:

Example: Solve this

dy
 =

2xy

dx 1 + x2

Step 1 Separate the variables

Multiply both sides by dx, divide both sides by y:
1
dy =

2x
dx

y 1 + x2

Step 2 Integrate both sides of the equation separately:

Put the integral sign in front: ∫
1
dy = ∫

2x
dx

y 1 + x2

The left side is a simple logarithm, the right side can be integrated using
substitution:

Let u = 1 + x2, so du = 2x dx ∫ 1 dy = ∫ 1 du
y u

Integrate: ln(y) = ln(u) + C

Then we make C = ln(k): ln(y) = ln(u) + ln(k)
So we can get this: y = uk

Now put u = 1 + x2 back again: y = k(1 + x2)

Step 3 Simplify

It is already as simple as can be. We have solved it:

y = k(1 + x2)

https://www.mathsisfun.com/calculus/integration-introduction.html

An even harder example: the famous Verhulst Equation

Example: Rabbits Again!

Remember our growth Differential Equation:

dN
 = rN

dt

Well, that growth can't go on forever as they will soon run out of available food.

A guy called Verhulst included k (the maximum population the food can support) to
get:

dN
 = rN(1­N/k)

dt

The Verhulst Equation

Can this be solved?

Yes, with the help of one trick ...

Step 1 Separate the variables

Multiply both sides by dt: dN = rN(1−N/k) dt

Divide both sides by N(1­N/k):
1

dN = r dt
N(1−N/k)

Step 2 Integrate

Put the integral sign in front: ∫ 1
dN = ∫r dt

N(1−N/k)

Hmmm... the left side looks hard to integrate. In fact it can be done, with a little
trick.

We start with this:
1

N(1−N/k)

Multiply top and bottom by k:
k

N(k−N)

Now here is the trick, add N and −N to the top
(see Partial Fractions):

N+k−N
N(k−N)

and split it into two fractions:
N

 +
k−N

N(k−N) N(k−N)

Simplify each fraction:
1

 +
1

k−N N

They can be integrated separately now, like this:

 ∫ 1
dN + ∫ 1 dN = ∫r dt

k−N N

Integrate: −ln(k−N) + ln(N) = rt + C

Done!

(Why did that become minus ln(k−N)? Because we are integrating with respect to
N.)

Step 3 Simplify

Negative of all terms: ln(k−N) − ln(N) = −rt − C
Combine ln(): ln((k−N)/N) = −rt − C

Now take exponents on both sides: (k−N)/N = e−rt−C

Separate the powers of e: (k−N)/N = e−rt e−C

e−C is a constant, we can replace it with A: (k−N)/N = Ae−rt

We are getting close! Just a little more algebra to get N on its own:

Separate the fraction terms: (k/N)−1 = Ae−rt

https://www.mathsisfun.com/algebra/partial-fractions.html
https://www.mathsisfun.com/algebra/exponents-logarithms.html

Add 1 to both sides: k/N = 1 + Ae−rt

Divide both by k: 1/N = (1 + Ae−rt)/k

Reciprocal of both sides: N = k/(1 + Ae−rt)

And we have our solution:

 N =
k

1 + Ae−rt

 And here is an example, the graph of
40

:
1 + 5e−2t

It starts rising exponentially,

then flattens out as it reaches k=40

Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2014 MathsIsFun.com

https://www.mathsisfun.com/sphider/search.php
https://www.mathsisfun.com/links/index.html
https://www.mathsisfun.com/aboutmathsisfun.html
https://www.mathsisfun.com/contact.php
javascript:Contribute()
javascript:Citation()
https://www.mathsisfun.com/Privacy.htm

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Constant-Coefficient Linear Differential
Equations

Math 240 — Calculus III

Summer 2013, Session II

Monday, August 5, 2013

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Agenda

1. Homogeneous constant-coefficient linear differential
equations

2. Nonhomogeneous constant-coefficient linear differential
equations

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Introduction

Last week we found solutions to the linear differential equation

y′′ + y′ − 6y = 0

of the form y(x) = erx. In fact, we found all solutions.
This technique will often work. If y(x) = erx then

y′(x) = rerx, y′′(x) = r2erx, . . . , y(n)(x) = rnerx.

So if rn + a1r
n−1 + · · ·+ an−1r + an = 0 then y(x) = erx is a

solution to the linear differential equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0.

Today we’ll develop this approach more rigorously.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

The auxiliary polynomial

Consider the homogeneous linear differential equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0

with constant coefficients ai. Expressed as a linear differential
operator, the equation is P (D)y = 0, where

P (D) = Dn + a1D
n−1 + · · ·+ an−1D + an.

Definition
A linear differential operator with constant coefficients, such as
P (D), is called a polynomial differential operator. The
polynomial

P (r) = rn + a1r
n−1 + · · ·+ an−1r + an

is called the auxiliary polynomial, and the equation P (r) = 0
the auxiliary equation.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

The auxiliary polynomial

Example

The equation y′′ + y′ − 6y = 0 has auxiliary polynomial

P (r) = r2 + r − 6.

Examples

Give the auxiliary polynomials for the following equations.

1. y′′ + 2y′ − 3y = 0

2. (D2 − 7D + 24)y = 0

3. y′′′ − 2y′′ − 4y′ + 8y = 0

r2 + 2r − 3

r2 − 7r + 24

r3 − 2r2 − 4r + 8

The roots of the auxiliary polynomial will determine the
solutions to the differential equation.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Polynomial differential operators commute

The key fact that will allow us to solve constant-coefficient
linear differential equations is that polynomial differential
operators commute.

Theorem
If P (D) and Q(D) are polynomial differential operators, then

P (D)Q(D) = Q(D)P (D).

Proof.
For our purposes, it will suffice to consider the case where P
and Q are linear. Q.E .D.

Commuting polynomial differential operators will allow us to
turn a root of the auxiliary polynomial into a solution to the
corresponding differential equation.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Linear polynomial differential operators

In our example,
y′′ + y′ − 6y = 0,

with auxiliary polynomial

P (r) = r2 + r − 6,

the roots of P (r) are r = 2 and r = −3. An equivalent
statement is that r − 2 and r + 3 are linear factors of P (r).

The functions y1(x) = e2x and y2(x) = e−3x are solutions to

y′1 − 2y1 = 0 and y′2 + 3y2 = 0,

respectively.

Theorem
The general solution to the linear differential equation

y′ − ay = 0

is y(x) = ceax.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Theorem
Suppose P (D) and Q(D) are polynomial differential operators

P (D)y1 = 0 = Q(D)y2.

If L = P (D)Q(D), then

Ly1 = 0 = Ly2.

Proof.

P (D)Q(D)y2 = P (D)
(
Q(D)y2

)
= P (D)0 = 0

P (D)Q(D)y1 = Q(D)P (D)y1

= Q(D)
(
P (D)y1

)
= Q(D)0 = 0 Q.E .D.

Example

The theorem implies that, since

(D − 2)y1 = 0 and (D + 3)y2 = 0,

the functions y1(x) = e2x and y2(x) = e−3x are solutions to

y′′ + y′ − 6y = (D2 +D − 6)y = (D − 2)(D + 3)y = 0.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Linear polynomial differential operators

Furthermore, solutions produced from different roots of the
auxiliary polynomial are independent.

Example

If y1(x) = e2x and y2(x) = e−3x, then

W [y1, y2](x) =

∣∣∣∣ e2x e−3x

2e2x −3e−3x
∣∣∣∣

= e−x
∣∣∣∣1 1
2 −3

∣∣∣∣ = −5e−x 6= 0.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Distinct linear factors

If we can factor the auxiliary polynomial into distinct linear
factors, then the solutions from each linear factor will combine
to form a fundamental set of solutions.

Example

Determine the general solution to y′′ − y′ − 2y = 0.

The auxiliary polynomial is

P (r) = r2 − r − 2 = (r − 2)(r + 1).

Its roots are r1 = 2 and r2 = −1. The functions y1(x) = e2x

and y2(x) = e−x satisfy

(D − 2)y1 = 0 = (D + 1)y2.

Therefore, y1 and y2 are solutions to the original equation.
Since we have 2 solutions to a 2nd degree equation, they
constitute a fundamental set of solutions; the general solution is

y(x) = c1e
2x + c2e

−x.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Multiple roots

What can go wrong with this process? The auxiliary
polynomial could have a multiple root. In this case, we would
get one solution from that root, but not enough to form the
general solution. Fortunately, there are more.

Theorem
The differential equation (D − r)my = 0 has the following m
linearly independent solutions:

erx, xerx, x2erx, . . . , xm−1erx.

Proof.
Check it. Q.E .D.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Multiple roots

Example

Determine the general solution to y′′ + 4y′ + 4y = 0.

1. The auxiliary polynomial is r2 + 4r + 4.

2. It has the multiple root r = −2.

3. Therefore, two linearly independent solutions are

y1(x) = e−2x and y2(x) = xe−2x.

4. The general solution is

y(x) = e−2x(c1 + c2x).

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Complex roots

What happens if the auxiliary polynomial has complex roots?
Can we recover real solutions? Yes!

Theorem
If P (D)y = 0 is a linear differential equation with real constant
coefficients and (D − r)m is a factor of P (D) with r = a+ bi
and b 6= 0, then

1. P (D) must also have the factor (D − r)m,

2. this factor contributes the complex solutions

e(a±bi)x, xe(a±bi)x, . . . , xm−1e(a±bi)x,

3. the real and imaginary parts of the complex solutions are
linearly independent real solutions

xkeax cos bx and xkeax sin bx

for k = 0, 1, . . . ,m− 1.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Complex roots

Example

Determine the general solution to y′′ + 6y′ + 25y = 0.

1. The auxiliary polynomial is r2 + 6r + 25.

2. Its has roots r = −3± 4i.

3. Two independent real-valued solutions are

y1(x) = e−3x cos 4x and y2(x) = e−3x sin 4x.

4. The general solution is

y(x) = e−3x(c1 cos 4x+ c2 sin 4x).

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Segue

We have now learned how to solve homogeneous linear
differential equations

P (D)y = 0

when P (D) is a polynomial differential operator. Now we will
try to solve nonhomogeneous equations

P (D)y = F (x).

Recall that the solutions to a nonhomogeneous equation are of
the form

y(x) = yc(x) + yp(x),

where yc is the general solution to the associated homogeneous
equation and yp is a particular solution.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Overview

The technique proceeds from the observation that, if we know
a polynomial differential operator A(D) so that

A(D)F = 0,

then applying A(D) to the nonhomogeneous equation

P (D)y = F (1)

yields the homogeneous equation

A(D)P (D)y = 0. (2)

A particular solution to (1) will be a solution to (2) that is not
a solution to the associated homogeneous equation P (D)y = 0.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Example

Determine the general solution to

(D + 1)(D − 1)y = 16e3x.

1. The associated homogeneous equation is
(D + 1)(D − 1)y = 0. It has the general solution
yc(x) = c1e

x + c2e
−x.

2. Recognize the nonhomogeneous term F (x) = 16e3x as a
solution to the equation (D − 3)y = 0.

3. The differential equation

(D − 3)(D + 1)(D − 1)y = 0

has the general solution y(x) = c1e
x + c2e

−x + c3e
3x.

4. Pick the trial solution yp(x) = c3e
3x. Substituting it into

the original equation forces us to choose c3 = 2.

5. Thus, the general solution is

y(x) = yc(x) + yp(x) = c1e
x + c2e

−x + 2e3x.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Annihilators and the method of undetermined
coefficients

This method for obtaining a particular solution to a
nonhomogeneous equation is called the method of
undetermined coefficients because we pick a trial solution
with an unknown coefficient. It can be applied when

1. the differential equation is of the form

P (D)y = F (x),

where P (D) is a polynomial differential operator,

2. there is another polynomial differential operator A(D)
such that

A(D)F = 0.

A polynomial differential operator A(D) that satisfies
A(D)F = 0 is called an annihilator of F .

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Finding annihilators

Functions that can be annihilated by polynomial differential
operators are exactly those that can arise as solutions to
constant-coefficient homogeneous linear differential equations.
We have seen that these functions are

1. F (x) = cxkeax,

2. F (x) = cxkeax sin bx,

3. F (x) = cxkeax cos bx,

4. linear combinations of 1–3.

If the nonhomogeneous term is one of 1–3, then it can be
annihilated by something of the form A(D) = (D− r)k+1, with
r = a in 1 and r = a+ bi in 2 and 3. Otherwise, annihilators
can be found by taking successive derivatives of F and looking
for linear dependencies.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Example

Determine the general solution to

(D − 4)(D + 1)y = 16xe3x.

1. The general solution to the associated homogeneous
equation (D − 4)(D + 1)y = 0 is yc(x) = c1e

4x + c2e
−x.

2. An annihilator for 16xe3x is A(D) = (D − 3)2.

3. The general solution to (D − 3)2(D − 4)(D + 1)y = 0
includes yc and the terms c3e

3x and c4xe
3x.

4. Using the trial solution yp(x) = c3e
3x + c4xe

3x, we find
the values c3 = −3 and c4 = −4.

5. The general solution is

y(x) = yc(x) + yp(x) = c1e
4x + c2e

−x − 3e3x − 4xe3x.

Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Example

Determine the general solution to

(D − 2)y = 3 cosx+ 4 sinx.

1. The associated homogeneous equation, (D − 2)y = 0, has
the general solution yc(x) = c1e

2x.

2. Look for linear dependencies among derivatives of
F (x) = 3 cosx+ 4 sinx. Discover the annihilator
A(D) = D2 + 1.

3. The general solution to (D2 + 1)(D − 2)y = 0 includes yc
and the additional terms c2 cosx+ c3 sinx.

4. Using the trial solution yp(x) = c2 cosx+ c3 sinx, we
obtain values c2 = −2 and c3 = −1.

5. The general solution is

y(x) = c1e
2x − 2 cosx− sinx.

1

Many physical problems, when formulated in mathematical
forms, lead to differential equations. Differential equations enter
naturally as models for many phenomena in economics, commerce,
engineering etc. Many of these phenomena are complex in nature
and very difficult to understand. But when they are described by
differential equations, it is easy to analyse them. For example, if the
rate of change of cost for x outputs is directly proportional to the
cost, then this phenomenon is described by the differential equation,

dx
dC = k C, where C is the cost and k is constant. The

solution of this differential equation is

C = C0 ekx where C = C0 when x = 0.

6.1 FORMATION OF DIFFERENTIAL EQUATIONS

A Differential Equation is one which involves one or more
independent variables, a dependent variable and one or more of
their differential coefficients.

There are two types of differential equations:

(i) Ordinary differential equations involving only one
independent variable and derivatives of the dependent variable
with respect to the independent variable.

(ii) Partial differential equations which involve more than one
independent variable and partial derivatives of the dependent
variable with respect to the independent variables.

The following are a few examples for differential equations:

1)
2









dx
dy

−3
dx
dy + 2y = ex 2)

2

2

dx
yd −5

dx
dy +3y = 0

DIFFERENTIAL EQUATIONS 6

2

3)
2
3

2

1

















+

dx
dy = k

2

2

dx
yd 4) x x

u
∂
∂ + y y

u
∂
∂ = 0

5) 2

2

x
u

∂
∂

+ 2

2

y
u

∂
∂

 + 2

2

z
u

∂
∂

 = 0 6) 2

2

x
z

∂
∂

+ 2

2

y
z

∂
∂

 = x + y

(1), (2) and (3) are ordinary differential equations and

(4), (5) and (6) are partial differential equations.

In this chapter we shall study ordinary differential equations
only.

6.1.1 Order and Degree of a Differential Equation

The order of the derivative of the highest order present in a
differential equation is called the order of the differential equation.

For example, consider the differential equation

x2
3

2

2







dx

yd + 3
2

3

3







dx

yd +7
dx
dy − 4y = 0

The orders of
3

3

dx
yd ,

2

2

dx
yd and

dx
dy are 3, 2 and 1 respectively. So

the highest order is 3. Thus the order of the differential equation is 3.

The degree of the derivative of the highest order present in a
differential equation is called the degree of the differential equation.
Here the differential coefficients should be free from the radicals
and fractional exponents.

Thus the degree of

x2
3

2

2







dx

yd +3
2

3

3







dx

yd +7
dx
dy − 4y = 0 is 2

Example 1

Write down the order and degree of the following
differential equations.

3

(i)
3








dx
dy

−− 4 






dx
dy

+ y = 3ex (ii)
32







2dx
yd + 7

4








dx
dy

= 3sin x

(iii) 2

2

dy
xd + a2x = 0 (iv)

2








dx
dy

−−3
3

3

dx
yd +7

2

2

dx
yd +4 







dx
dy

−−logx= 0

(v)
2

1 




+

dx
dy

= 4x (vi)
3
2

2

1
















+

dx
dy

 =
2

2

dx
yd

(vii)
2

2

dx
yd −−

dx
dy = 0 (viii) 21 x+ =

dx
dy

Solution :

The order and the degree respectively are,

(i) 1 ; 3 (ii) 2 ; 3 (iii) 2 ; 1 (iv) 3 ; 1

(v) 1 ; 2 (vi) 2 ; 3 (vii) 2 ; 2 (viii) 1 ; 1

Note

Before ascertaining the order and degree in (v), (vi) & (vii)
we made the differential coefficients free from radicals and fractional
exponents.

6.1.2 Family of curves

Sometimes a family of curves can be represented by a single
equation. In such a case the equation contains an arbitrary constant
c. By assigning different values for c, we get a family of curves. In
this case c is called the parameter or arbitrary constant of the
family.

Examples

(i) y = mx represents the equation of a family of straight lines
through the origin , where m is the parameter.

(ii) x2 + y2 = a2 represents the equation of family of concentric
circles having the origin as centre, where a is the parameter.

(iii) y = mx + c represents the equation of a family of straight
lines in a plane, where m and c are parameters.

4

6.1.3 Formation of Ordinary Differential Equation

Consider the equation y = mx + λ ---------(1)
where m is a constant and λ is the parameter.

This represents one parameter family of parallel straight lines
having same slope m.

Differentiating (1) with respect to x, we get,
dx
dy = m

This is the differential equation representing the above family
of straight lines.

Similarly for the equation y = Ae5x, we form the differential

equation
dx
dy = 5y by eliminating the arbitrary constant A.

The above functions represent one-parameter families. Each
family has a differential equation. To obtain this differential equation
differentiate the equation of the family with respect to x, treating
the parameter as a constant. If the derived equation is free from
parameter then the derived equation is the differential equation of
the family.

Note

(i) The differential equation of a two parameter family is obtained
by differentiating the equation of the family twice and by
eliminating the parameters.

(ii) In general, the order of the differential equation to be formed
is equal to the number of arbitrary constants present in the
equation of the family of curves.

Example 2

Form the differential equation of the family of curves
y = A cos 5x + B sin 5x where A and B are parameters.

Solution :

Given y = A cos 5x + B sin 5x

dx
dy = −5A sin5x + 5B cos 5x

5

2

2

dx
yd

= −25 (A cos 5x) − 25 (B sin 5x) = −25y

∴ 2

2

dx
yd

 + 25y = 0.

Example 3

Form the differential equation of the family of curves
y = ae3x + bex where a and b are parameters.

Solution :

y = ae3x + bex ------------(1)

dx
dy = 3ae3x + bex ------------(2)

2

2

dx
yd = 9ae3x + bex ------------(3)

(2) − (1) ⇒
dx
dy − y = 2ae3x ------------(4)

(3) − (2) ⇒
2

2

dx
yd −

dx
dy =6ae3x = 3 





 − y

dx
dy

[using (4)]

⇒
2

2

dx
yd − 4

dx
dy + 3y = 0

Example 4

Find the differential equation of a family of curves given
by y = a cos (mx + b), a and b being arbitrary constants.

Solution :

 y = a cos (mx + b) ------------(1)

dx
dy = −ma sin (mx + b)

2

2

dx
yd = − m2a cos (mx + b) = −m2y [using (1)]

∴
2

2

dx
yd + m2y = 0 is the required differential equation.

6

Example 5

Find the differential equation by eliminating the arbitrary
constants a and b from y = a tan x + b sec x.

Solution :

y = a tan x + b sec x

Multiplying both sides by cos x we get,

y cos x = a sin x + b

Differentiating with respect to x we get

y (−sin x) +
dx
dy cos x = a cos x

⇒ −y tan x +
dx
dy = a -----------(1)

Differentiating (1) with respect to x, we get

2

2

dx
yd −

dx
dy tan x − y sec2 x = 0

EXERCISE 6.1

1) Find the order and degree of the following :

(i) x2
2

2

dx
yd −3

dx
dy

 + y = cos x (ii) 3

3

dx
yd −3

2

2

2







dx

yd
+5

dx
dy

 = 0

(iii) 2

2

dx
yd −

dx
dy = 0 (iv)

2
1

2

2

1 




 +
dx

yd =
dx
dy

(v)
3
1

1 




 +

dx
dy

= 2

2

dx
yd (vi)

2

2

1
dx

yd+ = x
dx
dy

(vii)
2
3

2

2







dx

yd =
2









dx
dy

(viii) 3 2

2

dx
yd +5

3









dx
dy

−3y = ex

(ix) 2

2

dx
yd = 0 (x)

3
2

12

2






 +
dx

yd =
3
1








dx
dy

2) Find the differential equation of the following

(i) y = mx (ii) y = cx − c + c2

7

(iii) y = mx +
m
a , where m is arbitrary constant

(iv) y = mx + c where m and c are arbitrary constants.

3) Form the differential equation of family of rectangular
hyperbolas whose asymptotes are the coordinate axes.

4) Find the differential equation of all circles x2 + y2 + 2gx = 0
which pass through the origin and whose centres are on
the x-axis.

5) Form the differential equation of y2 = 4a (x + a), where a is
the parameter.

6) Find the differential equation of the family of curves
y = ae2x + be3x where a and b are parameters.

7) Form the differential equation for y = a cos 3x + b sin 3x
where a and b are parameters.

8) Form the diffrential equation of y = aebx where a and b
are the arbitrary constants.

9) Find the differential equation for the family of concentric circles
x2 + y2 = a2 , a is the paramter.

6.2 FIRST ORDER DIFFERENTIAL EQUATIONS

6.2.1 Solution of a differential equation

A solution of a differential equation is an explicit or implicit
relation between the variables which satisfies the given differential
equation and does not contain any derivatives.

If the solution of a differential equation contains as many
arbitrary constants of integration as its order, then the solution is
said to be the general solution of the differential equation.

The solution obtained from the general solution by assigning
particular values for the arbitrary constants, is said to be a particular
solution of the differential equation.
For example,

8

 Differential equation General solutuion Particular solution

(i)
dx
dy = sec2x y = tan x + c y= tan x - 5

 (c is arbitrary constant)

(ii)
dx
dy = x2 + 2x y =

3

3x +x2+ c y =
3

3x + x 2 + 8

(iii) 2

2

dx
yd

−9y = 0 y = Ae3x + Be-3x y = 5e3x−7e-3x

6.2.2 Variables Separable

If it is possible to re-arrange the terms of the first order and
first degree differential equation in two groups, each containing only
one variable, the variables are said to be separable.

When variables are separated, the differentail equation takes
the form f(x) dx + g(y) dy = 0 in which f(x) is a function of x
only and g(y) is a function of y only.

Then the general solution is

∫ f (x) dx + ∫ g (y) dy = c (c is a constant of integration)

For example, consider x
dx
dy − y = 0

x
dx
dy = y ⇒ y

dy
 =

x
dx (separating the variables)

⇒ ∫ y
dy

= ∫ x
dx + k where k is a constant of integration.

⇒ log y = log x + k.

The value of k varies from −∞ to ∞.

This general solution can be expressed in a more convenient
form by assuming the constant of integration to be log c. This is
possible because log c also can take all values between -∞ and ∞
as k does. By this assumption, the general solution takes the form

log y − log x = log c ⇒ log (
x
y) = log c

9

i.e.
x
y = c ⇒ y = cx

which is an elegant form of the solution of the differential equation.

Note
(i) When y is absent, the general form of first order linear

differential equation reduces to
dx
dy = f(x) and therefore the

solution is y = ∫ f (x) dx + c

(ii) When x is absent , it reduces to
dx
dy = g(y)

and in this case, the solution is ∫)(yg
dy

 = ∫dx + c

Example 6
Solve the differential equation xdy + ydx = 0

Solution :

xdy + ydx = 0 , dividing by xy we get

y
dy

+ x
dx = 0. Then ∫ y

dy
 + ∫ x

dx = c1

∴ log y + log x = log c ⇒ xy = c

Note
(i) xdy + ydx = 0 ⇒ d(xy) = 0 ⇒ xy = c, a constant.

(ii) d(y
x

) = 2y
xdyydx −

 ∴ ∫
−

2y
xdyydx

 = ∫d (y
x

) + c = y
x

 + c

Example 7

Solve
dx
dy = e3x+y

Solution :

dx
dy

= e3x ey ⇒ ye
dy

 = e3x dx

∫ − ye dy = ∫ xe3 dx + c

⇒ −e−y =
3

3 xe + c ⇒
3

3 xe + e-y = c

10

Example 8

Solve (x2 −− ay) dx = (ax −− y2)dy

Solution :

Writing the equation as

 x2dx + y2dy = a(xdy + ydx)

⇒ x2dx + y2dy = a d(xy)

∴ ∫ 2x dx + ∫ 2y dy= a ∫ d (xy) + c

⇒
3

3x +
3

3y = a(xy) + c

Hence the general solution is x 3 + y3 = 3axy + c

Example 9

Solve y 2
1

)(1 2x+ dy + x 21 y+ dx = 0

Solution :

 y 21 x+ dy + x 21 y+ dx = 0 [dividing by 21 x+ 21 y+]

⇒
21 y

y

+
dy +

21 x
x
+

dx = 0

∴ ∫
+ 21 y

y
dy + ∫

+ 21 x
x dx = c1

∴ 2
1

∫
−

2
1

t dt + 2
1

∫
−

2
1

u du = c

i.e. 2
1

t + 2
1

u = c or 21 y+ + 21 x+ = c

Note : This problem can also be solved by using

∫[f(x)]n f ′(x) dx =
1

)]([1

+

+

n
xf n

Example 10

Solve (sin x + cos x) dy + (cos x −− sin x) dx = 0

Put 1+y2 = t
2ydy = dt

put 1+x2 = u
2xdx = du

11

Solution :

The given equation can be written as

dy + xx
xx

cossin
sincos

+
− dx = 0

⇒ ∫dy + ∫ +
−

xx
xx

cossin
sincos dx = c

⇒ y + log(sin x + cos x) = c

Example 11

Solve x
dx
dy + cos y = 0, given y =

4
ð when x = 2

Solution :

x dy = −cos y dx

∴ ∫ sec y dy = − ∫ x
dx + k, where k is a constant of integration.

log (sec y + tan y) + log x = log c, where k = log c

or x(sec y + tan y) = c.

When x = 2 , y =
4
π , we have

2 (sec
4
π + tan

4
π) = c or c = 2 (2 + 1) = 2 + 2

∴ The particular solution is x (sec y + tan y) = 2 + 2

Example 12

The marginal cost function for producing x units is
MC = 23+16x −− 3x2 and the total cost for producing 1 unit is
Rs.40. Find the total cost function and the average cost
function.

Solution :

Let C(x) be the total cost function where x is the number of
units of output. Then

dx
dC = MC = 23 + 16x − 3x2

12

∴ ∫ dx
dC dx = ∫ (23+16x − 3x2)dx+ k
 C = 23x + 8x2 − x3 + k, where k is a constant

At x = 1, C(x) = 40 (given)

23(1) + 8(1)2 - 13 + k = 40 ⇒ k = 10

∴ Total cost function C(x) = 23x + 8x2 − x3 + 10

Average cost function =
x

functioncost Total

=
x

xxx 10823 32 +−+

Average cost function = 23 + 8x − x2 +
x

10

Example 13

What is the general form of the demand equation which
has a constant elasticity of −−1 ?

Solution :
Let x be the quantity demanded at price p. Then the

elasticity is given by

ηd =
x
p−

dp
dx

Given
x
p−

dp
dx = −1 ⇒

x
dx =

p
dp ⇒ ∫ x

dx = ∫ p
dp

 + log k

⇒ log x = log p + log k, where k is a constant.

⇒ log x = log kp ⇒ x = kp ⇒ p =
k
1 x

i.e. p = cx , where c =
k
1 is a constant

Example 14

The relationship between the cost of operating a
warehouse and the number of units of items stored in it is

given by
dx
dC = ax + b, where C is the monthly cost of operating

the warehouse and x is the number of units of items in storage.
Find C as a function of x if C = C0 when x = 0.

13

Solution :

Given
dx
dC = ax + b ∴ dC = (ax + b) dx

∫ Cd = ∫ +)b(ax dx + k, (k is a constant)

⇒ C =
2

2ax +bx + k,

when x = 0, C = C0 ∴ (1) ⇒ C0 = 2
a (0) + b(0) + k

⇒ k = C0

Hence the cost function is given by

C = 2
a x2 + bx + C0

Example 15

The slope of a curve at any point is the reciprocal of
twice the ordinate of the point. The curve also passes through
the point (4, 3). Find the equation of the curve.

Solution :

Slope of the curve at any point P(x, y) is the slope of the
tangent at P(x, y)

∴
dx
dy = y2

1
 ⇒ 2ydy = dx

∫ y2 dy = ∫dx + c ⇒ y2 = x + c

Since the curve passes through (4, 3), we have

9 = 4 + c ⇒ c = 5
∴ Equation of the curve is y2 = x + 5

EXERCISE 6.2

1) Solve (i)
dx
dy + 2

2

1
1

x
y

−
−

 = 0 (ii)
dx
dy = 2

2

1
1

x
y

+
+

 (iii)
dx
dy =

1
2

−
+

x
y

 (iv) x 21 y+ + y 21 x+
dx
dy

= 0

14

2) Solve (i)
dx
dy

= e2x-y + x3 e−y (ii) (1−ex) sec2 y dy + 3ex tan y dx = 0

3) Solve (i)
dx
dy = 2xy + 2ax (ii) x(y2 + 1) dx + y(x2 + 1) dy = 0

 (iii) (x2 − yx2)
dx
dy

 + y2 + xy2 = 0

4) Solve (i) xdy + ydx + 4 221 yx− dx =0 (ii) ydx−xdy+3x2y2ex3
dx = 0

5) Solve (i)
dx
dy =

22
54

2

2

+−
++

xx
yy

(ii)
dx
dy

+
1
1

2

2

++
++

xx
yy

 = 0

6) Find the equation of the curve whose slope at the point (x, y) is
3x2 + 2, if the curve passes through the point (1, -1)

7) The gradient of the curve at any point (x, y) is proportional to
its abscissa. Find the equation of the curve if it passes through
the points (0, 0) and (1, 1)

8) Solve : sin-1x dy +
21 x

y

−
dx = 0, given that y = 2 when x =

2
1

9) What is the general form of the demand equation which has an
elasticity of - n ?

10) What is the general form of the demand equation which has an

elasticity of −
2
1 ?

11) The marginal cost function for producing x units is
MC = e3x + 7. Find the total cost function and the average cost
function, given that the cost is zero when there is no production.

6.2.3 Homogeneous differential equations

A differential equation in x and y is said to be homogeneous
if it can be defined in the form

dx
dy =),(

),(
yxg
yxf

 where f(x, y) and g(x, y) are

homogeneous functions of the same degree in x and y.

dx
dy = 22 yx

xy
+

 ,
dx
dy = xy

yx
2

22 +
,

dx
dy = 33

2

yx
yx

+

15

and
dx
dy =

x
yyx +− 22

are some examples of first order homogeneous differential equations.

6.2.4 Solving first order homogeneous differential equations

If we put y = vx then
dx
dy = v + x

dx
dv and the differential

equation reduces to variables sepaerable form. The solution is got

by replacing
x
y for v after the integration is over..

Example 16

Solve the differential equation (x2 + y2)dx = 2xydy

Solution :

The given differential equation can be written as

dx
dy = xy

yx
2

22 +
------------- (1)

This is a homogeneous differential equation

Put y = vx ∴
dx
dy = v + x

dx
dv ------------- (2)

Substituting (2) in (1) we get,

 v + x
dx
dv =)(2

222

vxx
xvx +

 =
v
v

2
1 2+

 x
dx
dv =

v
v

2
1 2+ − v ⇒ x

dx
dv =

v
v

2
1 2−

Now, separating the variables,

21
2

v
v

− dv=
x
dx or ∫ −

−
21

2
v
v = ∫ −

x
dx + c1

log (1 − v2) = − log x + log c [∫
′

)(
)(

xf
xf

dx = log f(x)]

or log (1 − v2) + log x = log c ⇒ (1 − v2) x = c

Replacing v by
x
y , we get

16






 − 2

2

1
x
y

x = c or x2 − y2 = cx

Example 17

Solve : (x3 + y3)dx = (x2y + xy2) dy

Solution :

The given equation can be written as

dx
dy = 22

33

xyyx
yx

+
+

-------------- (1)

Put y = vx ∴
dx
dy = v + x

dx
dv

⇒ v + x
dx
dv = 2

31
vv
v

+
+

⇒ x
dx
dv = 2

31
vv
v

+
+ − v =)1(

1 2

+
−
vv

v
 =)1(

)1)(1(
+

+−
vv

vv

 ∫ − v
v

1
dv = ∫ x

1 dx + c

⇒ ∫ −
−

v
v

1
 dv = − ∫ x

1 dx + c or ∫ −
−−

v
v

1
1)1(dv =− ∫ x

1 dx + c

⇒ ∫ 






−
−+

v1
)1(1 dv = − ∫ x

1 dx + c

∴ v + log (1 − v) = − log x + c

Replacing v by
x
y , we get

x
y + log (x − y) = c

Example 18

Solve x
dx
dy = y −− 22 yx +

Solution :

Now,
dx
dy =

x
yxy 22 +− ------------(1)

Put y = vx ∴
dx
dy = v + x

dx
dv

17

(1) ⇒ v + x
dx
dv =

x
xvxvx 222 +− = v − 21 v+

∴ x
dx
dv = − 21 v+ or = 21 v

dv
+

 = −
x
dx

⇒ ∫
+ 21 v
dv

= − ∫ x
dx + c1

⇒ log (v + 21 v+)= − log x + log c

 log x (v + 21 v+)= log c

or x (v + 21 v+) = c

i.e. x











++ 2

2

1
x
y

x
y

= c or y + 22 yx + = c

Example 19

Solve (x +y) dy + (x −− y)dx = 0
Solution :

The equation is
dx
dy = − 







+
−

yx
yx

------------ (1)

Put y = vx ∴
dx
dy = v + x

dx
dv

we get v + x
dx
dv = −

vxx
vxx

+
− or v + x

dx
dv = −

v
v

+
−

1
1

i.e. x
dx
dv = − 


 ++

− v
v
v

1
1 or x

dx
dv = v

vvv
+

++−−
1

)1(2

∴ 21
1

v
v

+
+ dv =

x
1− dx or

∫ + 21 v
dv dv + ∫ + 21

2
2
1

v
v dv = ∫−

x
1 dx + c

tan-1v +
2
1 log (1 + v2) = −log x + c

i.e. tan-1 






x
y

 +
2
1 log 







 +
2

22

x
yx

 = −logx + c

18

tan-1 






x
y

 +
2
1 log (x2 + y2) −

2
1 logx2 = −logx + c

i.e. tan-1 







x
y

 +
2
1 log (x2 + y2) = c

Example 20

The net profit p and quantity x satisfy the differential

equation
dx
dp

= 2

33

3
2

xp
xp −

.

Find the relationship between the net profit and demand
given that p = 20 when x = 10.

Solution :

dx
dp

= 2

33

3
2

xp
xp −

 -------------(1)

is a differential equation in x and p of homogeneous type

Put p = vx ∴
dx
dp

 = v + x dx
dv

(1) ⇒ v + x dx
dv = 2

3

3
12

v
v −

 ⇒ x dx
dv = 2

3

3
12

v
v −

 −v

⇒ x dx
dv = − 



 +

2

3

3
1

v
v

3

2

1
3

v
v

+ dv= − x
dx ∴ ∫ + 3

2

1
3

v
v

dv = − ∫ x
dx = k

⇒ log (1 + v3) = −log x + log k , where k is a constant

log (1 + v3) = log x
k i.e. 1 + v3 = x

k

Replacing v by
x
p

, we get

⇒ x3 + p3 = kx 2

But when x = 10, it is given that p = 20

∴ (10)3 + (20)3 = k(10)2 ⇒ k = 90 ∴ x3+p3 = 90x2

p3 = x2 (90 − x) is the required relationship.

19

Example 21

The rate of increase in the cost C of ordering and
holding as the size q of the order increases is given by the
differential equation

dq
dC

 = 2

2 2CC
q

q+
. Find the relationship between C and

q if C = 1 when q = 1.

Solution :

dq
dC

 = 2

2 C2C
q

q+
------------(1)

This is a homogeneous equation in C and q

Put C = vq ∴ dq
dC

 = v + q dq
dv

(1) ⇒ v + q dq
dv

 = 2

222 2
q

vqqv +
 = v2 + 2v

⇒ q dq
dv

= v2 + v = v (v + 1) ⇒)1(+vv
dv

 = q
dq

⇒ ∫ +
−+
)1(

)1(
vv

vv
dv = ∫ q

dq
 + k , k is a constant

⇒ ∫ v
dv − ∫ +1v

dv = ∫ q
dq

 + log k,

⇒ log v − log (v + 1) = log q + log k

⇒ log
1+v

v = log qk or
1+v

v = kq

Replacing v by q
C

 we get, C = kq(C + q)

when C = 1 and q = 1

C = kq(C + q) ⇒ k =
2
1

∴ C =
2

)C(qq + is the relation between C and q

20

Example 22

The total cost of production y and the level of output x
are related to the marginal cost of production by the equation
(6x2 + 2y2) dx −− (x2 + 4xy) dy = 0. What is the relation
between total cost and output if y = 2 when x = 1?

Solution :

Given (6x2 + 2y2) dx = (x2 + 4xy) dy

∴
dx
dy =

xyx
yx

4
26

2

22

+
+

------------(1)

is a homogeneous equation in x and y.

Put y = vx ∴
dx
dy = v +x

dx
dv

(1) ⇒ v + x
dx
dv =

xyx
yx

4
26

2

22

+
+

 or 226
41

vv
v

−−
+ dv =

x
1 dx

∴ − ∫ −−
−−

226
41

vv
v dv = ∫ x

1 dx + k, where k is a constant

⇒ −log(6−v−2v2) = log x + log k = log kx

⇒ 226
1

vv −− = kx

⇒ x = c(6x2 − xy −2y2) where c =
k
1 and v =

x
y

when x = 1 and y = 2 , 1 = c(6 − 2 − 8) ⇒ c = −
4
1

⇒ 4x = (2y2 + xy − 6x2)

EXERCISE 6.3

1) Solve the following differential equations

(i)
dx
dy =

x
y − 2

2

x
y

(ii) 2
dx
dy =

x
y − 2

2

x
y

(iii)
dx
dy = xyx

yxy
3
2

2

2

−
−

(iv) x(y − x)
dx
dy = y 2

(v)
dx
dy = xyx

xyy
2
2

2

2

−
−

(vi)
dx
dy = 22 yx

xy
−

21

(vii) (x + y)2 dx = 2x2 dy (viii) x
dx
dy = y + 22 yx +

2) The rate of increase in the cost C of ordering and holding as
the size q of the order increases is given by the differential

eqation dq
dC

= q
q

C2
C 22 +

. Find the relatinship between C and

q if C = 4 when q = 2.

3) The total cost of production y and the level of output x
are related to the marginal cost of production by the

equation
dx
dy = xy

yx 2224 −
. What is the total cost function

if y = 4 when x = 2 ?

6.2.5 First order linear differential equation
A first order differential equation is said to be linear when

the dependent variable and its derivatives occur only in first degree
and no product of these occur.

An equation of the form
dx
dy + Py = Q,

where P and Q are functions of x only, is called a first order
linear differential equation.

For example,

(i)
dx
dy +3y = x3 ; here P = 3, Q = x3

(ii)
dx
dy + y tan x = cos x, P = tan x, Q = cos x

(iii)
dx
dy x − 3y = xex, P =

x
3− , Q = ex

(iv) (1 + x2)
dx
dy + xy = (1+x2)3, P = 21 x

x
+ , Q = (1 + x2)2

are first order linear differential equations.

6.2.6 Integrating factor (I.F)

A given differential equation may not be integrable as such.
But it may become integrable when it is multiplied by a function.

22

Such a function is called the integrating factor (I.F). Hence an
integrating factor is one which changes a differential equation into
one which is directly integrable.

Let us show that ∫ dx
e

P
 is the integrating factor

 for
dx
dy + Py = Q ---------(1)

where P and Q are function of x.

Now,
dx
d)(

P∫ dx
ye =

dx
dy ∫ dx

e
P

 + y
dx
d (∫ dx

e
P

)

=
dx
dy ∫ dx

e
P

 + y ∫ dx
e

P

dx
d ∫ dxP

=
dx
dy ∫ dx

e
P

 + y ∫ dx
e

P
 P = (

dx
dy +Py) ∫ dx

e
P

When (1) is multiplied by ∫ dx
e

P
,

it becomes (
dx
dy +Py) ∫ dx

e
P

 = Q ∫ dx
e

P

⇒
dx
d)(

P∫ dx
ye = Q ∫ dx

e
P

Integrating this, we have

y ∫ dx
e

P
 = ∫ ∫ dx

e
P

 Q dx + c -------------(2)

So ∫ dx
e

p
 is the integrating factor of the differential equation.

Note

(i) elog f(x) = f(x) when f(x) > 0

(ii) If Q = 0 in
dx
dy + Py = Q, then the general solution is

y (I.F) = c, where c is a constant.

(iii) For the differential equation dy
dx

 + Px = Q where P and Q

are functions of y alone, the (I.F) is ∫ dy
e

P
 and the solution is

x (I.F) = ∫Q (I.F) dy + c

23

Example 23

Solve the equation (1 −− x2)
dx
dy −− xy = 1

Solution :

The given equation is (1−x2)
dx
dy − xy = 1

⇒
dx
dy −

21 x
x

−
 y = 21

1
x−

This is of the form
dx
dy + Py = Q,

where P = 21 x
x

−
− ; Q = 21

1
x−

I.F = ∫ dx
e

P
 =

∫ −
− dx

x
x

e 21 = 21 x−

The general solution is,

y (I.F) = ∫Q (I.F)dx + c

y 21 x− = ∫ − 21
1
x

21 x− dx + c

= ∫
− 21 x
dx

 + c

y 21 x− = sin-1x + c

Example 24

Solve
dx
dy +ay = ex (where a ≠≠ −−1)

Solution :

The given equation is of the form
dx
dy + Py = Q

Here P = a ; Q = ex

∴ I.F = ∫ dx
e

P
 = eax

The general solution is

y (I.F) = ∫Q (I.F)dx + c

24

⇒ y eax = ∫ xe eax dx + c = ∫ + xae)1(dx + c

y eax =
1

)1(

+
+

a
e xa

 + c

Example 25

Solve cos x
dx
dy + y sin x = 1

Solution :

The given equation can be reduced to

dx
dy + y

x
x

cos
sin =

xcos
1 or

dx
dy + y tanx = secx

Here P = tanx ; Q = secx

 I.F = ∫ dxx
e

 tan
 = elog secx = sec x

The general solution is

y (I.F) = ∫Q (I. F)) dx + c

y sec x = ∫ x2sec dx + c

∴ y sec x = tan x + c

Example 26

A bank pays interest by treating the annual interest as
the instantaneous rate of change of the principal. A man
invests Rs.50,000 in the bank deposit which accrues interest,
6.5% per year compounded continuously. How much will he
get after 10 years? (Given : e.65 =1.9155)

Solution :

Let P(t) denotes the amount of money in the account at time
t. Then the differential equation governing the growth of money is

dt
dP =

100
5.6 P = 0.065P ⇒ ∫ P

Pd = ∫)065.0(dt + c

logeP = 0.065t + c ∴ P = e0.065t ec

25

 P = c1 e0.065t -------------(1)

At t = 0, P = 50000.

(1) ⇒ 50000 = c1 e0 or c1 = 50000

 ∴ P = 50000 e0.065t

At t = 10, P= 50000 e 0.065 x 10 = 50000 e 0.65

= 50000 x (1.9155) = Rs.95,775.

Example 27

Solve
dx
dy + y cos x =

2
1 sin 2x

Solution :

Here P = cos x ; Q =
2
1 sin 2x

∫ P dx = ∫ xcos dx = sin x

I.F = ∫ dx
e

P
 = e sin x

The general solution is

y (I.F) = ∫Q (I.F) dx + c

= ∫ 2
1 sin 2x. esin x dx + c

= ∫ xsin cos x. esin x dx + c

= ∫ t et dt + c = et (t − 1) + c

= esin x (sin x − 1) + c

Example 28

A manufacturing company has found that the cost C of
operating and maintaining the equipment is related to the
length m of intervals between overhauls by the equation

m2
dm
dC + 2mC = 2 and C = 4 when m = 2. Find the

relationship between C and m.

Let sin x = t,

then cos x dx = dt

26

Solution :

Given m2
dm
dC + 2mC = 2 or

dm
dC +

m
C2 = 2

2
m

This is a first order linear differential equation of the form

dx
dy + Py = Q, where P =

m
2 ; Q = 2

2
m

I.F = ∫ dm
e

P
 = ∫ dm

e m
2

 = elog m2 = m2

General solution is

 C (I.F) = ∫Q (I.F) dm + k where k is a constant

 Cm2 = ∫ 2
2

m
m2 dm + k

 Cm2 = 2m + k

When C = 4 and m = 2, we have

16 = 4 + k ⇒ k = 12

∴ The relationship between C and m is
Cm2 = 2m + 12 = 2(m + 6)

Example 29

Equipment maintenance and operating costs C are
related to the overhaul interval x by the equation

x2
dx
dC −− 10xC = −−10 with C = C0 when x = x0.

Find C as a function of x.

Solution :

x2
dx
dC − 10xC = −10 or

dx
dC −

x
C10 = 2

10
x

−

This is a first order linear differential equation.

 P =
x

10− and Q = 2
10
x

−

∫ P dx = ∫ −
x

10 dx = −10 log x = log 



10
1
x

27

I.F = ∫ dx
e

P
 =









10
1log

xe = 10
1
x

General solution is

 C(I.F) = ∫Q (I.F) dx + k, where k is a constant.

 10
C
x

= ∫ −
2
10
x





10
1
x

dx + k or 10
C
x

 =
11
10 




11
1
x

+ k

when C = C0 x = x0

10
0

0C
x =

11
10 





11
0

1
x + k ⇒ k = 10

0

C
x

− 11
011

10
x

∴ The solution is

 10
C
x

 =
11
10 




11
1
x

 + 







− 11

0
10
0 11

10C
xx

⇒ 10
C
x

− 10
0

C
x

 =
11
10 





− 11

0
11

11
xx

EXERCISE 6.4

1) Solve the following differential equations

(i)
dx
dy + y cot x = cosec x

(ii)
dx
dy − sin 2x = y cot x

(iii)
dx
dy + y cot x = sin 2x

(iv)
dx
dy + y cot x = 4x cosec x, if y = 0 when x =

2
π

(v)
dx
dy − 3y cot x = sin 2x and if y = 2 when x =

2
π

(vi) x
dx
dy − 3y = x2

(vii) dx
dy

+ 21
2

x
xy

+ = 22)1(
1
x+

 given that y = 0 when x = 1

28

(viii)
dx
dy − y tan x = ex sec x

(ix) log x
dx
dy +

x
y

 = sin 2x

2) A man plans to invest some amount in a small saving scheme
with a guaranteed compound interest compounded continuously
at the rate of 12 percent for 5 years. How much should he
invest if he wants an amount of Rs.25000 at the end of 5 year
period. (e-0.6 = 0.5488)

3) Equipment maintenance and operating cost C are related to

the overhaul interval x by the equation x2

dx
dC −(b−1)Cx = −ba,

where a, b are constants and C = C0 when x = x0. Find the
relationship between C and x.

4) The change in the cost of ordering and holding C as quantity q

is given by dq
dC

= a −
q
C where a is a constant.

Find C as a function of q if C = C0 when q = q0

6.3 SECOND ORDER LINEAR DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

The general form of linear and second order differential
equation with constant coefficients is

a 2

2

dx
yd

 + b
dx
dy + cy = f(x).

We shall consider the cases where
(i) f(x) = 0 and f(x) = Keλx

For example,

(i) 3 2

2

dx
yd

− 5
dx
dy + 6y = 0 (or) 3y``− 5y` + 6y = 0

(ii) 2

2

dx
yd

− 4
dx
dy + 3y = e5x (or) (D2 − 4D + 3)y = e5x

29

(iii) 2

2

dx
yd

 +
dx
dy − y = 7 (or) (D2 + D − 1)y = 7

are second order linear differential equations.

6.3.1 Auxiliary equations and Complementary functions

For the differential equation, a 2

2

dx
yd

 + b
dx
dy + cy = f(x),

am2 + bm + c = 0 is said to be the auxiliary equation. This is a
quadratic equation in m. According to the nature of the roots m1
and m2 of auxiliary equation we write the complementary function
(C.F) as follows.

 Nature of roots Complementary function

(i) Real and unequal (m1 ≠ m2) Aem1x + Bem2x

(ii) Real and equal (m1 = m2=m say) (Ax + B) emx

(iii) Complex roots (α + iβ) eαx(Acos βx + Bsin βx)

(In all the cases, A and B are arbitrary constants)

6.3.2 Particular Integral (P.I)
Consider (aD2 + bD + c)y = eλx

Let f(D) = aD2 + bD + c

Case 1 : If f(λ) ≠ 0 then λ is not a root of the auxiliary
equation f(m) = 0.

Rule : P.I =)D(
1

f eλx =
)(

1
λf

eλx.

Case 2 : If f(λ) = 0, λ satisfies the auxiliary equation f(m) = 0.
Then we proceed as follows.

(i) Let the auxiliary equation have two distinct roots m1 and m2
and let λ = m1.
Then f(m) = a(m − m1) (m − m2) = a(m − λ) (m − m2)

Rule : P.I =))(-D(
1

2mDa −λ eλx =
)(

1
2ma −λ xeλx

30

(ii) Let the auxiliary equation have two equal roots each equal to
λ. i.e. m1 = m2 = λ.

∴ f(m) = a (m − λ)2

Rule : ∴ P.I = 2)D(
1

λ−a
 eλx =

! 2
1 2x
a

 eλx

6.3.3 The General solution

The general solution of a second order linear differential
equation is y = Complementary function (C.F) + Particular
integral (P.I)

Example 30

Solve 3 2

2

dx
yd

 −− 5
dx
dy + 2y = 0

Solution :

The auxiliary equation is 3m2 − 5m + 2 = 0
⇒ (3m − 2) (m − 1) = 0

The roots are m1 =
3
2 and m2 = 1 (Real and distinct)

∴ The complementary function is

C.F = A
x

e 3
2

 + Bex

The general solution is

y = A
x

e 3
2

 + Bex

Example 31

Solve (16D2 −− 24D + 9) y = 0
Solution :

The auxiliary equation is 16m2 − 24m + 9 = 0

(4m -3)2 = 0 ⇒ m =
4
3 ,

4
3

The roots are real and equal

31

∴ The C.F is (Ax + B)
x

e 4
3

The general solution is y = (Ax + B)
x

e 4
3

Example 32
Solve (D2 −− 6D + 25) y = 0

Solution :

The auxiliary equation is m2 − 6m + 25 = 0

⇒ m =
a

acbb
2

42 −±−

=
2

100366 −± = 2
86 i± = 3 + 4i

The roots are complex and is of the form

α + iβ with α = 3 and β = 4

C.F = eαx (A cos βx + B sin βx)
 = e3x (A cos 4x + B sin 4x)

The general solution is

y = e3x (A cos 4x + B sin 4x)

Example 33

Solve 2

2

dx
yd

 - 5
dx
dy + 6y = e5x

Solution :
The auxiliary equation is m2 - 5m + 6 = 0 ⇒ m = 3 , 2

∴ Complementary function C. F = Ae3x + Be2x

P. I =
6D5D

1
2 +− e5x =

6
1 e5x

∴ The general solution is

y = C.F + P. I

y = Ae3x + Be2x +
6

5 xe

32

Example 34

Solve 2dx
yd 2

 + 4
dx
dy + 4y = 2e-3x

Solution :

The auxiliary equation is m2 + 4m + 4 = 0 ⇒ m = −2, −2

∴ Complementary function is C. F = (Ax + B)e−2x

P. I =
4D4D

1
2 ++

2e−3x

=
4)3(4)3(

1
2 +−+−

 2e−3x = 2e−3x

∴ The general solution is

y = C.F + P. I
y = (Ax + B) e−2x + 2e−3x

Example 35

Solve 2

2

dx
yd

 −− 2
dx
dy + 4y = 5 + 3e-x

Solution :

The auxiliary equation is m2 − 2m + 4 = 0

⇒ m =
2

1642 −± =
2

322 i± = 1 + i 3

C.F = ex (A cos 3 x + B sin 3 x)

P. I1 =
4D2D

1
2 +− 5 e0x =

4
1 5 e0x =

4
5

P.I2 =
4D2D

1
2 +− 3 e−x

=
4)1(2)1(

1
2 +−−−

 3e-x =
7

3 xe−

∴ The general solution is

y = C.F + P. I1 + P.I2

y = ex (A cos 3 x + B sin 3 x) +
4
5 +

7
3 e-x

33

Example 36

Solve (4D2 - 8D+ 3)y =
x

e 2
1

Solution :
The auxiliary equation is 4m2 - 8m + 3 = 0

m1 = 2
3 , m2 =

2
1

C.F = A
x

e 2
3

+ B
x

e 2
1

P. I =
3D84D

1
2 +−

x
e 2

1

 =
)

2
1-D)(

2
3-4(D
1 x

e 2
1

=)D)(4(
1

2
1

2
3

2
1 −−

x
e 2

1 =
4−

x x
e 2

1

∴ The general solution is
y = C.F. + P. I

y = A
x

e 2
3

 + B
x

e 2
1

 −
4
x 2

x

e

Example 37

Solve : (D 2 + 10D + 25)y =
2
5 + e-5x

Solution :
The auxiliary equation is m2 + 10m + 25 = 0

⇒ (m + 5)2 = 0

⇒ m = −5, −5
∴ C.F = (Ax + B) e−5x

P. I1 =
25D10D

1
2 ++

2
5 e0x =

25
1 




2
5 =

10
1

P.I2 =
25D10D

1
2 ++ e−5x = 2)5D(

1
+ e−5x

=
! 2

2x e−5x =
2

2x (e−5x)

∴ The general solution is

34

y = C.F + P. I1 + P.I2

y = (Ax + B) e−5x +
10
1 +

2

2x e−5x

Example 38

Suppose that the quantity demanded

Qd = 42 −− 4p −− 4
dt
dp + 2

2

dt
pd

 and quantity supplied

Qs = -6 + 8p where p is the price. Find the equilibrium price
for market clearance.
Solution :

For market clearance, the required condition is Qd = Qs.

⇒ 42 − 4p − 4
dt
dp + 2

2

dt
pd

 = −6 + 8p

⇒ 48 − 12p − 4
dt
dp + 2

2

dt
pd

 = 0

⇒ 2

2

dt
pd

 − 4
dt
dp − 12p = -48

The auxiliary equation is m2 − 4m − 12 = 0
⇒ m = 6 , −2

C.F. = Ae6t + Be-2t

P. I =
12D4D

1
2 −− (−48) e0t =

12
1

− (−48) = 4

∴ The general solution is
p = C.F. + P. I

p = Ae6t + Be-2t + 4

EXERCISE 6.5

1) Solve :

(i) 2

2

dx
yd

 - 10
dx
dy

 + 24y = 0 (ii) 2

2

dx
yd

 +
dx
dy

 = 0

(iii) 2

2

dx
yd

+ 4y = 0 (iv) 2

2

dx
yd

 + 4
dx
dy

 + 4y = 0

35

2) Solve :

(i) (3D2 + 7D - 6)y = 0 (ii) (4D2 − 12D + 9)y = 0
(iii) (3D2 − D + 1)y = 0

3) Solve :

(i) (D 2 − 13D + 12) y = e−2x + 5ex

(ii) (D2 − 5D + 6) y = e−x + 3e−2x

(iii) (D2 − 14D + 49) y = 3 + e7x

(iv) (15D2 − 2D − 1) y = 3
x

e

4) Suppose that Qd = 30−5P + 2
dt
dP + 2

2P
dt
d

 and Qs = 6 + 3P. Find

the equilibrium price for market clearance.

EXERCISE 6.6

Choose the correct answer

1) The differential equation of straight lines passing through the
origin is

(a) x
dx
dy = y (b)

dx
dy = y

x
(c)

dx
dy = 0 (d)x

dx
dy = y

1

2) The degree and order of the differential equation

2

2

dx
yd

-6
dx
dy

= 0 are

(a) 2 and 1 (b) 1 and 2 (c) 2 and 2 (d) 1 and 1

3) The order and degree of the differential equation

2









dx
dy

 −3 3

3

dx
yd

+ 7 2

2

dx
yd

+
dx
dy = x + log x are

(a) 1 and 3 (b) 3 and 1 (c) 2 and 3 (d) 3 and 2

4) The order and degree of
3
2

2

1
















+

dx
dy

= 2

2

dx
yd

 are

(a) 3 and 2 (b) 2 and 3 (c) 3 and 3 (d) 2 and 2

36

5) The solution of x dy + y dx = 0 is
(a) x + y = c (b) x2 + y2 = c (c) xy = c (d) y = cx

6) The solution of x dx + y dy = 0 is

(a) x2 + y2 = c (b) y
x = c (c) x2 − y2 = c (d) xy = c

7) The solution of
dx
dy = ex − y is

(a) ey e x = c (b) y = log ce x

(c) y = log(ex+c) (d) ex+y = c

8) The solution of
dt
dp

 = ke−t (k is a constant) is

(a) c - te
k = p (b) p = ke t + c

(c) t = log
k

pc −
(d) t = logc p

9) In the differential equation (x2 - y2) dy = 2xy dx, if we make
the subsititution y = vx then the equation is transformed into

(a) 3

21
vv
v

+
+ dv =

x
dx (b))1(

1
2

2

vv
v

+
−

 dv =
x

dx

(c)
12 −v

dv =
x

dx (d) 21 v
dv
+ =

x
dx

10) When y = vx the differential equation x
dx
dy

 = y + 22 yx +
reduces to

(a)
12 −v

dv
 =

x
dx (b)

12 +v
vdv

 =
x

dx

(c)
12 +v

dv
 =

x
dx (d) 21 v

vdv
−

 =
x

dx

11) The solution of the equation of the type
dx
dy

+ Py = 0, (P is a
function of x) is given by

(a) y ∫ dxe P = c (b) y ∫ dxP = c

(c) x ∫ dxe P = y (d) y = cx

37

12) The solution of the equation of the type dy
dx

+ Px = Q (P and Q
are functions of y) is

(a) y = ∫Q ∫ dxe P dy +c (b) y ∫ dxe P = ∫Q ∫ dxe P dx +c

(c) x ∫ dye P = ∫Q ∫ dye P dy +c (d) x ∫ dye P = ∫Q ∫ dxe P dx +c

13) The integrating factor of x
dx
dy

 − y = ex is

(a) logx (b) xe
1−

(c)
x
1 (d)

x
1−

14) The integrating factor of (1 + x2)
dx
dy

 + xy = (1 + x2)3 is

(a) 21 x+ (b) log (1 + x2) (c) etan-1x (d) log(tan-1x)

15) The integrating factor of
x
y

dx
dy 2+ = x3 is

(a) 2 log x (b)
2xe (c) 3 log(x2) (d) x2

16) The complementary function of the differential equation
(D2 − D) y = ex is
(a) A + B ex (b) (Ax + B)ex (c) A + Be−x (d) (A+Bx)e-x

17) The complementary function of the differential equation
(D2 − 2D + 1)y = e2x is
(a) Aex + Be−x (b) A + Bex (c) (Ax + B)ex (d) A+Be−x

18) The particular integral of the differential equation

2

2

dx
yd

 −5
dx
dy

 + 6y = e5x is

(a)
6
5 xe (b)

! 2
5 xxe (c) 6e5x (d)

25
5 xe

19) The particular integral of the differential equation

2

2

dx
yd

 −6
dx
dy

 + 9y = e3x is

(a)
! 2

3 xe (b)
! 2
32 xex (c)

! 2
3 xxe (d) 9e3x

20) The solution of 2

2

dx
yd

−y = 0 is

(a) (A + B)ex (b) (Ax + B)e−x (c) Aex +

B
xe

 (d) (A+Bx)e−x

38

7.1 INTERPOLATION

Interpolation is the art of reading between the lines in a table.
It means insertion or filling up intermediate values of a function from
a given set of values of the function. The following table represents
the population of a town in the decennial census.

Year : 1910 1920 1930 1940 1950

Population : 12 15 20 27 39
 (in thousands)

Then the process of finding the population for the year 1914,
1923, 1939, 1947 etc. with the help of the above data is called
interpolation. The process of finding the population for the year
1955, 1960 etc. is known as extrapolation.

The following assumptions are to be kept in mind for
interpolation :

(i) The value of functions should be either in increasing
order or in decreasing order.

(ii) The rise or fall in the values should be uniform. In other
words that there are no sudden jumps or falls in the
value of function during the period under consideration.

The following methods are used in interpolation :

1) Graphic method, 2) Algebraic method

7.1.1 Graphic method of interpolation

Let y = f(x), then we can plot a graph between different
values of x and corresponding values of y. From the graph we can
find the value of y for given x.

INTERPOLATION AND
FITTING A STRAIGHT LINE 7

39

Example 1

From the following data, estimate the population for the
year 1986 graphically.

Year : 1960 1970 1980 1990 2000

Population : 12 15 20 26 33
(in thousands)

Solution :

From the graph, it is found that the population for 1986 was 24
thousands

Example 2

Using graphic method, find the value of y when x = 27,
from the following data.

x : 10 15 20 25 30

y : 35 32 29 26 23

1960 1970 1980 1990 2000 2010
year

34

32

30

28

26

24

22

20

18

16

14

12

10

po
pu

la
ti

on
 in

 th
ou

sa
nd

s

1986
(1960, 12)

(1970, 15)

(1980, 20)

(1986, 24)

(1990, 26)

(2000, 33)

→ x

↑
y

40

Solution :

The value of y when x = 27 is 24.8

7.1.2 Algebraic methods of interpolation

The mathematical methods of interpolation are many. Of these
we are going to study the following methods:

(i) Finite differences
(ii) Gregory-Newton’s formula
(iii) Lagrange’s formula

7.1.3 Finite differences

Consider the arguments x 0, x 1, x 2, ... x n and the entries
y0, y1, y2, ..., yn. Here y = f(x) is a function used in interpolation.

Let us assume that the x-values are in the increasing order
and equally spaced with a space-length h.

10 15 20 25 30

35

34

33

32

31

30

29

28

27

26

25

24

23

24.8

27

(30, 23)

(27, 24.8)

(25, 26)

(20, 29)

(15, 32)

(10, 35)

→ x

↑
y

41

Then the values of x may be taken to be x0, x0 + h, x0 + 2h,
... x 0 + nh and the function assumes the values f(x 0), f(x 0+h),
f(x0 + 2h), ..., f(x0 + nh)

Forward difference operator

For any value of x, the forward difference operator ∆(delta)
is defined by

 ∆f(x) = f(x+h) - f(x).

 In particular, ∆y0 = ∆f(x0) = f(x0+h) − f(x0) = y1−y0

∆f(x), ∆[f(x+h)], ∆ [f(x+2h)], ... are the first order
differences of f(x).

Consider ∆2 f(x)= ∆[∆{f(x)}]

= ∆[f(x+h) − f(x)]

= ∆[f(x+h)] − ∆[f(x)]

= [f(x+2h) − f(x+h)] − [f(x+h) − f(x)]

= f(x+2h) − 2f (x+h) + f(x).

∆2 f(x), ∆2 [f(x+h)], ∆2 [f(x+2h)] ... are the second order
differences of f(x).

In a similar manner, the higher order differences ∆3 f(x),
∆4 f(x),...∆n f(x), ... are all defined.

Backward difference operator

For any value of x, the backward difference operator ∇(nabla)
is defined by

 ∇f(x) = f(x) − f(x − h)

 In particular, ∇yn = ∇f(xn) = f(xn) − f(xn − h) = yn−yn−1

∇f(x), ∇[f(x+h)], ∇[f(x+2h)], ... are the first order differences
of f(x).

Consider ∇2 f(x)= ∇[∇{f(x)}] = ∇[f(x) − f(x−h)]
= ∇[f(x)] − ∇ [f(x − h)]
= f(x) − 2f(x − h) + f(x−2h)

42

∇2 f(x), ∇2 [f(x+h)], ∇2 [f(x+2h)] ... are the second order
differences of f(x).

In a similar manner the higher order backward differences
∇3 f(x), ∇4 f(x),...∇n f(x), ... are all defined.

Shifting operator

For any value of x, the shifting operator E is defined by

 E[f(x)] = f(x+h)

In particular, E(y0) = E[f(x0)] = f(x0+h) = y1

Further, E2 [f(x)] = E[E{f(x)] = E[f(x+h)] = f(x+2h)

Similarly E3[f(x)] = f(x+3h)

In general En [f(x)] = f(x+nh)

The relation between ∆∆ and E

We have ∆f(x) = f(x+h) − f(x)

= E f(x) − f(x)

∆f(x) = (E − 1) f(x)

⇒ ∆ = E − 1

i.e. E = 1+ ∆
Results

1) The differences of constant function are zero.

2) If f(x) is a polynomial of the nth degree in x, then the nth

difference of f(x) is constant and ∆n+1 f(x) = 0.

Example 3

Find the missing term from the following data.

x : 1 2 3 4

f(x) : 100 -- 126 157

Solution :

Since three values of f(x) are given, we assume that the
polynomial is of degree two.

43

Hence third order differences are zeros.

⇒ ∆3 [f(x0)] = 0

or ∆3(y0) = 0

∴ (E − 1)3 y0= 0 (∆ = E − 1)

(E3 − 3E2 + 3E − 1) y0 = 0

⇒ y3 − 3y2 + 3y1 − y0 = 0

157 − 3(126) + 3y1 −100 = 0

 ∴ y1 = 107

i.e. the missing term is 107

Example 4

Estimate the production for 1962 and 1965 from the
following data.

Year : 1961 1962 1963 1964 1965 1966 1967

Production: 200 -- 260 306 -- 390 430
 (in tons)

Solution :

Since five values of f(x) are given, we assume that polynomial
is of degree four.

Hence fifth order diferences are zeros.

∴ ∆5 [f(x0)]= 0

i.e. ∆5 (y0) = 0

∴ (E − 1)5 (y0) = 0

i.e. (E5 − 5E4 + 10E3 − 10E2 + 5E − 1) y0 = 0

y5 − 5y4 + 10y3 − 10y2 + 5y1 − y0 = 0

390 − 5y4 + 10(306) − 10(260) + 5y1 − 200 = 0

⇒ y1 − y4 = −130 --------------(1)

Since fifth order differences are zeros, we also have
∆5 [f(x1)]= 0

44

i.e. ∆5 (y1) = 0

i.e. (E − 1)5 y1 = 0

(E5 − 5E4 + 10E3 − 10E2 + 5E − 1)y1 = 0

y6 − 5y5 + 10y4 − 10y3 + 5y2 − y1 = 0

430 − 5(390) + 10y4 − 10(306) + 5(260) − y1 = 0

⇒ 10y4 − y1 = 3280 ------------(2)

By solving the equations (1) and (2) we get,

y1 = 220 and y4 = 350

∴ The productions for 1962 and 1965 are 220 tons and 350 tons
respectively.

7.1.4 Derivation of Gregory - Newton’s forward formula
Let the function y = f(x) be a polynomial of degree n which

assumes (n+1) values f(x0), f(x1), f(x2)... f(xn), where x0, x1, x2, ...
xn are in the increasing order and are equally spaced.

Let x1 − x0 = x2 − x1 = x3 − x2 = ... = xn − xn-1 = h (a positive
quantity)

Here f(x0) = y0, f(x1) = y1, ... f(xn) = yn

Now f(x) can be written as,

f(x) = a0 + a1 (x − x0) + a2(x−x0)(x−x1) + ...

+an(x−x0) (x−x1)... (x−xn-1) ----------------(1)

When x = x0, (1) implies
f(x0) = a0 or a0 = y0

When x = x1, (1) ⇒
f(x1) = a0 + a1 (x1 − x0)

i.e. y1 = y0 + a1 h

∴ a1 =
h

yy 01 −
 ⇒ a1 =

h
y0∆

When x = x2 , (1) ⇒
f(x2) = a0 + a1(x2 − x0) + a2(x2 − x0) (x2 − x1)

45

y2 = y0 +
h
y0∆

(2h) + a2 (2h) (h)

 2h2 a2 = y2 − y0 − 2∆y0

= y2 − y0 − 2(y1 − y0)

= y2 − 2y1 + y0 = ∆2 y0

∴ a2 = 2
0

2

 ! 2

h
y∆

In the same way we can obtain

 a3 = 3
0

3

 ! 3

h
y∆

, a4 = 4
0

4

 ! 4

h
y∆

,..., an = n

n

hn
y

 !
 0∆

substituting the values of a0, a1, ..., an in (1) we get

f(x) = y0 + h
y0∆

 (x - x0) + 2
0

2

 ! 2

h
y∆

(x − x0) (x − x1) + ...

+ n

n

hn
y

 !
 0∆

(x − x0) (x − x1) ... (x − xn-1) ---------(2)

Denoting
h

xx 0−
by u, we get

 x − x0 = hu

 x − x1 = (x − x0) − (x1 − x0) = hu − h = h(u−1)

 x − x2 = (x − x0) − (x2 − x0) = hu − 2h = h(u−2)

 x − x3 = h (u - 3)

In general

x − xn-1 = h{u − (n−1)}

Thus (2) becomes,

f(x) = y0 + ! 1
u ∆y0 + ! 2

)1(−uu ∆2y0 + ...

+
!

)1)...(2)(1(
n

nuuuu −−−− ∆ny0

where u =
h

xx 0−
. This is the Gregory-Newton’s forward

formula.

46

Example 5

Find y when x = 0.2 given that
x : 0 1 2 3 4

y : 176 185 194 202 212

Solution :

0.2 lies in the first interval (x0, x1) i.e. (0, 1). So we can use
Gregory-Newton’s forward interpolation formula. Since five values
are given, the interpolation formula is

y = y0 + ! 1
u ∆y0 + ! 2

)1(−uu ∆2 y0 + ! 3
)2)(1(−− uuu ∆3y0

+
! 4

)3)(2)(1(−−− uuuu ∆4y0 where u =
h

xx 0−

Here h = 1, x0 = 0 and x = 0.2

∴ u = 1
02.0 − = 0.2

The forward difference table :

x y ∆∆ y ∆∆2y ∆∆3y ∆∆4y

0 176 9
1 185 9 0 -1
2 194 8 -1 3 4

3 202 10 2

4 212

 ∴ y = 176 + ! 1
2.0 (9) +

! 2
)12.0(2.0 −

(0)

+
! 3

)22.0)(12.0)(2.0(−−
(-1) +

! 4
)32.0)(22.0)(12.0)(2.0(−−−

(4)

= 176 + 1.8 − 0.048 − 0.1344

= 177.6176
i.e. when x = 0.2, y = 177.6176

47

Example 6

If y75 = 2459, y80 = 2018, y85 = 1180 and

 y90 = 402 find y82.

Solution :

We can write the given data as follows:

x : 75 80 85 90

y : 2459 2018 1180 402

82 lies in the interval (80, 85). So we can use Gregory-
Newton’s forward interpolation formula. Since four values are given,
the interpolation formula is

y = y0 + ! 1
u ∆y0 + ! 2

)1(−uu ∆2 y0 + ! 3
)2)(1(−− uuu ∆3y0

where u =
h

xx 0−

Here h = 5, x0 = 75 x = 82

∴ u =
5

7582 −
 =

5
7

 = 1.4

The forward difference table :

x y ∆∆ y ∆∆2y ∆∆3y

75 2459 -441
80 2018 -838 -397 457
85 1180 -778 60

90 402

 ∴ y = 2459 + ! 1
4.1 (-441) +

! 2
)14.1(4.1 −

(-397)

+
! 3

)24.1)(14.1(4.1 −−
(457)

= 2459 − 617.4 − 111.6 − 25.592

 y = 1704.408 when x = 82

48

Example 7

From the following data calculate the value of e1.75

x : 1.7 1.8 1.9 2.0 2.1

ex : 5.474 6.050 6.686 7.389 8.166
Solution :

Since five values are given, the interpolation formula is

yx = y0 + ! 1
u ∆ y0 + ! 2

)1(−uu ∆2 y0 + ! 3
)2)(1(−− uuu ∆3y0

+
! 4

)3)(2)(1(−−− uuuu ∆4y0

where u =
h

xx 0−

Here h = 0.1, x0 = 1.7 x = 1.75

∴ u = 1.0
7.175.1 − = 1.0

05.0 =0.5

The forward difference table :

 x y ∆y ∆2y ∆3y ∆4y

1.7 5.474
0.576

1.8 6.050 0.060
0.007

1.9 6.686
0.636

0.067 0.007 0

2.0 7.389
0.703

0.074

2.1 8.166
0.777

∴ y = 5.474 + ! 1
5.0 (0.576) +

! 2
)15.0(5.0 −

(0.06)

+
! 3

)25.0)(15.0(5.0 −−
(0.007)

= 5.474 + 0.288 − 0.0075 + 0.0004375

∴ y = 5.7549375 when x = 1.75

49

Example 8

From the data, find the number of students whose height
is between 80cm. and 90cm.

Height in cms x : 40-60 60-80 80-100 100-120 120-140

No. of students y : 250 120 100 70 50

Solution :

The difference table

 x y ∆y ∆2y ∆3y ∆4y

Below 60 250

Below 80 370
120

-20
-10

Below 100 470
100

-30
10

20

Below 120 540
70

-20

Below 140 590 50

Let us calculate the number of students whose height is less
than 90cm.

Here x = 90 u =
h

xx 0−
 = 20

6090 − = 1.5

y(90) = 250 +(1.5)(120) +
! 2

)15.1)(5.1(−
(−20)

 +
! 3

)25.1)(15.1)(5.1(−−
(-10)+

! 4
)35.1)(25.1)(15.1)(5.1(−−−

(20)

= 250 + 180 − 7.5 + 0.625 + 0.46875

= 423.59 ~ 424

Therefore number of students whose height is between

 80cm. and 90cm. is y(90) − y(80)

i.e. 424 − 370 = 54.

Example 9

Find the number of men getting wages between Rs.30
and Rs.35 from the following table

50

 Wages x : 20-30 30-40 40-50 50-60

 No. of men y : 9 30 35 42

Solution :

The difference table

 x y ∆y ∆2y ∆3y

Under 30 9

Under 40 39
30

5

Under 50 74
35

7
2

Under 60 116
42

Let us calculate the number of men whose wages is less
than Rs.35.

For x = 35 , u =
h

xx 0−
= 10

3035 − = 0.5

By Newton’s forward formula,

y(35) = 9+
1

)5.0(
(30) +

! 2
)15.0)(5.0(−

(5)

+
! 3

)25.0)(15.0)(5.0(−−
(2)

= 9 + 15 − 0.6 + 0.1

= 24 (approximately)

Therefore number of men getting wages between

Rs.30 and Rs.35 is y(35) − y(30) i.e. 24 − 9 = 15.

7.1.5 Gregory-Newton’s backward formula

Let the function y = f(x) be a polynomial of degree n which
assumes (n+1) values f(x0), f(x1), f(x2), ..., f(xn) where x0, x1, x2,
..., xn are in the increasing order and are equally spaced.

Let x1 - x0 = x2 − x1 = x3 − x2 = ... xn − xn-1 = h (a positive
quantity)

51

Here f(x) can be written as

f(x) = a0 + a1(x−xn) + a2(x−xn) (x−xn-1) + ...

+ an(x−xn) (x−xn-1) ... (x−x1) -----------(1)

When x = xn , (1) ⇒
f(xn) = a0 or a0 = yn

When x = xn−1 , (1) ⇒
f(xn−1)= a0 + a1(xn−1−xn)

or yn−1 = yn + a1 (−h)

or a1 =
h
yy nn 1−−

 ⇒ a1 =
h
yn∇

When x = xn−2 , (1) ⇒
 f(xn−2) = a0 + a1 (xn−2 − xn) + a2 (xn−2 − xn) (xn−2 − xn−1)

yn−2 = yn +
h
yn∇

(−2h) + a2 (−2h) (−h)

2h2a2 = (yn−2 − yn) + 2∇yn

= yn−2 − yn + 2(yn−yn−1)

= yn−2 − 2yn−1 + yn = ∇2yn

∴ a2 = 2

2

! 2 h
yn∇

In the same way we can obtain

 a3 = 3

3

! 3 h
yn∇

 , a4 = 4

4

! 4 h
yn∇

 ... an = ! n
yn

n∇

 ∴ f(x) = yn +
h
yn∇

(x−xn) + 2

2

! 2 h
yn∇

(x−xn)(x−xn−1) + ...

 +
! n
yn

n∇
 (x−xn) (x−xn−1) ... (x−x1) ------------(2)

Further, denoting
h

xx n−
by u, we get

x−xn = hu

52

x−xn−1 = (x−xn) (xn−xn−1) = hu + h = h(u+1)

x−xn−2 = (x−xn) (xn−xn−2) = hu + 2h = h(u+2)

x−xn−3 = h(u+3)

In general

x−xn−k = h(u+k)

Thus (2) becomes,

f(x) = yn +
! 1

u
∇yn+ ! 2

)1(+uu
 ∇2yn + ...

+
!

)}1()...{1(
n

nuuu −++
 ∇nyn where u =

h
xx n−

This is the Gregory-Newton’s backward formula.

Example 10

Using Gregory-Newton’s formula estimate the
population of town for the year 1995.

 Year x : 1961 1971 1981 1991 2001
 Population y : 46 66 81 93 101

 (in thousands)

Solution :

1995 lies in the interval (1991, 2001). Hence we can use
Gregory-Newton’s backward interpolation formula. Since five
values are given, the interpolation formula is

 y = y4 + ! 1
u ∇y4 + ! 2

)1(+uu ∇2 y4 + ! 3
)2)(1(++ uuu ∇3y4

+
! 4

)3)(2)(1(+++ uuuu ∇4y4 where u =
h

xx 4−

Here h = 10, x4 = 2001 x = 1995

∴ u = 10
20011995− = −0.6

53

The backward difference table :
 x y ∇y ∇2y ∇3y ∇4y

1961 46
201971 66
15

-5 2
1981 81

12
-3 -1 -3

1991 93
8

-4
2001 101101

 ∴ y = 101 +
! 1

)6.0(−
(8) +

! 2
)16.0)(6.0(+−−

(−4)

+
! 3

)26.0)(16.0)(6.0(+−+−−
(−1) +

! 4
)36.0)(26.0)(16.0)(6.0(+−+−+−−

(−3)

= 101−4.8+0.48+0.056+0.1008 ∴ y = 96.8368
i.e. the population for the year 1995 is 96.837 thousands.
Example 11

From the following table, estimate the premium for a
policy maturing at the age of 58

 Age x : 40 45 50 55 60
 Premium y : 114.84 96.16 83.32 74.48 68.48
Solution :

Since five values are given, the interpolation formula is

 y = y4 + ! 1
u ∇y4 +...+

! 4
)3)(2)(1(+++ uuuu ∇4y4

 where u = 5
6058 − = −0.4

The backward difference table :
 x y ∇y ∇2y ∇3y ∇4y
40 114.84

-18.6845 96.16
-12.84

5.84
-1.84

50 83.32
-8.84

4.00
-1.16

0.68
55 74.48

-6.00
2.84

60 68.4868.48

54

 ∴ y = 68.48 +
! 1

)4.0(−
(-6) +

2
)6.0)(4.0(−

(2.84)

 +
6

)6.1)(6.0)(4.0(−
(-1.16) +

24
)6.2)(6.1)(6.0)(4.0(−

(0.68)

= 68.48 + 2.4 − 0.3408 + 0.07424 − 0.028288

 ∴ y = 70.5851052 i.e. y ~ 70.59

 ∴ Premium for a policy maturing at the age of 58 is 70.59

Example 12

From the following data, find y when x = 4.5
 x : 1 2 3 4 5
 y : 1 8 27 64 125

Solution :
Since five values are given, the interpolation formula is

 y = y4 + ! 1
u ∇y4 +...+

! 4
)3)(2)(1(+++ uuuu ∇4y4

where u =
h

xx 4−

Here u = 1
55.4 − = −0.5

The backward difference table :

x y ∇∇y ∇∇2y ∇∇3y ∇∇4y

1 1 7
2 8 19 12

6
3 27 37 18

6
0

4 64 61 24

5 125

∴ y = 125+
1

)5.0(−
(61)+

2
)5.0)(5.0(−

(24) +
6

)5.1)(5.0)(5.0(−
(6)

∴ y = 91.125 when x = 4.5

55

7.1.6 Lagrange’s formula

Let the function y = f(x) be a polynomial of degree n which
assumes (n + 1) values f(x0), f(x1), f(x2) ...f(xn) corresponding to
the arguments x0, x1, x2, ... xn (not necessarily equally spaced).

Here f(x0) = y0, f(x1) = y1, ..., f(xn) = yn.

Then the Lagrange’s formula is

f(x) = y0))...()((
))...()((

02010

21

n

n

xxxxxx
xxxxxx
−−−

−−−

+ y1))...()((
))...()((

12101

20

n

n

xxxxxx
xxxxxx

−−−
−−−

+ ... + yn))...()((
))...()((

110

110

−

−

−−−
−−−

nnnn

n

xxxxxx
xxxxxx

Example 13

Using Lagrange’s formula find the value of y when
x = 42 from the following table

x : 40 50 60 70

y : 31 73 124 159

Solution :

By data we have

x0 = 40, x1 = 50, x2 = 60, x3 = 70 and x = 42

y0 = 31, y1 = 73, y2 = 124, y3 = 159

Using Lagrange’s formula, we get

y = y0))()((
))()((

302010

321

xxxxxx
xxxxxx
−−−

−−−

+ y1))()((
))()((

312101

320

xxxxxx
xxxxxx

−−−
−−−

+ y2))()((
))()((

321202

310

xxxxxx
xxxxxx
−−−

−−−

56

+ y3))()((
))()((

231303

210

xxxxxx
xxxxxx
−−−

−−−

y(42) = 31)30)(20)(10(
)28)(18)(8(

−−−
−−−

 + 73)20)(10)(10(
)28)(18)(2(

−−
−−

 +124)10)(10)(20(
)28)(8)(2(

−
−−

 +159)10)(20)(30(
)18)(8)(2(−−

= 20.832 + 36.792 - 27.776 + 7.632

 y = 37.48

Example 14

Using Lagrange’s formula find y when x = 4 from the
following table

x : 0 3 5 6 8

y : 276 460 414 343 110

Solution :

Given
x0 = 0, x1 = 3, x2 = 5, x3 = 6, x4 = 8 and x = 4

y0 = 276, y1 = 460, y2 = 414, y3 = 343, y4 = 110

Using Lagrange’s formula

y = y0))()()((
))()()((

40302010

4321

xxxxxxxx
xxxxxxxx
−−−−

−−−−

+ y1))()()((
))()()((

41312101

4320

xxxxxxxx
xxxxxxxx
−−−−

−−−−

+ y2))()()((
))()()((

42321202

4310

xxxxxxxx
xxxxxxxx
−−−−

−−−−

+ y3))()()((
))()()((

43231303

4210

xxxxxxxx
xxxxxxxx
−−−−

−−−−

+ y4))()()((
))()()((

34241404

3210

xxxxxxxx
xxxxxxxx
−−−−

−−−−

57

= 276)8)(6)(5)(3(
)4)(2)(1)(1(

−−−−
−−−

 + 460)5)(3)(2)(3(
)4)(2)(1)(4(

−−−
−−−

 + 414)3)(1)(2)(5(
)4)(2)(1)(4(

−−
−−

+343)2)(1)(3)(6(
)4)(1)(1)(4(

−
−−

 + 110)2)(3)(5)(8(
)2)(1)(1)(4(−−

= −3.066 + 163.555 + 441.6 − 152.44 + 3.666

 y = 453.311

Example 15

Using Lagrange’s formula find y(11) from the
following table

x : 6 7 10 12

y : 13 14 15 17

Solution :

Given

x0 = 6, x1 = 7, x2 = 10, x3 = 12 and x = 11

y0 = 13, y1 = 14, y2 = 15, y3 = 17

Using Lagrange’s formula

= 13)6)(4)(1(
)1)(1)(4(

−−−
−

 + 14)5)(3)(1(
)1)(1)(5(

−−
−

 + 15)2)(3)(4(
)1)(4)(5(

−
−

 +17)2)(5)(6(
)1)(4)(5(

= 2.1666 − 4.6666 + 12.5 + 5.6666

 y = 15.6666
EXERCISE 7.1

1) Using Graphic method, find the value of y when x = 42, from
the following data.

x : 20 30 40 50
y : 51 43 34 24

58

2) The population of a town is as follows.
Year x : 1940 1950 1960 1970 1980 1990
Population y : 20 24 29 36 46 50
 (in lakhs)
Estimate the population for the year 1976 graphically

3) From the following data, find f(3)
x : 1 2 3 4 5
f(x) : 2 5 - 14 32

4) Find the missing term from the following data.
x : 0 5 10 15 20 25
y : 7 11 14 -- 24 32

5) From the following data estimate the export for the year 2000
Year x : 1999 2000 2001 2002 2003
Export y : 443 -- 369 397 467
(in tons)

6) Using Gregory-Newton’s formula, find y when x = 145 given
that
x : 140 150 160 170 180
y : 46 66 81 93 101

7) Using Gregory-Newton’s formula, find y(8) from the following
data.
x : 0 5 10 15 20 25
y : 7 11 14 18 24 32

8) Using Gregory-Newton’s formula, calculate the population for
the year 1975
Year : 1961 1971 1981 1991 2001
Population : 98572 132285 168076 198690 246050

9) From the following data find the area of a circle of diameter
96 by using Gregory-Newton’s formula
Diameter x : 80 85 90 95 100
Area y : 5026 5674 6362 7088 7854

59

10) Using Gregory-Newton’s formula, find y when x = 85
x : 50 60 70 80 90 100
y : 184 204 226 250 276 304

11) Using Gregory-Newton’s formula, find y(22.4)
x : 19 20 21 22 23
y : 91 100 110 120 131

12) From the following data find y(25) by using Lagrange’s formula
x : 20 30 40 50
y : 512 439 346 243

13) If f(0) = 5, f(1) = 6, f(3) = 50, f(4) = 105, find f(2) by using
Lagrange’s formula

14) Apply Lagrange’s formula to find y when x = 5 given that
x : 1 2 3 4 7
y : 2 4 8 16 128

7.2 FITTING A STRAIGHT LINE
A commonly occurring problem in many fields is the necessity

of studying the relationship between two (or more) variables.

For example the weight of a baby is related to its age ; the
price of a commodity is related to its demand ; the maintenance
cost of a car is related to its age.

7.2.1 Scatter diagram

This is the simplest method by which we can represent
diagramatically a bivariate data.
Suppose x and y denote
respectively the age and weight
of an adult male, then consider
a sample of n individuals with
ages x 1, x 2, x 3, . . . x n and
the corresponding weights as
y1, y2, y3, ... yn. Plot the points

y

xFig. 7.1

60

(x 1, y1), (x 2, y2), (x 3, y3), ... (xn, yn) on a rectangular co-ordinate
system. The resulting set of points in a graph is called a scatter
diagram.

From the scatter diagram it is often possible to visualize a
smooth curve approximating the data. Such a curve is called an
approximating curve. In the above figure, the data appears to be
well approximated by a straight line and we say that a linear
relationship exists between the two variables.

7.2.2 Principle of least squares

Generally more than one curve of a given type will appear to
fit a set of data. In constructing lines it is necessary to agree on a
definition of a “best fitting line”.

Consider the data points
(x 1, y1) , (x 2, y 2), (x 3, y3), ...
(xn, yn). For a given value of x,
say x1, in general there will be a
difference between the value y,
and the corresponding value as
determined from the curve C
(in Fig. 7.2)

We denote this difference by d1, which is referred to as a
deviation or error. Here d1 may be positive, negative or zero.
Similarly corresponding to the values x2, x3, ... xn we obtain the
deviations d2, d3, ... dn.

A measure of the “goodness of fit” of the curve to the set of
data is provided by the quantities d1

2, d2
2, ... dn

2.

Of all the curves approximating a given set of data points, the
curve having the property that d1

2 + d2
2 + d3

2 +...+ dn
2 is a minimum

is the best fitting curve. If the approximating curve is a straight line
then such a line is called the “line of best fit”.

x

y
(x2, y2)

(x1, y1)

(xn, yn)

dnd2

d1

Fig. 7.2

C

61

7.2.3 Derivation of normal equations by the principle of least
squares.
Let us consider the fitting of a straight line

y = ax + b ------------(1)

to set of n points (x1, y1), (x2, y2), ... (xn, yn).
For the different values

of a and b equation (1)
represents a family of straight
lines. Our aim is to determine
a and b so that the line (1) is
the line of best fit.

Now a and b are
determined by applying
principle of least squares.

Let Pi (x i , yi) be any
point in the scatter diagram.
Draw PiM perpendicular to x-axis meeting the line (1) in Hi. The
x-coordinate of Hi is x i. The ordinate of Hi is ax i + b.

PiHi = PiM - HiM

= yi − (ax i +b) is the deviation for yi.

According to the principle of least squares, we have to
find a and b so that

E =
n

i 1=
Σ PiHi

2 =
n

i 1=
Σ [yi − (ax i + b)]2 is minimum.

For maxima or minima, the partial derivatives of E with respect
to a and b should vanish separately.

 ∴ a∂
∂E = 0 ⇒ −2

n

i 1=
Σ x i[yi − (ax i + b)] = 0

a
n

i 1
Ó
=

xi
2 + b

n

i 1
Ó
=

xi =
n

i 1
Ó
=

xi y i -------------(2)

b∂
∂E = 0 ⇒ -2

n

i 1=
Σ [yi − (ax i + b)] = 0

y

xMO

Pi(xi, yi)

Hi(xi , axi +b)

Fig. 7.3

62

i.e., Σyi − aΣx i − nb = 0

⇒⇒ a
n

i 1
Ó
=

xi + nb =
n

i 1
Ó
=

yi -------------(3)

(2) and (3) are known as the normal equations. Solving the
normal equations we get a and b.

Note
The normal equations for the line of best fit of the form

y = a + bx are

na + bΣΣxi = ΣΣyi

aΣΣxi + bΣΣxi
2 = ΣΣxi yi

Example 16

Fit a straight line to the following
ΣΣx = 10, ΣΣy = 19, ΣΣx2 = 30, ΣΣxy = 53 and n = 5.

Solution :

The line of best fit is y = ax + b
Σy = aΣx + nb

Σxy = aΣx2 + bΣx

⇒ 10a + 5b = 19 ------------(1)
30a + 10b = 53 ------------(2)

Solving (1) and (2) we get, a = 1.5 and b = 0.8
The line of best fit is y = 1.5x + 0.8

Example 17

In a straight line of best fit find x-intercept when
ΣΣx = 10, ΣΣy=16.9, ΣΣx2 = 30, ΣΣxy = 47.4 and n = 7.
Solution :

The line of best fit is y = ax + b

The normal equations are
Σy = aΣx + nb

63

Σxy = aΣx2 + bΣx
⇒ 10a + 7b = 16.9 -----------(1)

30a + 10b = 47.4 -----------(2)

Solving (1) and (2) we get,
a = 1.48 and b = 0.3

The line of best fit is y = 1.48x + 0.3

∴ The x-intercept of the line of best fit is − 48.1
0.3

Example 18

Fit a straight line for the following data.
 x : 0 1 2 3 4

 y : 1 1 3 4 6

Solution :
The line of best fit is y = ax + b

The normal equations are

aΣx + nb = Σy ------------(1)
aΣx2 + bΣx = Σxy ------------(2)

Now from the data

x y x 2 xy
0 1 0 0

1 1 1 1

2 3 4 6
3 4 9 12

4 6 16 24

10 15 30 43

By substituting these values in (1) and (2) we get,

10a + 5b = 15 ------------(3)

30a + 10b = 43 ------------(4)

64

Solving (3) and (4) we get, a = 1.3 and b = 0.4
 The line of best fit is y = 1.3x + 0.4.

Example 19
Fit a straight line to the following data:

x : 4 8 12 16 20 24
y : 7 9 13 17 21 25

Solution :

Take the origin at 2
1612 + = 14

Let ui =
2
14−ix

Here n = 6

The line of best fit is y = au + b

The normal equations are aΣu + nb = Σy ---------(1)

aΣu2 + bΣu = Σuy ----------(2)
 x y u u2 uy

4 7 -5 25 -35

8 9 -3 9 -27
12 13 -1 1 -13

16 17 1 1 17

20 21 3 9 63
24 25 5 25 125

Total 92 0 70 130

On substituting the values in the normal equation (1) and (2)
a = 1.86 and b = 15.33

The line of best fit is y = 1.86 


 −
2
14x +15.33 = 0.93x + 2.31

Example 20
Fit a straight line to the following data.
x : 100 200 300 400 500 600
y : 90.2 92.3 94.2 96.3 98.2 100.3

65

Solution :

Let ui =
50

350−ix
 and vi = yi - 94.2 Here n = 6.

The line of best fit is v = au + b
The normal equations are aΣu + nb = v ----------(1)

aΣu2 + bΣu = Σuv----------(2)

 x y u v u2 uv

100 90.2 -5 -4 25 20
200 92.3 -3 -1.9 9 5.7
300 94.2 -1 0 1 0
400 96.3 1 2.1 1 2.1
500 98.2 3 4 9 12
600 100.3 5 6.1 25 30.5

Total 0 63 70 70.3

Substituting the values in (1) and (2) we get
a = 1.0043 and b = 1.05

 The line of best fit is v = 1.0043 u + 1.05
⇒ y = 0.02x +88.25

EXERCISE 7.2

1) Define a scatter diagram.

2) State the principle of least squares.

3) Fit the line of best fit if Σ x = 75, Σ y = 115, Σ x2 = 1375,
Σ xy = 1875, and n = 6.

4) In a line of best fit find the slope and the y intercept if
Σ x = 10, Σ y = 25, Σ x2 = 30, Σ xy = 90 and n = 5.

5) Fit a straight line y = ax + b to the following data by the
method of least squares.
x 0 1 3 6 8
y 1 3 2 5 4

66

6) A group of 5 students took tests before and after training and
obtained the following scores.
Scores before training 3 4 4 6 8
Scores after training 4 5 6 8 10

Find by the method of least squares the straight line of best fit

7) By the method of least squares find the best fitting straight
line to the data given below:
x : 100 120 140 160 180 200
y : 0.45 0.55 0.60 0.70 0.80 0.85

8) Fit a straight line to the data given below. Also estimate the
value y at x = 3.5
x : 0 1 2 3 4
y : 1 1.8 3.3 4.5 6.3

9) Find by the method of least squares, the line of best fit for the
following data.

Depth of water applied x : 0 12 24 36 48
 (in cm)
Average yield y : 35 55 65 80 90
 (tons / acre)

10) The following data show the advertising expenses (expressed
as a percentage of total expenses) and the net operating profits
(expressed as a percentage of total sales) in a random sample
of six drug stores.

Advertising expenses 0.4 1.0 1.3 1.5 2.0 2.8
Net operating profits 1.90 2.8 2.9 3.6 4.3 5.4

Fit a line of best fit.

11) The following data is the number of hours which ten students
studied for English and the scores obtained by them in the
examinations.

Hours studied x : 4 9 10 12 14 22
Test score y : 31 58 65 68 73 91

(i) Fit a straight line y = ax + b
(ii) Predict the score of the student who studied for 17 hours.

67

EXERCISE 7.3

Choose the correct answer
1) ∆f(x) =

(a) f(x+h) (b) f(x)−f(x+h)
(c) f(x+h)−f(x) (d) f(x)−f(x−h)

2) E2f(x) =
(a) f(x+h) (b) f(x+2h) (c) f(2h) (d) f(2x)

3) E =
(a) 1+∆ (b) 1 − ∆ (c) ∇+ 1 (d) ∇−1

4) ∇f(x+3h) =
(a) f(x+2h) (b) f(x+3h)-f(x+2h)
(c) f(x+3h) (d) f(x+2h) − f(x − 3h)

5) When h = 1, ∆(x2) =
(a) 2x (b) 2x − 1 (c) 2x+1 (d) 1

6) The normal equations for estimating a and b so that the
line y = ax + b may be the line of best fit are

(a) aΣxi
2 + bΣxi = Σxiyi and aΣxi + nb = Σyi

(b) aΣxi + bΣxi
2 = Σxiyi and aΣxi

2 + nb = Σyi

(c) aΣxi + nb = Σxiyi and aΣxi
2 + bΣxi = Σyi

(d) aΣxi
2 + nb = Σxiyi and aΣxi + bΣxi = Σyi

7) In a line of best fit y = 5.8 (x-1994) + 41.6 the value of y
when x = 1997 is

(a) 50 (b) 54 (c) 59 (d) 60

8) Five data relating to x and y are to be fit in a straight line. It is
found that Σx = 0 and Σy = 15. Then the y-intercept of the line
of best fit is,

(a) 1 (b) 2 (c) 3 (d) 4

68

9) The normal equations of fitting a straight line y = ax + b are
10a +5b = 15 and 30a + 10b = 43. The slope of the line of best
fit is

(a) 1.2 (b) 1.3 (c) 13 (d) 12

10) The normal equations obtained in fitting a straight line
y = ax + b by the method of least squares over n points (x, y)
are 4 = 4a + b and Σxy = 120a + 24b. Then n =

(a) 30 (b) 5 (c) 6 (d) 4

69

8.1 RANDOM VARIABLE AND
PROBABILITY FUNCTION

Random variable
A random variable is a real valued function defined on a

sample space S and taking values in (−∞ , ∞)

8.1.1 Discrete Random Variable

A random variable X is said to be discrete if it assumes only
a finite or an infinite but countable number of values.

Examples

(i) Consider the experiment of tossing a coin twice. The sample
points of this experiment are s1 = (H, H), s2 = (H, T), s3 = (T,
H) and s4 = (T, T).

 Random variable X denotes the number of heads obtained in
the two tosses.

Then X(s1) = 2 X(s2) = 1

 X(s3) = 1 X(s4) = 0

 RX = {0, 1, 2}

where s is the typical element of the sample space, X(s) represents
the real number which the random variable X associates with the
outcome s.

RX, the set of all possible values of X, is called the range
space X.

(ii) Consider the experiment of rolling a pair of fair dice once.
Then sample space

PROBABILITY
DISTRIBUTIONS 8

70

S = {(1, 1) (1, 2)(1, 6)
 . . .
 . . .
 . . .
(6, 1) (6, 2)(6, 6)}

Let the random variable X denote the sum of the scores on
the two dice. Then RX = {2, 3, 4,, 12}.

(iii) Consider the experiment of tossing of 3 coins simultaneously.

Let the random variable X be Number of heads obtained in
 this experiment.

Then

S = {HHH, HHT, HTT, TTT, TTH, THH, HTH, THT}

 RX = {0, 1, 2, 3}

(iv) Suppose a random experiment consists of throwing 4 coins
and recording the number of heads.

Then RX = {0, 1, 2, 3, 4}

The number of printing mistakes in each page of a book and
the number of telephone calls received by the telephone operator
of a firm, are some other examples of discrete random variable.

8.1.2 Probability function and Probability distribution of a
Discrete random variable

Let X be a discrete random variable assuming values
x1, x2, x3... If there exists a function p denoted by p(x i) = P[X = x i]
such that

(i) p(x i) > 0 for i = 1, 2, ...

(ii)
i
Σ p(x i) = 1

then p is called as the probability function or probability mass
function (p.m.f) of X.

71

The collection of all pairs (x i, p(x i)) is called the probability
distribution of X.

Example 1

Consider the experiment of tossing two coins. Let X
be a random variable denoting the number of heads obtained.

X : 0 1 2

p(xi) : 4
1

2
1

4
1

Is p(xi) a p.m.f ?

Solution :

(i) p(xi) > 0 for all i

(ii) Σp(x i) = p(0) + p(1) + p(2)

 = 4
1 + 2

1 + 4
1 = 1

Hence p(x i) is a p.m.f.

Example 2

Consider the discrete random variable X as the sum of
the numbers that appear, when a pair of dice is thrown. The
probability distribution of X is

 X : 2 3 4 5 6 7 8 9 10 11 12

 p(xi) : 36
1

 36
2

 36
3

 36
4

 36
5

 36
6

 36
5

 36
4

 36
3

 36
2

 36
1

Is p(xi) a p.m.f?

Solution :

p(x i) > 0 for all i

(ii) Σp(x i) = 36
1

 + 36
2

 + 36
3

 ++ 36
1

 = 1

Hence p(x i) is a p.m.f.

72

8.1.3 Cumulative Distribution function : (c.d.f.)

Let X be a discrete random variable. The function F(x) is
said to be the cumulative distribution function (c.d.f.) of the random
variable X if

F(x) = P(X < x)

 =
i
Σ p(x i) where the sum is taken over i

 such that x i < x.

Remark : P(a < X < b) = F(b) − F(a)

Example 3

A random variable X has the following probability
function :

Values of X, x : −−2 −−1 0 1 2 3

 p(x) : 0.1 k 0.2 2k 0.3 k

(i) Find the value of k

(ii) Construct the c.d.f. of X

Solution :

(i) Since
i
Σ p(x i) = 1,

p(−2) + p(−1) + p(0) + p(1) + p(2) + p(3) = 1

0.1 + k + 0.2 + 2k + 0.3 + k = 1

0.6 + 4k = 1 ⇒ 4k = 1 − 0.6

4k = 0.4 ∴ k = 4
4.

 = 0.1

Hence the given probability function becomes,

x : −2 −1 0 1 2 3

p(x) : 0.1 0.1 0.2 0.2 0.3 0.1

(ii) Cumulative distribution function F(x) = P(X < x)

73

x F(x) = P(X < x)

−2 F(−2) = P(X < −2) = 0.1

−1 F(−1) = P(X < −1) = P(X = −2) + P(X = −1)

= 0.1 + 0.1 = 0.2

0 F(0) = P(X < 0) = P(X=−2) + P(X=−1)+ P(X = 0)

= 0.1 + 0.1 + 0.2 = 0.4

1 F(1) = P(X < 1) = 0.6

2 F(2) = P(X < 2) = 0.9

3 F(3) = P(X < 3) = 1

 F(x) = 0 if x < −2

= .1 if −2 < x < −1

= .2 if −1 < x < 0

= .4 if 0 < x < 1

= .6 if 1 < x < 2

= 0.9, if 2 < x < 3

= 1 if x > 3

Example 4

For the following probability distribution of X

 X : 0 1 2 3

p(x) :
6
1

2
1

10
3

30
1

Find (i) P(X < 1) (ii) P(X < 2) (iii) P(0< X < 2)

Solution :

(i) P(X < 1)= P(X = 0) + P(X = 1)

= p(0) + p(1)

= 6
1

 + 2
1

 = 6
4

 = 3
2

74

(ii) P(X < 2)= P(X = 0) + P(X = 1) + P(X = 2)

= 6
1

 + 2
1

 + 10
3

 = 30
29

Aliter P(X < 2) can also be obtained as

 P(X < 2) = 1 − P(X > 2)

= 1 − P(X = 3) = 1 − 30
1

 = 30
29

(iii) P(0 < X < 2) = P(X = 1) = 2
1

8.1.4 Continuous Random Variable

A random variable X is said to be continuous if it takes a
continuum of values. i.e. if it takes all possible values between certain
defined limits.

For example,

(i) The amount of rainfall on a rainy day.

(ii) The height of individuals. (iii) The weight of individuals.

8.1.5 Probability function

A function f is said to be the probability density function
(p.d.f) of a continuous random variable X if the following conditions
are satisfied

(i) f(x) > 0 for all x (ii) ∫
∞

∞−

)(xf dx = 1

Remark :

(i) The probability that the random variable X lies in the interval

(a, b) is given by P(a < X < b) = ∫
b

a

xf)(dx .

(ii) P(X = a) = ∫
a

a

xf)(dx = 0

(iii) P(a < X < b) = P(a < X < b) = P(a < X < b) = P(a < X < b)

75

8.1.6 Continuous Distribution function

If X is a continuous random variable with p.d.f. f(x), then
the function FX(x) = P(X < x)

 = ∫
∞−

x

tf)(dt

is called the distribution function (d.f.) or cumulative distribution
function (c.d.f) of the random variable X.

Properties : The cumulative distribution function has the
following properties.

(i) −∞→x
tL F(x) = 0 i.e. F(−∞) = 0

(ii) ∞→x
tL F(x) = 1 i.e. F(∞) = 1

(iii) Let F be the c.d.f. of a continuous random variable X with

p.d.f f . Then f(x) =
dx
d F(x) for all x at which F is differentiable.

Example 5

A continuous random variable X has the following p.d.f.

f(x) =


 <<−

otherwise 0

2 0for)(2 xxk

Determine the value of k.

Solution :

If f(x) be the p.d.f., then ∫
∞

∞−

)(xf dx = 1

∫
∞−

0

)(xf dx + ∫
2

0

)(xf dx + ∫
∞

2

)(xf dx = 1

⇒ 0 + ∫
2

0

)(xf dx + 0 = 1

⇒ ∫
2

0

k(2 − x) dx = 1

76

 k 







−∫

2

0

2 xdxdx = 1 ∴ k =
2
1

Hence f(x) =




 <<−

otherwise 0

2 0for)(2
2
1 xx

Example 6

Verify that

f(x) =


 <<

otherwise 0

1 0for 3 2 xx

is a p.d.f and evaluate the following probabilities

(i) P(X <
3
1) (ii) P(

3
1 < X <

2
1)

Solution :

Clearly f(x) > 0 for all x and hence one of the conditions for
p.d.f is satisfied.

∫
∞

∞−

)(xf dx = ∫
1

0

)(xf dx = ∫
1

0

23x dx = 1

∴ The other condition for p.d.f is also satisfied.

Hence the given function is a p.d.f

(i) P(X <
3
1) = ∫

∞−

3
1

)(xf dx P(X < x) = ∫
∞−

x

tf)(dt

 = ∫
3
1

0

23x dx =
27
1

(ii) P(
3
1 < X <

2
1) = ∫

2
1

3
1

)(xf dx

 = ∫
2
1

3
1

23x dx =
8
1 −

27
1 =

216
19

77

Example 7

Given the p.d.f of a continuous random variable X as
follows

f(x) =


 <<−

otherwise 0

1 0for)(1 xxkx

Find k and c.d.f

Solution :

If X is a continuous random variable with p.d.f f(x) then

∫
∞

∞−

)(xf dx = 1

∫
1

0

k x (1−x) dx = 1

k
1

0

32

32 



 − xx = 1 ∴ k = 6

Hence the given p.d.f becomes,

f(x) =


 <<−

otherwise 0

1 0for)(16 xxx

To find c.d.f F(x)

 F(x)= 0 for x < 0

 F(x)= P(X < x) = ∫
∞−

x

xf

)(dx

= ∫
x

0

6x(1 − x)dx = 3x2 − 2x3 for 0 < x < 1

 F(x)= 1 for x > 1

∴ The c.d.f of X is as follows.

 F(x) = 0 for x < 0

= 3x2 − 2x3 for 0< x < 1.

= 1 for x > 1

78

Example 8

Suppose that the life in hours of a certain part of radio
tube is a continuous random variable X with p.d.f is given by

f(x) =




 ≥

 elsewhere 0

100 when ,100
2 x

x

(i) What is the probability that all of three such tubes in a
given radio set will have to be replaced during the first
of 150 hours of operation?

(ii) What is the probability that none of three of the original
tubes will have to be replaced during that first 150 hours
of operation?

Solution :

(i) A tube in a radio set will have to be replaced during the first 150
hours if its life is < 150 hours. Hence, the required probability
‘p’ that a tube is replaced during the first 150 hours is,

p = P(X < 150) = ∫
150

100

)(xf dx

= ∫
150

100
2

100
x

dx = 3
1

 ∴ The probability that all three of the original tubes will have to

replaced during the first 150 hours = p3 =
3

3
1 


 = 27

1

(ii) The probability that a tube is not replaced during the first 150
hours of operation is given by

P(X > 150) = 1 − P(X < 150) = 1 − 3
1 = 3

2

 ∴ the probability that none of the three tubes will be replaced

during the 150 hours of operation =
3

3
2 


 = 27

8

79

EXERCISE 8.1

1) Which of the following set of functions define a probability
space on S = [x1, x2, x3]?

(i) p(x1) = 3
1 p(x2) = 2

1 p(x3) = 4
1

(ii) p(x1) = 3
1 p(x2) = 6

1 p(x3) = 2
1

(iii) p(x1) = 0 p(x2) = 3
1 p(x3) = 3

2

(iv) p(x1) = p(x2) = 3
2 p(x3) = 3

1

2) Consider the experiment of throwing a single die. The random
variable X represents the score on the upper face and assumes
the values as follows:

X : 1 2 3 4 5 6

p(xi) : 6
1

6
1

6
1

6
1

6
1

 6
1

 Is p(xi) a p.m.f?

3) A random variable X has the following probability distribution.

Values of X, x : 0 1 2 3 4 5 6 7 8
 p(x) : a 3a 5a 7a 9a 11a 13a 15a 17a
(i) Determine the value of a
(ii) Find P(X < 3), P(X > 3) and P(0< X < 5)

4) The following function is a probability mass function - Verify.

p(x) =







=
=

otherwise 0

2 for
1 for

3
2
3
1

x
x

 Hence find the c.d.f

5) Find k if the following function is a probability mass function.

p(x) =














=

=

=

 otherwise 0

 4for
2
k

 2for
3
k

 0for
6

x

x

xk

80

6) A random variable X has the following probability
distribution

values of X, x : −2 0 5

 p(x) : 4
1

4
1

2
1

Evaluate the following probabilities
(a) P(X < 0) (b) P(X < 0) (c) P(0< X < 10)

7) A random variable X has the following probability function
Values of X, x : 0 1 2 3

 p (x) : 16
1

8
3

k 16
5

(i) Find the value of k (ii) Construct the c.d.f. of X

8) A continuous random variable has the following p.d.f
f(x) = k x2, 0 < x < 10

 = 0 otherwise.
Determine k and evaluate (i) P(.2 < X < 0.5) (ii) P(X < 3)

9) If the function f(x) is defined by
f(x) = ce−x, 0 < x < ∞. Find the value of c.

10) Let X be a continuous random variable with p.d.f.

f(x) =











≤≤+−
≤≤
≤<

 otherwise 0

 32 ,3

21 ,

1 0 ,

xaax

xa

xax

(i) Determine the constant a
(ii) Compute P(X < 1.5)

11) Let X be the life length of a certain type of light bulbs in
hours. Determine ‘a’ so that the function

f(x) = 2x
a

, 1000 < x < 2000

 = 0 otherwise.
may be the probability density function.

81

12) The kms. X in thousands which car owners get with a certain
kind of tyre is a random variable having p.d.f.

f(x) = 20

20
1 x

e
−

, for x > 0

 = 0 for x < 0

Find the probabilities that one of these tyres will last

(i) atmost 10,000 kms

(ii) anywhere from 16,000 to 24,000 kms

(iii) atleast 30,000 kms.

8.2 MATHEMATICAL EXPECTATION

The concept of Mathematical expectation plays a vital role in
statistics. Expected value of a random variable is a weighted average
of all the possible outcomes of an experiment.

If X is a discrete random value which can assume values
x1, x2, ... xn with respective probabilities p(x i) = P[X = x i]; i = 1, 2
...n then its mathematical expectation is defined as

E(X) =
n

i 1=
Σ x i p(x i), (Here

n

i 1=
Σ p(x i) = 1)

If X is a continuous random variable with probability density
function f(x), then

E(X) = ∫
∞

∞−

)(xfx dx

Note

E(X) is also known as the mean of the random variable X.

Properties

1) E(c) = c where c is constant

2) E(X + Y) = E(X) + E(Y)

3) E(aX + b) = aE(X) + b where a and b are constants.

4) E(XY) = E(X) E(Y) if X and Y are independent

82

Note
The above properties holds good for both discrete and

continous random variables.

Variance

Let X be a random variable. Then the Variance of X, denoted
by Var(X) or σ2

x is

Var(X) = σ2
x = E[X − E(X)]2

= E(X2) − [E(X)]
2

The positive square root of Var(X) is called the Standard
Deviation of X and is denoted by σx.

Example 9

A multinational bank is concerned about the waiting time
(in minutes) of its customer before they would use ATM for
their transaction. A study of a random sample of 500
customers reveals the following probability distribution.

X : 0 1 2 3 4 5 6 7 8

p(x) : .20 .18 .16 .12 .10 .09 .08 .04 .03

Calculate the expected value of waiting time, X, of the
customer

Solution :

Let X denote the waiting time (in minutes) per customer.

X : 0 1 2 3 4 5 6 7 8

p(x) : .20 .18 .16 .12 .10 .09 .08 .04 .03

Then E(X)= Σx p(x)

= (0 x .2) + (1 x 0.18) + ... + (8 x 0.03) = 2.71

The expected value of X is equal to 2.71 minutes. Thus the
average waiting time of a customer before getting access to ATM is
2.71 minutes.

83

Example 10

Find the expected value of the number of heads
appearing when two fair coins are tossed.

Solvtion :

Let X be the random variable denoting the number of heads.

Possible values of X : 0 1 2

Probabilities p(x i) : 4
1

2
1

4
1

The Expected value of X is

E(X) = x1 p(x1) + x2 p(x2) + x3 p(x3)

= 0 



4
1

 + 1 



2
1

 + 2 



4
1

 = 1

Therefore, the expected number of heads appearing in the
experiment of tossing 2 fair coins is 1.

Example 11

The probability that a man fishing at a particular place
will catch 1, 2, 3, 4 fish are 0.4, 0.3, 0.2 and 0.1 respectively.
What is the expected number of fish caught?

Solution :

Possible values of X : 1 2 3 4

Probabilities p(x i) : 0.4 0.3 0.2 0.1

∴ E(X) =
i
Σ x i p(x i)

= x 1 p(x1) + x2 p(x2) + x2 p(x3) + x4 p(x4)

= 1 (.4) +2(.3) + 3(.2) + 4(.1)
= .4 + .6 + .6 + .4 = 2

Example 12

A person receives a sum of rupees equal to the square
of the number that appears on the face when a balance die is
tossed. How much money can he expect to receive?

84

Solution :

Random variable X: as square of the number that can appear
on the face of a die. Thus

possible values of X : 12 22 32 42 52 62

probabilities p(x i) : 6
1 6

1 6
1

6
1

6
1

6
1

The Expected amount that he receives,

E(X) = 12 



6
1

 + 22 



6
1

 + ... +62 



6
1

 = Rs. 6
91

Example 13

A player tosses two fair coins. He wins Rs.5 if two heads
appear, Rs. 2 if 1 head appears and Rs.1 if no head occurs.
Find his expected amount of gain.

Solution :

Consider the experiment of tossing two fair coins. There are
four sample points in the sample space of this experiment.

i.e. S = {HH, HT, TH, TT}

Let X be the random variable denoting the amount that a
player wins associated with the sample point.

Thus,
Possible values of X (Rs.) : 5 2 1

Probabilities p(x i) : 4
1

2
1

4
1

E(X) = 5 



4
1

 + 2 



2
1

 + 1 



4
1

= 4
5 + 1 + 4

1 = 4
10 = 2

5

= Rs. 2.50

Hence expected amount of winning is Rs.2.50

85

Example 14
A random variable X has the probability function as

follows :
values of X : -1 0 1
probability : 0.2 0.3 0.5

Evaluate (i) E(3X +1) (ii) E(X2) (iii) Var(X)

Solution :

X : −1 0 1
p(x i) : 0.2 0.3 0.5

(i) E(3X+1)= 3E(X) + 1
Now E(X) = −1 x 0.2 + 0 x 0.3 + 1 x 0.5

 = −1 x 0.2 + 0 + 0.5 = 0.3
E(3X + 1) = 3(0.3) + 1 = 1.9

(ii) E(X2)= Σx2 p(x)
= (−1)2 x 0.2 + (0)2 x 0.3 + (1)2 x 0.5
= 0.2 + 0 + 0.5 = 0.7

(iii) Var(X) = E(X2) - [E(X)]2

= .7 - (.3)2 = .61

Example 15

Find the mean, variance and the standard deviation for
the following probability distribution

Values of X, x : 1 2 3 4
 probability, p(x) : 0.1 0.3 0.4 0.2

Solution :

 Mean = E(X) = Σx p(x)
 = 1(0.1) + 2(0.3) + 3(0.4) + 4(0.2) = 2.7

Variance = E(X2) − [E(X)]2

Now E(X2) = Σx2 p(x)

= 12(0.1) +22(0.3) +32(0.4) + 42(0.2) = 8.1

86

∴ Variance = 8.1 − (2.7)2

= 8.1 − 7.29 = .81

Standard Deviation = 81.0 = 0.9

Example 16

Let X be a continuous random variable with p.d.f.

f(x) =




 <<−

 otherwise 0

1 1 for
2
1 x

Find (i) E(X) (ii) E(X
2
) (iii) Var(X)

Solution :

(i) E(X) = ∫
∞

∞−

)(xxf dx (by definition)

=
2
1 ∫

−

1

1

x dx =
2
1

1

1

2

2 −




x = 0

(ii) E(X2)= ∫
−

1

1

2x f(x) dx

= ∫
−

1

1

2x
2
1 dx

=
2
1

1

1

3

3 −




x =

3
1

(iii) Var(X) = E(X2) − [E(X)]2

 =
3
1 − 0 =

3
1

EXERCISE 8.2

1) A balanced die is rolled. A person recieves Rs. 10 when the
number 1 or 3 or 5 occurs and loses Rs. 5 when 2 or 4 or 6
occurs. How much money can he expect on the average per
roll in the long run?

2) Two unbiased dice are thrown. Find the expected value of the
sum of the points thrown.

87

3) A player tossed two coins. If two heads show he wins Rs. 4.
If one head shows he wins Rs. 2, but if two tails show he must
pay Rs. 3 as penalty. Calculate the expected value of the sum
won by him.

4) The following represents the probability distribution of D, the
daily demand of a certain product. Evaluate E(D).
 D : 1 2 3 4 5
P[D=d] : 0.1 0.1 0.3 0.3 0.2

5) Find E(2X-7) and E(4X + 5) for the following probability
distribution.
 X : −3 −2 −1 0 1 2 3
 p (x) : . 05 .1 .3 0 .3 .15 .1

6) Find the mean, variance and standard deviation of the following
probability distribution.

 Values of X : −3 −2 −1 0 1 2 3

Probability p(x) :
7
1

7
1

7
1

7
1

7
1

7
1

7
1

7) Find the mean and variance for the following probability
distribution.

f(x) =




<
≥−

0 , 0

0 ,2 2

x

xe x

8.3 DISCRETE DISTRIBUTIONS
We know that the frequency distributions are based on

observed data derived from the collected sample information. For
example, we may study the marks of the students of a class and
formulate a frequency distribution as follows:

Marks No. of students
0 - 20 10
20-40 12
40-60 25
60-80 15
80-100 18
Total 80

88

The above example clearly shows that the observed frequency
distributions are obtained by grouping. Measures like averages,
dispersion, correlation, etc. generally provide us a consolidated view
of the whole observed data. This may very well be used in
formulating certain ideas (inference) about the characteristics of the
whole set of data.

Another type of distribution in which variables are distributed
according to some definite probability law which can be expressed
mathematically are called theoretical probability distribution.

The probability distribution is a total listing of the various values
the random variable can take along with the corresponding
probabilities of each value. For example; consider the pattern of
distribution of machine breakdown in a manufacturing unit. The
random variable would be the various values the machine breakdown
could assume. The probability corresponding to each value of the
breakdown as the relative frequency of occurence of the breakdown.
This probability distribution is constructed by the actual breakdown
pattern discussed over a period of time.

Theoretical probability distributions are basically of two types

(i) Discrete and (ii) Continuous

In this section, we will discuss theoretical discrete distributions
namely, Binomial and Poisson distributions.

8.3.1 Binomial Distribution

It is a distribution associated with repetition of independent
trials of an experiment. Each trial has two possible outcomes,
generally called success and failure. Such a trial is known as
Bernoulli trial.

Some examples of Bernoulli trials are :

(i) a toss of a coin (Head or tail)

(ii) the throw of a die (even or odd number)

89

An experiment consisiting of a repeated number of Bernoulli
trials is called a binomial experiment. A binomial experiment must
possess the following properties:

(i) there must be a fixed number of trials.

(ii) all trials must have identical probabilities of success (p) i.e. if
we call one of the two outcomes as “success” and the other
as “failure”, then the probability p of success remains as
constant throughout the experiment.

(iii) the trials must be independent of each other i.e. the result of
any trial must not be affected by any of the preceeding trial.

Let X denote the number of successes in ‘n’ trials of a binomial
experiment. Then X follows a binomial distribution with parameters
n and p and is denoted by X~B(n, p).

A random variable X is said to follow Binomial distribution
with parameters n and p, if it assumes only non-negative values and
its probability mass function is given by

P[X=x] = p(x) = nCx p
x qn-x ; x = 0, 1, 2, ..n ; q = 1− p

Remark

(i)
n

x 0=
Σ p(x) =

n

x 0=
Σ nCx p

x qn-x = (q + p)n = 1

(ii) nCr =
r ... 3 . 2 . 1

)1(...)1(−−− rnnn

Mean and Variance

For the binomial distribution

Mean = np
Variance = npq; Standard Deviation = npq

Example 17

What is the probability of getting exactly 3 heads in 8
tosses of a fair coin.

90

Solution :

Let p denote the probability of getting head in a toss.

Let X be the number of heads in 8 tosses.

Then p =
2
1 , q =

2
1 and n = 8

Probability of getting exactly 3 heads is

P(X = 3) = 8c3

3

2
1 




5

2
1 




 =
3 2 1
6 7 8

 xx
x x

8

2
1 


 =

32
7

Example 18

Write down the Binomial distribution whose mean is 20
and variance being 4.

Solution :

Given mean, np = 20 ; variance, npq = 4

Now q = np
npq

 =
20
4 =

5
1 ∴ p = 1 − q =

5
4

From np = 20, we have

 n = p
20

 =
5
4

20
 = 25

Hence the binomial distribution is

 p(x) = nCx p
x qn-x = 25Cx

x





5
4

xn−





5
1 , x = 0, 1, 2, ... , 25

Example 19

On an average if one vessel in every ten is wrecked,
find the probability that out of five vessels expected to arrive,
atleast four will arrive safely.

Solution :

Let the probability that a vessel will arrive safely, p =
10
9

91

Then probability that a vessel will be wrecked, q = 1−p =
10
1

No. of vessels, n = 5

∴ The probability that atleast 4 out of 5 vessels to arrive
safely is

P(X > 4) = P(X = 4) + P(X = 5)

 = 5C4
4

10
9 




10
1 + 5C5

5

10
9 




 = 5(.9)4(.1) + (.9)5 = .91854

Example 20

For a binomial distribution with parameters n = 5 and
p = .3 find the probabilities of getting (i) atleast 3 successes
(ii) atmost 3 successes.

Solution :

Given n = 5, p = .3 ∴ q = .7

(i) The probability of atleast 3 successes

P(X>3) = P(X =3) + P(X = 4) + P(X = 5)

= 5C3 (0.3)3 (0.7)2 + 5C4 (0.3)4 (0.7) + 5C5 (.3)5(7)0

= .1631

(ii) The probability of atmost 3 successes

P(X < 3)= P(X =0) + P(X = 1) + P(X = 2) + P(X = 3)

= (.7)5 + 5C1 (.7)4 (.3) + 5C2 (.7)3 (.3)2 + 5C3 (.7)2 (.3)3

= .9692

8.3.2 Poisson distribution

Poisson distribution is also a discrete probability distribution
and is widely used in statistics. Poisson distribuition occurs when
there are events which do not occur as outcomes of a definite number

92

of trials of an experiment but which occur at random points of time
and space wherein our interest lies only in the number of occurences
of the event, not in its non-occurances. This distribution is used to
describe the behaviour of rare events such as

(i) number of accidents on road

(ii) number of printing mistakes in a book

(iii) number of suicides reported in a particular city.

Poisson distribution is an approximation of binomial
distribution when n (number of trials) is large and p, the probability
of success is very close to zero with np as constant.

A random variable X is said to follow a Poisson distribution
with parameter λ > 0 if it assumes only non-negative values and
its probability mass function is given by

P[X = x] =p(x) =
 !x

e xλλ−
; x = 0, 1, 2, ...

Remark

It should be noted that
∞

=
Σ

0x
P[X = x] =

∞

=
Σ

0x
p(x) = 1

Mean and Variance

For the of poisson distribution

Mean, E(X) = λ , Variance, Var(X) = λ, S.D = λ

Note

For poission distribution mean and variance are equal.

Example 21

Find the probability that atmost 5 defective fuses will
be found in a box of 200 fuses if experience shows that 2
percent of such fuses are defective. (e−−4 = 0.0183)

93

Solution :

p = probability that a fuse is defective =
100

2

n = 200

∴ λ = np =
100

2 x 200 = 4

Let X denote the number of defective fuses found in a box.

Then the distribution is given by

P[X = x] = p(x) =
!
44

x
e x−

So, probability that atmost 5 defective fuses will be found in
a box of 200 fuses

= P(X < 5)
= P(X = 0) + P(X = 1) + P(X = 2)

 + P(X = 3) + P(X =4) + P(X = 5)

= e−4 +
!1
44−e +

!2
424−e +

!3
434−e +

!4
444−e +

!5
454−e

=e−4 (1 +

!1
4 +

!2
42

 +
!3

43

 +
!4

44

 +
!5

45

)

=0.0183 x
15
643 =0.785

Example 22

Suppose on an average 1 house in 1000 in a certain
district has a fire during a year. If there are 2000 houses in
that district, what is the probability that exactly 5 houses will
have fire during the year? (e−−2 = .13534)

Solution :

p = probability that a house catches fire =
1000

1

94

Here n = 2000 ∴ λ = np = 2000 x
1000

1 = 2

Let X denote the number of houses that has a fire

Then the distribution is given by P[X = x] =
!
22

x
e x−

, x = 0, 1, 2,...

Probability that exactly 5 houses will have a fire during
the year is

 P[X = 5] =
!5
252−e

=
120

3213534. × = .0361

Example 23
The number of accidents in a year attributed to taxi

drivers in a city follows poisson distribution with mean 3. Out
of 1000 taxi drivers, find the approximate number of drivers
with

(i) no accident in a year
(ii) more than 3 accidents in a year

Solution :
Here λ = np = 3

N = 1000
Then the distribution is

P[X = x] =
 !
33

x
e x−

 where X denotes the number accidents.

(i) P (no accidents in a year) = P(X = 0)

 = e−3 = 0.05
∴ Number of drivers with no accident = 1000 x 0.05 = 50

(ii) P (that more than 3 accident in a year) = P(X > 3)

= 1 − P(X < 3)

= 1 − 



 +++

−−−
−

 !3
3

 !2
3

 !1
3 332313

3 eeee

95

= 1 − e−3[1 + 3 + 4.5 + 4.5]

= 1−e−3(13) = 1 − .65 = .35

∴ Number of drivers with more than 3 accidents

= 1000 x 0.35 = 350

EXERCISE 8.3

1) Ten coins are thrown simultaneously. Find the probability of
getting atleast 7 heads.

2) In a binomial distribution consisting of 5 independent trials,
probabilities of 1 and 2 successes are 0.4096 and 0.2048
respectively. Find the parameter ‘p’ of the distribution.

3) For a binomial distribution, the mean is 6 and the standard

deviation is 2 . Write down all the terms of the distribution.

4) The average percentage of failure in a certain examination is
40. What is the probability that out of a group of 6 candidates
atleast 4 passed in the examination?

5) An unbiased coin is tossed six times. What is the probability of
obtaining four or more heads?

6) It is stated that 2% of razor blades supplied by a manufacturer
are defective. A random sample of 200 blades is drawn from
a lot. Find the probability that 3 or more blades are defective.
(e−4 = .01832)

7) Find the probability that atmost 5 defective bolts will be found
in a box of 200 bolts, if it is known that 2% of such bolts are
expected to be defective (e−4 = 0.01832)

8) An insurance company insures 4,000 people against loss of
both eyes in car acidents. Based on previous data, the rates
were computed on the assumption that on the average 10
persons in 1,00,000 will have car accidents each year that result
in this type of injury. What is the probability that more
than 3 of the injured will collect on their policy in a given
year? (e−0 .4 = 0.6703)

96

9) It is given that 3% of the electric bulbs manufactured by a
company are defective. Find the probability that a sample of
100 bulbs will contain (i) no defective (ii) exactly one defective.
(e−3 = 0.0498) .

10) Suppose the probability that an item produced by particular
machine is defective equals 0.2. If 10 items produced from
this machine are selected at random, what is the probability
that not more than one defective is found? (e−2 = .13534)

8.4 CONTINUOUS DISTRIBUTIONS

The binomial and Poisson distributions discussed in the
previous section are the most useful theoretical distributions. In
order to have mathematical distribution suitable for dealing with
quantities whose magnitudes vary continuously like heights and
weights of individuals, a continuous distribution is needed. Normal
distribution is one of the most widely used continuous distributions.

8.4.1 Normal Distribution

Normal Distribution is considered to be the most important
and powerful of all the distributions in statistics. It was first
introduced by De Moivre in 1733 in the development of probability.
Laplace (1749 - 1827) and Gauss (1827 - 1855) were also
associated with the development of Normal distribution.

A random variable X is said to follow a Normal Distribution
with mean µ and variance σ2 denoted by X ~ N(µ, σ2), if its
probability density function is given by

f(x) =
22

2)(

2

1 σ

µ−−

πσ

x

e , −∞ < x < ∞, −∞ < µ < ∞ , σ > 0

Remark

The parameters µ and σ2 completely describe the normal
distribution. Normal distribution could be also considered as limiting
form of binomial distribution under the following conditions:

97

(i) n, the number of trials is indefinitely large i.e. n → ∞
(ii) neither p nor q is very small.

The graph of the p.d.f of the normal distribution is called the
Normal curve, and it is given below.

x = µ
Normal probability curve

8.4.2 Properties of Normal Distribution

The following are some of the important properties of the
normal curve and the normal distribution.
(i) The curve is “bell - shaped” and symmetric about x = µ
(ii) Mean, Median and Mode of the distribution coincide.
(iii) There is one maximum point of the normal curve which occurs

at the mean (µ). The height of the curve declines as we go in
either direction from the mean.

(iv) The two tails of the curve extend infinitely and never touch
the horizontal (x) axis.

(v) Since there is only one maximum point, the normal curve is
unimodal i.e. it has only one mode.

(vi) Since f(x) being the probability, it can never be negative and
hence no portion of the curve lies below the x - axis.

(vii) The points of inflection are given by x = µ + σ
(viii) Mean Deviation about mean

 σ
π
2 = 5

4 σ

f(x)

98

(ix) Its mathematical equation is completely determined if the mean
and S.D are known i.e. for a given mean µ and S.D σ, there
is only one Normal distribution.

(x) Area Property : For a normal distribution with mean µ and
S.D σ, the total area under normal curve is 1, and

(a) P(µ − σ < X < µ + σ) = 0.6826

i.e. (mean) + 1σ covers 68.27%;

(b) P(µ − 2σ < X < µ + 2σ) = 0.9544

i.e. (mean) + 2σ covers 95.45% area

(c) P(µ − 3σ < X < µ + 3σ) = 0.9973

i.e. (mean) + 3σ covers 99.73% area

10.4.3 Standard Normal Distribution

A random variable which has a normal distribution with a mean
µ = 0 and a standard deviation σ = 1 is referred to as Standard
Normal Distribution.

Remark

(i) If X~N(µ,σ2), then Z = σ
µ−X

 is a standard normal variate
with E(Z) = 0 and var(Z) = 1 i.e. Z ~ N(0, 1).

(ii) It is to be noted that the standard normal distribution has the
same shape as the normal distribution but with the special
properties of µ = 0 and σ = 1.

ZZ = 0

99

A random variable Z is said to have a standard normal
distribution if its probability density function is given by

ϕ(z) = 2

2

2
1 z

e
−

π
 , − ∞ < z < ∞

Example 24

What is the probability that Z
(a) lies between 0 and 1.83
(b) is greater than 1.54
(c) is greater than −−0.86
(d) lies between 0.43 and 1.12
(e) is less than 0.77

Solution :

(a) Z lies between 0 and 1.83.

P(0 < Z < 1.83) = 0.4664 (obtained from the tables directly)

(b) Z is greater than 1.54 i.e. P(Z > 1.54)

Z=0 1.83 Z

Z=0 1.54 Z

100

Since the total area to the right of Z = 0 is 0.5 and area between
Z = 0 and 1.54 (from tables) is 0.4382

P(Z > 1.54)= 0.5 − P(0 < Z < 1.54)

 = 0.5 − .4382 = .0618

(c) Z is greater than −−0.86 i.e. P(Z > −−0.86)

Here the area of interest P(Z > −0.86) is represented by the
two components.
(i) Area between Z = −0.86 and Z = 0, which is equal to

0.3051 (from tables)

(ii) Z > 0, which is 0.5
∴ P(Z > −0.86) = 0.3051 + 0.5 = 0.8051

(d) Z lies between 0.43 and 1.12

∴ P(0.43 < Z < 1.12) = P(0 < Z < 1.12) − P(0 < Z < 0.43)
 = 0.3686 − 0.1664 (from tables)
 = 0.2022.

Z=0−.86 Z

Z=0 .43 1.12 Z

101

(e) Z is less than 0.77

 P(Z < 0.77) = 0.5 + P(0 < Z < 0.77)

 = 0.5 + .2794 = .7794 (from tables)
Example 25

If X is a normal random variable with mean 100 and
variance 36

find (i) P(X > 112) (ii) P(X < 106) (iii) P(94 < X < 106)
Solution :

Mean, µ = 100 ; Variance, σ2 = 36 ; S.D, σ = 6
Then the standard normal variate Z is given by

Z = σ
µ−X

 = 6
100X −

(i) When X = 112, then Z = 6
100112 − = 2

∴ P(X > 112) = P(Z > 2)

= P (0 < Z < ∞) − P(0 < Z < 2)
= 0.5 − 0.4772 = 0.0228 (from tables)

Z=0 .77 Z

Z=0 2 Z

102

(ii) For a given value X = 106, Z = 6
100106 − = 1

P(X < 106) = P (Z < 1)

= P (−∞ < Z < 0) + P(0 < Z < 1)

= 0.5 + 0.3413 = 0.8413 (from tables)

(iii) When X = 94 , Z = 6
10094 − = −1

 X = 106, Z = 6
100106 − = + 1

∴ P(94 < X < 106) = P(−1 < Z < 1)

= P(−1 < Z < 0) + P(0 < Z < 1)

= 2 P(0 < Z < 1) (by symmetry)

= 2 (0.3413)

= 0.6826

Z=0 1 Z

Z=0 1 Z−1

103

Example 26

In a sample of 1000 candidates the mean of certain test
is 45 and S.D 15. Assuming the normality of the distrbution
find the following:

(i) How many candidates score between 40 and 60?

(ii) How many candidates score above 50?

(iii) How many candidates score below 30?

Solution :

Mean = µ = 45 and S.D. = σ = 15

Then Z = σ
µ−X

 = 15
45X −

(i) P (40 < X < 60) = P(15
4504 − < Z < 15

4506 −)

= P(− 3
1 < Z < 1)

= P(− 3
1 < Z < 0) + P(0 < Z < 1)

= P(0 < Z < 0.33) + P(0 < Z < 1)

= 0.1293 + 0.3413 (from tables)

P(40 < X < 60) = 0.4706

Hence number of candidates scoring between 40 and 60

= 1000 x 0.4706 = 470.6 ~ 471

Z=0 1 Z
−

3
1

104

(ii) P(X > 50) = P(Z > 3
1)

= 0.5 − P(0 < Z < 3
1) = 0.5 - P(0 < Z 0.33)

= 0.5 − 0.1293 = 0.3707 (from tables)
Hence number of candidates scoring above 50

= 1000 x 0.3707 = 371.

(iii) P(X < 30) = P(Z < −1)

= 0.5 − P(−1 < Z < 0)

= 0.5 − P(0 < Z < 1) Œ Symmetry

= 0.5 − 0.3413 = 0.1587 (from tables)
∴ Number of candidates scoring less than 30

= 1000 x 0.1587 = 159

Example 27

The I.Q (intelligence quotient) of a group of 1000 school
children has mean 96 and the standard deviation 12.

Z=0 Z
3
1

Z=0−1 Z

105

Assuming that the distribution of I.Q among school children
is normal, find approximately the number of school children
having I.Q.

(i) less than 72 (ii) between 80 and 120
Solution :

GivenN = 1000, µ = 96 and σ = 12

Then Z = σ
µ−X

 = 12
96X −

(i) P(X < 72) = P(Z < −2)

= P(−∞ < Z < 0) − P(−2 < Z < 0)

= P(0 < Z < ∞) − P(0 < Z < 2) (By symmetry)

= 0.5 − 0.4772 (from tables) = 0.0228.

 ∴ Number of school children having I.Q less than 72
=1000 x 0.0228 = 22.8 ~ 23

(ii) P(80 < X < 120) = P(−1.33 < Z < 2)

Z=0−2 Z

Z=0 2 Z−1.33

106

= P(−1.33 < Z < 0) + P(0< Z < 2)

= P(0 < Z < 1.33) + P(0 < Z < 2)

= .4082 + .4772 (from tables)

= 0.8854

∴ Number of school children having I.Q. between 80 and 120

= 1000 x .8854 = 885.

Exercise 28

In a normal distribution 20% of the items are less than
100 and 30% are over 200. Find the mean and S.D of the
distribution.

Solution :

Representing the given data diagramtically,

From the diagram

P(−Z1 < Z < 0) = 0.3

i.e. P(0 < Z < Z1) = 0.3

∴ Z1 = 0.84 (from the normal table)

Hence −0.84 = σ
µ−100

i.e. 100 − µ = −0.84σ ----------(1)

P (0 < Z < Z2) = 0.2

∴ Z2 = 0.525 (from the normal table)

Z=0 X=200
Z=Z2

X=100
Z=−Z1

107

Hence 0.525 = σ
µ−200

i.e. 200 − µ = 0.525σ ----------(2)

Solving (1) and (2), µ = 161.53

σ = 73.26

EXERCISE 8.4

1) Find the area under the standard normal curve which lies

(i) to the right of Z = 2.70
(ii) to the left of Z = 1.73

2) Find the area under the standard normal curve which lies
(i) between Z = 1.25 and Z = 1.67
(ii) between Z = −0.90 and Z = −1.85

3) The distribution of marks obtained by a group of students may
be assumed to be normal with mean 50 marks and standard
deviation 15 marks. Estimate the proportion of students with
marks below 35.

4) The marks in Economics obtained by the students in Public
examination is assumed to be approximately normally distributed
with mean 45 and S.D 3. A student taking this subject is chosen
at random. What is the probability that his mark is above 70?

5) Assuming the mean height of soldiers to be 68.22 inches with
a variance 10.8 inches. How many soldiers in a regiment of
1000 would you expect to be over 6 feet tall ?

6) The mean yield for one-acre plot is 663 kgs with a S.D 32
kgs. Assuming normal distribution, how many one-acre plot
in a batch of 1000 plots would you expect to have yield (i)
over 700 kgs (ii) below 650 kgs.

7) A large number of measurements is normally distributed with
a mean of 65.5" and S.D of 6.2". Find the percentage of
measurements that fall between 54.8" and 68.8".

108

8) The diameter of shafts produced in a factory conforms to
normal distribution. 31% of the shafts have a diameter less
than 45mm. and 8% have more than 64mm. Find the mean
and standard deviation of the diameter of shafts.

9) The results of a particular examination are given below in a
summary form.

 Result percentage of candidates

1. passed with distinction 10

2. passed 60

3. failed 30

It is known that a candidate gets plucked if he obtained less
tham 40 marks out of 100 while he must obtain atleast 75
marks in order to pass with distinction. Determine the mean
and the standard deviation of the distribution assuming this
to be normal.

EXERCISE 8.5

Choose the correct answer

1) If a fair coin is tossed three times the probability function p(x)
of the number of heads x is
(a) x 0 1 2 3 (b) x 0 1 2 3

 p(x) 8
1 8

1 8
2 8

3 p(x) 8
1 8

3 8
3 8

1

(c) x 0 1 2 3 (d) none of these

 p(x) 8
1 8

1 8
2 8

3

2) If a discrete random variable has the probability mass function as

 x 0 1 2 3
 p(x) k 2k 3k 5k then the value of k is

(a) 11
1 (b) 11

2 (c) 11
3 (d) 11

4

109

3) If the probability density function of a variable X is defined as
f(x) = Cx (2 -x), 0 < x < 2 then the value of C is

(a) 3
4 (b) 4

6 (c) 4
3 (d) 5

3

4) The mean and variance of a binomial distribution are
(a) np, npq (b) pq, npq (c)np , npq (d) np , nq

5) If X~N (µ, σ), the standard Normal variate is distributed as
(a) N(0, 0) (b) N(1, 0) (c) N(0, 1) (d) N(1, 1)

6) The normal distribution curve is
(a) Bimodal (b) Unimodal
(c) Skewed (d) none of these

7) If X is a poission variate with P(X = 1) = P(X = 2), the mean
of the Poisson variate is equal to
(a) 1 (b) 2 (c) −2 (d) 3

8) The standard deviation of a Poissson variate is 2, the mean of
the poisson variate is

(a) 2 (b) 4 (c) 2 (d) 2
1

9) The random variables X and Y are independent if
(a) E(X Y) = 1 (b) E(XY) = 0
(c) E(X Y) = E(X) E(Y) (d) E(X+Y) = E(X) + E(Y)

10) The mean and variance of a binomial distribution are 8 and 4
respectively. Then P(X = 1) is equal to

(a) 122
1

(b) 42
1

(c) 62
1

(d) 102
1

11) If X~N (µ, σ2), the points of inflection of normal distribution
curve are
(a) + µ (b) µ + σ (c) σ + µ (d) µ + 2σ

12) If X~N (µ, σ2), the maximum probability at the point of
inflection of normal distribution is

(a)
2
1

2
1 e

π (b)
2
1

2
1 −

π
e (c) πσ 2

1
(d) π2

1

110

13) If a random variable X has the following probability distribution

 X −1 −2 1 2

 p(x) 3
1 6

1 6
1 3

1 then the expected value of X is

(a) 2
3 (b) 6

1 (c) 2
1 (d) 3

1

14) If X~N (5, 1), the probability density function for the normal
variate X is

(a)
2

5
1

2
1)(

25
1 −−

π

x
e (b)

2
5
1

2
1)(

2
1 −−

π

x

e

(c)
2

2
1)5(

2
1 −−

π
x

e (d)
2

2
1)5(1 −−

π
x

e

15) If X~N (8, 64), the standard normal variate Z will be

(a) z = 8
64X − (b) 64

8X −

(c) 8
8X − (d) 8

8X −

111

9.1 SAMPLING AND TYPES OF ERRORS

Sampling is being used in our everyday life without knowing
about it. For examples, a cook tests a small quantity of rice to see
whether it has been well cooked and a grain merchant does not
examine each grain of what he intends to purchase, but inspects
only a small quantity of grains. Most of our decisions are based on
the examination of a few items only.

In a statistical investigation, the interest usually lies in the
assessment of general magnitude and the study of variation with
respect to one or more characteristics relating to individuals
belonging to a group. This group of individuals or units under study
is called population or universe. Thus in statistics, population is
an aggregate of objects or units under study. The population may
be finite or infinite.

9.1.1 Sampling and sample
Sampling is a method of selecting units for analysis such as

households, consumers, companies etc. from the respective
population under statistical investigation. The theory of sampling is
based on the principle of statistical regularity. According to
this principle, a moderately large number of items chosen at random
from a large group are almost sure on an average to possess the
characteristics of the larger group.

A smallest non-divisible part of the population is called a unit.
A unit should be well defined and should not be ambiguous. For
example, if we define unit as a household, then it should be defined
that a person should not belong to two households nor should it
leave out persons belonging to the population.

A finite subset of a population is called a sample and the
number of units in a sample is called its sample size.

SAMPLING TECHNIQUES
AND STATISTICAL INFERENCE 9

112

By analysing the data collected from the sample one can draw
inference about the population under study.

9.1.2 Parameter and Statistic

The statistical constants of a population like mean (µ), variance
(σ2), proportion (P) are termed as parameters. Statistical
measures like mean (X), variance (s2), proportion (p) computed
from the sampled observations are known as statistics.

Sampling is employed to throw light on the population
parameter. A statistic is an estimate based on sample data to draw
inference about the population parameter.

9.1.3 Need for Sampling

Suppose that the raw materials department in a company
receives items in lots and issues them to the production department
as and when required. Before accepting these items, the inspection
department inspects or tests them to make sure that they meet the
required specifications. Thus

(i) it could inspect all items in the lot or

(ii) it could take a sample and inspect the sample for defectives
and then estimate the total number of defectives for the
population as a whole.

The first approach is called complete enumeration (census).
It has two major disadvantages namely, the time consumed and the
cost involved in it.

The second approach that uses sampling has two major
advantages. (i) It is significantly less expensive. (ii) It takes least
possible time with best possible results.

There are situations that involve destruction procedure where
sampling is the only answer. A well-designed statistical sampling
methodology would give accurate results and at the same time will
result in cost reduction and least time. Thus sampling is the best
available tool to decision makers.

113

9.1.4 Elements of Sampling Plan

The main steps involved in the planning and execution of sample
survey are :

(i) Objectives

The first task is to lay down in concrete terms the basic
objectives of the survey. Failure to define the objective(s) will clearly
undermine the purpose of carrying out the survey itself. For example,
if a nationalised bank wants to study savings bank account holders
perception of the service quality rendered over a period of one
year, the objective of the sampling is, here,to analyse the perception
of the account holders in the bank.

(ii) Population to be covered

Based on the objectives of the survey, the population should
be well defined. The characteristics concerning the population under
study should also be clearly defined. For example, to analyse the
perception of the savings bank account holders about the service
rendered by the bank, all the account holders in the bank constitute
the population to be investigated.

(iii) Sampling frame

In order to cover the population decided upon, there should
be some list, map or other acceptable material (called the frame)
which serves as a guide to the population to be covered. The list or
map must be examined to be sure that it is reasonably free from
defects. The sampling frame will help us in the selection of sample.
All the account numbers of the savings bank account holders in the
bank are the sampling frame in the analysis of perception of the
customers regarding the service rendered by the bank.

(iv) Sampling unit

For the purpose of sample selection, the population should
be capable of being divided up into sampling units. The division of
the population into sampling units should be unambiguous. Every
element of the population should belong to just one sampling unit.

114

Each account holder of the savings bank account in the bank, form
a unit of the sample as all the savings bank account holders in the
bank constitute the population.

(v) Sample selection

The size of the sample and the manner of selecting the sample
should be defined based on the objectives of the statistical
investigation. The estimation of population parameter along with
their margin of uncertainity are some of the important aspects to be
followed in sample selection.

(vi) Collection of data

The method of collecting the information has to be decided,
keeping in view the costs involved and the accuracy aimed at.
Physical observation, interviewing respondents and collecting data
through mail are some of the methods that can be followed in
collection of data.

(vii) Analysis of data

The collected data should be properly classified and subjected
to an appropriate analysis. The conclusions are drawn based on
the results of the analysis.

9.1.5 Types of Sampling
Types of
Sampling

Probability Sampling
or

Random sampling

Non-Probability Sampling
or

Non-Random Sampling

Simple
Random
Sampling

Stratified
Random
Sampling

Systematic
Sampling

Cluster
Sampling

Quota
Sampling

Expert
Sampling

Convenience
Sampling

115

The technique of selecting a sample from a population usually
depends on the nature of the data and the type of enquiry. The
procedure of sampling may be broadly classified under the following
heads :

 (i) Probability sampling or random sampling and
 (ii) Non-probability sampling or non-random sampling.

(i) Probability sampling
Probability sampling is a method of sampling that ensures that

every unit in the population has a known non-zero chance of being
included in the sample.

The different methods of random sampling are :

(a) Simple Random Sampling

Simple random sampling is the foundation of probability
sampling. It is a special case of probability sampling in which every
unit in the population has an equal chance of being included in a
sample. Simple random sampling also makes the selection of every
possible combination of the desired number of units equally likely.
Sampling may be done with or without replacement.

It may be noted that when the sampling is with replacement,
the units drawn are replaced before the next selection is made.The
population size remains constant when the sampling is with
replacement.

If one wants to select n units from a population of size N
without replacement,then every possible selection of n units must
have the same probability. Thus there are Ncn possible ways to
pick up n units from the population of size N. Simple random
sampling guarantees that a sample of n units, has the same probability

ncN
1

of being selected.

Example

A bank wants to study the Savings Bank account holders
perception of the service quality rendered over a period of one

116

year. The bank has to prepare a complete list of savings bank
account holders, called as sampling frame, say 500. Now the
process involves selecting a sample of 50 out of 500 and interviewing
them. This could be achieved in many ways. Two common ways
are :

(1) Lottery method : Select 50 slips from a box containing well
shuffled 500 slips of account numbers without replacement.
This method can be applied when the population is small
enough to handle.

(2) Random numbers method : When the population size is
very large, the most practical and inexpensive method of
selecting a simple random sample is by using the random
number tables.

(b) Stratified Random Sampling

Stratified random sampling involves dividing the population
into a number of groups called strata in such a manner that the
units within a stratum are homogeneous and the units between the
strata are hetrogeneous. The next step involves selecting a simple
random sample of appropriate size from each stratum. The sample
size in each stratum is usually of (a) equal size, (b) proportionate
to the number of units in the stratum.

For example, a marketing manager in a consumer product
company wants to study the customer’s attitude towards a new
product in order to improve the sales. Then three typical cities that
will influence the sales will be considered as three strata. The
customers within a city are similar but between the cities are vastly
different. Selection of the customers for the study from each city
has to be a random sample to draw meaningful inference on the
whole population.

(c) Systematic sampling

Systematic sampling is a convenient way of selecting a sample.
It requires less time and cost when compared to simple random
sampling.

117

In this method, the units are selected from the population at a
uniform interval. To facilitate this we arrange the items in numerical,
alphabetical, geographical or any other order. When a complete
list of the population is available, this method is used.

If we want to select a sample of size n from a population of
size N under systematic sampling, frist select an item j at random

such that 1 < j < k where k =
1

N
+n

 and k is the nearest possible
integer. Then j, j + k, j + 2k , ... , j + (n−1) k th items constitute a
systematic random sample.

For example, if we want to select a sample of 9 students out
of 105 students numbered as 1, 2, ..., 105 , select a student among

1, 2, ... , 11 at random (say at 3rd position). Here k = 10
105 = 10.5

and ∴ k = 11. Hence students at the positions 3, 14, 25, 36, 47,
58, 69, 80, 91 form a random sample of size 9.

(d) Cluster sampling
Cluster sampling is used when the population is divided into

groups or clusters such that each cluster is a representative of the
population.

If a study has to be done to find out the number of children
that each family in Chennai has, then the city can be divided into
several clusters and a few clusters can be chosen at random. Every
family in the chosen clusters can be a sample unit.

In using cluster sampling the following points should be noted
(a) For getting precise results clusters should be as small as

possible consistent with the cost and limitations of the survey
and

(b) The number of units in each cluster must be more or less equal.

(ii) Non-Probability Sampling
The fundamental difference between probability sampling and

non-probability sampling is that in non-probability sampling
procedure, the selection of the sample units does not ensure a known

118

chance to the units being selected. In other words the units are
selected without using the principle of probability. Even though
the non-probability sampling has advantages such as reduced cost,
speed and convenience in implementation, it lacks accuracy in view
of the seleciton bias. Non-probability sampling is suitable for pilot
studies and exploratory research

The methods of non-random sampling are :

(a) Purposive sampling
In this sampling, the sample is selected with definite purpose

in view and the choice of the sampling units depends entirely on the
discretion and judgement of the investigator.

For example, if an investigator wants to give the picture that
the standard of living has increased in the city of Madurai, he may
take the individuals in the sample from the posh localities and ignore
the localities where low income group and middle class families live.

(b) Quota sampling
This is a restricted type of purposive sampling. This consists

in specifying quotas of the samples to be drawn from different groups
and then drawing the required samples from these groups by
purposive sampling. Quota sampling is widely used in opinion and
market research surveys.

(c) Expert opinion sampling or expert sampling
Expert opinion sampling involves gathering a set of people

who have the knowledge and expertise in certain key areas that are
crucial to decision making. The advantage of this sampling is that it
acts as a support mechanism for some of our decisions in situations
where virtually no data are available. The major disadvantage is
that even the experts can have prejudices, likes and dislikes that
might distort the results.

9.1.6 Sampling and non-sampling errors
The errors involved in the collection of data, processing and

analysis of data may be broadly classfied as (i) sampling errors
and (ii) non-sampling errors.

119

(i) Sampling errors

Sampling errors have their origin in sampling and arise due to
the fact that only a part of the population has been used to estimate
population parameters and draw inference about the population.
Increasing in the sample size usually results in decrease in the
sampling error.

Sampling errors are primarily due to some of the following
reasons :

(a) Faulty selection of the sample

Some of the bias is introduced by the use of defective sampling
technique for the selection of a sample in which the investigator
deliberately selects a representative sample to obtain certain results.

(b) Substitution

If difficulty arise in enumerating a particular sampling unit
included in the random sample, the investigators usually substitute a
convenient member of the population leading to sampling error.

(c) Faulty demarcation of sampling units

Bias due to defective demarcation of sampling units is
particularly significant in area surveys such as agricultural
experiments. Thus faulty demarcation could cause sampling error.

(ii) Non-sampling errors

The non-sampling errors primarily arise at the stages of
observation, classification and analysis of data.

Non-sampling errors can occur at every stage of the planning
or execution of census or sample surveys. Some of the more
important non-sampling errors arise from the following factors :

(a) Errors due to faulty planning and definitions
Sampling error arises due to improper data specification, error
in location of units, measurement of characteristics and lack
of trained investigators.

120

(b) Response errors
These errors occur as a result of the responses furnished by
the respondents.

(c) Non-response bias
Non-response biases occur due to incomplete information on
all the sampling units.

(d) Errors in coverage
These errors occur in the coverage of sampling units.

(e) Compiling errors
These errors arise due to compilation such as editing and

coding of responses.

EXERCISE 9.1

1) Explain sampling distribution and standard error.
2) Distinguish between the terms parameter and statistic
3) Explain briefly the elements of sampling plan.
4) Discuss probability sampling.
5) Discuss non-probability sampling.
6) Distinguish between sampling and non sampling errors.

9.2 SAMPLING DISTRIBUTIONS

Consider all possible samples of size n which can be drawn
from a given population. For each sample we can compute a statistic
such as mean, standard deviation, etc. which will vary from sample
to sample. The aggregate of various values of the statistic under
consideration may be grouped into a frequency distribution. This
distribution is known as sampling distribution of the statistic. Thus
the probability distribution of all the possible values that a sample
statistic can take, is called the sampling distribution of the statistic.
Sample mean and sample proportion based on a random sample
are examples of sample statistic.

Supposing a Market Research Agency wants to estimate the
annual household expenditure on consumer durables from among

121

the population of households (say 50000 households) in Tamil Nadu.
The agency can choose fifty different samples of 50 households
each. For each of the samples, we can calculate the mean annual
expenditure on consumer durables as given in the following table :

 Sample No. Total expenditure for Mean
 50 households Rs.

1 100000 2000

2 300000 6000

3 200000 4000

4 150000 3000
. . .
. . .
. . .
49 600000 12000

50 400000 8000

The distribution of all the sample means is known as the
sampling distribution of the mean. The figures Rs. 2000,
6000 ... 8000 are the sampling distribution of the means.

Similarly, the sampling distribution of the sample variance
and sample proportion can also be obtained.

In a sample of n items if n1 belongs to Category-1 and

n-n1 belongs to the Category-2, then
n
n1 is defined as the

sample proportion p belonging to the first category and
n

nn 1−

or (1- p) is the sample proportion of second category. This concept
could be extended to k such categories with proportions (say) p1,
p2, ... , pk such that p1 + p2 + ... + pk = 1

We could also arrive at a sampling distribution of a proportion.
For example, if in a factory producing electrical switches, 15 different
samples of 1000 switches are taken for inspection and number of
defectives in each sample could be noted. We could find a probability
distribtuion of the proportion of defective switches.

122

9.2.1 Sampling distribution of the Mean from normal
population

If X1, X2, ..., Xn are n independent random samples drawn
from a normal population with mean µ and standard deviation σ,
then the sampling distribution of X (the sample mean) follows a

normal distribution with mean µ and standard deviation
n

σ .

It may be noted that

(i) the sample mean X =
n

iXΣ
 =

n
nX...XX 21 +++

Thus X is a random variable and will be different every time
when a new sample of n observations are taken

(ii) X is an unbiased estimator of the population mean µ.

i.e. E(X) = µ, denoted by µ
X

= µ.

(iii) the standard deviation of the sample mean X is given by

σ
X

 =
n

σ

For example, consider a sample of weights of four boys from
the normal population of size 10000 with replacement. The mean
weight of the four boys is worked out. Again take another new
sample of four boys from the same population and find the mean
weight. If the process is repeated an infinite number of times, the
probability distribution of these infinite number of sample means
would be sampling distribution of mean.

9.2.2 Central limit theorem

When the samples are drawn from a normal population
with mean µ and standard deviation σ , the sampling distribution
of the mean is also normal with mean µ

X
= µ and standard

deviation σ
X

 =
n

σ . However the sampling distribution of the

mean, when the population is not normal is equally important.

123

The central limit theorem says that from any given
population with mean µ and standard deivation σ, if we draw a
random sample of n observations, the sampling distribution of the
mean will approach a normal distribution with a mean µ and standard

deviation
n

σ as the sample size increases and becomes large.

In practice a sample size of 30 and above is considered to be
large.

Thus the central limit theorem is a hall mark of statistical
inference. It permits us to make inference about the population
parameter based on random samples drawn from populations that
are not neccessarily normally distributed.

9.2.3 Sampling distribution of proportions

Suppose that a population is infinite and that the probability
of occurrence of an event, say success, is P. Let Q = 1 − P denote
the probability of failure.

Consider all possible samples of size n drawn from this
population. For each sample, determine the proportion p of
successes. Applying central limit theorem, if the sample size n is
large, the distribution of the sample porportion p follows a normal

distribution with mean µp = P and S.D σp =
n

PQ .

9.2.4 Standard error

The standard deviation of the sampling distribution of a statistic
is called the standard error of the statistic. The standard deviation
of the distribution of the sample means is called the standard error
of the mean. Likewise, the standard deviation of the distribution
of the sample proportions is called the standard error of the
proportion.

The standard error is popularly known as sampling error.
Sampling error throws light on the precision and accuracy of the
estimate. The standard error is inversely proportional to the sample
size i.e. the larger the sample size the samller the standard error.

124

The standard error measures the dispersion of all possible
values of the statistic in repeated samples of a fixed size from a
given population. It is used to set up confidence limits for population
parameters in tests of significance. Thus the standard errors of
sample mean X and sample proportion p are used to find
confidence limits for the population mean µ and the population
proportion P respectively.

 Statistic Standard error Remarks

Sample mean

 X

Sample
proportion p

Example 1

A population consists of the five numbers 2, 3, 6, 8, 11.
Consider all possible samples of size 2 which can be drawn
with replacement from this population. find (i) mean of the
population, (i) the standard deviation of the population (iii)
the mean of the sample distribution of means and (iv) the
standard error of means.

Solution :

(i) The population mean µ = N
xΣ = 5

118632 ++++ = 6

(ii) The variance of the population σ2 = N
1 Σ(x - µ)2

n
σ

n
σ

1N
N

−
− n

n
PQ

n
PQ

1N
N

−
− n

Population size is
infinite or sample with
replacement.

Population size N finite
or sample without
replacement

Population size is
infinite or sample with
replacement.

Population size N finite
or sample without
replacement

125

= 5
1 {(2-6)2 + (3-6)2 + (6-6)2 + (8-6)2 + (11-6)2}

= 10.8

∴ the standard deviation of the population σ = 3.29

(iii) There are 25 samples of size two which can be drawn with
replacement. They are

(2, 2) (2, 3) (2, 6) (2, 8) (2, 11)

(3, 2) (3, 3) (3, 6) (3, 8) (3, 11)

(6, 2) (6, 3) (6, 6) (6, 8) (6, 11)

(8, 2) (8, 3) (8, 6) (8, 8) (8, 11)

(11, 2) (11, 3) (11, 6) (11, 8) (11, 11)

The corresponding sample means are

2.0 2.5 4.0 5.0 6.5

2.5 3.0 4.5 5.5 7.0

4.0 4.5 6.0 7.0 8.5

5.0 5.5 7.0 8.0 9.5

6.5 7.0 8.5 9.5 11.0

The mean of sampling distribution of means

µ
X

 =
25

means sample all of sum
 = 25

150 = 6.0

(iv) The variance 2
Xσ of the sampling distribution of means is

obtained as follows :

 2
Xσ = 25

1 {2−6)2 + (2.5 − 6)2 + ... + (6.5−6)2 + ...

+ (9.5−6)2 +(11−6)2}

= 25
135 = 5.4

∴ the standard error of means σ
X

 = 4.5 = 2.32

126

Example 2
Assume that the monthly savings of 1000 employees

working in a factory are normally distributed with mean
Rs. 2000 and standard deviation Rs. 50 If 25 samples
consisting of 4 employees each are obtained, what would be
the mean and standard deviation of the resulting sampling
distribution of means if sampling were done (i) with
replacement, (ii) without replacement.

Solution :

Given N = 1000, µ = 2000, σ = 50, n = 4

(i) Sampling with replacement

µ
X

= µ = 2000

σ
X =

n
σ =

4
50 = 25

(ii) Sampling without replacement

The mean of the sampling distribution of the means is

µ
X = µ = 2000

The standard deviation of the sampling distribution of means
is

 σ
X = 1N

N
−
−σ n

n

= 11000
4100

4
50

−
−

= (25)
999
996 = 25 ()996.

= (25) (0.9984) = 24.96

Example 3

A random sample of size 5 is drawn without replacement
from a finite population consisting of 41 units. If the population
S.D is 6.25, find the S.E of the sample mean.

127

Solution :

Population size N = 41

Sample size n = 5

Standard deviation of the popultion σ = 6.25

S.E of sample mean =
n

σ
1N

N
−
− n (N is finite)

=
5
25.6

141
541

−
−

=
102 5
6 25.6 x =

25
25.6 3 x =2.65

Example 4

The marks obtained by students in an aptitude test are
normally distributed with a mean of 60 and a standard
deviation of 30. A random sample of 36 students is drawn
from this population.

(i) What is the standard error of the sampling mean?

(ii) What is the probability that the mean of a sample of
16 students will be either less than 50 or greater than 80?

[P (0 < Z < 4) = 0.4999]

Solution :

(i) The standard error of the sample mean X is given by

σ X =
n

σ =
36

30 = 5 (N is not given)

(ii) The random variable X follows normal distribution with mean

µ X and standard deviation
n

σ .

To find P(X <50 or X >80).

P(X <50 or X >80) = P(X <50) + P(X >80)

 = P 






 −<σ
µ−

5
6050X

X

X + P 






 −>σ
µ−

5
6080X

X

X

128

= P (Z < −2) + P(Z > 4)
= [0.5 − P(0 < Z < 2)] + [0.5 − P(0 < Z < 4)]
= (0.5 − 0.4772) + (0.5 − 0.4999)
= .02283, which is the required probability.

Example 5

2% of the screws produced by a machine are defective.
What is the probability that in a consignment of 400 such
screws, 3% or more will be defective.

Solution :

Here N is not given, but n = 400
Population proportion P = 2% = 0.02 ∴ Q = 1 − P = 0.98
The sample size is large

∴ The sample porportion is normally distributed with mean

µp = 0.02 and S.D =
n

PQ = 400
98.0 02.0 x = 0.007

Probability that the sample proportion p > 0.03

= Area under the normal curve to the right of Z = 1.43.

(Z =
S.D

P−p
 = 007.0

02.0 03.0 − = 1.43)

∴ required probability = 0.5 − Area between Z = 0 to Z = 1.43

 = 0.5 − 0.4236 = 0.0764

EXERCISE 9.2

1) A population consists of four numbers 3, 7, 11 and 15. Consider
all possible samples of size two which can be drawn with
replacement from this population.
Find (i) the population mean

(ii) the population standard deviation.
(iii) the mean of the sampling distribution of mean
(iv) the standard deviation of the sampling distribution of

mean.

129

2) A population consists of four numbers 3, 7, 11 and 15. Consider
all possible samples of size two which can be drawn without
replacement from this population.

Find (i) the population mean

(ii) the population standard deviation.

(iii) the mean of the sampling distribution of mean

(iv) the standard deviation of the sampling distribution of
mean.

3) The weights of 1500 iron rods are normally distributed with
mean of 22.4 kgs. and standard deviation of 0.048 kg. If 300
random samples of size 36 are drawn from this population,
determine the mean and standard deviation of the sampling
distribution of mean when sampling is done (i) with replacement
(ii) without replacement.

4) 1% of the outgoing +2 students in a school have joined I.I.T.
Madras. What is the probability that in a group of 500 such
students 2% or more will be joining I.I.T. Madras.

9.3 ESTIMATION

The technique used for generalising the results of the sample
to the population is provided by an important branch of statistics
called statistical inference. The concept of statistical inference
deals with two basic aspects namely (a) Estimation and (b) Testing
of hypothesis.

In statistics, estimation is concerned with making inference
about the parameters of the population using information available
in the samples. The parameter estimation is very much needed in
the decision making process.

The estimation of population parameters such as mean,
variance, proportion, etc. from the correspoinding sample statistics
is an important function of statistical inference.

130

9.3.1 Estimator
A sample statistic which is used to estimate a population

parameter is known as estimator.
A good estimator is one which is as close to the true value of

population parameter as possible. A good estimator possesses the
following properties:

(i) Unbiasedness
As estimate is said to be unbiased if its expected value is

equal to its parameter.

The sample mean X = n
1 Σx is an unbiased estimator of

population mean µ. For a sample of size n, drawn from a population

of size N, s2 = 1
1
−n ΣΣ(x−− x)2 is an unbiased estimator of

population variance. Hence s2 is used in estimation and in testing
of hypothesis.

(ii) Consistency
An estimator is said to be consistent if the estimate tends to

approach the parameter as the sample size increases.

(iii) Efficiency
If we have two unbiased estimators for the same population

prarameter, the first estimator is said to be more efficient than the
second estimator if the standard error of the first estimator is smaller
than that of the second estimator for the same sample size.

(iv) Sufficiency
If an estimator possesses all information regarding the

parameter, then the estimator is said to be a sufficient estimator.

9.3.2 Point Estimate and Interval Estimate
It is possible to find two types of estimates for a population

parameter. They are point estimate and interval estimate.

Point Estimate

An estimate of a population parameter given by a single
number is called a point estimator of the parameter. Mean (x) and

131

the sample variance [s2 = 1
1
−n Σ(x− x)2] are the examples of

point estimates.

A point estimate will rarely coincide with the true population
parameter value.

Interval Estimate
An estimate of a population parameter given by two numbers

between which the parameter is expected to lie is called an interval
estimate of the parameter.

Interval estimate indicates the accuracy of an estimate and is
therefore preferable to point estimate. As point estimate provides
a single value for the population parameter it may not be suitable in
some situation.

For example,
if we say that a distance is measured as 5.28mm, we are giving

a point estimate. On the other hand, if we say that the distance is
5.28 + 0.03 mm i.e. the distance lies between 5.25 and 5.31mm,
we are giving an interval estimate.

9.3.3 Confidence Interval for population mean and proportion

The interval within which the unknown value of parameter is
expected to lie is called confidence interval. The limits so
determined are called confidence limits.

Confidence intervals indicate the probability that the population
parameter lies within a specified range.

Computation of confidence interval

To compute confidence interval we require
(i) the sample statistic,
(ii) the standard error (S.E) of sampling distribution of the statistic
(iii) the degree of accuracy reflected by the Z-value.

If the size of sample is sufficiently large, then the sampling
distribution is approximately normal. Therefore, the sample value
can be used in estimation of standard error in the place of population

132

value. The Z-distribution is used in case of large samples to estimate
the confidence limits.

We give below values of Z corresponding to some confidence
levels.

Confidence Levels 99% 98% 96% 95% 80% 50%

Value of Z, Zc 2.58 2.33 2.05 1.96 1.28 0.674

(i) Confidence interval estimates for means

Let µ and σ be the population mean and standard deviation
of the population.

Let X and s be the sample mean and standard deviation of
the sampling distribution of a statistic.

The confidence limits for µµ are given below :

Population Sample size confidence limits for µ.
 size

Infinite n X + (Z
C
)

n
s , z

c
 is the value

 of Z corresponding to
 confidence levels.

Finite, N n X + (Z
C
)

n
s 1N

N
−
− n

(ii) Confidence intervals for proportions
If p is the proportion of successes in a sample of size n

drawn from a population with P as its proportion of successes,
then the confidence intervals for P are given below :

Population Sample size Confidence limits for P

Infinite n p+(ZC) n
pq

Finite, N n p+(ZC) n
pq

1N
N

−
− n

133

Example 6

Sensing the downward trend in demand for a leather
product, the financial manager was considering shifting his
company’s resources to a new product area. He selected a
sample of 10 firms in the leather industry and discovered their
earnings (in %) on investment. Find point estimate of the
mean and variance of the population from the data given
below.

21.0 25.0 20.0 16.0 12.0 10.0 17.0 18.0 13.0 11.0

Solution :

 X X X- X (X- X)2

21.0 16.3 4.7 22.09

25.0 16.3 8.7 75.69

20.0 16.3 3.7 13.69

16.0 16.3 -0.3 0.09

12.0 16.3 -4.3 18.49

10.0 16.3 -6.3 39.69

17.0 16.3 0.7 0.49

18.0 16.3 1.7 2.89

13.0 16.3 -3.3 10.89

11.0 16.3 -5.3 28.09

163.0 212.10

Sample mean, X = 10
163X =Σ

n = 16.3

Sample variance, s2 = 1
1
−n Σ(X- X)2

 = 1
10.212

−n = 23.5 (the sample size is small)

Sample standard deviation = 5.23 = 4.85

134

Thus the point estimate of mean and of variance of the
population from which the samples are drawn are 16.3 and 23.5
respectively.

Example 7

A sample of 100 students are drawn from a school.
The mean weight and variance of the sample are 67.45 kg
and 9 kg. respectively. Find (a) 95% and (b) 99%
confidence intervals for estimating the mean weight of the
students.

Solution :

Sample size, n = 100

The sample mean, X = 67.45
The sample variance s2 = 9

The sample standard deviation s = 3
Let µ be the population mean.

(a) The 95% confidence limits for µ are given by

X + (Zc) n
s

⇒ 67.45 + (1.96)
100
3

 (Here Zc = 1.96 for 95%

⇒ 67.45 + 0.588
confidence level)

 Thus the 95% confidence intervals for estimating µ is given by
(66.86, 68.04)

(b) The 99% confidence limits for estimating µ are given by

X + (Zc) n
s

⇒ 67.45 + (2.58)
100
3

 (Here zc = 2.58 for 99%

⇒ 67.45 + 0.774
 confidence level)

Thus the 99% confidence interval for estimating µ is given by
(66.67, 68.22)

135

Example 8

A random sample of size 50 with mean 67.9 is drawn
from a normal population. If it is known that the standard error
of the sample mean is 0.7 , find 95% confidence interval for
the population mean.

Solution :

n = 50, sample mean X = 67.9

95% confidence limits for population mean µ are :

X + (Zc){S.E(X)}

⇒ 67.9 + (1.96) (7.0)
⇒ 67.9 + 1.64

 Thus the 95% confidence intervals for estimating µ is given by
(66.2, 69.54)

Example 9

A random sample of 500 apples was taken from large
consignment and 45 of them were found to be bad. Find the
limits at which the bad apples lie at 99% confidence level.

Solution :

We shall find confidence limits for the proportion of bad apples.

Sample size n = 500

Proportion of bad apples in the sample =
500
45 = 0.09

p = 0.09

∴ Proportion of good apples in the sample q = 1-p = 0.91.

The confidence limits for the population proportion P of bad
apples are given by

p + (Zc) 







n
pq

136

⇒ 0.09 + (2.58)
500

91.0)(09(. ⇒ 0.09 + 0.033

The required interval is (0.057, 0.123)

Thus, the bad apples in the consignment lie between 5.7%
and 12.3%

Example 10

Out of 1000 TV viewers, 320 watched a particular
programme. Find 95% confidence limits for TV viewers who
watched this programme.

Solution :

Sample size n = 1000

Sample proportion of TV viewers p =
n
x =

1000
320

 = .32

∴ q = 1 - p = .68

S.E (p) =
n
pq

 = 0.0147

The 95% confidence limits for population propotion P are
given by

p + (1.96) S.E (p) = 0.32 + 0.028

⇒ 0.292 and 0.348

∴ TV viewers of this programme lie between 29.2% and
34.8%

Example 11

Out of 1500 school students, a sample of 150 selected
at random to test the accuracy of solving a problem in business
mathematics and of them 10 did a mistake. Find the limits
within which the number of students who did the problem
wrongly in whole universe of 1500 students at 99% confidence
level.

137

Solution :
 Population size, N = 1500
 Sample size, n = 150

Sample proportion, p =
150
10 = 0.07

 ∴ q = 1−p = 0.93

Standard error of p, SE (p) =
n
pq = 0.02

The 99% confidence limits for population proportion P are
given by

p + (Zc) n
pq

1N
N

−
− n

⇒ 0.07 + (2.58) (0.02)
11500

1501500
−

−

⇒ 0.07 + 0.048

∴ The confidence interval for P is (0.022 , 0.118)

∴ The number of students who did the problem wrongly
in the population of 1500 lies between .022 x 1500 = 33 and
.118 x 1500 = 177.

EXERCISE 9.3

1) A sample of five measurements of the diameter of a sphere
were recorded by a scientist as 6.33, 6.37, 6.36, 6.32 and 6.37
mm. Determine the point estimate of (a) mean, (b) variance.

2) Measurements of the weights of a random sample of 200 ball
bearings made by a certain machine during one week showed
mean of 0.824 newtons and a standard deviation of 0.042
newtons. Find (a) 95% and (b) 99% confidence limits for the
mean weight of all the ball bearings.

3) A random sample of 50 branches of State Bank of India out of
200 branches in a district showed a mean annual profit of Rs.75
lakhs and a standard deviation of 10 lakhs. Find the 95%
confidence limits for the estimate of mean profit of 200
branches.

138

4) A random sample of marks in mathematics secured by 50
students out of 200 students showed a mean of 75 and a
standard deviation of 10. Find the 95% confidence limits for
the estimate of their mean marks.

5) Out of 10000 customer’s ledger accounts, a sample of 200
accounts was taken to test the accuracy of posting and
balancing wherein 35 mistakes were found. Find 95%
confidence limits within which the number of defective cases
can be expected to lie.

6) A sample poll of 100 voters chosen at random from all voters
in a given district indicated that 55% of them were in favour of
a particular candidate. Find (a) 95% confidence limits, (b)
99% confidence limits for the proportion of all voters in favour
of this candidate.

9.4 HYPOTHESIS TESTING

There are many problems in which, besides estimating the
value of a parameter of the population, we must decide whether a
statement concerning a parameter is true or false; that is, we must
test a hypothesis about a parameter.

To illustrate the general concepts involved in this kind of
decision problems, suppose that a consumer protection agency wants
to test a manufacturer’s claim that the average life time of electric
bulbs produced by him is 200 hours. So it instructs a member of its
staff to take 50 electric bulbs from the godown of the company and
test them for their lifetime continuously with the intention of rejecting
the claim if the mean life time of the bulbs is below 180 hours (say);
otherwise it will accept the claim.

Thus hypothesis is an assumption that we make about an
unknown population parameter. We can collect sample data from
the population, arrive at the sample statistic and then test if the
hypothesis about the population parameter is true.

139

9.4.1 Null Hypothesis and Alternative Hypothesis

In hypothesis testing, the statement of the hypothesis or
assumed value of the population parameter is always stated before
we begin taking the sample for analysis.

A statistical statement about the population parameter assumed
before taking the sample for possible rejection on the basis of
outcome of sample data is known as a null hypothesis.

The null hypothesis asserts that there is no diffeence between
the sample statistic and population parameter and whatever
difference is there is attributable to sampling error.

A hypothesis is said to be alternative hypothesis when it is
complementary to the null hypothesis.

The null hypothesis and alternative hypothesis are usually
denoted by H0 and H1 respectively.

For example, if we want to test the null hypothesis that the
average height of soldiers is 173 cms, then

H0 : µ = 173 = µ0 (say)

H1 : µ ≠ 173 ≠ µ0.

9.4.2 Types of Error

For testing the hypothesis, we take a sample from the
population, and on the basis of the sample result obtained, we decide
whether to accept or reject the hypothesis.

Here, two types of errors are possible. A null hypothesis
could be rejected when it is true. This is called Type I error and
the probability of committing type I error is denoted by α.

Alternatively, an error could result by accepting a null
hypothesis when it is false. This is known as Type II error and the
probability of committing type II error is denoted by β .

140

This is illustrated in the following table :

Actual Decision based Error and its
on sampling Probability

H0 is True Rejecting H0 Type I error ;

α = P{H1 / H0}

H0 is False Accepting H0 Type II error ;

β = P{H0 / H1}

9.4.3 Critical region and level of significance

A region in the sample space which amounts to rejection of
null hypothesis (H0) is called the critical region.

After formulating the null and alternative hypotheses about a
population parameter, we take a sample from the population and
calculate the value of the relevant statistic, and compare it with the
hypothesised population parameter.

After doing this, we have to decide the criteria for accepting
or rejecting the null hypothesis. These criteria are given as a range
of values in the form of an interval, say (a, b), so that if the statistic
value falls outside the range, we reject the null hypothesis.

If the statistic value falls within the interval (a, b), then we
accept H0. This criterion has to be decided on the basis of the
level of significance. A 5% level of signififance means that 5% of
the statistical values arrived at from the samples will fall outside this
range (a, b) and 95% of the values will be within the range (a, b).

Thus the level of significance is the probability of Type I
error α. The levels of significance usually employed in testing of
hypothesis are 5% and 1%.

A high significance level chosen for testing a hypothesis would
imply that higher is the probability of rejecting a null hypothesis if it
is true.

141

9.4.4 Test of significance

The tests of significance are (a) Test of significance for large
samples and (b) Test of significance for small samples.

For larger sample size (>30), all the distributions like Binomial,
Poission etc., are approximated by normal distribution. Thus normal
probability curve can be used for testing of hypothesis.

For the test statistic Z (standard normal variate), the critical
region at 5% level is given by | Z | > 1.96 and hence the acceptance
region is | Z | < 1.96. Where as the critical region for Z at 1% level
is | Z | > 2.58 and the acceptance region is | Z | < 2.58.

The testing hypothesis involves five steps :

(i) The formulation of null hypothesis and an alternative hypothesis

(ii) Set up suitable significance level.

(iii) Setting up the statistical test criteria.

(iv) Setting up rejection region for the null hypothesis.

(v) Conclusion.

Example 12

The mean life time of 50 electric bulbs produced by a
manufacturing company is estimated to be 825 hours with a
standard deviation of 110 hours. If µµ is the mean life time of
all the bulbs produced by the company, test the hypothesis
that µµ = 900 hours at 5% level of significance.

Solution :

Null Hypothesis, H0 : µ = 900

Alternative Hypothesis, H1 : µ ≠ 900

Test statistic , Z is the standard normal variate.

under H0 , Z =
n

σ

µ−X
 where X is the sample mean

σ = s.d.of the population

142

=
n
s

µ−X
 (For large sample, σ = s)

=
50

110
900825 − = −4.82.

∴ | Z | = 4.82

Significant level, α = 0.05 or 5%

 Critical region is | Z | > 1.96

Acceptance region is | Z | < 1.96

The calculated Z is much greater than 1.96.

Decision : Since the calculated value of | Z | = 4.82 falls in
the critical region, the value of Z is significant at 5% level.

∴ the null hypothesis is rejected.

∴ we conclude that the mean life time of the population of
electric bulbs cannot be taken as 900 hours.

Example 13

A company markets car tyres. Their lives are
normally distributed with a mean of 50000 kilometers and
standard deviation of 2000 kilometers. A test sample of
64 tyres has a mean life of 51250 kms. Can you conclude
that the sample mean differs significantly from the
population mean? (Test at 5% level)

Solution :

Sample size, n = 64

Sample mean, X = 51250

H0 : population mean µ = 50000

H1 : µ ≠ 50000

Under H0, the test statistic Z =
n

σ

µ−X
~ N(0, 1)

143

Z =
64

2000
5000051250 − = 5

Since the calculated Z is much greater than 1.96, it is highly
significant.
∴ H0 : µ = 50000 is rejected.
∴ The sample mean differs significantly from the population mean

Example 14

A sample of 400 students is found to have a mean height
of 171.38 cms. Can it reasonably be regarded as a sample
from a large population with mean height of 171.17 cms
and standard deviation of 3.3 cms. (Test at 5% level)

Solution :

Sample size, n = 400
Sample mean , X = 171.38

Population mean, µ =171.17
Sample standard deviation = s.
Population standard deviation, σ = 3.3
Set H0 : µ = 171.38

The test statistic, Z =
n

σ

µ−X
~ N (0, 1)

 =
n

σ

µ−X
 since the sample is large, s = σ

=
400

3.3
17.17138.171 −

= 1.273

Since | Z | = 1.273 < 1.96, we accept the null hypothesis at
5% level of signifiance.

Thus the sample of 400 has come from the population with
mean height of 171.17 cms.

144

EXERCISE 9.4

1) The mean I.Q of a sample of 1600 children was 99. Is it likely
that this was a random sample from a population with mean
I.Q 100 and standard deviation 15 ? (Test at 5% level of
significance)

2) The income distribution of the population of a village has a
mean of Rs.6000 and a variance of Rs.32400. Could a sample
of 64 persons with a mean income of Rs.5950 belong to this
population?
(Test at both 5% and 1% levels of significance)

3) The table below gives the total income in thousand rupees per
year of 36 persons selected randomly from a particular class
of people

Income (thousands Rs.)

6.5 10.5 12.7 13.8 13.2 11.4

5.5 8.0 9.6 9.1 9.0 8.5

4.8 7.3 8.4 8.7 7.3 7.4

5.6 6.8 6.9 6.8 6.1 6.5

4.0 6.4 6.4 8.0 6.6 6.2

4.7 7.4 8.0 8.3 7.6 6.7

On the basis of the sample data, can it be concluded that the
mean income of a person in this class of people is Rs. 10,000
per year? (Test at 5% level of significance)

4) To test the conjecture of the management that 60 percent
employees favour a new bonus scheme, a sample of 150
employees was drawn and their opinion was taken whether
they favoured it or not. Only 55 employees out of 150 favoured
the new bonus scheme Test the conjecture at 1% level of
significance.

145

EXERCISE 9.5

Choose the correct answer

1) The standard error of the sample mean is
(a) Type I error (b) Type II error
(c) Standard deviation of the sampling distribution of the mean
(d) Variance of the sampling distribution of the mean

2) If a random sample of size 64 is taken from a population
whose standard deviation is equal to 32, then the standard
error of the mean is
(a) 0.5 (b) 2 (c) 4 (d) 32

3) The central limit theorem states that the sampling distribution
of the mean will approach normal distribution
(a) As the size of the population increases
(b) As the sample size increases and becomes larger
(c) As the number of samples gets larger
(d) As the sample size decreases

4) The Z-value that is used to establish a 95% confidence interval
for the estimation of a population parameter is
(a) 1.28 (b) 1.65 (c) 1.96 (d) 2.58

5) Probability of rejecting the null hypothesis when it is true is
(a) Type I error (b) Type II error
(c) Sampling error (d) Standard error

6) Which of the following statements is true?
(a) Point estimate gives a range of values
(b) Sampling is done only to estimate a statistic
(c) Sampling is done to estimate the population parameter
(d) Sampling is not possible for an infinite population

7) The number of ways in which one can select 2 customers out
of 10 customers is
(a) 90 (b) 60 (c) 45 (d) 50

146

10.1 LINEAR PROGRAMMING

Linear programming is the general technique of optimum
allocation of limited resources such as labour, material, machine,
capital etc., to several competing activities such as products, services,
jobs, projects, etc., on the basis of given criterion of optimality.
The term limited here is used to describe the availability of scarce
resources during planning period. The criterion of optimality
generally means either performance, return on investment, utility,
time, distance etc., The word linear stands for the proportional
relationship of two or more variables in a model. Programming
means ‘planning’ and refers to the process of determining a particular
plan of action from amongst several alternatives. It is an extremely
useful technique in the decision making process of the management.

10.1.1 Structure of Linear Programming Problem (LPP)
The LP model includes the following three basic elements.

(i) Decision variables that we seek to determine.
(ii) Objective (goal) that we aim to optimize (maximize or

minimize)
(iii) Constraints that we need to satisfy.

10.1.2 Formulation of the Linear Programming Problem
The procedure for mathematical formulation of a linear

programming consists of the following major steps.
Step 1 : Study the given situation to find the key decision to be

made
Step 2 : Identify the variables involved and designate them by

symbols x j(j = 1, 2 ...)
Step 3 : Express the feasible alternatives mathematically in terms

of variables, which generally are : x j > 0 for all j

APPLIED STATISTICS 10

147

Step 4 : Identify the constraints in the problem and express them
as linear inequalities or equations involving the decision
variables.

Step 5 : Identify the objective function and express it as a linear
function of the decision variables.

10.1.3 Applications of Linear programming
Linear programming is used in many areas. Some of them are

(i) Transport : It is used to prepare the distribution plan between
source production and destination.

(ii) Assignment : Allocation of the tasks to the persons available
so as to get the maximum efficiency.

(iii) Marketing : To find the shortest route for a salesman who
has to visit different locations so as to minimize the total cost.

(iv) Investment : Allocation of capital to differerent activities so
as to maximize the return and minimize the risk.

(v) Agriculture : The allotment of land to different groups so as
to maximize the output.

10.1.4 Some useful Definitions
A feasible solution is a solution which satisfies all the

constraints (including non-negativity) of the problem.

A region which contains all feasible solutions is known as
feasible region.

A feasible solution which optimizes (maximizes or minimizes)
the objective function,is called optimal solution to the problem.

Note
Optimal solution need not be unique.

Example 1

A furniture manufacturing company plans to make
two products, chairs and tables from its available
resources, which consists of 400 board feet of mahogany

148

timber and 450 man-hours of labour. It knows that to make
a chair requires 5 board feet and 10 man-hours and yields
a profit of Rs.45, while each table uses 20 board feet and
15 man - hours and has a profit of Rs.80. How many chairs
and tables should the company make to get the maximum
profit under the above resource constraints? Formulate the
above as an LPP.
Solution :

Mathematical Formulation :
The data of the problem is summarised below:
Products Raw material Labour Profit

 (per unit) (per unit) (per unit)
Chair 5 10 Rs. 45
Table 20 15 Rs. 80

Total availability 400 450

Step 1 : The key decision to be made is to determine the number
of units of chairs and tables to be produced by the
company.

Step 2 : Let x 1 designate the number of chairs and x 2 designate
the number of tables, which the company decides to
produce.

Step 3 : Since it is not possible to produce negative quantities,
feasible alternatives are set of values of x1 and x2, such
that x1 > 0 and x2 > 0

Step 4 : The constraints are the limited availability of raw material
and labour. One unit of chair requires 5 board feet of
timber and one unit of table requires 20 board feet of
timber. Since x 1 and x 2 are the quantities of chairs and
tables, the total requirement of raw material will be
5x 1 + 20x 2, which should not exceed the available raw
material of 400 board feet timber. So, the raw material
constraint becomes,

5x1 + 20x2 < 400

149

Similarly, the labour constraint becomes,

10x1 + 15x2 < 450

Step 5 : The objective is to maximize the total profit that the
company gets out of selling their products, namely chairs,
tables. This is given by the linear function.

z = 45x1 + 80x2.

The linear programming problem can thus be put in the
following mathematical form.

maximize z = 45x1 + 80x2

 subject to 5x1 + 20x2 < 400

10x1 + 15x2 < 450

 x1 > 0, x2 > 0

Example 2

A firm manufactures headache pills in two sizes A and
B. Size A contains 2 mgs. of aspirin. 5 mgs. of bicarbonate
and 1 mg. of codeine. Size B contains 1 mg. of aspirin, 8 mgs.
of bicarbonate and 6 mgs. of codeine. It is found by users
that it requires atleast 12 mgs. of aspirin, 74 mgs. of
bicarbonate and 24 mgs. of codeine for providing immediate
relief. It is required to determine the least number of pills a
patient should take to get immediate relief. Formulate the
problem as a standard LPP.

Solution :

The data can be summarised as follows :

Head ache per pill
pills Aspirin Bicarbonate Codeine

Size A 2 5 1

Size B 1 8 6

Minimum requirement 12 74 24

150

Decision variables :
x1 = number of pills in size A
x2 = number of pills in size B

Following the steps as given in (10.1.2) the linear programming
problem can be put in the following mathematical format :

 Maximize z = x1 + x2

subject to 2x1 + x 2 > 12
5x1 + 8x2 > 74
 x1 + 6x2 > 24
 x1 > 0, x2 > 0

10.1.5 Graphical method
Linear programming problem involving two decision variables

can be solved by graphical method. The major steps involved in
this method are as follows.

Step 1 : State the problem mathematically.

Step 2 : Plot a graph representing all the constraints of the problem
and identify the feasible region (solution space). The
feasible region is the intersection of all the regions
represented by the constraints of the problem and is
restricted to the first quadrant only.

Step 3 : Compute the co-ordinates of all the corner points of the
feasible region.

Step 4 : Find out the value of the objective function at each corner
point determined in step3.

Step 5 : Select the corner point that optimizes (maximzes or
minimizes) the value of the objective function. It gives the
optimum feasible solution.

Example 3

A company manufactures two products P1 and P2. The
company has two types of machines A and B for processing

151

the above products. Product P1 takes 2 hours on machine A
and 4 hours on machine B, whereas product P2 takes 5 hours
on machine A and 2 hours on machine B. The profit realized
on sale of one unit of product P1 is Rs.3 and that of product P2

is Rs. 4. If machine A and B can operate 24 and16 hours per
day respectively, determine the weekly output for each
product in order to maximize the profit, through graphical
method.

Solution :

The data of the problem is summarized below.

 Hours on profit
 Product Machine A Machine B (per unit)

P1 2 4 3

P2 5 2 4

Max. hours / week 120 80

Let x1 be the number of units of P1 and x2 be the number of
units of P2 produced. Then the mathematical formulation of the
problem is

Maximize z = 3x1 + 4x2

 subject to 2x1 + 5x2 < 120

4x1 + 2x2 < 80

 x 1, x2 > 0

Solution by graphical method

Consider the equation 2x1 + 5x2 = 120, and 4x1 + 2x2 = 80.
Clearly (0, 24) and (60, 0) are two points on the line 2x1 + 5x2 =
120. By joining these two points we get the straight line 2x1 + 5x2
= 120. Similarly, by joining the points (20, 0) and (0, 40) we get
the sraight line 4x1 + 2x2 = 80. (Fig. 10.1)

152

Now all the constraints have been represented graphically.

The area bounded by all the constrints called feasible region
or solution space is as shown in the Fig. 10.1, by the shaded area
OCM1 B

The optimum value of objective function occurs at one of the
extreme (corner) points of the feasible region. The coordinates of
the extreme points are

0 = (0, 0), C = (20, 0), M1 = (10, 20), B = (0, 24)
We now compute the z-values correspoinding to extreme points.
Extreme coordinates z = 3x1 + 4x2
 point (x1, x2)

O (0, 0) 0
C (20, 0) 60
M1 (10, 20) 110
B (0, 24) 96

The optimum solution is that extreme point for which the
objective function has the largest (maximum) value. Thus the
optimum solution occurs at the point M1 i.e. x1 = 10 and x2 = 20.

Hence to maximize profit of Rs.110, the company should
produce 10 units of P1 and 20 units of P2 per week.

O

↑

→
10 20 30 40 50 60 70 80

80

70

60

50

40

30

20

10

x1

x2

.

A.C

4x 1
 + 2x 2

= 80

2x
1 + 5x

2 = 120

.

.

B .M
1

(Fig. 10.1)

153

Note
In case of maximization problem, the corner point at which the

objective function has a maximum value represent the optimal solution.
In case of minimization problem, the corner point at which the objective
function has a minimum value represents the optimnal solution.

Example 4
Solve graphically :

Minimize z = 20x1 + 40x2

Subject to 36x1 + 6x2 > 108
 3x1 + 12x2 > 36
 20x1 + 10x2 > 100
 x1 , x2 > 0

Solution :
A(0, 18) and B(3, 0) ; C(0, 3) and D(12, 0) ; E(0, 10) and

F(5, 0) are the points on the lines 36x1 + 6x2 = 108, 3x1 + 12x2 =
36 and 20x1 + 10x2 = 100 respectively. Draw thte above lines as
Fig. 10.2.

Now all the constraints of the given problem have been
graphed. The area beyond three lines represents the feasible region

O

↑

→
2 4 6 8 10 12 14 16

18

16

14

12

10

8

6

4

2

x1

x2

A.

E
.

.

..
...

M
2

C
M

1

B F D

36
x

1 + 6x
2

=
108

20x 1
 + 10

x 2
 =

 10
0

3x
1 + 12x

2 = 36

feasible region

(Fig. 10.2)

154

or solution space, as shown in the above figure. Any point from
this region would satisfy the constraints.
 The coordinates of the extreme points of the feasible region are:

A = (0, 18), M2 = (2, 6), M1 = (4, 2), D = (12, 0)
Now we compute the z-values corresponding to extreme

points.
Extreme coordinates z = 20x1 + 40x2
point (x1, x2)
 A (0, 18) 720
 M1 (4, 2) 160
 M2 (2, 6) 280
 D (12, 0) 240

The optimum solution is that extreme point for which the
objective function has minimum value. Thus optimum solution
occurs at the point M1 i.e. x1 = 4 and x2 = 2 with the objective
function value of z = 160 ∴ Minimum z = 160 at x 1 = 4, x 2 = 2

Example 5
Maximize z = x1 + x2 subject to x1 + x2 < 1

4x1 + 3x2 > 12
x1, x2 > 0

Solution :

O

↑

→
1 2 3 4 5 6

6

5

4

3

2

1

x1

x2

D.

.
. .

A

B C

x
1 +x

2 = 1

4x
1 + 3x

2 = 12

(Fig. 10.3)

155

From the graph, we see that the given problem has no solutiion
as the feasible region does not exist.

EXERCISE 10.1

1) A company produces two types of products say type A and B.
Profits on the two types of product are Rs.30/- and Rs.40/-
per kg. respectively. The data on resources required and
availability of resources are given below.

 Requirements Capacity

Product A Product B
 available
 per month

Raw materials (kgs) 60 120 12000

Machining hours / piece 8 5 600

Assembling (man hours) 3 4 500

Formulate this problem as a linear programming problem to
maximize the profit.

2) A firm manufactures two products A & B on which the profits
earned per unit are Rs.3 and Rs.4 respectively. Each product
is processed on two machines M1 and M2. Product A requires
one minute of processing time on M1 and two minutes on M2,
while B requires one minute on M1 and one minute on M2.
Machine M1 is available for not more than 7 hrs 30 minutes
while M2 is available for 10 hrs during any working day.
Formulate this problem as a linear programming problem to
maximize the profit.

3) Solve the following, using graphical method
Maximize z = 45x1 + 80x2

 subject to the constraints
5x1 + 20x2 < 400
10x1 + 15x2 < 450
x1, x2 > 0

156

4) Solve the following, using graphical method
Maximize z = 3x1 + 4x2

 subject to the constraints

2x1 + x2 < 40

2x1 + 5x2 < 180

x1, x2 > 0

5) Solve the following, using graphical method
Minimize z = 3x1 + 2x2

 subject to the constraints
5x1 + x2 > 10
2x1 + 2x2 > 12
x1 + 4x2 > 12

x1, x2 > 0

10.2 CORRELATION AND REGRESSION

10.2.1 Meaning of Correlation

The term correlation refers to the degree of relationship
between two or more variables. If a change in one variable effects
a change in the other variable, the variables are said to be correlated.
There are basically three types of correlation, namely positive
correlation, negative correlation and zero correlatiion.

Positive correlation

If the values of two variables deviate (change) in the same
direction i.e. if the increase (or decrease) in one variable results in
a corresponding increase (or decrease) in the other, the correlation
between them is said to be positive.

Example

(i) the heights and weights of individuals
(ii) the income and expenditure
(iii) experience and salary.

157

Negative Correlation

If the values of the two variables constantly deviate (change)
in the opposite directions i.e. if the increase (or decrease) in one
results in corresponding decrease (or increase) in the other, the
correlation between them is said to be negative.

Example

(i) price and demand ,
(ii) repayment period and EMI

10.2.2 Scatter Diagram

Let (x1, y1), (x2, y2) ... (xn, yn) be the n pairs of observation
of the variables x and y. If we plot the values of x along x-axis
and the corresponding values of y along y-axis, the diagram so
obtained is called a scatter diagram. It gives us an idea of
relationship between x and y. The types of scatter diagram under
simple linear correlation are given below.

 Positive Correlation Negative Correlation

No CorrelationO

Y

X

(Fig. 10.6)

X O

Y

X

(Fig. 10.5)

O

Y

(Fig. 10.4)

158

(i) If the plotted points show an upward trend, the correlation
will be positive (Fig. 10.4).

(ii) If the plotted points show a downward trend, the correlation
will be negative (Fig. 10.5).

(iii) If the plotted point show no trend the variables are said to be
uncorrelated (Fig. 10.6).

10.2.3 Co-efficient of Correlation

Karl pearson (1867-1936) a British Biometrician, developed
the coefficient of correlation to express the degree of linear
relationship between two variables. Correlation co-efficient between
two random variables X and Y denoted by r(X, Y), is given by

r(X, Y) = SD(Y) SD(X)
Y) Cov(X,

where

Cov (X, Y) =)Y)(YX(X1 −−∑ ii
in (covariance between X and Y)

SD (X) = σx = 2)X(XÓ1 −i
in (standard deviation of X)

SD (Y) = σy = 2)Y(YÓ1 −i
in (standard deviationof Y)

Hence the formula to compute Karl Pearson correlation
co-efficient is

r(X, Y) =
22)Y(YÓ1)X(XÓ1

)Y)(YX(XÓ1

−−

−−

iiii

ii
i

nn

n

 = 22)Y(YÓ)X(XÓ

)Y)(YX(XÓ

−−

−−

i
i

i
i

ii
i

 = 22 yx

xy

ΣΣ
Σ

159

Note

The following formula may also be used to compute correlation
co-efficient between the two variables X and Y.

(i) r(X, Y) = 2222)Y(Y)X(XN
Y X -XYN

ΣΣΣΣ
ΣΣΣ

−− N

(ii) r(X, Y) = 2222)()(

dydyNdxdxN

dydxdxdyN

Σ−ΣΣ−Σ
ΣΣ−Σ

where dx = x − A ; dy = y − B are the deviations from
arbitrary values A and B.

10.2.4 Limits for Correlation co-efficient

Correlation co-efficient lies between -1 and +1.
i.e. -1 < r (x, y) < 1.

(i) If r(X , Y) = +1 the variables X and Y are said to be perfectly
possitively correlated.

(ii) If r(X , Y) = −1 the variables X and Y are said to be perfectly
negatively correlated.

(iii) If r(X , Y) = 0 the variables X and Y are said to be
uncorrelated.

Example 6

Calculate the correlation co-efficient for the following
heights (in inches) of fathers(X) and their sons(Y).

X : 65 66 67 67 68 69 70 72
Y : 67 68 65 68 72 72 69 71

Solution :

8
544

n
X X =Σ= = 68

8
552

n
Y Y =Σ= = 69

160

 X Y x=X− X y=Y− Y x2 y2 xy
65 67 -3 -2 9 4 6
66 68 -2 -1 4 1 2
67 65 -1 -4 1 16 4
67 68 -1 -1 1 1 1
68 72 0 3 0 9 0
69 72 1 3 1 9 3
70 69 2 0 4 0 0
72 71 4 2 16 4 8
544 552 0 0 36 44 24

Karl Pearson Correlation Co-efficient,

r(x, y) =
22 yx

xy

ΣΣ
Σ

 =
4436

24 = .603

Since r(x, y) = .603, the variables X and Y are positively
correlated. i.e. heights of fathers and their respective sons are said
to be positively correlated.

Example 7
Calculate the correlation co-efficient from the data below:

 X : 1 2 3 4 5 6 7 8 9
 Y : 9 8 10 12 11 13 14 16 15

Solution :

X Y X2 Y2 XY
1 9 1 81 9
2 8 4 64 16
3 10 9 100 30
4 12 16 144 48
5 11 25 121 55
6 13 36 169 78
7 14 49 196 98
8 16 64 256 128
9 15 81 225 135

45 108 285 1356 597

161

r (X,Y) =
2222)Y(Y)X(XN

Y X -XYN
ΣΣΣΣ

ΣΣΣ
−− N

= 22)108()1356(9)45()285(9

(108) (45) -(597)9

−−
 = .95

∴ X and Y are highly positively correlated.

Example 8

Calculate the correlation co-efficient for the ages of
husbands (X) and their wives (Y)

X : 23 27 28 29 30 31 33 35 36 39

Y : 18 22 23 24 25 26 28 29 30 32

Solution :

Let A = 30 and B = 26 then dx = X− Α dy = Y−Β

X Y dx dy d 2
x d 2

y dxdy

23 18 -7 -8 49 64 56
27 22 -3 -4 9 16 12
28 23 -2 -3 4 9 6
29 24 -1 -2 1 4 2
30 25 0 -1 0 1 0
31 26 1 0 1 0 0
33 28 3 2 9 4 6
35 29 5 3 25 9 15
36 30 6 4 36 16 24
39 32 9 6 81 36 54

11 −−3 215 159 175

 r (x, y) = 2222)()(

dydNdxdN

dydxdxdyN

yx Σ−ΣΣ−Σ
ΣΣ−Σ

162

= 22)3()159(10)11()215(10

)3)(11()175(10

−−−
−−

= 8.1790
1783 = 0.99

∴ X and Y are highly positively correlated. i.e. the ages of
husbands and their wives have a high degree of correlation.

Example 9

Calculate the correlation co-efficient from the following
data

N = 25, ΣΣX = 125, ΣΣY = 100

ΣΣX2 = 650 ΣΣY2 = 436, ΣΣXY = 520

Solution :

We know,

 r =
2222)Y(Y)X(XN

ÓY ÓX -XYN
Σ−ΣΣ−Σ

Σ
N

=
22)100()436(25)125()650(25

(100) (125) -5(520)2

−−

 r = −0.667

10.2.5 Regression

Sir Francis Galton (1822 - 1911), a British biometrician,
defined regression in the context of heriditary characteristics. The
literal meaning of the word “regression” is “Stepping back towards
the average”.

Regression is a mathematical measure of the average
relationship between two or more variables in terms of the original
units of the data.

There are two types of variables considered in regression
analysis, namely dependent variable and independent variable(s).

163

10.2.6 Dependent Variable
The variable whose value is to be predicted for a given

independent variable(s) is called dependent variable, denoted by
Y. For example, if advertising (X) and sales (Y) are correlated, we
could estimate the expected sales (Y) for given advertising
expenditure (X). So in this case Y is a dependent variable.

10.2.7 Independent Variable
The variable which is used for prediction is called an

independent variable. For example, it is possible to estimate the
required amount of expenditure (X) for attaining a given amount of
sales (Y), when X and Y are correlated. So in this case Y is
independent variable. There can be more than one independent
variable in regression.

The line of regression is the line which gives the best estimate
to the value of one variable for any specific value of the other
variable.

Thus the line of Regression is the line of best fit and is
obtained by the principle of least squares. (Refer pages 61 & 62
of Chapter 7). The equation corresponds to the line of regression is
also referred to as regression equation.

10.2.8 Two Regression Lines
For the pair of values of (X, Y), where X is an independent

variable and Y is the dependent variable the line of regression of Y
on X is given by

Y − Y = byx (X − X)

where byx is the regression co-efficient of Y on X and given

by byx = r .
xσ

σy , where r is the correlation co-efficient between X

and Y and σx and σy are the standard deviations of X and Y
respectively.

∴ byx = 2x
xy

Σ
Σ where x = X − X and y = Y − Y

164

Similarly when Y is treated as an independent variable and
X as dependent variable, the line of regression of X on Y is given by

(X − X) = bxy (Y − Y)

where bxy == r
yσ

σ x =
2y

xy
Σ
Σ here x = X − X ; y = Y − Y

Note
The two regression equations are not reversible or

interchangeable because of the simple reason that the basis and
assumption for deriving these equations are quite different.

Example 10

Calculate the regression equation of X on Y from the
following data.

X : 10 12 13 12 16 15

Y : 40 38 43 45 37 43
Solution :

 X Y x=X− X y=Y− Y x2 y2 xy

10 40 -3 -1 9 1 3
12 38 -1 -3 1 9 3
13 43 0 2 0 4 0
12 45 -1 4 1 16 -4
16 37 3 -4 9 16 -12
15 43 2 2 4 4 4
78 246 0 0 24 50 6

X = n
XΣ

 = 6
78

 = 13 Y = n
YΣ

 = 6
246

 = 41

bxy = 50
6

y
x

2
−=

Σ
Σ y

 = −0.12

∴ Regression equation of X on Y is (X − X) = bxy (Y − Y)

 X − 13 = −0.12 (Y − 41) ⇒ X = 17.92 − 0.12Y

165

Example 11

Marks obtained by 10 students in Economics and
Statistics are given below.

Marks in Economics : 25 28 35 32 31 36 29 38 34 32

Marks in Statistics : 43 46 49 41 36 32 31 30 33 39

Find (i) the regression equation of Y on X
(ii) estimate the marks in statistics when the marks

in Economics is 30.
Solution :

Let the marks in Economics be denoted by X and statistics
by Y.

 X Y x=X− X y=Y− Y x2 y2 xy
25 43 -7 5 49 25 -35
28 46 -4 8 16 64 32
35 49 3 11 9 121 33
32 41 0 3 0 9 0
31 36 -1 -2 1 4 2
36 32 4 -6 16 36 -24
29 31 -3 -7 9 49 21
38 30 6 -8 36 64 -48
34 33 2 -5 4 25 -10
32 39 0 1 0 1 0
320 380 0 0 140 398 -93

X = 10
320X =Σ

n = 32 Y = 10
380Y =Σ

n = 38

byx = 140
93

2
−=

Σ
Σ

x
xy

 = −0.664

(i) Regression equation of Y on X is

 Y − Y = byx (X − X)

 Y − 38 = −0.664 (X − 32)
 ⇒ Y = 59.25 − 0.664X

166

(ii) To estimate the marks in statistics (Y) for a given marks in the
Economics (X), put X = 30, in the above equation we get,

Y = 59.25 − 0.664(30)

= 59.25 − 19.92 = 39.33 or 39
Example 12

Obtain the two regression equations for the following
data.

X : 4 5 6 8 11
Y : 12 10 8 7 5

Solution :
The above values are small in magnitude. So the following

formula may be used to compute the regression co-efficient.

bxy = 22)Y(Y
ÓY ÓX -XYN

Σ−Σ
Σ

N

byx = 22)X(X
ÓY ÓX -XYN

Σ−Σ
Σ

N
X Y X 2 Y2 XY
4 12 16 144 48
5 10 25 100 50
6 8 36 64 48
8 7 64 49 56

11 5 121 25 55
34 42 262 382 −−257

5
34XX =Σ=

n = 6.8 5
42YY =Σ=

n = 8.4

 bXY = 2)42()382(5
(34)(42) -(257)5
−

 = −0.98

bYX = 2)34()262(5
(34)(42) -(257)5
−

= −0.93

Regression Equation of X on Y is
(X − X) = bXY (Y − Y)

167

⇒ X − 6.8 = −0.98(Y − 8.4)
 X = 15.03 − 0.98Y

Regression equation of Y on X is

Y − Y = bYX (X − X)

Y − 8.4 = −0.93 (X − 6.8)

⇒ Y = 14.72 − 0.93X

EXERCISE 10.2

1) Calculate the correlation co-efficient from the following data.
X : 12 9 8 10 11 13 7
Y : 14 8 6 9 11 12 3

2) Find the co-efficient of correlation for the data given below.
X : 10 12 18 24 23 27
Y : 13 18 12 25 30 10

3) From the data given below, find the correlation co-efficient.
X : 46 54 56 56 58 60 62
Y : 36 40 44 54 42 58 54

4) For the data on price (in rupees) and demand (in tonnes) for a
commodity, calculate the co-efficient of correlation.
Price (X) : 22 24 26 28 30 32 34 36 38 40
Demand(Y) : 60 58 58 50 48 48 48 42 36 32

5) From the following data, compute the correlation co-efficient.
N = 11, ΣX = 117, ΣY = 260, ΣX2 = 1313
ΣY2 = 6580, ΣXY = 2827

6) Obtain the two regression lines from the following
X : 6 2 10 4 8
Y : 9 11 5 8 7

7) With the help of the regression equation for the data given
below calculate the value of X when Y = 20.
X : 10 12 13 17 18
Y : 5 6 7 9 13

168

8) Price indices of cotton (X) and wool (Y) are given below for
the 12 months of a year. Obtain the equations of lines of
regression between the indices.
X : 78 77 85 88 87 82 81 77 76 83 97 93
Y : 84 82 82 85 89 90 88 92 83 89 98 99

9) Find the two regression equations for the data given below.
X : 40 38 35 42 30
Y : 30 35 40 36 29

10.3 TIME SERIES ANALYSIS

Statistical data which relate to successive intervals or points
of time, are referred to as “time series”.

The following are few examples of time series.

(i) Quarterly production, Half-yearly production, and
yearly production for particular commodity.

(ii) Amount of rainfall over 10 years period.
(iii) Price of a commodity at different points of time.

There is a strong notion that the term “ time series” usually
refer only to Economical data. But it equally applies to data arising
in other natural and social sciences. Here the time sequence plays
a vital role and it requires special techniques for its analysis. In
analysis of time series, we analyse the past in order to understand
the future better.

10.3.1 Uses of analysis of Time Series

(i) It helps to study the past conditions, assess the present
achievements and to plan for the future.

(ii) It gives reliable forcasts.
(iii) It provides the facility for comparison.

Thus wherever time related data is given in Economics,
Business, Research and Planning, the analysis of time series provides
the opportunity to study them in proper perspective.

169

10.3.2 Components of Time Series
A graphical representation of a Time Series data, generally

shows the changes (variations) over time. These changes are known
as principal components of Time Series . They are

(i) Secular trend (ii) Seasonal variation
(iii) Cyclical variation (iv) Irregular variation.

Secular trend (or Trend)
It means the smooth, regular, long-term movement of a series

if observed long enough. It is an upward or downward trend. It
may increase or decrease over period of time. For example, time
series relating to population, price, production, literacy,etc. may
show increasing trend and time series relating to birth rate, death
rate, poverty may show decreasing trend.

Seasonal Variation
It is a short-term variation. It means a periodic movement in

a time series where the period is not longer than one year. A periodic
movement in a time series is one which recurs or repeats at regular
intervals of time or periods. Following are the examples of seasonal
variation.

(i) passenger traffic during 24 hours of a day

(ii) sales in a departmental stores during the seven days of a week.

The factors which cause this type of variation are due to
climatic changes of the different season, customs and habits of the
people. For example more amount of ice creams will be sold in
summer and more number of umbrellas will be sold during rainy
seasons.

Cyclical Variation
It is also a short-term variation. It means the oscillatory

movement in a time series, the period of oscillation being more than
a year. One complete period is called a cycle. Business cycle is the
suitable example for cyclical variation. There are many time series
relating to Economics and Business, which have certain wave-like

170

movements called business cycle. The four phases in business cycle,
(i) prosperity (ii) recession (iii) depression (iv) recovery, recur
one after another regularly.

Irregular Variation
This type of variation does not follow any regularity. These

variations are either totally unaccountable or caused by unforeseen
events such as wars, floods, fire, strikes etc. Irregular variation is
also called as Erratic Variation.

10.3.3 Models
In a given time series, some or all the four components, namely

secular trend, seasonal variation, cyclical variation and irregular
variation may be present. It is important to separate the different
components of times series because either our interest may be on a
particular component or we may want to study the series after
eliminating the effect of a particular component. Though there exist
many models, here we consider only two models.

Multiplicative Model
According to this model, it is assumed that there is a

multiplicative relationship among the four components. i.e.,
yt = Tt x S t x C t x It,

Where yt is the value of the variable at time t, or observed
data at time t, Tt is the Secular trend or trend, St is the Seasonal
variation, Ct is the Cyclical variation and I is the Irregular variation
or Erratic variation.

(i) prosperity (i) prosperity

(iii) depression

(ii) recession (iv
) r

ec
ov

er
y

Normal

(Fig. 10.7)

171

Additive Model
According to this model, it is assumed that yt be the sum of

the four components.
yt = Tt + S t + C t + It,

10.3.4 Measurement of secular trend
The following are the four methods to estimate the secular

trend
(i) Graphic method or free - hand method
(ii) Method of Semi - Averages
(iii) Method of Moving Averages
(iv) Method of least squares.

(i) Graphic Method / Free - hand Method
This is the simplest method of studying the trend procedure.

Let us take time on the x - axis, and observed data on the y-axis.
Mark a point on a graph sheet, corresponding to each pair of time
and observed value. After marking all such possible points, draw a
straight line which will best fit to the data according to personal
judgement.

It is to be noted that the line should be so drawn that it passes
between the plotted points in such a manner that the fluctuations in
one direction are approximately equal to those in other directions.

When a trend line is fitted by the free hand method an attention
should be paid to conform the following conditions.

(i) The number of points above the line is equal to the
number of points below the line, as far as possible.

(ii) The sum of the vertical deviations from the trend of the
annual observation above the trend should equal the
sum of the vertical deviations from the trend of the
observations below the trend.

(iii) The sum of the squares of the vertical deviations of the
observations from the trend should be as small as
possible.

172

Example 13

Fit a trend line to the following data by the free hand
mehtod.

year 1978 1979 1980 1981 1982
production of steel 20 22 24 21 23

year 1983 1984 1985 1986
production of steel 25 23 26 25

Solution :

Note

(i) The trend line drawn by the free hand method can be extended
to predict future values. However, since the free hand curve
fitting is too subjective, this method should not be generally
used for predictions

(ii) In the above diagram false base line (zig-zag) has been used.
Generally we use false base line following objectives.

(a) Variations in the data are clearly shown

(b) A large part of the graph is not wasted or space is saved.

(c) The graph provides a better visual communications.

Trend by the freehand method

1978 1979 1980 1981 1982 1983 1984 1985 1986
Year

27

25

23

21

19

0

Pr
od

uc
ti

on
 M

il
li

on
T

on
ne

s

(Fig. 10.8)

173

(ii) Method of Semi Averages

This method involves very simple calculations and it is easy
to adopt. When this method is used the given data is divided into
two equal parts. For example, if we are given data from 1980 to
1999, i.e., over a period of 20 years, the two equal points will be
first 10 years, i.e. from 1980 to 1989, and from 1990 to 1999. In
case of odd number of years like 7, 11, 13 etc., two equal parts can
be made by omitting the middle year. For example, if the data are
given for 7 years from 1980 to 1986, the two equal parts would be
from 1980 to 1982 and from 1984 to 1986. The middle year 1983
will be omitted.

After dividing the data in two parts, find the arithmetic mean
of each part. Thus we get semi averages from which we calculate
the annual increase or decrease in the trend.

Example 14

Find trend values to the following data by the method
of semi-averages.

Year 1980 1981 1982 1983 1984 1985 1986
Sales 102 105 114 110 108 116 112

Solution :
No. of years = 7 (odd no.) By omitting the middle year

(1983) we have
Year Sales Semi total Semi-average
1980 102
1981 105 321 107
1982 114
1983 110
1984 108
1985 116 336 112
1986 112
Difference between middle periods = 1985 − 1981 = 4
Difference between semi averages = 112 - 107 = 5

174

Annual increase in trend = 4
5

= 1.25

Year 1980 1981 1982 1983 1984 1985 1986
Trend 105.75 107 108.25 109.50 110.75 112 113.25

Example 15
The sales in tonnes of a commodity varied from 1994

to 2001 as given below:

Year 1994 1995 1996 1997
Sales 270 240 230 230
Year 1998 1999 2000 2001
Sales 220 200 210 200

Find the trend values by the method of semi-average.
Estimate the sales in 2005.

Solution :

 Year Sales Semi total Semi average

1994 270
1995 240

1996 230
−−→ 970 −−→ 242.5

1997 230
1998 220
1999 200

2000 210
−−→ 830 −−→ 207.5

2001 200

Difference between middle periods = 1999.5 - 1995.5 = 4
Decrease in semi averages = 242.5 - 207.5 = 35

Annual decrease in trend = 4
35

 = 8.75

Half yearly decrease in trend = 4.375

175

Year 1994 1995 1996 1997
Sales trend 255.625 246.875 238.125 229.375
Year 1998 1999 2000 2001
Sales trend 220.625 211.875 203.125 194.375

Trend value for the year 2005 = 194.375 − (8.75 x 4) = 159.375

(iii) Method of Moving Averages
This method is simple and flexible algebraic method of

measuring trend. The method of Moving Average is a simple device
for eliminating fluctuations and obtaining trend values with a fair
degree of accuracy. The technique of Moving Average is based on
the arithmetic mean but with a distinction. In arithmetic mean we
sum all the items and divide the sum by number of items, whereas in
Moving Average method there are various averages in one series
depending upon the number of years taken in a Moving Average.
While applying this method, it is necessary to define a period for
Moving Average such as 3 yearly moving average (odd number of
years), 4-yearly moving average (even number of years) etc.

Moving Average - Odd number of years (say 3 years)
To find out the trend values by the method of 3-yearly moving

averages, the following steps are taken into consideration.
1) Add up the values of the first three years and place the yearly

sum against the median year i.e. the 2nd year.
2) Leave the first year item and add up the values of the next

three years. i.e. from the 2nd year to 4 th year and place the
sum (known as moving total) against the 3rd year.

3) Leave the first two items and add the values of the next three
years. i.e. from 3rd year to the 5th year and place the sum
(moving total) against the 4th year.

4) This process must be continued till the value of the last item is
taken for calculating the moving average.

5) Each 3-yearly moving total must be divided by 3 to get
themoving averages. This is our required trend values.

176

Note

The above 5 steps can be applied to get 5-years, 7-years, 9-
years etc., Moving Averages.

Moving Average - Even number of years (say 4 years)

1) Add up the values of the first four years and place the sum
against the middle of 2nd and 3rd years.

2) Leave the first year value and add from the 2nd year onwards
to the 5th year and write the sum (moving total) against the
middle of the 3rd and the 4th items.

3) Leave the first two year values and add the values of the next
four years i.e. from the 3rd year to the 6th year. Place the
sum (moving total) against the middle of the 4th and the 5th
items.

4) This process must be continued till the value of the last item is
taken into account.

5) Add the first two 4-years moving total and write the sum
against 3rd year.

6) Leave the first 4-year moving total and add the next two 4-
year moving total. This sum must be placed against 4th year.

7) This process must be continued till all the four-yearly moving
totals are summed up and centred.

8) Divide the 4-years moving total centred by 8 and write the
quotient in a new column. These are our required trend values.

Note

The above steps can be applied to get 6-years, 8-years,
10-years etc., Moving Averages.

Example 16

Calculate the 3-yearly Moving Averages of the
production figures (in mat. tonnes) given below

177

Year 1973 1974 1975 1976 1977 1978 1979 1980
Production 15 21 30 36 42 46 50 56
Year 1981 1982 1983 1984 1985 1986 1987
Production 63 70 74 82 90 05 102
Solution :

Calculation of 3-yearly Moving Averages

 Year Productiion 3-yearly 3-yearly
 y Moving total Moving average

1973 15 --- ---
1974 21 66 22.00
1975 30 87 29.00
1976 36 108 36.00
1977 42 124 41.33
1978 46 138 46.00
1979 50 152 50.67
1980 56 169 56.33
1981 63 189 63.00
1982 70 207 69.00
1983 74 226 75.33
1984 82 246 82.00
1985 90 267 89.00
1986 95 287 95.67
1987 102 --- ---

Example 17

Estimate the trend values using the data given below by
taking 4-yearly Moving Average.

Year 1974 1975 1976 1977 1978 1979 1980
Value 12 25 39 54 70 37 105

Year 1981 1982 1983 1984 1985 1986 1987
Value 100 82 65 49 34 20 7

178

Solution :

 Year value 4 year 4 year Two 4-year
 moving moving total moving total
 total centered (Trend values)

1974 12 --- --- ---

1975 25 → 130 --- ---

1976 39 → 188 318 39.75

1977 54 → 200 388 48.50

1978 70 → 266 466 58.25

1979 37 → 312 578 72.25

1980 105 → 324 636 79.50

1981 100 → 352 676 84.50

1982 82 → 296 648 81.00

1983 65 → 230 526 65.75

1984 49 → 168 398 49.75

1985 34 → 110 278 34.75

1986 20 --- ---

1987 7 --- ---

(iv) Method of Least Squares

The method of least squares is most widely used in practice.
The method of least squares may be used to fit a straight line trend.

The straight line trend is generally expressed by an equation

yt = a + bx

Where yt is used to represent the trend values, ‘a’ is the
intercept, ‘b’ represents slope of the line which is also known as
the ratio of growth during a unit of time. The variable x represents
the time periods.

179

In order to determine the values of the unknown constants
‘a’ and ‘b’ the following equations, known as normal equations,
are used.

Σy = na + bΣx

Σxy = aΣx + bΣx2,

where n represents number of observations (years, months
or any other period) for which the data are given.

For derivation of normal equations, refer pages 61 & 62 of
Chapter 7. To solve the above normal equations and get trend
values the following are the computational steps.

Case (i) When the number of years is odd

1) Denote the years as the X variable and its corresponding
values as Y.

2) Assume the middle year as the period of origin and take
deviations accordingly. Thus ΣX = 0.

3) Find ΣX2, ΣY2 and ΣXY.

4) Substitute ΣX, ΣX2, ΣY and ΣXY in the above normal
equation and the solve it.

Hence a = n
YΣ b = 2X

XY
Σ
Σ

5) Put the values of ‘a’ and ‘b’ in the equation and solving for
each value of X, we get the trend values.

Case (ii) When the number of years is even

In this case, assume the variable X as

X =
.5

years Middle twoof A.M.−x

and all other steps are similar to case (i)

180

Note

If the time lag between consecutive years is not one assume
the variable X as

X =
d

years Middle twoof A.M.−x

where d =
2

years econsecutiv obetween tw Difference

Example 18

Below are the given the figures of production (in
thousand tonnes) of a sugar factory.

Year 1980 1981 1982 1983 1984 1985 1986

Production 80 90 92 83 94 99 92

Fit a straight line trend to these figures by the method
of least squares and estimate the production in the year of
1990.

Solution :

Given the numbers of years n = 7 (odd)

 Year Production
 (’000 tonnes)

 x y = Y X = x−1983 X2 XY

1980 80 -3 9 -240

1981 90 -2 4 -180

1982 92 -1 1 -92

1983 83 0 0 0

1984 94 1 1 94

1985 99 2 4 198

1986 92 3 9 276

630 0 28 56

181

The equation of the straight line trend is Yt = a + bX

Substituting the values of ΣX, ΣX2, ΣXY and n in normal
equation, we get

630 = 7a + b(0) ⇒ a = 90
56 = a(0) + b(28) ⇒ b = 2

Hence the equation of the straight line trend is

Yt = 90 + 2X
Trend values

For X = -3, Yt = 90 + 2(-3) = 84

For X = -2, Yt = 90 + 2(-2) = 86

For X = -2, Yt = 90 + 2(-1) = 88

For X = 0, Yt = 90 + 2(0) = 90

For X = 1, Yt = 90 + 2(1) = 92

For X = 2, Yt = 90 + 2(2) = 94

For X = 3, Yt = 90 + 2(3) = 96

To estimate the production in 1990, substitute X = 7 in the
trend equation.

∴ Y1990 = 90 + 2(7) = 104 x 1000 tonnes

Example 19

Fit a straight line trend by the method of least squares
to the following data. Also predict the earnings for the year
1988.

Year 1979 1980 1981 1982 1983 1984 1985 1986

Earnings 38 40 65 72 69 60 87 95

Solution :

Number of years n = 8 (even)

182

 year Earnings
 (in lakhs)

 x y = Y X = 5.
5.1982−x X2 XY

1979 38 -7 49 -266
1980 40 -5 25 -200
1981 65 -3 9 -195
1982 72 -1 1 -72
1983 69 1 1 69
1984 60 3 9 180
1985 87 5 25 435
1986 95 7 49 665

526 0 168 616

The equation of the straight line trend is Yt = a + bX

Substituting the values of ΣX, ΣX2, ΣXY, n in Normal
equation, we get,

526 = 8a + b(0) -----------(1)
616 = a(0) + b(168) -----------(2)

Solving (1) and (2) we get a = 65.75 and b = 3.667

Hence the equation of the straight line trend is

Y7 = 65.75 + 3.667X

Year 1979 1980 1981 1982
Trend values 40.08 47.415 54.749 62.083

Year 1983 1984 1985 1986
Trend values 69.417 76.751 84.085 91.419

To estimate the earnings in 1988, substitute X = 11 in the
trend equation and we get,

 Yt = 65.75 + 3.667(11) = 106.087

The estimate earnings for the year 1988 are Rs.106.087 lakhs.

183

Measurement of seasonal variation

Seasonal variation can be measured by the method of simple
average.

Method of simple average

This method is the simple method of obtaining a seasonal
Index. In this method the following steps are essential to calculate
the Index.

(i) Arrange the data by years, month or quarters as the
case may be.

(ii) Compute the totals of each month or each quarter.

(iii) Divide each total by the number of years for which the
data are given. This gives seasonal averages (monthly
or quarterly)

(iv) Compute average of seasonal averages. This is called
grand average.

(v) Seasonal Index for every season (monthly or quarterly)
is calculated as follows

Seasonal Index (S.I) = Average Grand
Average Seasonal

x 100

Note

(i) If the data is given monthwise,

Seasonal Index = Average Grand
AverageMonthly

x 100

(ii) If quarterly data is given,

Seasonal Index = Average Grand
AverageQuarterly

x 100

Example 20

From the data given below calculate Seasonal Indices.

184

year

Quarter 1984 1985 1986 1987 1988

I 40 42 41 45 44
II 35 37 35 36 38
III 38 39 38 36 38
IV 40 38 40 41 42

Solution :

 Quarters

year I II III IV

1984 40 35 38 40
1985 42 37 39 38
1986 41 35 38 40
1987 45 36 36 41
1988 44 38 38 42
Total 212 181 189 201

Average 42.4 36.2 37.8 40.2

Grand Average = 4
40.237.836.242.4 +++ = 39.15

Seasonal Index (S. I) = Average Grand
AverageQuarterly

x 100

Hence, S.I for I Quarter = 39.15
42.4 x 100 = 108.30

S.I for II Quarter = 39.15
36.2 x 100 = 92.54

S.I for III Quarter = 39.15
37.8 x 100 = 96.55

S.I for IV Quarter = 39.15
40.2 x 100 = 102.68

Note
Measurement of cyclical variation, and measurement of

irregular variation is beyond the scope of this book.

185

EXERCISE 10.3
1) Draw a trend line by graphic method (free hand)

year 1995 1996 1997 1998 1999 2000 2001
Production 20 22 25 26 25 27 30

2) Draw a trend line by graphic method
year 1997 1998 1999 2000 2001
Production 20 24 25 38 60

3) Obtain the trend values by the method of Semi-Average
year 1987 1988 1989 1990 1991 1992 1993
Production 90 110 130 150 100 150 200
(in tonnes)

year 1993 1994 1995 1996 1997 1998 1999 2000
Netprofit 38 39 41 43 40 39 35 25
(Re lakhs)

5) Using three year moving averages determine the trend values
for the following data.
year 1983 1984 1985 1986 1987 1988 1989
Production 21 22 23 25 24 22 25
(in tonnes)
year 1990 1991 1992
Production 26 27 26
(in tonnes)

6) Below are given figures of production (in thousand tonnes) of
a sugar factory. Obtain the trend values be 3-year moving
average.

year 1980 1981 1982 1983 1984 1985 1986

Production 80 90 92 83 94 99 92

7) Using four yearly moving averages calculate the trend values.

year 1981 1982 1983 1984 1985 1986 1987
Production 464 515 518 467 502 540 557

year 1988 1989 1990
Production 571 586 612

186

8) Calculate the trend values by four year moving averages
method.

Year 1978 1979 1980 1981 1982 1983 1984
Production 614 615 652 678 681 655 717

Year 1985 1986 1987 1988
Production 719 708 779 757

9) Given below are the figures of production of a sugar factory.

year 1989 1990 1991 1992 1993 1994 1995
Production 77 88 94 85 91 98 90
(in tonnes)

Fit a straight line trend to these figures by the method of least
squares and estimate trend values. Also estimate the production
for the year 2000.

10) Fit the straight line trend, find the trend values and estimate
the net profit in 2002.

Year 1992 1993 1994 1995 1996 1997 1998
Net profit 65 68 59 55 50 52 54

year 1999 2000
Net profit 50 42

11) The following data relate to the profit earned by public limited
company from 1984 to 1989.

Year 1984 1985 1986 1987 1988 1989

Profit 10 12 15 16 18 19
(Rs in 000)

Fit a straight line trend by the method of least squares to the
data and tabulate the trend values.

12) Fit a straight line trend and estimate the trend values.

Year 1992 1993 1994 1995 1996 1997 1998 1999

Net profit 47 53 50 46 41 39 40 36

187

13) Calculate the seasonal indices by the method of simple average
for the following data

year I quarter II quarter III quarter IV quarter

1985 68 62 61 63
1986 65 58 66 61
1987 68 63 63 67

14) Calculate the seasonal indices for the following data by the
method of simple Average.

Quarters
year I II III IV

1994 78 66 84 80
1995 76 74 82 78
1996 72 68 80 70
1997 74 70 84 74
1998 76 74 86 82

15) Calculate the seasonal Indices for the following data using
average method.

Quarters
year I II III IV
1982 72 68 80 70
1983 76 70 82 74
1984 74 66 84 80
1985 76 74 84 78
1986 78 74 86 82

10.4 INDEX NUMBERS

“An Index Number is a single ratio (usually in percentages)
which measures the (combined average) change of several variables
between two different times, places and situations” - Alva. M. Tuttle.

Index numbers are the devices for measuring differences in
the magnitude of a group of related variables, over two different
situations or defined as a measure of the average change in a group

188

of related variables over two different situations. For example, the
price of commodities at two different places or two different time
periods at the same location. We need Index Numbers to compare
the cost of living at different times or in different locations.

10.4.1 Classification of Index Numbers

Index Numbers may be classified in terms of what they
measure. They are

(i) Price Index Numbers
(ii) Quantity Index Numbers
(iii) Value Index Numbers
(iv) Special purpose Index Numbers

We shall discuss (i) and (ii).

10.4.2 Uses of Index Numbers

(i) Index numbers are used to evolve business policies.

(ii) Index numbers determine the inflation or deflation in economy.

(iii) Index numbers are used to compare intelligence of students
in different locations or for different year.

(iv) Index numbers serve as economic barometers.

10.4.3 Method of construction of Index Numbers

Index Numbers are broadly divided into two groups

(i) Unweighted Index

(ii) Weighted Index

We confine our attention to weighted index numbedrs.

10.4.4 Weighted Index Numbers

The method of construction of weighted indices are

(c) Weighted aggregative method

(d) Weighted averages of relatives method

189

Weighted Aggregative Index Numbers

Let p1 and p0 be the prices of the current year and the base
year respctively. Let q1 and q0 be the quantities of the current year
and the base year respectively. The formulae for assigning weights
to the items are :
(i) Laspeyre’s Price Index

L
01P =

00

01

qp
qp

Σ
Σ

 x 100 where w = p
0
q

0
 is the weight

assigned to the items and P
01

 is the price index.

(ii) Paasche’s price index

P
01P =

10

11

qp
qp

Σ
Σ

 x 100

Here the weights assigned to the items are the current year
quantities i.e. W = p0q1

(iii) Fisher’s price Index

F
01P = P

01
L
01 P P x =

10

11

00

01

qp
qp

qp
qp

Σ
Σ

Σ
Σ

x x 100

Note
Fisher’s price index is the geometric mean of Laspeyre’s and

Paasche’s price index numbers.

Example 21

Compute (i) Laspeyre’s (ii) Paasche’s and (iii) Fisher’s
Index Numbers for the 2000 from the following :

 Commodity Price Quantity
1990 2000 1990 2000

A 2 4 8 6

B 5 6 10 5

C 4 5 14 10

D 2 2 19 13

190

Solution :
 Commodity Price Quantity

 Base Current Base Current
 year year year year
 p

0
 p

1
 q

0
 q

1
 p

0
q

0
 p

1
q

0
 p

0
q

1
 p

1
q

1

A 2 4 8 6 16 32 12 24
B 5 6 10 5 50 60 25 30
C 4 5 14 10 56 70 40 50
D 2 2 19 13 38 38 26 26

160 200 103 130

(i) Laspeyre’s Index : L
01P =

00

01

qp
qp

Σ
Σ

 x 100

=
160
200 x 100 = 125

(ii) Paasche’s Index : P
01P =

10

11

qp
qp

Σ
Σ

 x 100

=
103
130 x 100 = 126.21

(iii) Fisher’s Index : F
01P = P

01
L
01 P P x

= 125.6
Example 22

From the following data, calculate price index number
by (a) Laspeyre’s method (b) Paasche’s method (iii) Fisher’s
method.
 Commodity Base year Current year

Price Quantity Price Quantity
A 2 40 6 50
B 4 50 8 40
C 6 20 9 30
D 8 10 6 20
E 10 10 5 20

191

Solution :

 Commodity Base year Current year
 Price Qty Price Qty
 p0 q0 p1 q1 p0q0 p1q0 p0q1 p1q1

A 2 40 6 50 80 240 100 300

B 4 50 8 40 200 400 160 320

C 6 20 9 30 120 180 180 270

D 8 10 6 20 80 60 160 120

E 10 10 5 20 100 50 200 100

580 930 800 1110

(i) Laspeyre’s Price Index : L
01P =

00

01

qp
qp

Σ
Σ

 x 100

=
580
930 x 100 = 160.34

(ii) Paasche’s Price Index : P
01P =

10

11

qp
qp

Σ
Σ

 x 100

=
800
1100 x 100 = 137.50

(iii) Fisher’s Index : F
01P = P

01
L
01 P P x = 148.48

10.4.5 Test of adequacy for Index Number

Index Numbers are constructed to study the relative changes
in prices, quantities, etc. of one time in comparison with another.
Several formulae have been suggested for constructing index
numbers and one should select the most appropriate one in a given
situation. Following are the tests suggested for choosing an
appropriate index.

1) Time reversal test

2) Factor reversal test

192

Time reversal test

It is a test to determine whether a given method will work
both ways in time, forward and backward. When the data for any
two years are treated by the same method, but with the bases
reversed, the two index numbers secured should be reciprocals of
each other so that their product is unity. Symbolically the following
relation should be satisfied.

∴ P01 x P10 = 1

(ignoring the factor 100 in each index) where P01 is the index for
current period 1 on base period 0 and P10 is the index for the current
period 0 on base period 1.

Factor reversal test

This test holds that the product of a price index and the
quantity index should be equal to the corresponding value index.
The test is that the change in price multiplied by the change in quantity
should be equal to the total change in value.

∴ P01 x Q01 =
00

11

Ó
Ó

qp
qp

 (ignoring the factor 100 in each index)

P01 gives the relative change in price and Q01 gives the
relative change in quantity. The total value of a given commodity
in a given year is the product of the quantity and the price per
unit.

00

11

qp
qp

Σ
Σ

 is the ratio of the total value in the current period to

the total value in the base period and this ratio is called the true
value ratio.

Fisher’s index is known as Ideal Index Number since it is the
only index number that satisfies both reversal tests.

193

Example 23

Calculate Fisher’s Ideal Index from the following data
and verify that it satisfies both Time Reversal and Factor
Reversal test

 Commodity Price Quantity
1985 1986 1985 1986

A 8 20 50 60

B 2 6 15 10

C 1 2 20 25

D 2 5 10 8

E 1 5 40 30

Solution :

 Commodity 1985 1986
 p0 q0 p1 q1 p1q0 p0q0 p1q1 p0q1

A 8 50 20 60 1000 400 1200 480

B 2 15 6 10 90 30 60 20

C 1 20 2 25 40 20 50 25

D 2 10 5 8 50 20 40 16

E 1 40 5 30 200 40 150 30

1380 510 1500 571

Fisher’s Ideal Index =
10

11

00

01

qp
qp

qp
qp

Σ
Σ

Σ
Σ

x x 100

=
571

1500
510

1380 x x 100

= 2.6661 x 100 = 266.61

Time reversal test

Test is satisfied when P01 x P10 = 1

194

P01 =
10

11

00

01

qp
qp

qp
qp

Σ
Σ

Σ
Σ

x =
571

1500
510

1380 x

P10 =
11

00

11

10

qp
qp

qp
qp

Σ
Σ

Σ
Σ

x =
1380
510

1500
571 x

P01 x P10 =
1380
510

1500
571

571
1500

510
1380 xxx

= 1 = 1

Hence Fisher’s Ideal Index satisfies Time reversal test.

Factor reversal test

Test is satisfied when P01 x Q01 =
00

11

qp
qp

Σ
Σ

 Q01 =
10

11

00

01

pq
pq

pq
pq

Σ
Σ

Σ
Σ

x =
1380
1500

510
571 x

∴ P01 x Q01=
1380
1500

510
571

571
1500

510
1380 xxx

=
510

1500 =
00

11

qp
qp

Σ
Σ

Hence Fisher’s Ideal Index satisfies Factor reversal test.

Example 24

Compute Index Number using Fisher’s formula and show
that it satisfies time reversal test and factor reversal test.

 Commodity Base year Current year
Price Quantity Price Quantity

A 10 12 12 15

B 7 15 5 20

C 5 24 9 20

D 16 5 14 5

195

Solution :

 Commodity Base Current
 year year
 p0 q0 p1 q1 p1q0 p0q0 p1q1 p0q1

A 10 12 12 15 144 120 180 150

B 7 15 5 20 75 105 100 140

C 5 24 9 20 216 120 180 100

D 16 5 14 5 70 80 70 80

505 425 530 470

Fisher’s Ideal Index =
10

11

00

01

qp
qp

qp
qp

Σ
Σ

Σ
Σ

x x 100

=
470
530

425
505 x x 100 = 115.75

Time reversal test

Test is satisfied when P01 x P10 = 1

P01 =
10

11

00

01

qp
qp

qp
qp

Σ
Σ

Σ
Σ

x =
470
530

425
505 x

P10 =
01

00

11

10

qp
qp

qp
qp

Σ
Σ

Σ
Σ

x =
505
425

530
470 x

P01 x P10 =
505
425

530
470

470
530

425
505 xxx

= 1 = 1

Hence Fisher’s Ideal Index satisfies Time Reversal Test.

Factor reversal test

Test is satisfied when P01 x Q01 =
00

11

qp
qp

Σ
Σ

196

 Q01 =
10

11

00

01

pq
pq

pq
pq

Σ
Σ

Σ
Σ

x =
505
425

530
470 x

P01 x Q01=
505
530

425
470

470
530

425
505 xxx

=
425
530 =

00

11

qp
qp

Σ
Σ

Hence Fisher’s Ideal Index satisfies Factor reversal test.

10.4.6 Cost of Living Index (CLI)

Cost of living index numbers are generally designed to
represent the average change over time in the prices paid by
the ultimate consumer for a specified quantity of goods and
services. Cost of living index number is also known as
Consumer price index number

It is well known that a given change in the level of prices
(retail) affects the cost of living of different classes of people in
different manners. The general index number fails to reveal this.
Therefore it is essential to construct a cost of living index number
which helps us in determining the effect of rise and fall in prices on
different classes of consumers living in different areas. It is to be
noted that the demand for a higher wage is based on the cost of
living index. The wages and salaries in most countries are adjusted
in accordance with the cost of living index.

10.4.7 Methods of constructing cost of living index

Cost of living index may be constructed by the following
methods.

(i) Aggregate expenditure method or weighted aggregative
method

(ii) Family budget method

197

Aggregate expenditure method

In this method, the quantities of commodities consumed by
the particular group in the base year are used as the weights. On
the basis of these weights, aggregate (total) expenditure in current
year and base year are calculated and the percentage of change is
worked out .

∴ Cost of Living Index (C.L.I) =
00

01

qp
qp

Σ
Σ

 x 100

This method is the most popular method for constructing cost
of living index and the method is same as Laspeyre’s price index.

Family budget method

In this method, the value weights obtained by multiplying
prices by quantities consumed (i.e. p0q0) are taken as weights. To
get the cost of living index, find the sum of respective products of
price relatives and value weights and then divide this sum by the
sum of the value weights.

∴ Cost of living Index =
V
PV

Σ
Σ where

P =
0

1

p
p

 x 100 is the price relative and

V = p0q0 is the value weight for each item.

This method is same as the Weighted average of price relative
method.

10.4.8 Uses of cost of living index number

(i) The cost of living index number is mainly used in wage
negotiations and wage contracts.

(ii) It is used to calculate the dearness allowance for the
employees.

198

Example 25

Calculate the cost of living index by aggregate
expenditure method

 Commodity Quantity Price (Rs)
 2000 2000 2003

A 100 8 12.00

B 25 6 7.50

C 10 5 5.25

D 20 48 52.00

E 65 15 16.50

F 30 19 27.00

Solution :

 Commodity Quantity Price
 2000 2000 2003
 q0 p0 p1 p1q0 p0q0

A 100 8 12.00 1200.00 800

B 25 6 7.50 187.50 150

C 10 5 5.25 52.50 50

D 20 48 52.00 1040.00 960

E 65 15 16.50 1072.50 975

F 30 19 27.00 810.00 570

4362.50 3505

C. L. I =
00

01

qp
qp

Σ
Σ

 x 100

=
3505

50.4362 x 100 = 124.46

199

Example 26

Construct the cost of living Index Number for 2003 on
the basis of 2000 from the following data using family Budget
method.

 Items Price Weights
 2000 2003

Food 200 280 30

Rent 100 200 20

Clothing 150 120 20

Fuel & lighting 50 100 10

Miscellaneous 100 200 20

Solution :

Calculation of CLI by family budget method

Items p0 p1 weights P=
0

1

p
p

x100 PV

V

Food 200 280 30 140 4200

Rent 100 200 20 200 4000

Clothing 150 120 20 80 1600

Fuel & Lighting 50 100 10 200 2000

Misc. 100 200 20 200 4000

 100 15800

Cost of living index =
V
PV

Σ
Σ =

100
15800 = 158

Hence, there is 58% increase in cost of living in 1986
compared to 1980.

200

EXERCISE 10.4

1) Compute (i) Laspeyre’s (ii) Paasche’s and (iii) Fisher’s index
Numbers
 Commodity Price Quantity

Base Current Base Current
 year year year year

A 6 10 50 50

B 2 2 100 120

C 4 6 60 60

D 10 12 30 25

2) Construct the price index number from the following data by
applying
(i) Laspeyre’s (ii) Paasche’s (iii) Fisher’s method

 Commodity 1999 1998
 Price Quantity Price Quantity

A 4 6 2 8
B 6 5 5 10
C 5 10 4 14

D 2 13 2 19

3) Compute (a) Laspyre’s (b) Paasche’s (c) Fisher’s method
of index numbers for 1990 from the following :

 Commodity Price Quantity
 1980 1990 1980 1990

A 2 4 8 6

B 5 6 10 5

C 4 5 14 10
D 2 2 19 13

4) From the following data calculate the price index number by
(a) Laspeyre’s method (b) paasche’s method
(c) Fisher’s method

201

 Commodity Base year Current year
 Price Quantity Price Quantity

A 5 25 6 30
B 10 5 15 4
C 3 40 2 50
D 6 30 8 35

5) Using the following data, construct Fisher’s Ideal index and
show that it satisfies Factor Reversal test and Time Reversal
test.

 Commodity Price Quantity
Base Current Base Current
 year year year year

A 6 10 50 56

B 2 2 100 120

C 4 6 60 60

D 10 12 30 24

E 8 12 40 36

6) Calculate Fisher’s Ideal Index from the following data and show
how it satisfies time reversal test and factor reversal test.

 Commodity Base year Current year
 (1997) (1998)
 Price Quantity Price Quantity

A 10 10 12 8

B 8 12 8 13

C 12 12 15 8

D 20 15 25 10

E 5 8 8 8

F 2 10 4 6

202

7) Construct cost of living index for 2000 taking 1999 as the base
year from the following data using Aggregate Expenditure
method.

 Commodity Quantity (kg.) Price
 1999 1999 2000

A 6 5.75 6.00

B 1 5.00 8.00

C 6 6.00 9.00

D 4 8.00 10.00

E 2 2.00 1.80

F 1 20.00 15.00

8) Calculate the cost of living Index Number using Family Budget
method

Commodity A B C D E F G H

Quantity in
Base year (unit) 20 50 50 20 40 50 60 40

Price in
Base year (Rs.) 10 30 40 200 25 100 20 150

Price in
current year (Rs) 12 35 50 300 50 150 25 180

9) Calculate the cost of living index number using Family Budget
method for the following data taking the base year as 1995

 Commodity Weight Price (per unit)
 1995 1996

A 40 16.00 20.00

B 25 40.00 60.00

C 5 0.50 0.50

D 20 5.12 6.25

E 10 2.00 1.50

203

10) From the data given below, construct a cost of living index
number by family budget method for 1986 with 1976 as the
base year.

Commodity P Q R S T U

Quantity in 1976
Base year 50 25 10 20 30 40

Price per
unit in 1976 (Rs.) 10 5 8 7 9 6

Price per
unit in 1986 (Rs.) 6 4 3 8 10 12

10.5 STATISTICAL QUALITY CONTROL (SQC)

Every product manufactured is required for a specific
purpose. It means that if the product meets the specifications
required for its rightful use, it is of good quality and if not, then
the quality of the product is considered to be poor.

It is a well known fact that all repetitive process no matter
how carefully arranged are not exactly identical and contain some
variability. Even in the manufacture of commodities by highly
specialised machines it is not unusual to come across differences
between various units of production. For example, in the
manufacture of corks, bottles etc. eventhough highly efficient
machines are used some difference may be noticed in various
units. If the differences are not much, it can be ignored and the
product can be passed off as within specifications. But if it is
beyond certain limits, the article has to be rejected and the cause
of such variation has to be investigated.

10.5.1 Causes for variation

The variation occurs due to two types of causes namely
(i) Chance causes (ii) Assignable causes

204

(i) Chance causes
If the variation occurs due to some inherent pattern of variation

and no causes can be assigned to it, it is called chance or random
variation. Chance Variation is tolerable, permissible inevitable and
does not materially affect the quality of a product.

(ii) Assignable causes
The causes due to faulty process and procedure are known

as assignable causes. the variation due to assignable causes is of
non-random nature. Chance causes cannot detected. However
assignable causes can be detected and corrected.

10.5.2 Role and advantages of SQC

The role of statistical quality control is to collect and analyse
relevant data for the purpose of detecting whether the process is
under control or not.

The value of quality control lies in the fact that assignable
causes in a process can be quickly detected. Infact the variations
are often discovered before the product becomes defective.

SQC is a well accepted and widespread process on the basis
of which it is possible to understand the principles and techniques
by which decisions are made based on variation.

Statistical quality control is only diagonstic. It tells us
whether the standard is being maintained or not. The remedial
action rests with the technicians who employ techniques for the
maintenance of uniform quality in a continuous flow of
manufactured products.

The purpose for which SQC are used are two fold namely,
(a) Process control, (b) Product control.

In process control an attempt is made to find out if a particular
process is within control or not. Process control helps in studying
the future performance.

205

10.5.3 Process and Product control

The main objective in any production process is to control
and maintain quality of the manufactured product so that it conforms
to specified quality standards. In otherwords, we want to ensure
that the proportion of defective items in the manufactured product
is not too large. This is called process control and is achieved
through the technique of control charts.

On the otherhand, by product control we mean controlling
the quality of the product by critical examination at strategic points
and this is achieved through product control plans pioneered by
Dodge and Romig. Product control aims at guaranteeing a certain
quality level to the consumer regardless of what quality level is being
maintained by the producer. In otherwords, it attempts to ensure
that the product marketed by the sale department does not contain
a large number of defective items.

10.5.4 Control Charts

The statistical tool applied in process control is the control
chart. Control charts are the devices to describe the patterns of
variation. The control charts were developed by the physicist,
Walter A. Stewart of Bell Telephone Company in 1924. He
suggested that the control chart may serve, first to define the goal
or standard for the process that the management might strive to
attain. Secondly, it may be used as an instrument to attain that goal
and thirdly, it may serve as a means of judging whether the goal is
being achieved. Thus, control chart is an instrument to be used in
specification, production and inspection and is the core of statistical
quality control.

A control chart is essentially a graphic device for presenting
data so as to directly reveal the frequency and extent of variations
from established standards or goals. Control charts are simple to
construct and easy to interpret and they tell the manager at a glance
whether or not the process is in control, i.e. within the tolerance
limits.

206

In general a control chart consists of three horizontal lines

(i) A central line to indicate the desired standard or level
of the process (CL)

(ii) Upper control limit (UCL) and

(iii) Lower control limit (LCL)

Outline of a control chart

Sample Numbers

From time to time a sample is taken and the data are plotted
on the graph. If all the sample points fall within the upper and lower
control limits, it is asumed that the process is “in control” and only
chance causes are present. When a sample point falls outside the
control limits, it is assumed that variations are due to assignable
causes.

Types of Control Charts

Broadly speaking, control charts can be divided under two
heads.

(i) Control charts of Variables

(ii) Control charts of Attributes

Control charts of variables concern with measurable data on
quality characteristics which are usually continous in nature. Such

type of data utilises X and R chart.

O

↑

→

Q
ua

lit
y

sc
al

e

1 2 3 4 5 6 7 8

out of control

out of control

UCL

CL

LCL

+3 σ

 −3 σ

↑

↑
↓

↓

(Fig. 10.9)

207

Control charts of attirbutes, namely c, np and p charts
concern with the data on quality characteristics, which are not
amenable to measurement or attributes (prodcut defective or non
defective)

In this chapter, we consider only the control charts of

variables, namely X chart and R chart.

R-Chart (Range chart)

The R chart is used to show the variability or dispersion of
the quality produced by a given process. R chart is the companion
chart to the X chart and both are usually required for adequate
analysis of the production process under study. The R chart is
generally presented along with the X chart. The general procedure
for constructing the R chart is similar to that for the X chart. The
required values for constructing the R chart are :

(i) The range of each sample, R.

(ii) The Mean of the sample ranges, R

(iii) The control limits are set at

U.C.L = D4 R

L.C.L = D3 R

The values of D4 and D3 can be obtained from tables.

X Chart

The X chart is used to show the quality averages of the
samples drawn from a given process. The following values must

first be computed before an X chart is constructed.

1) Obtain the mean of each sample X i : i = 1, 2 ... n
2) Obtain the mean of the sample means

208

i.e X = n
nX ... X X 21 +++

where n is the total number of observations

3) The control limits are set at

U.C.L. = X + A2 R

LCL = X − A2 R , where R = n
i

n

i
R

1=
Σ

, where Ri are

the sample ranges.
The values of A2 for different n can be obtained from the tables.

Example 28

The following data relate to the life (in hours) of 10
samples of 6 electric bulbs each drawn at an interval of one
hour from a production process. Draw the control chart for
X and R and comment.

 Sample No. Life time (in hours)

1 620 687 666 689 738 686

2 501 585 524 585 653 668

3 673 701 686 567 619 660

4 646 626 572 628 631 743

5 494 984 659 643 660 640

6 634 755 625 582 683 555

7 619 710 664 693 770 534

8 630 723 614 535 550 570

9 482 791 533 612 497 499

10 706 524 626 503 661 754

(Given for n = 6, A2 = 0.483, D3 = 0, D4 = 2.004)

209

Solution :

Sample No. Total Sample Sample
 Mean X Range R

1 4086 681 118

2 3516 586 167

3 3906 651 134

4 3846 641 171

5 4080 680 490

6 3834 639 200

7 3990 665 236

8 3622 604 188

9 3414 569 309

10 3774 629 251
 Total 6345 2264

Central line X = mean of the sample means = 634.5

R = mean of the sample ranges = 226.4

U.C.L. = X + A2 R
= 634.5 + 0.483 x 226.4

= 634.5 + 109.35 = 743.85

L.C.L. = X - A2 R
= 634.5 - 0.483 x 226.4
= 634.5 - 109.35 = 525.15

Central line R = 226.4

U.C.L. = D4 R = 2.004 x 226.4

= 453.7056
L.C.L. = D3 R = 0 x 226.4 = 0

210

.

.
. . .

.
.

.

X Chart

R Chart

0 1 2 3 4 5 6 7 8 9 10
 Sample No.

750

725

700

675

650

625

600

575

550

525

Sa
m

pl
e m

ea
n

.

(Fig. 10.10)

→

→

→UCL

CL

LC

.

0 1 2 3 4 5 6 7 8 9
 Sample No.

550

500

450

400

350

300

250

200

150

100
.

→

→UCL

CL

LC

Sa
m

pl
e r

an
ge

. .
. . . . →

(Fig. 10.11)

.

. .

→

↑

↑

211

Conclusion :
Since one of the points of the sample range is outside the

UCL of R chart, the process is not in control.

Example 29
The following data shows the value of sample mean X

and the range R for ten samples of size 5 each. Calculate the
values for central line and control limits for mean chart and
range chart and determine whether the process is in control
Sample no. 1 2 3 4 5 6 7 8 9 10

Mean X 11.2 11.8 10.8 11.6 11.0 9.6 10.4 9.6 10.6 10.0

Range (R) 7 4 8 5 7 4 8 4 7 9

(Given for n = 5, A2 = 0.577, D3 = 0 D4 = 2.115)
Solution :

Control limits for X chart

X = n
1 Σ X

= 10
1 (11.2 + 11.8 + 10.8 + ...+ 10.0) = 10.66

 R = n
1 ΣR = 10

1 (63) = 6.3

U.C.L = X + A2 R
= 10.66 + (0.577 x 6.3) = 14.295

L.C.L. = X − A2 R

= 10.66 − (0.577 x 6.3) = 7.025

CL = Central line = X = 10.66

Range chart
U.C.L. = D4 R = 2.115 x 6.3 = 13.324

L.C.L. = D3 R = 0

C.L. = R = 6.3

212

X Chart

R Chart

Conclusion :
Since all the points of sample mean and range are within the

control limits, the process is in control.

0 1 2 3 4 5 6 7 8 9 10
 Sample No.

16

14

13

12

11

10

9

8

7

6

.

→

→

→UCL

CL

LCL

Sa
m

pl
e m

ea
n

.

(Fig. 10.12)

→

↑

0 1 2 3 4 5 6 7 8 9 10
 Sample No.

13

12

11

10

9

8

7

6

5

4

.

→

→

→ UCL

CL

LCL

Sa
m

pl
e r

an
ge

. .

.
.

. .

. .
.

(Fig. 10.13)

↑

213

EXERCISE 10.5

1) The following are the X and R values for 20 samples of 5
readings. Draw X chart and R chart and write your
conclusion.

Samples 1 2 3 4 5 6 7 8 9 10
 X 34 31.6 30.8 33 35 33.2 33 32.6 33.8 37.8
 R 4 4 2 3 5 2 5 13 19 6

 Samples 11 12 13 14 15 16 17 18 19 20
 X 35.8 38.4 34 35 38.8 31.6 33 28.2 31.8 35.6
 R 4 4 14 4 7 5 5 3 9 6

(Given for n = 5, A2 = 0.58, D3 = 0 D4 = 2.12)

2) From the following, draw X and R chart and write your
conclusion.

Sample no. 1 2 3 4 5 6 7 8 9 10

140 138 139 143 142 136 142 143 141 142
143 143 133 141 142 144 147 137 142 137
137 143 147 137 145 143 137 145 147 145
134 145 148 138 135 136 142 137 140 140
135 146 139 140 136 137 138 138 140 132

Sample no. 11 12 13 14 15 16 17 18 19 20

137 137 142 137 144 140 137 137 142 136
147 146 142 145 142 132 137 142 142 142
142 142 139 144 143 144 142 142 143 140
137 142 141 137 135 145 143 145 140 139
135 140 142 140 144 141 141 143 135 137

(Given for n = 5, A2 = 0.58, D3 = 0, D4 = 2.12)

3) From the following data construct X and R chart and write
your conclusion

214

Sample no. 1 2 3 4 5 6 7 8 9

46 41 43 37 37 37 44 35 37
40 42 40 40 40 38 39 39 44
48 49 46 47 46 49 43 48 48

Sample no. 10 11 12 13 14 15 16 17 18

45 48 36 40 42 38 47 42 47
43 44 42 39 40 40 44 45 42
49 48 48 48 48 48 49 37 49

(Given for n = 3, A2 = 1.02, D3 = 0, D4 = 2.58)

EXERCISE 10.6

Choose the correct answer
1) A time series is a set of data recorded

(a) periodically (b) at equal time intervals
(c) at successive points of time (d) all the above

2) A time series consists of
(a) two components (b) three components
(c) four components (d) none of these

3) The component of a time series attached to long term
variation is termed as
(a) cyclic variations (b) secular trend
(c) irregular variation (d) all the above

4) The component of a time series which is attached to short
term fluctuations is
(a) seasonal variation (b) cyclic variation
(c) irregular variation (d) all the above

5) Cyclic variations in a time series are casued by
(a) lock out in a factory (b) war in a country
(c) floods in the states (d) none of these

215

6) The terms prosperity, recession depression and recovery are
in particular attached to
(a) Secular trend (b) seasonal fluctuation
(c) cyclic movements (d) irregular variation

7) An additive model of time series with the components T, S,
C and I is
(a) Y = T + S + C − I (b) Y = T + S X C + I
(c) Y = T + S + C + I (d) Y = T + S + C X I

8) A decline in the sales of ice cream during November to March
is associated with
(a) Seasonal variation (b) cyclical variation
(c) random variation (d) secular trend

9) Index number is a
(a) measure of relative changes
(b) a special type of an average
(c) a percentage relative
(d) all the above.

10) Index numbers are expressed
(a) in percentages (b) in ratios
(c) in terms of absolute value (d) all the above

11) Most commonly used index numbers are
(a) Diffusion index number (b) price index number
(c) value index number (d) none of these

12) Most frequently used index number formulae are
(a) weighted formulae (b) Unweighted formulae
(c) fixed weighted formulae (d) none of these

13) Laspeyre’s index formula uses the weights of the
(a) base year quantities (b) current year prices
(c) average of the weights of number of years
(d) none of these

216

14) The weights used in Paasche’s formula belong to

(a) the base period (b) the current period

(c) to any arbitrary chosen period (d) none of these

15) Variation in the items produced in a factory may be due to

(a) chance causes (b) assignable causes

(c) both (a) and (b) (d) neither (a) or (b)

16) Chance variation in the manufactured product is

(a) controlable (b) not controlable

(c) both (a) and (b) (d) none of these

17) The causes leading to vast variation in the specification of a
product are usually due to

(a) random process (b) assignable causes

(c) non-traceable causes (d) all the above

18) Variation due to assignable causes in the product occur due to

(a) faulty process (b) carelessness of operators

(c) poor quality of raw material (d) all the above

19) Control charts in statistical quality consist of
(a) three control lines
(b) upper and lower control limits
(c) the level of process
(d) all the above

20) The range of correlation co-efficient is
(a) 0 to ∞ (b) −∞ 10 ∞
(c) −1 to 1 (d) none of these

21) If X and Y are two variates, there can be atmost
(a) one regression line (b) two regression lines
(c) three regression lines (d) none of these

217

22) In a regression line of Y on X, the variable X is known as

(a) independent variable (b) dependent variable

(c) both (a) and (b) (d) none of these

23) Scatter diagram of the variate values (X, Y) give the idea
about

(a) functional relationship (b) regression model

(c) distribution of errors (d) none of these

24) The lines of regression intersect at the point

(a) (X, Y) (b) (X , Y)

(c) (0, 0) (d) none of these

25) The term regression was introduced by

(a) R.A.Fisher (b) Sir Francis Galton

(c) Karl pearson (d) none of these.

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 1

Discipline Course-I

Semester -I

Paper: Mathematical PhysicsI IA

Lesson: The D Operator & the Non-Homogeneous Equation

Lesson Developer: Savinder Kaur

College/Department: SGTB Khalsa College, University of
Delhi

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 2

Table of Contents

Chapter 9: The D Operator & the Non-Homogeneous Equation

 Introduction

 9.1 Particular Integral of Special Forms of the Function f(x)

 9.2 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙

 9.3 When function 𝒇(𝒙) is of the form 𝒔𝒊𝒏 𝒂𝒙 or 𝒄𝒐𝒔 𝒂𝒙

 9.4 When function 𝒇(𝒙) is of the form 𝒙𝒎, 𝒎 being a positive

integer

 9.5 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙𝑽(𝒙)

 And so on…

 Summary

 Exercise/ Practice

 Glossary

 References/ Bibliography/ Further Reading

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 3

Learning Objective

The student evolves further to calculate the solution of the Non-Homogeneous

DE by finding the

 Particular Integral for Special Forms of the Function 𝒇(𝒙) in the Non-

Homogeneous DE

 rules to determine 𝑷𝑰 in shorter steps and learns the D-Operator

 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙

 When function 𝒇(𝒙) is of the form 𝒔𝒊𝒏 𝒂𝒙 or 𝒄𝒐𝒔 𝒂𝒙

 When function 𝒇(𝒙) is of the form 𝒙𝒎, 𝒎 being a positive integer

 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙𝑽(𝒙)

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 4

The D Operator & the Non-Homogeneous Equation

9.1 Particular Integral of Special Forms of the Function

f(x)

As the previous two examples may have suggested finding 𝑃𝐼 could be very difficult

involving tedious integrations. However, there are certain special forms of the function

𝑓(𝑥) which admits rules for finding 𝑃𝐼 in shorter steps. We would explore such functions

and show our confidence in the rules developed;

9.2 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙

If 𝑓(𝑥) = 𝑒𝑎𝑥 then we can see that

𝐷𝑒𝑎𝑥 = 𝑎𝑒𝑎𝑥

𝐷2𝑒𝑎𝑥 = 𝐷(𝐷𝑒𝑎𝑥) = 𝐷(𝑎𝑒𝑎𝑥) = 𝑎2𝑒𝑎𝑥

and so on

𝐷𝑛𝑒𝑎𝑥 = 𝑎𝑛𝑒𝑎𝑥

So if

 𝐿(𝐷) = 𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + ⋯ + 𝑎1𝐷 + 𝑎0

then

𝐿(𝐷)𝑒𝑎𝑥 = (𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + ⋯ + 𝑎1𝐷 + 𝑎0)𝑒𝑎𝑥

𝐿(𝐷)𝑒𝑎𝑥 = (𝑎𝑛𝑎𝑛 + 𝑎𝑛−1𝑎𝑛−1 + ⋯ + 𝑎1𝑎 + 𝑎0)𝑒𝑎𝑥

𝐿(𝐷)𝑒𝑎𝑥 = 𝐿(𝑎)𝑒𝑎𝑥

Thus, operating on both sides by the “inverse” operator
1

𝐿(𝐷)
 we find that

1

𝐿(𝐷)
𝐿(𝐷)𝑒𝑎𝑥 =

1

𝐿(𝐷)
𝐿(𝑎)𝑒𝑎𝑥

𝑒𝑎𝑥 = 𝐿(𝑎)
1

𝐿(𝐷)
𝑒𝑎𝑥

Now if 𝐿(𝑎) ≠ 0 this can be interpreted as

1

𝐿(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝐿(𝑎)

This beautiful result then states a rule that an 𝑛𝑡ℎ order Non-Homogeneous Linear DE

with Constant coefficients

𝐿(𝐷)𝑦 = 𝐴𝑒𝑎𝑥

has the 𝑃𝐼

𝑦 = 𝐴
𝑒𝑎𝑥

𝐿(𝑎)

which needs no integration to be performed.

There may arise a situation where 𝐿(𝑎) = 0. This would then imply “𝑎” to be an 𝑟𝑡ℎ order

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 5

root of the 𝑛𝑡ℎ order Non-Homogeneous Linear DE with Constant coefficients so that

 𝐿(𝐷) = (𝐷 − 𝑎)𝑟𝜑(𝐷).

The 𝐷𝐸 can then be written as

𝜑(𝐷)(𝐷 − 𝑎)𝑟𝑦 = 𝐴𝑒𝑎𝑥

Operating on both sides by the “inverse” operator
1

𝜑(𝐷)
 we find

1

𝜑(𝐷)
𝜑(𝐷)(𝐷 − 𝑎)𝑟𝑦 =

1

𝜑(𝐷)
𝐴𝑒𝑎𝑥

(𝐷 − 𝑎)𝑟𝑦 = 𝐴
𝑒𝑎𝑥

𝜑(𝑎)

From our previously learnt technique this yields

𝑦 =
𝐴

𝜑(𝑎)

𝑥𝑟

𝑟!
𝑒𝑎𝑥

Example 9.2.1 Solve the equation

𝒚′′ + 𝒚′ + 𝒚 = 𝒆−𝒙

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 + 𝐷 + 1)𝑦 = 𝑒−𝑥

𝐿(𝐷)𝑦 = 𝑒−𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE

 𝐿(𝐷)𝑦 = 0

will be obtained by writing

 𝐿(𝜆) = 0

𝜆2 + 𝜆 + 1 = 0

𝜆1 =
−1 + √12 − 4

2
 & 𝜆2 =

−1 − √12 − 4

2

𝜆1 =
−1 + √−3

2
 & 𝜆2 =

−1 − √−3

2

The roots are then found as

𝜆1 = −
1

2
+ 𝑖

√3

2
 & 𝜆2 = −

1

2
− 𝑖

√3

2

The 𝐶𝐹 would be 𝐶1𝑒
(−

1

2
+𝑖

√3

2
)𝑥

+ 𝐶2𝑒
(−

1

2
−𝑖

√3

2
)𝑥

 which can be represented as

𝐶𝐹 = 𝑒−
𝑥
2 {𝐶1 cos (

√3

2
𝑥) + 𝐶2 sin (

√3

2
𝑥)}

Step 3 The 𝑃𝐼 would now be obtained as

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 6

𝑃𝐼 =
1

𝐿(𝐷)
𝑒−𝑥

Since 𝑓(𝑥) = 𝑒−𝑥 is an exponential function we will use the rule
1

𝐿(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝐿(𝑎)
 to find the 𝑃𝐼

𝑃𝐼 =
1

𝐿(𝐷)
𝑒−𝑥 =

𝑒−𝑥

𝐿(−1)

𝑃𝐼 =
𝑒−𝑥

{(−1)2 + (−1) + 1}

𝑃𝐼 =
𝑒−𝑥

{1 + (−1) + 1}
= 𝑒−𝑥

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝑒−
𝑥
2 {𝐶1 cos (

√3

2
𝑥) + 𝐶2 sin (

√3

2
𝑥)} + 𝑒−𝑥

Example 9.2.2 Solve the equation

𝒚′′ − 𝟒𝒚′ + 𝟒𝒚 = 𝒆𝒙

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 − 4𝐷 + 4)𝑦 = 𝑒𝑥

𝐿(𝐷)𝑦 = 𝑒𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE

 𝐿(𝐷)𝑦 = 0

will be obtained by writing

 𝐿(𝜆) = 0

𝜆2 − 4𝜆 + 4 = 0

𝜆1 =
−(−4) + √(−4)2 − 4 × 4

2
 & 𝜆2 =

−(−4) − √(−4)2 − 4 × 4

2

𝜆1 = 2 & 𝜆2 = 2

The roots are then found to a double root

𝜆1 = 𝜆2 = 2

The 𝐶𝐹 would be

𝐶𝐹 = (𝐶1𝑥 + 𝐶2)𝑒2𝑥

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
𝑒𝑥

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 7

Since 𝑓(𝑥) = 𝑒−𝑥 is an exponential function we will use the rule
1

𝐿(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝐿(𝑎)
 to find the 𝑃𝐼

𝑃𝐼 =
1

𝐿(𝐷)
𝑒𝑥 =

𝑒𝑥

𝐿(1)

𝑃𝐼 =
𝑒−𝑥

{12 − 4(1) + 4}

𝑃𝐼 = 𝑒𝑥

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = (𝐶1𝑥 + 𝐶2)𝑒2𝑥 + 𝑒𝑥

9.3 When function 𝒇(𝒙) is of the form 𝒔𝒊𝒏 𝒂𝒙 or 𝒄𝒐𝒔 𝒂𝒙

If 𝑓(𝑥) = sin(𝑎𝑥 + 𝜃) then we can see that

𝐷 sin(𝑎𝑥 + 𝜃) = 𝑎 cos(𝑎𝑥 + 𝜃)

𝐷2 sin(𝑎𝑥 + 𝜃) = 𝐷(𝐷 sin(𝑎𝑥 + 𝜃)) = 𝐷(𝑎 cos(𝑎𝑥 + 𝜃)) = −𝑎2 sin(𝑎𝑥 + 𝜃)

𝐷3 sin(𝑎𝑥 + 𝜃) = −𝑎3 cos(𝑎𝑥 + 𝜃)

𝐷4 sin(𝑎𝑥 + 𝜃) = 𝑎4 cos(𝑎𝑥 + 𝜃) = (−𝑎2)2 cos(𝑎𝑥 + 𝜃)

and so on

(𝐷2)𝑛 sin(𝑎𝑥 + 𝜃) = (−𝑎2)𝑛 sin(𝑎𝑥 + 𝜃)

So if

 𝐿(𝐷) = 𝑎𝑛𝐷2𝑛 + ⋯ + 𝑎2𝐷4 + 𝑎1𝐷2 + 𝑎0

contains only even powers of the operator 𝐷 then it can be seen as polynomial 𝜑 in 𝐷2 of

power 𝑛 so that

𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) = {𝑎𝑛(𝐷2)𝑛 + ⋯ + 𝑎2(𝐷2)2 + 𝑎1(𝐷2) + 𝑎0} sin(𝑎𝑥 + 𝜃)

𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) = {𝑎𝑛(−𝑎2)𝑛 + ⋯ + 𝑎2(−𝑎2)2 + 𝑎1(−𝑎2) + 𝑎0} sin(𝑎𝑥 + 𝜃)

𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) = 𝜑(−𝑎2) sin(𝑎𝑥 + 𝜃)

Thus, operating on both sides by the “inverse” operator
1

𝜑(𝐷2)
 we find that

1

𝜑(𝐷2)
𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) =

1

𝜑(𝐷2)
𝜑(−𝑎2) sin(𝑎𝑥 + 𝜃)

sin(𝑎𝑥 + 𝜃) = 𝜑(−𝑎2)
1

𝜑(𝐷2)
sin(𝑎𝑥 + 𝜃)

Now if 𝜑(−𝑎2) ≠ 0 this can be interpreted as

1

𝜑(𝐷2)
sin(𝑎𝑥 + 𝜃) =

1

𝜑(−𝑎2)
sin(𝑎𝑥 + 𝜃)

This beautiful result then states a rule that an 𝑛𝑡ℎ order Non-Homogeneous Linear DE

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 8

with Constant coefficients

 𝐿(𝐷2)𝑦 = 𝐴 sin(𝑎𝑥 + 𝜃)

 has the 𝑃𝐼

𝑦 = 𝐴
sin(𝑎𝑥 + 𝜃)

𝐿(−𝑎2)

which needs no integration to be performed.

There may arise a situation where 𝐿(−𝑎2) = 0. This would then imply “−𝑎2” to be an 𝑟𝑡ℎ

order root of the DE so that

 𝐿(𝐷2) = (𝐷2 + 𝑎2)𝑟𝜑(𝐷2).

The 𝐷𝐸 can then be written as

𝜑(𝐷2)(𝐷2 + 𝑎2)𝑟𝑦 = 𝐴 sin(𝑎𝑥 + 𝜃)

Operating on both sides by the “inverse” operator
1

𝜑(𝐷2)
 we find

1

𝜑(𝐷2)
𝜑(𝐷2)(𝐷2 + 𝑎2)𝑟𝑦 =

1

𝜑(𝐷2)
𝐴 sin(𝑎𝑥 + 𝜃)

(𝐷2 + 𝑎2)𝑟𝑦 = 𝐴
sin(𝑎𝑥 + 𝜃)

𝜑(−𝑎2)

From our previously learnt technique this yields

𝑦 =
𝐴

𝜑(−𝑎2)

1

(𝐷2 + 𝑎2)𝑟
sin(𝑎𝑥 + 𝜃)

There may also arise a situation wherein the 𝐷𝐸 contains odd powers of 𝐷 too. This

would then imply

(𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + ⋯ + 𝑎4𝐷4 + 𝑎3𝐷3 + 𝑎2𝐷2 + 𝑎1𝐷 + 𝑎0) sin(𝑎𝑥 + 𝜃)

= [𝑎𝑛𝐷𝑛 + ⋯ + 𝑎4(−𝑎2)2 + 𝑎3𝐷3 + 𝑎2(−𝑎2) + 𝑎1𝐷 + 𝑎0] sin(𝑎𝑥 + 𝜃)

𝐿(𝐷) sin(𝑎𝑥 + 𝜃) = 𝜑(𝐷) sin(𝑎𝑥 + 𝜃)

Operating on both sides by the “inverse” operator
1

𝜑(𝐷2)
 we find

1

𝜑(𝐷2)
𝜑(𝐷2)(𝐷2 + 𝑎2)𝑟𝑦 =

1

𝜑(𝐷2)
𝐴 sin(𝑎𝑥 + 𝜃)

(𝐷2 + 𝑎2)𝑟𝑦 = 𝐴
sin(𝑎𝑥 + 𝜃)

𝜑(−𝑎2)

From our previously learnt technique this yields

𝑦 =
𝐴

𝜑(−𝑎2)

1

(𝐷2 + 𝑎2)𝑟
sin(𝑎𝑥 + 𝜃)

Example 9.3.1 Solve the equation change

𝒚′′ + 𝟒𝒚 = 𝐜𝐨𝐬 𝟑𝒙

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 9

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 + 4)𝑦 = cos 3𝑥

𝐿(𝐷)𝑦 = cos 3𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE

 𝐿(𝐷)𝑦 = 0

will be obtained by writing

 𝐿(𝜆) = 0

𝜆2 + 4 = 0

𝜆2 = −4

The roots are then found as

𝜆1 = +𝑖2 & 𝜆2 = −𝑖2

The 𝐶𝐹 would be 𝐶1𝑒𝑖2𝑥 + 𝐶2𝑒−𝑖2𝑥 which can be represented as

𝐶𝐹 = 𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
cos 3𝑥

Since 𝑓(𝑥) = cos(𝑎𝑥) is an exponential function we will use the rule
1

𝐿(𝐷2)
cos(𝑎𝑥) =

1

𝐿(−𝑎2)
cos(𝑎𝑥) to find the 𝑃𝐼

𝑃𝐼 =
1

(𝐷2 + 4)
cos 3𝑥

𝑃𝐼 =
cos 3𝑥

{(−32) + 4}

𝑃𝐼 =
cos 3𝑥

{−9 + 4}

𝑃𝐼 = −
1

5
cos 3𝑥

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥 −
1

5
cos 3𝑥

Example 9.3.2 Solve the equation

𝒚′′ + 𝟐𝒏 𝐜𝐨𝐬 𝜶 𝒚′ + 𝒏𝟐𝒚 = 𝐬𝐢𝐧 𝒏𝒙

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 10

(𝐷2 + 2𝑛 cos 𝛼 𝐷 + 𝑛2)𝑦 = sin 𝑛𝑥

𝐿(𝐷)𝑦 = sin 𝑛𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE

 𝐿(𝐷)𝑦 = 0

will be obtained by writing

 𝐿(𝜆) = 0

𝜆2 + 2𝑛 cos 𝛼 𝜆 + 𝑛2 = 0

The roots are then found as

𝜆1 =
−(2𝑛 cos 𝛼) + √(2𝑛 cos 𝛼)2 − 4(𝑛2)

2
 & 𝜆2 =

−(2𝑛 cos 𝛼) − √(2𝑛 cos 𝛼)2 − 4(𝑛2)

2

𝜆1 =
−(2𝑛 cos 𝛼) + 2𝑛√cos2 𝛼 − 1

2
 & 𝜆2 =

−(2𝑛 cos 𝛼) − 2𝑛√cos2 𝛼 − 1

2

𝜆1 = −𝑛 cos 𝛼 + 𝑖𝑛 sin 𝛼 & 𝜆2 = −𝑛 cos 𝛼 − 𝑖𝑛 sin 𝛼

The 𝐶𝐹 would be 𝐶1𝑒(−𝑛 cos 𝛼+𝑖𝑛 sin 𝛼)𝑥 + 𝐶2𝑒(−𝑛 cos 𝛼−𝑖𝑛 sin 𝛼)𝑥 which can be represented as

𝐶𝐹 = 𝑒−(𝑛 cos 𝛼)𝑥{𝐶1 cos[(𝑛 sin 𝛼)𝑥] + 𝐶2 sin[(𝑛 sin 𝛼)𝑥]}

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
sin 𝑛𝑥 =

1

(𝐷2 + 2𝑛 cos 𝛼 𝐷 + 𝑛2)
sin 𝑛𝑥

𝑃𝐼 =
1

((−𝑛2) + 2𝑛 cos 𝛼 𝐷 + 𝑛2)
sin 𝑛𝑥

𝑃𝐼 =
1

(2𝑛 cos 𝛼 𝐷)
sin 𝑛𝑥

𝑃𝐼 =
1

(2𝑛 cos 𝛼)
∫ sin 𝑛𝑥 𝑑𝑥

𝑃𝐼 =
1

(2𝑛2 cos 𝛼)
∫ sin 𝑛𝑥 𝑑(𝑛𝑥)

𝑃𝐼 = −
cos 𝑛𝑥

(2𝑛2 cos 𝛼)

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝑒−(𝑛 cos 𝛼)𝑥{𝐶1 cos[(𝑛 sin 𝛼)𝑥] + 𝐶2 sin[(𝑛 sin 𝛼)𝑥]} −
cos 𝑛𝑥

(2𝑛2 cos 𝛼)

9.4 When function 𝒇(𝒙) is of the form 𝒙𝒎, 𝒎 being a

positive integer

If 𝑓(𝑥) = 𝑥𝑚 then we can see that

𝐷𝑥𝑚 = 𝑚𝑥𝑚−1

𝐷2𝑥𝑚 = 𝐷(𝐷𝑥𝑚) = 𝐷(𝑚𝑥𝑚−1) = 𝑚(𝑚 − 1)𝑥𝑚−2

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 11

and so on

𝐷𝑛𝑥𝑚 = 𝑚(𝑚 − 1)(𝑚 − 2) … (𝑚 − 𝑛 + 1)𝑥𝑚−𝑛

So if 𝑛 = 𝑚 + 1 then 𝐷𝑛𝑥𝑚 = 0 and 𝐷𝑛𝑥𝑚 = 0 ∀ 𝑛 > 𝑚 + 1. With this in mind, to evaluate
1

𝐿(𝐷)
𝑥𝑚 we do the following

- Expand
1

𝐿(𝐷)
 in ascending powers of 𝐷 as far as the term 𝐷𝑚 as we would do for

any polynomial expression

- Then operate on 𝑥𝑚 by the different powers of 𝐷 in the expression

Example 9.4.1 Solve the equation

𝒚′′ − 𝟓𝒚′ + 𝟔𝒚 = 𝒙

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 − 5𝐷 + 6)𝑦 = 𝑥

𝐿(𝐷)𝑦 = 𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE

 𝐿(𝐷)𝑦 = 0 will be obtained by writing 𝐿(𝜆) = 0

𝜆2 − 5𝜆 + 6 = 0

The roots are then found as

𝜆1 =
−(−5) + √(−5)2 − 4(6)

2
 & 𝜆2 =

−(−5) − √(−5)2 − 4(6)

2

𝜆1 =
5 + 1

2
= 3 & 𝜆2 =

5 − 1

2
= 2

The 𝐶𝐹 would be

𝐶𝐹 = 𝐶1𝑒3𝑥 + 𝐶2𝑒2𝑥

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
𝑥 =

1

(𝐷2 − 5𝐷 + 6)
𝑥

𝑃𝐼 =
1

6 (1 +
(𝐷2 − 5𝐷)

6
)

𝑥 =
1

6
(1 +

(𝐷2 − 5𝐷)

6
)

−1

𝑥

Since 𝑓(𝑥) = 𝑥 is of power 1 we will expand only upto 1 power of 𝐷 (any higher power

term will vanish as shown earlier)

𝑃𝐼 =
1

6
(1 + (−1)

(𝐷2 − 5𝐷)

6
+ ⋯) 𝑥 =

1

6
(1 +

5𝐷

6
) 𝑥

𝑃𝐼 =
1

6
(𝑥 +

5

6
) =

𝑥

6
+

5

36

Step 4 The General Solution would therefore be

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 12

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1𝑒3𝑥 + 𝐶2𝑒2𝑥 +
𝑥

6
+

5

36

Example 9.4.2 Solve the equation

𝒚′′ + 𝒚′ = 𝒙𝟑 + 𝟐𝒙𝟐

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 + 𝐷)𝑦 = 𝑥3 + 2𝑥2

𝐿(𝐷)𝑦 = 𝑥3 + 2𝑥2

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be

obtained by writing 𝐿(𝜆) = 0

𝜆2 + 𝜆 = 0

𝜆(𝜆 + 1) = 0

The roots are then found as

𝜆1 = 0 & 𝜆2 = −1

The 𝐶𝐹 would be

𝐶𝐹 = 𝐶1𝑒0𝑥 + 𝐶2𝑒−𝑥 = 𝐶1 + 𝐶2𝑒−𝑥

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
(𝑥3 + 2𝑥2) =

1

(𝐷2 + 𝐷)
(𝑥3 + 2𝑥2) =

1

𝐷(𝐷 + 1)
(𝑥3 + 2𝑥2) =

1

𝐷
(1 + 𝐷)−1(𝑥3 + 2𝑥2)

Since 𝑓(𝑥) = 𝑥3 + 2𝑥2 is of power 3 we will expand only upto 3 power of 𝐷 (any higher

power term will vanish as shown earlier)

𝑃𝐼 =
1

𝐷
(1 − 𝐷 + 𝐷2 − 𝐷3 + ⋯)(𝑥3 + 2𝑥2) =

1

𝐷
(1 − 𝐷 + 𝐷2 − 𝐷3)(𝑥3 + 2𝑥2)

𝑃𝐼 =
1

𝐷
((𝑥3 + 2𝑥2) − 𝐷(𝑥3 + 2𝑥2) + 𝐷2(𝑥3 + 2𝑥2) − 𝐷3(𝑥3 + 2𝑥2))

𝑃𝐼 =
1

𝐷
((𝑥3 + 2𝑥2) − (3𝑥2 + 4𝑥) + (6𝑥 + 4) − (6 + 0))

𝑃𝐼 =
1

𝐷
(𝑥3 + 2𝑥2 − 3𝑥2 + 6𝑥 − 4𝑥 + 4 − 6) =

1

𝐷
(𝑥3 − 𝑥2 + 2𝑥 − 2)

𝑃𝐼 =
𝑥4

4
−

𝑥3

3
+ 𝑥2 − 2𝑥

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 + 𝐶2𝑒−𝑥 +
𝑥4

4
−

𝑥3

3
+ 𝑥2 − 2𝑥

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 13

Example 9.4.3 Solve the equation

𝒚′′ + 𝒚′ − 𝟐𝒚 = 𝒙 + 𝐬𝐢𝐧 𝒙

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 + 𝐷 − 2)𝑦 = 𝑥 + sin 𝑥

𝐿(𝐷)𝑦 = 𝑥 + sin 𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be

obtained by writing 𝐿(𝜆) = 0

𝜆2 + 𝜆 − 2 = 0

The roots are then found as

𝜆1 =
−(1) + √(1)2 − 4(−2)

2
=

−1 + √9

2
 & 𝜆2 =

−(1) − √(1)2 − 4(−2)

2
=

−1 − √9

2

𝜆1 = 1 & 𝜆2 = −2

The 𝐶𝐹 would be

𝐶𝐹 = 𝐶1𝑒𝑥 + 𝐶2𝑒−2𝑥

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
(𝑥 + sin 𝑥) =

1

𝐿(𝐷)
𝑥 +

1

𝐿(𝐷)
sin 𝑥

𝑃𝐼 =
1

(𝐷2 + 𝐷 − 2)
𝑥 +

1

(𝐷2 + 𝐷 − 2)
sin 𝑥

Let’s first solve for

𝑃𝐼1 =
1

(𝐷2 + 𝐷 − 2)
𝑥 = −

1

2 (1 −
(𝐷2 + 𝐷)

2
)

𝑥 = −
1

2
(1 −

(𝐷2 + 𝐷)

2
)

−1

𝑥

Since 𝑓(𝑥) = 𝑥 is of power 1 we will expand only upto 1 power of 𝐷 (any higher power

term will vanish as shown earlier)

𝑃𝐼1 = −
1

2
(1 +

(𝐷2 + 𝐷)

2
) 𝑥 = −

1

2
(1 +

(𝐷2 + 𝐷)

2
) 𝑥 = −

1

2
(𝑥 +

1

2
)

Now let’s solve for

𝑃𝐼2 =
1

(𝐷2 + 𝐷 − 2)
sin 𝑥 =

1

((−12) + 𝐷 − 2)
sin 𝑥 =

1

(𝐷 − 3)
sin 𝑥

𝑃𝐼2 =
(𝐷 + 3)

(𝐷 + 3)(𝐷 − 3)
sin 𝑥 =

(𝐷 + 3)

(𝐷2 − 9)
sin 𝑥 =

(𝐷 + 3)

((−12) − 9)
sin 𝑥 = −

(𝐷 + 3)

10
sin 𝑥

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 14

𝑃𝐼2 = −
1

10
(cos 𝑥 + 3 sin 𝑥)

Thus,

𝑃𝐼 = 𝑃𝐼1 + 𝑃𝐼2 = −
1

2
(𝑥 +

1

2
) −

1

10
(cos 𝑥 + 3 sin 𝑥)

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1𝑒𝑥 + 𝐶2𝑒−2𝑥 −
1

2
(𝑥 +

1

2
) −

1

10
(cos 𝑥 + 3 sin 𝑥)

9.5 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙𝑽(𝒙)

If 𝑓(𝑥) = 𝑒𝑎𝑥𝑉(𝑥) then we can see that

𝐷{𝑒𝑎𝑥𝑉(𝑥)} = {𝐷𝑒𝑎𝑥} 𝑉(𝑥) + 𝑒𝑎𝑥 {𝐷𝑉(𝑥)} = {𝑎𝑒𝑎𝑥} 𝑉(𝑥) + 𝑒𝑎𝑥 {𝐷𝑉(𝑥)}

𝐷{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)𝑉(𝑥)}

Writing 𝑉1(𝑥) = (𝐷 + 𝑎)𝑉(𝑥) we find that

𝐷{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥𝑉1(𝑥)

Therefore,

𝐷2{𝑒𝑎𝑥𝑉(𝑥)} = 𝐷{𝐷{𝑒𝑎𝑥𝑉(𝑥)}} = 𝐷{𝑒𝑎𝑥𝑉1(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)𝑉1(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)(𝐷 + 𝑎)𝑉(𝑥)}

𝐷2{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)2𝑉(𝑥)}

This suggests that in general,

𝐷𝑛{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)𝑛𝑉(𝑥)}

So if 𝐿(𝐷) = 𝑎𝑛𝐷𝑛 + ⋯ + 𝑎2𝐷2 + 𝑎1𝐷 + 𝑎0 then

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = (𝑎𝑛𝐷𝑛 + ⋯ + 𝑎2𝐷2 + 𝑎1𝐷 + 𝑎0){𝑒𝑎𝑥𝑉(𝑥)}

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑎𝑛𝐷𝑛{𝑒𝑎𝑥𝑉(𝑥)} + ⋯ + 𝑎2𝐷2{𝑒𝑎𝑥𝑉(𝑥)} + 𝑎1𝐷{𝑒𝑎𝑥𝑉(𝑥)} + 𝑎0{𝑒𝑎𝑥𝑉(𝑥)}

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑎𝑛𝑒𝑎𝑥{(𝐷 + 𝑎)𝑛𝑉(𝑥)} + ⋯ + 𝑎2𝑒𝑎𝑥{(𝐷 + 𝑎)2𝑉(𝑥)} + 𝑎1𝑒𝑎𝑥{(𝐷 + 𝑎)𝑉(𝑥)}

+ 𝑎0{𝑒𝑎𝑥𝑉(𝑥)}

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥[𝑎𝑛(𝐷 + 𝑎)𝑛 + ⋯ + 𝑎2(𝐷 + 𝑎)2 + 𝑎1(𝐷 + 𝑎) + 𝑎0]𝑉(𝑥)

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥𝐿(𝐷 + 𝑎)𝑉(𝑥)

Thus, operating on both sides by the “inverse” operator
1

𝐿(𝐷)
 we find that

1

𝐿(𝐷)
𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} =

1

𝐿(𝐷)
{𝑒𝑎𝑥𝐿(𝐷 + 𝑎)𝑉(𝑥)}

𝑒𝑎𝑥𝑉(𝑥) =
1

𝐿(𝐷)
{𝑒𝑎𝑥𝐿(𝐷 + 𝑎)𝑉(𝑥)}

Now if we write 𝑈(𝑥) = 𝐿(𝐷 + 𝑎)𝑉(𝑥) then this can be interpreted as

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 15

𝑒𝑎𝑥 {
1

𝐿(𝐷 + 𝑎)
𝑈(𝑥)} =

1

𝐿(𝐷)
{𝑒𝑎𝑥𝑈(𝑥)}

This beautiful result then states a rule that an 𝑛𝑡ℎ order Non-Homogeneous Linear DE

with Constant coefficients 𝐿(𝐷)𝑦 = 𝑒𝑎𝑥𝑉(𝑥) has the 𝑃𝐼

𝑦 =
1

𝐿(𝐷)
{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥 {

1

𝐿(𝐷 + 𝑎)
𝑉(𝑥)}

which simplifies the procedure by taking out the exponential term and displacing the 𝐷

operatorin 𝐿(𝐷) by ‘𝑎’.

Example 9.5.1 Solve the equation

𝒚′′ − 𝟐𝒚′ + 𝟓𝒚 = 𝒆𝟐𝒙 𝐬𝐢𝐧 𝒙

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 − 2𝐷 + 5)𝑦 = 𝑒2𝑥 sin 𝑥

𝐿(𝐷)𝑦 = 𝑒2𝑥 sin 𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be

obtained by writing 𝐿(𝜆) = 0

𝜆2 − 2𝜆 + 5 = 0

The roots are then found as

𝜆1 =
−(−2) + √(−2)2 − 4(5)

2
=

2 + √−16

2
 & 𝜆2 =

−(−2) + √(−2)2 − 4(5)

2
=

2 − √−16

2

𝜆1 = 1 + 𝑖2 & 𝜆2 = 1 − 𝑖2

The 𝐶𝐹 would be 𝐶1𝑒(1+𝑖2)𝑥 + 𝐶2𝑒(1+𝑖2)𝑥 which can be represented as

𝐶𝐹 = 𝑒𝑥{𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥}

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
𝑒2𝑥 sin 𝑥 = 𝑒2𝑥

1

𝐿(𝐷 + 2)
sin 𝑥

𝑃𝐼 = 𝑒2𝑥
1

{(𝐷 + 2)2 − 2(𝐷 + 2) + 5}
sin 𝑥 = 𝑒2𝑥

1

{𝐷2 + 4 + 4𝐷 − 2𝐷 − 4 + 5}
sin 𝑥

𝑃𝐼 = 𝑒2𝑥
1

{𝐷2 + 2𝐷 + 5}
sin 𝑥

Now using the rule
1

𝐿(𝐷2)
{sin(𝑎𝑥)} =

1

𝐿(−𝑎2)
{sin(𝑎𝑥)} we get

𝑃𝐼 = 𝑒2𝑥
1

{(−12) + 2𝐷 + 5}
sin 𝑥 = 𝑒2𝑥

1

{2𝐷 + 4}
sin 𝑥 =

𝑒2𝑥

2

1

(𝐷 + 2)
sin 𝑥

𝑃𝐼 =
𝑒2𝑥

2

(𝐷 − 2)

(𝐷 − 2)(𝐷 + 2)
sin 𝑥 =

𝑒2𝑥

2

(𝐷 − 2)

(𝐷2 − 4)
sin 𝑥 =

𝑒2𝑥

2

(𝐷 − 2)

((−12) − 4)
sin 𝑥

𝑃𝐼 = −
𝑒2𝑥

10
(𝐷 − 2) sin 𝑥 = −

𝑒2𝑥

10
(cos 𝑥 − 2 sin 𝑥)

𝑃𝐼 =
𝑒2𝑥

10
(2 sin 𝑥 − cos 𝑥)

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 16

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝑒𝑥{𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥} +
𝑒2𝑥

10
(2 sin 𝑥 − cos 𝑥)

Example 9.5.2 Solve the equation

𝒚′′ + 𝜷𝟐𝒚 = 𝑨𝒆𝒊𝜶𝒙𝒙

where 𝛼 & 𝛽 are constant real numbers.

Solution:

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦

(𝐷2 + 𝛽2)𝑦 = 𝐴𝑒𝑖𝛼𝑥𝑥

𝐿(𝐷)𝑦 = 𝐴𝑒𝑖𝛼𝑥𝑥

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be

obtained by writing 𝐿(𝜆) = 0

𝜆2 + 𝛽2 = 0

𝜆 = √−𝛽2

The roots are then found as

𝜆1 = 𝑖𝛽 & 𝜆2 = −𝑖𝛽

The 𝐶𝐹 would be 𝐶1𝑒𝑖𝛽𝑥 + 𝐶2𝑒−𝑖𝛽𝑥 which can be represented as

𝐶𝐹 = 𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥

Step 3 The 𝑃𝐼 would now be obtained as

𝑃𝐼 =
1

𝐿(𝐷)
𝐴𝑒𝑖𝛼𝑥𝑥 = 𝐴𝑒𝑖𝛼𝑥

1

𝐿(𝐷 + 𝑖𝛼)
𝑥

𝑃𝐼 = 𝐴𝑒𝑖𝛼𝑥
1

{(𝐷 + 𝑖𝛼)2 + 𝛽2}
𝑥 = 𝐴𝑒𝑖𝛼𝑥

1

{𝐷2 + 2𝑖𝛼𝐷 − 𝛼2 + 𝛽2}
𝑥

𝑃𝐼 = 𝐴𝑒𝑖𝛼𝑥
1

{𝐷2 + 2𝑖𝛼𝐷 + (𝛽2 − 𝛼2)}
𝑥

Since 𝑓(𝑥) = 𝑥 is of power 1 we will expand only upto 1 power of 𝐷 (any higher power

term will vanish as shown earlier)

𝑃𝐼 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥

1

{1 +
2𝑖𝛼𝐷 + 𝐷2

(𝛽2 − 𝛼2)
}

𝑥 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {1 +

2𝑖𝛼𝐷 + 𝐷2

(𝛽2 − 𝛼2)
}

−1

𝑥

𝑃𝐼 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {1 −

2𝑖𝛼𝐷

(𝛽2 − 𝛼2)
} 𝑥

𝑃𝐼 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {𝑥 −

2𝑖𝛼

(𝛽2 − 𝛼2)
}

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 17

Step 4 The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥 +
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {𝑥 −

2𝑖𝛼

(𝛽2 − 𝛼2)
}

However if 𝛼 = 𝛽 then

𝐶𝐹 = 𝐶1 cos 𝛼𝑥 + 𝐶2 sin 𝛼𝑥

and form step 3 above

𝑃𝐼 = 𝐴𝑒𝑖𝛼𝑥
1

{𝐷2 + 2𝑖𝛼𝐷}
𝑥

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷

1

{1 +
𝐷2

2𝑖𝛼𝐷
}

𝑥 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷

1

{1 +
𝐷

2𝑖𝛼
}

𝑥

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷
{1 +

𝐷

2𝑖𝛼
}

−1

𝑥 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷
{1 −

𝐷

2𝑖𝛼
} 𝑥

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷
{𝑥 −

1

2𝑖𝛼
}

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥 ∫ {𝑥 −

1

2𝑖𝛼
} 𝑑𝑥

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥 {

𝑥2

2
−

𝑥

2𝑖𝛼
}

𝑃𝐼 =
𝐴

4𝛼2
𝑒𝑖𝛼𝑥 {

𝛼𝑥2

𝑖
+ 𝑥}

The General Solution would therefore be

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 cos 𝛼𝑥 + 𝐶2 sin 𝛼𝑥 +
𝐴

4𝛼2
𝑒𝑖𝛼𝑥 {

𝛼𝑥2

𝑖
+ 𝑥}

Summary

Particular Integral of Special Forms of the Function 𝑓(𝑥)

- There are certain special forms of the function 𝑓(𝑥) which admits rules for finding

𝑃𝐼 of the Linear DE with constant coefficients in shorter steps.

- When function 𝑓(𝑥) is of the form 𝑒𝑎𝑥 then the 𝑃𝐼 𝑦 = 𝐴
𝑒𝑎𝑥

𝐿(𝑎)

There may arise a situation where 𝐿(𝑎) = 0. This would then imply “𝑎” to be an 𝑟𝑡ℎ

order root of the 𝑛𝑡ℎ order Non-Homogeneous Linear DE with Constant

coefficients so that 𝐿(𝐷) = (𝐷 − 𝑎)𝑟𝜑(𝐷) then the PI

𝑦 =
𝐴

𝜑(𝑎)

𝑥𝑟

𝑟!
𝑒𝑎𝑥

- When function 𝑓(𝑥) is of the form 𝑠𝑖𝑛 𝑎𝑥 or 𝑐𝑜𝑠 𝑎𝑥 then the 𝑃𝐼 𝑦 = 𝐴
sin(𝑎𝑥+𝜃)

𝐿(−𝑎2)

There may arise a situation where 𝐿(−𝑎2) = 0. This would then imply “−𝑎2” to be

an 𝑟𝑡ℎ order root of the DE so that 𝐿(𝐷2) = (𝐷2 + 𝑎2)𝑟𝜑(𝐷2) then the PI

𝑦 =
𝐴

𝜑(−𝑎2)

1

(𝐷2 + 𝑎2)𝑟
sin(𝑎𝑥 + 𝜃)

- When function 𝑓(𝑥) is of the form 𝑥𝑚, 𝑚 being a positive integer then the PI can be

found by expanding
𝟏

𝑳(𝑫)
 in ascending powers of 𝑫 as far as the term 𝑫𝒎 as we

 The D Operator & the Non-Homogeneous Equation

Institute of Lifelong Learning, University of Delhi 18

would do for any polynomial expression and operating on 𝒙𝒎 by the different

powers of 𝑫 in the expression

- When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙𝑽(𝒙) then the 𝑃𝐼 𝑦 = 𝑒𝑎𝑥 {
1

𝐿(𝐷+𝑎)
𝑉(𝑥)}

Bibliography/ References / Glossary

1. Advanced Engineering Mathematics by Erwin Kreysig

2. Advanced Engineering Mathematics by Michael D. Greenberg

3. Schaum's Outline: Theory and Problems of Advanced Calculus by Murray R. Spiegel

4. Mathematical Methods in Physical Sciences by Mary L. Boas

5. Calculus & Analytic Geometry by Fobes & Smyth

6. Essential Mathematical Methods by K.F. Riley & M.P. Hobson

7. Schaum's Outline: Theory and Problems of Differential Equations by Richard Bronson

8. Schaum's Outline: Theory and Problems of Differential Equations by Frank Ayres

9. Introductory Course in Differential Equations by Daniel A. Murray

10. Differential Equations by N.M. Kapoor

11. Higher Engineering Mathematics by B S Grewal

12. A Treatise on Differential Equations by A. R. Forsyth

The C Book — Table of Contents

This is a PDF version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/.

This is the PDF version of The C Book, second edition by Mike Banahan, Declan Brady and
Doran, originally published by Addison Wesley in 1991. This version is made freely available
[http://publications.gbdirect.co.uk/c_book/copyright.html].

While this book is no longer in print, it's content is still very relevant today. The C language i
popular, particularly for open source software [http://ebusiness.gbdirect.co.uk/OpenSourceM
and embedded programming [http://training.gbdirect.co.uk/courses/c/embedded_c_training.
hope this book will be useful, or at least interesting, to people who use C.

If you have any comments about this book, or if you find any bugs in its presentation, please
message to consulting@gbdirect.co.uk.

This PDF version made by Carlos José de Almeida Pereira - carlao2005(at)gmail(dot)com,
Bahia, Brasil, to all happy C programmers over the world!

WARNING! The links inside this document will jump to the original page on the Web, not to
specific place on the book. So, don't use them to offline reading. Sorry!

! Preface [http://publications.gbdirect.co.uk/c_book/preface/]
" About This Book [http://publications.gbdirect.co.uk/c_book/preface/about.html]
" The Success of C

[http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html]
" Standards [http://publications.gbdirect.co.uk/c_book/preface/standards.html]
" Hosted and Free-Standing Environments

[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.htm
" Typographical conventions

[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.htm
" Order of topics [http://publications.gbdirect.co.uk/c_book/preface/order_of_topics
" Example programs

[http://publications.gbdirect.co.uk/c_book/preface/example_programs.html]
" Deference to Higher Authority

[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html]
" Address for the Standard

[http://publications.gbdirect.co.uk/c_book/preface/c_standard.html]
! Chapter 1. An Introduction to C [http://publications.gbdirect.co.uk/c_book/chapter1/]

" 1.1. The form of a C program
[http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html]

" 1.2. Functions [http://publications.gbdirect.co.uk/c_book/chapter1/functions.html]
" 1.3. A description of Example 1.1

[http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html]
" 1.4. Some more programs

[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html]
" 1.5. Terminology [http://publications.gbdirect.co.uk/c_book/chapter1/terminology
" 1.6. Summary [http://publications.gbdirect.co.uk/c_book/chapter1/summary.html]

Página 1 de 4The C Book - Table of Contents

21/2/2007file://C:\CARLAO\The C Book - Table of Contents.htm

" 1.7. Exercises [http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html
! Chapter 2. Variables and Arithmetic [http://publications.gbdirect.co.uk/c_book/chapter2

" 2.1. Some fundamentals
[http://publications.gbdirect.co.uk/c_book/chapter2/fundamentals.html]

" 2.2. The alphabet of C
[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet_of_c.html]

" 2.3. The Textual Structure of Programs
[http://publications.gbdirect.co.uk/c_book/chapter2/textual_program_structure.htm

" 2.4. Keywords and identifiers
[http://publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.htm

" 2.5. Declaration of variables
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html]

" 2.6. Real types [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.htm
" 2.7. Integral types [http://publications.gbdirect.co.uk/c_book/chapter2/integral_typ
" 2.8. Expressions and arithmetic

[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.h
" 2.9. Constants [http://publications.gbdirect.co.uk/c_book/chapter2/constants.htm
" 2.10. Summary [http://publications.gbdirect.co.uk/c_book/chapter2/summary.htm
" 2.11. Exercises [http://publications.gbdirect.co.uk/c_book/chapter2/exercises.htm

! Chapter 3. Control of Flow and Logical Expressions
[http://publications.gbdirect.co.uk/c_book/chapter3/]

" 3.1. The Task ahead [http://publications.gbdirect.co.uk/c_book/chapter3/task_ah
" 3.2. Control of flow [http://publications.gbdirect.co.uk/c_book/chapter3/flow_cont
" 3.3. More logical expressions

[http://publications.gbdirect.co.uk/c_book/chapter3/logical_expressions.html]
" 3.4. Strange operators

[http://publications.gbdirect.co.uk/c_book/chapter3/strange_operators.html]
" 3.5. Summary [http://publications.gbdirect.co.uk/c_book/chapter3/summary.html]
" 3.6. Exercises [http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html

! Chapter 4. Functions [http://publications.gbdirect.co.uk/c_book/chapter4/]
" 4.1. Changes [http://publications.gbdirect.co.uk/c_book/chapter4/changes.html]
" 4.2. The type of functions

[http://publications.gbdirect.co.uk/c_book/chapter4/function_types.html]
" 4.3. Recursion and argument passing

[http://publications.gbdirect.co.uk/c_book/chapter4/recursion_and_argument_pas
" 4.4. Linkage [http://publications.gbdirect.co.uk/c_book/chapter4/linkage.html]
" 4.5. Summary [http://publications.gbdirect.co.uk/c_book/chapter4/summary.html]
" 4.6. Exercises [http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html

! Chapter 5. Arrays and Pointers [http://publications.gbdirect.co.uk/c_book/chapter5/]
" 5.1. Opening shots

[http://publications.gbdirect.co.uk/c_book/chapter5/opening_shots.html]
" 5.2. Arrays [http://publications.gbdirect.co.uk/c_book/chapter5/arrays.html]
" 5.3. Pointers [http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html]
" 5.4. Character handling

[http://publications.gbdirect.co.uk/c_book/chapter5/character_handling.html]
" 5.5. Sizeof and storage allocation

[http://publications.gbdirect.co.uk/c_book/chapter5/sizeof_and_malloc.html]
" 5.6. Pointers to functions

[http://publications.gbdirect.co.uk/c_book/chapter5/function_pointers.html]
" 5.7. Expressions involving pointers

[http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html]
" 5.8. Arrays, the & operator and function declarations

[http://publications.gbdirect.co.uk/c_book/chapter5/arrays_and_address_of.html]
" 5.9. Summary [http://publications.gbdirect.co.uk/c_book/chapter5/summary.html]

Página 2 de 4The C Book - Table of Contents

21/2/2007file://C:\CARLAO\The C Book - Table of Contents.htm

" 5.10. Exercises [http://publications.gbdirect.co.uk/c_book/chapter5/exercises.htm
! Chapter 6. Structured Data Types [http://publications.gbdirect.co.uk/c_book/chapter6/]

" 6.1. History [http://publications.gbdirect.co.uk/c_book/chapter6/history.html]
" 6.2. Structures [http://publications.gbdirect.co.uk/c_book/chapter6/structures.htm
" 6.3. Unions [http://publications.gbdirect.co.uk/c_book/chapter6/unions.html]
" 6.4. Bitfields [http://publications.gbdirect.co.uk/c_book/chapter6/bitfields.html]
" 6.5. Enums [http://publications.gbdirect.co.uk/c_book/chapter6/enums.html]
" 6.6. Qualifiers and derived types

[http://publications.gbdirect.co.uk/c_book/chapter6/qualifiers_and_derived_types
" 6.7. Initialization [http://publications.gbdirect.co.uk/c_book/chapter6/initialization.
" 6.8. Summary [http://publications.gbdirect.co.uk/c_book/chapter6/summary.html]
" 6.9. Exercises [http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html

! Chapter 7. The Preprocessor [http://publications.gbdirect.co.uk/c_book/chapter7/]
" 7.1. Effect of the Standard

[http://publications.gbdirect.co.uk/c_book/chapter7/effect_of_the_standard.html]
" 7.2. How the preprocessor works

[http://publications.gbdirect.co.uk/c_book/chapter7/how_the_preprocessor_work
" 7.3. Directives [http://publications.gbdirect.co.uk/c_book/chapter7/directives.html
" 7.4. Summary [http://publications.gbdirect.co.uk/c_book/chapter7/summary.html]
" 7.5. Exercises [http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html

! Chapter 8. Specialized Areas of C [http://publications.gbdirect.co.uk/c_book/chapter8/
" 8.1. Government Health Warning

[http://publications.gbdirect.co.uk/c_book/chapter8/health_warning.html]
" 8.2. Declarations, Definitions and Accessibility

[http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.
" 8.3. Typedef [http://publications.gbdirect.co.uk/c_book/chapter8/typedef.html]
" 8.4. Const and volatile

[http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html]
" 8.5. Sequence points

[http://publications.gbdirect.co.uk/c_book/chapter8/sequence_points.html]
" 8.6. Summary [http://publications.gbdirect.co.uk/c_book/chapter8/summary.html]

! Chapter 9. Libraries [http://publications.gbdirect.co.uk/c_book/chapter9/]
" 9.1. Introduction [http://publications.gbdirect.co.uk/c_book/chapter9/introduction.
" 9.2. Diagnostics [http://publications.gbdirect.co.uk/c_book/chapter9/diagnostics.h
" 9.3. Character handling

[http://publications.gbdirect.co.uk/c_book/chapter9/character_handling.html]
" 9.4. Localization [http://publications.gbdirect.co.uk/c_book/chapter9/localization.h
" 9.5. Limits [http://publications.gbdirect.co.uk/c_book/chapter9/limits.html]
" 9.6. Mathematical functions

[http://publications.gbdirect.co.uk/c_book/chapter9/maths_functions.html]
" 9.7. Non-local jumps

[http://publications.gbdirect.co.uk/c_book/chapter9/nonlocal_jumps.html]
" 9.8. Signal handling

[http://publications.gbdirect.co.uk/c_book/chapter9/signal_handling.html]
" 9.9. Variable numbers of arguments

[http://publications.gbdirect.co.uk/c_book/chapter9/stdarg.html]
" 9.10. Input and output

[http://publications.gbdirect.co.uk/c_book/chapter9/input_and_output.html]
" 9.11. Formatted I/O [http://publications.gbdirect.co.uk/c_book/chapter9/formatted
" 9.12. Character I/O [http://publications.gbdirect.co.uk/c_book/chapter9/character
" 9.13. Unformatted I/O

[http://publications.gbdirect.co.uk/c_book/chapter9/unformatted_io.html]
" 9.14. Random access functions

[http://publications.gbdirect.co.uk/c_book/chapter9/random_access_io.html]

Página 3 de 4The C Book - Table of Contents

21/2/2007file://C:\CARLAO\The C Book - Table of Contents.htm

" 9.15. General Utilities
[http://publications.gbdirect.co.uk/c_book/chapter9/general_utilities.html]

" 9.16. String handling
[http://publications.gbdirect.co.uk/c_book/chapter9/string_handling.html]

" 9.17. Date and time
[http://publications.gbdirect.co.uk/c_book/chapter9/date_and_time.html]

" 9.18. Summary [http://publications.gbdirect.co.uk/c_book/chapter9/summary.htm
! Chapter 10. Complete Programs in C [http://publications.gbdirect.co.uk/c_book/chapte

" 10.1. Putting it all together
[http://publications.gbdirect.co.uk/c_book/chapter10/putting_it_together.html]

" 10.2. Arguments to main
[http://publications.gbdirect.co.uk/c_book/chapter10/arguments_to_main.html]

" 10.3. Interpreting program arguments
[http://publications.gbdirect.co.uk/c_book/chapter10/interpreting_program_argum

" 10.4. A pattern matching program
[http://publications.gbdirect.co.uk/c_book/chapter10/pattern_matching_example.

" 10.5. A more ambitious example
[http://publications.gbdirect.co.uk/c_book/chapter10/ambitious_example.html]

" 10.6. Afterword [http://publications.gbdirect.co.uk/c_book/chapter10/afterword.ht
! Answers to Exercises [http://publications.gbdirect.co.uk/c_book/answers/]

" Chapter 1 [http://publications.gbdirect.co.uk/c_book/answers/chapter_1.html]
" Chapter 2 [http://publications.gbdirect.co.uk/c_book/answers/chapter_2.html]
" Chapter 3 [http://publications.gbdirect.co.uk/c_book/answers/chapter_3.html]
" Chapter 4 [http://publications.gbdirect.co.uk/c_book/answers/chapter_4.html]
" Chapter 5 [http://publications.gbdirect.co.uk/c_book/answers/chapter_5.html]
" Chapter 6 [http://publications.gbdirect.co.uk/c_book/answers/chapter_6.html]
" Chapter 7 [http://publications.gbdirect.co.uk/c_book/answers/chapter_7.html]

! Copyright and disclaimer [http://publications.gbdirect.co.uk/c_book/copyright.html]

Página 4 de 4The C Book - Table of Contents

21/2/2007file://C:\CARLAO\The C Book - Table of Contents.htm

Preface

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/preface/.

! About This Book [http://publications.gbdirect.co.uk/c_book/preface/about.html]
! The Success of C

[http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html]
! Standards [http://publications.gbdirect.co.uk/c_book/preface/standards.html]
! Hosted and Free-Standing Environments

[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html]
! Typographical conventions

[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html]
! Order of topics

[http://publications.gbdirect.co.uk/c_book/preface/order_of_topics.html]
! Example programs

[http://publications.gbdirect.co.uk/c_book/preface/example_programs.html]
! Deference to Higher Authority

[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html]
! Address for the Standard

[http://publications.gbdirect.co.uk/c_book/preface/c_standard.html]

Next chapter [http://publications.gbdirect.co.uk/c_book/chapter1/]

Página 1 de 1The C Book — Preface

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/?format=pf

About This Book

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/about.html.

This book was written with two groups of readers in mind. Whether you are new to
C and want to learn it, or already know the older version of the language but want to
find out more about the new standard, we hope that you will find what follows both
instructive and at times entertaining too.

This is not a tutorial introduction to programming. The book is designed for
programmers who already have some experience of using a modern high-level
procedural programming language. As we explain later, C isn't really appropriate for
complete beginners—though many have managed to use it—so the book will
assume that its readers have already done battle with the notions of statements,
variables, conditional execution, arrays, procedures (or subroutines) and so on.
Instead of wasting your time by ploughing through tedious descriptions of how to
add two numbers together and explaining that the symbol for multiplication is *, the
book concentrates on the things that are special to C. In particular, it's the way that
C is used which is emphasized.

Those who already know C will be interested in the new Standard and how it affects
existing C programs. The effect on existing programs might not at first seem to be
important to newcomers, but in fact the ‘old’ and new versions of the language are
an issue for the beginner too. For some years after the approval of the Standard,
programmers will have to live in a world where they can easily encounter a mixture
of both the new and the old language, depending on the age of the programs that
they are working with. For that reason, the book highlights where the old and new
features differ significantly. Some of the old features are no ornament to the
language and are well worth avoiding; the Standard goes so far as to consider them
obsolescent and recommends that they should not be used. For that reason they
are not described in detail, but only far enough to allow a reader to understand what
they mean. Anybody who intends to write programs using these old-style features
should be reading a different book.

This is the second edition of the book, which has been revised to refer to the final,
approved version of the Standard. The first edition of the book was based on a draft
of the Standard which did contain some differences from the draft that was
eventually approved. During the revision we have taken the opportunity to include
more summary material and an extra chapter illustrating the use of C and the
Standard Library to solve a number of small problems.

Chapter contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html]

Página 1 de 1The C Book — About This Book

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/about.html?format=pf

The Success of C

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html.

C is a remarkable language. Designed originally by one man, Dennis Ritchie,
working at AT&T Bell Laboratories in New Jersey, it has increased in use until now
it may well be one of the most widely-written computer languages in the world. The
success of C is due to a number of factors, none of them key, but all of them
important. Perhaps the most significant of all is that C was developed by real
practioners of programming and was designed for practical day-to-day use, not for
show or for demonstration. Like any well-designed tool, it falls easily to the hand
and feels good to use. Instead of providing constraints, checks and rigorous
boundaries, it concentrates on providing you with power and on not getting in your
way.

Because of this, it's better for professionals than beginners. In the early stages of
learning to program you need a protective environment that gives feedback on
mistakes and helps you to get results quickly—programs that run, even if they don't
do what you meant. C is not like that! A professional forester would use a chain-saw
to cut down trees quickly, aware of the dangers of touching the blade when the
machine is running; C programmers work in a similar way. Although modern C
compilers do provide a limited amount of feedback when they notice something that
is out of the ordinary, you almost always have the option of forcing the compiler to
do what you said you wanted and to stop it from complaining. Provided that what
you said you wanted was what you really did want, then you'll get the result you
expected. Programming in C is like eating red meat and drinking strong rum except
your arteries and liver are more likely to survive it.

Not only is C popular and a powerful asset in the armoury of the serious day-to-day
programmer, there are other reasons for the success of this language. It has always
been associated with the UNIX operating system and has benefited from the
increasing popularity of that system. Although it is not the obvious first choice for
writing large commercial data processing applications, C has the great advantage
of always being available on commercial UNIX implementations. UNIX is written
in C, so whenever UNIX is implemented on a new type of hardware, getting a C
compiler to work for that system is the first task. As a result it is almost impossible
to find a UNIX system without support for C, so the software vendors who want to
target the UNIX marketplace find that C is the best bet if they want to get wide
coverage of the systems available. Realistically, C is the first choice for portability of
software in the UNIX environment.

C has also gained substantially in use and availability from the explosive expansion
of the Personal Computer market. C could almost have been designed specifically
for the development of software for the PC—developers get not only the readability
and productivity of a high-level language, but also the power to get the most out of
the PC architecture without having to resort to the use of assembly code. C is
practically unique in its ability to span two levels of programming; as well as
providing high-level control of flow, data structures and procedures—all of the stuff
expected in a modern high-level language—it also allows systems programmers to

Página 1 de 2The C Book — The Success of C

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html?format=pf

address machine words, manipulate bits and get close to the underlying hardware if
they want to. That combination of features is very desirable in the competitive PC
software markeplace and an increasing number of software developers have made
C their primary language as a result.

Finally, the extensibility of C has contributed in no small way to its popularity. Many
other languages have failed to provide the file access and general input-output
features that are needed for industrial-strength applications. Traditionally, in these
languages I/O is built-in and is actually understood by the compiler. A master-stroke
in the design of C (and interestingly, one of the strengths of the UNIX system too)
has been to take the view that if you don't know how to provide a complete solution
to a generic requirement, instead of providing half a solution (which invariably
pleases nobody), you should allow the users to build their own. Software designers
the world over have something to learn from this! It's the approach that has been
taken by C, and not only for I/O. Through the use of library functions you can
extend the language in many ways to provide features that the designers didn't
think of. There's proof of this in the so-called Standard I/O Library (stdio), which
matured more slowly than the language, but had become a sort of standard all of its
own before the Standard Committee give it official blessing. It proved that it is
possible to develop a model of file I/O and associated features that is portable to
many more systems than UNIX, which is where it was first wrought. Despite the
ability of C to provide access to low-level hardware features, judicious style and the
use of the stdio package results in highly portable programs; many of which are to
be found running on top of operating systems that look very different from one
another. The nice thing about this library is that if you don't like what it does, but you
have the appropriate technical skills, you can usually extend it to do what you do
want, or bypass it altogether.

Previous section [http://publications.gbdirect.co.uk/c_book/preface/about.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/standards.html]

Página 2 de 2The C Book — The Success of C

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html?format=pf

Standards

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/standards.html.

Remarkably, C achieved its success in the absence of a formal standard. Even
more remarkable is that during this period of increasingly widespread use, there
has never been any serious divergence of C into the number of dialects that has
been the bane of, for example, BASIC. In fact, this is not so surprising. There has
always been a “language reference manual”, the widely-known book written by
Brian Kernighan and Dennis Ritchie, usually referred to as simply “K&R”.

The C Programming Language,
B.W. Kernighan and D. M. Ritchie,
Prentice-Hall
Englewood Cliffs,
New Jersey,
1978

Further acting as a rigorous check on the expansion into numerous dialects, on
UNIX systems there was only ever really one compiler for C; the so-called “Portable
C Compiler”, originally written by Steve Johnson. This acted as a reference
implementation for C—if the K&R reference was a bit obscure then the behaviour of
the UNIX compiler was taken as the definition of the language.

Despite this almost ideal situation (a reference manual and a reference
implementation are extremely good ways of achieving stability at a very low cost),
the increasing number of alternative implementations of C to be found in the PC
world did begin to threaten the stability of the language.

The X3J11 committee of the American National Standards Institute started work in
the early 1980's to produce a formal standard for C. The committee took as its
reference the K&R definition and began its lengthy and painstaking work. The job
was to try to eliminate ambiguities, to define the undefined, to fix the most annoying
deficiencies of the language and to preserve the spirit of C—all this as well as
providing as much compatibility with existing practice as was possible. Fortunately,
nearly all of the developers of the competing versions of C were represented on the
committee, which in itself acted as a strong force for convergence right from the
beginning.

Development of the Standard took a long time, as standards often do. Much of the
work is not just technical, although that is a very time-consuming part of the job, but
also procedural. It's easy to underrate the procedural aspects of standards work, as
if it somehow dilutes the purity of the technical work, but in fact it is equally
important. A standard that has no agreement or consensus in the industry is
unlikely to be widely adopted and could be useless or even damaging. The
painstaking work of obtaining consensus among committee members is critical to
the success of a practical standard, even if at times it means compromising on
technical “perfection”, whatever that might be. It is a democratic process, open to

Página 1 de 2The C Book — Standards

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/standards.html?format=pf

all, which occasionally results in aberrations just as much as can excessive
indulgence by technical purists, and unfortunately the delivery date of the Standard
was affected at the last moment by procedural, rather than technical issues. The
technical work was completed by December 1988, but it took a further year to
resolve procedural objections. Finally, approval to release the document as a formal
American National Standard was given on December 7th, 1989.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html]

Página 2 de 2The C Book — Standards

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/standards.html?format=pf

Hosted and Free-Standing
Environments

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html.

The dependency on the use of libraries to extend the language has an important
effect on the practical use of C. Not only are the Standard I/O Library functions
important to applications programmers, but there are a number of other functions
that are widely taken almost for granted as being part of the language. String
handling, sorting and comparison, character manipulation and similar services are
invariably expected in all but the most specialized of applications areas.

Because of this unusually heavy dependency on libraries to do real work, it was
most important that the Standard provided comprehensive definitions for the
supporting functions too. The situation with the library functions was much more
complicated than the relatively simple job of providing a tight definition for the
language itself, because the library can be extended or modified by a
knowledgeable user and was only partially defined in K&R. In practice, this led to
numerous similar but different implementations of supporting libraries in common
use. By far the hardest part of the work of the Committee was to reach a good
definition of the library support that should be provided. In terms of benefit to the
final user of C, it is this work that will prove to be by far and away the most valuable
part of the Standard.

However, not all C programs are used for the same type of applications. The
Standard Library is useful for ‘data processing’ types of applications, where file I/O
and numeric and string oriented data are widely used. There is an equally important
application area for C—the ‘embedded system’ area—which includes such things
as process control, real-time and similar applications.

The Standard knows this and provides for it. A large part of the Standard is the
definition of the library functions that must be supplied for hosted environments. A
hosted environment is one that provides the standard libraries. The standard
permits both hosted and freestanding environments. and goes to some length to
differentiate between them. Who would want to go without libraries? Well, anybody
writing ‘stand alone’ programs. Operating systems, embedded systems like
machine controllers and firmware for instrumentation are all examples of the case
where a hosted environment might be inappropriate. Programs written for a hosted
environment have to be aware of the fact that the names of all the library functions
are reserved for use by the implementation. There is no such restriction on the
programmer working in a freestanding environment, although it isn't a good idea to
go using names that are used in the standard library, simply because it will mislead
readers of the program. Chapter 9
[http://publications.gbdirect.co.uk/c_book/chapter9/] describes the names and uses
of the library functions.

Previous section [http://publications.gbdirect.co.uk/c_book/preface/standards.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section

Página 1 de 2The C Book — Hosted and Free-Standing Environments

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html?form...

[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html]

Página 2 de 2The C Book — Hosted and Free-Standing Environments

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html?form...

Typographical conventions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html.

The book tries to keep a consistent style in its use of special or technical terms.
Words with a special meaning to C, such as reserved words or the names of library
functions, are printed in a different typeface. Examples are int and printf. Terms
used by the book that have a meaning not to C but in the Standard or the text of the
book, are bold if they have not been introduced recently. They are not bold
everywhere, because that rapidly annoys the reader. As you have noticed, italics
are also used for emphasis from time to time, and to introduce loosely defined
terms. Whether or not the name of a function, keyword or so on starts with a capital
letter, it is nonetheless capitalized when it appears at the start of a sentence; this is
one problem where either solution (capitalize or not) is unsatisfactory. Occasionally
quote marks are used around ‘special terms’ if there is a danger of them being
understood in their normal English meaning because of surrounding context.
Anything else is at the whim of the authors, or simply by accident.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/order_of_topics.html]

Página 1 de 1The C Book — Typographical conventions

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html?for...

Order of topics

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/order_of_topics.html.

The order of presentation of topics in this book loosely follows the order that is
taught in The Instruction Set's introductory course. It starts with an overview of the
essential parts of the language that will let you start to write useful programs quite
quickly. The introduction is followed by a detailed coverage of the material that was
ignored before, then it goes on to discuss the standard libraries in depth. This
means that in principle, if you felt so inclined, you could read the book as far as you
like and stop, yet still have learnt a reasonably coherent subset of the language.
Previous experience of C will render Chapter 1
[http://publications.gbdirect.co.uk/c_book/chapter1/] a bit slow, but it is still worth
persevering with it, if only once.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/example_programs.html]

Página 1 de 1The C Book — Order of topics

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/order_of_topics.html?format=pf

Example programs

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/example_programs.html.

All but the smallest of the examples shown in the text have been tested using a
compiler that claims to conform to the Standard. As a result, most of them stand a
good chance of being correct, unless our interpretation of the Standard was wrong
and the compiler developer made the same mistake. None the less, experience
warns that despite careful checking, some errors are bound to creep in. Please be
understanding with any errors that you may find.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/order_of_topics.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html]

Página 1 de 1The C Book — Example programs

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/example_programs.html?format=pf

Deference to Higher Authority

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html.

This book is an attempt to produce a readable and enlightening description of the
language defined by the Standard. It sets out to to make interpretations of what the
Standard actually means but to express them in ‘simpler’ English. We've done our
best to get it right, but you must never forget that the only place that the language is
fully defined is in the Standard itself. It is entirely possible that what we interpret the
Standard to mean is at times not what the Standard Committee sought to specify,
or that the way we explain it is looser and less precise than it is in the Standard. If
you are in any doubt: READ THE STANDARD! It's not meant to be read for
pleasure, but it is meant to be accurate and unambiguous; look nowhere else for
the authoritative last word.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/example_programs.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/c_standard.html]

Página 1 de 1The C Book — Deference to Higher Authority

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html?format=pf

Address for the Standard

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/c_standard.html.

Copies of the Standard can be obtained from:

X3 Secretariat,
CBEMA,
311 First Street, NW,
Suite 500,
Washington DC 20001-2178,
USA.
Phone (+1) (202) 737 8888

Mike Banahan
Declan Brady

Mark Doran

January 1991

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/preface/]

Página 1 de 1The C Book — Address for the Standard

21/2/2007http://publications.gbdirect.co.uk/c_book/preface/c_standard.html?format=pf

Chapter 1

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter1/.

An Introduction to C
! 1.1. The form of a C program

[http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html]
! 1.2. Functions [http://publications.gbdirect.co.uk/c_book/chapter1/functions.html]
! 1.3. A description of Example 1.1

[http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html]
! 1.4. Some more programs

[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html]
! 1.5. Terminology

[http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html]
! 1.6. Summary

[http://publications.gbdirect.co.uk/c_book/chapter1/summary.html]
! 1.7. Exercises

[http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/preface/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter2/]

Página 1 de 1The C Book — An Introduction to C

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/?format=pf

1.1. The form of a C program

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html.

If you're used to the block-structured form of, say, Pascal, then at the outer level the
layout of a C program may surprise you. If your experience lies in the FORTRAN
camp you will find it closer to what you already know, but the inner level will look
quite different. C has borrowed shamelessly from both kinds of language, and from
a lot of other places too. The input from so many varied sources has spawned a
language a bit like a cross-bred terrier: inelegant in places, but a tenacious brute
that the family is fond of. Biologists refer to this phenomenon as ‘hybrid vigour’.
They might also draw your attention to the ‘chimera’, an artificial crossbreed of
creatures such as a sheep and a goat. If it gives wool and milk, fine, but it might
equally well just bleat and stink!

At the coarsest level, an obvious feature is the multi-file structure of a program. The
language permits separate compilation, where the parts of a complete program can
be kept in one or more source files and compiled independently of each other. The
idea is that the compilation process will produce files which can then be linked
together using whatever link editor or loader that your system provides. The block
structure of the Algol-like languages makes this harder by insisting that the whole
program comes in one chunk, although there are usually ways of getting around it.

The reason for C's approach is historical and rather interesting. It is supposed to
speed things up: the idea is that compiling a program into relocatable object code is
slow and expensive in terms of resources; compiling is hard work. Using the loader
to bind together a number of object code modules should simply be a matter of
sorting out the absolute addresses of each item in the modules when combined into
a complete program. This should be relatively inexpensive. The expansion of the
idea to arrange for the loader to scan libraries of object modules, and select the
ones that are needed, is an obvious one. The benefit is that if you change one small
part of a program then the expense of recompiling all of it may be avoided; only the
module that was affected has to be recompiled.

All, the same, it's true that the more work put on to the loader, the slower it
becomes, in fact sometimes it can be the slowest and most resource consuming
part of the whole procedure. It is possible that, for some systems, it would be
quicker to recompile everything in one go than to have to use the loader: Ada has
sometimes been quoted as an example of this effect occurring. For C, the work that
has to be done by the loader is not large and the approach is a sensible one.
Figure 1.1 shows the way that this works.

Página 1 de 2The C Book — The form of a C program

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html?format...

Figure 1.1. Separate compilation

This technique is important in C, where it is common to find all but the smallest of
programs constructed from a number of separate source files. Furthermore, the
extensive use that C makes of libraries means that even trivial programs pass
through the loader, although that might not be obvious at the first glance or to the
newcomer.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/functions.html]

Página 2 de 2The C Book — The form of a C program

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html?format...

1.2. Functions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/functions.html.

A C program is built up from a collection of items such as functions and what we
could loosely call global variables. All of these things are given names at the point
where they are defined in the program; the way that the names are used to access
those items from a given place in the program is governed by rules. The rules are
described in the Standard using the term linkage. For the moment we only need to
concern ourselves with external linkage and no linkage. Items with external linkage
are those that are accessible throughout the program (library functions are a good
example); items with no linkage are also widely used but their accessibility is much
more restricted. Variables used inside functions are usually ‘local’ to the function;
they have no linkage. Although this book avoids the use of complicated terms like
those where it can, sometimes there isn't a plainer way of saying things. Linkage is
a term that you are going to become familiar with later. The only external linkage
that we will see for a while will be when we are using functions.

Functions are C's equivalents of the functions and subroutines in FORTRAN,
functions and procedures in Pascal and ALGOL. Neither BASIC in most of its
simple mutations, nor COBOL has much like C's functions.

The idea of a function is, of course, to allow you to encapsulate one idea or
operation, give it a name, then to call that operation from various parts of the rest of
your program simply by using the name. The detail of what is going on is not
immediately visible at the point of use, nor should it be. In well designed, properly
structured programs, it should be possible to change the way that a function does
its job (as long as the job itself doesn't change) with no effect on the rest of the
program.

In a hosted environment there is one function whose name is special; it's the one
called main. This function is the first one entered when your program starts running.
In a freestanding environment the way that a program starts up is implementation
defined; a term which means that although the Standard doesn't specify what must
happen, the actual behaviour must be consistent and documented. When the
program leaves the main function, the whole program comes to an end. Here's a
simple program containing two functions:

#include <stdio.h>

/*
* Tell the compiler that we intend
* to use a function called show_message.
* It has no arguments and returns no value
* This is the "declaration".
*
*/

void show_message(void);
/*
* Another function, but this includes the body of

Página 1 de 2The C Book — Functions

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/functions.html?format=pf

* the function. This is a "definition".
*/
main(){
 int count;

 count = 0;
 while(count < 10){
 show_message();
 count = count + 1;
 }

 exit(0);
}

/*
* The body of the simple function.
* This is now a "definition".
*/
void show_message(void){
 printf("hello\n");
}

Example 1.1

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html]

Página 2 de 2The C Book — Functions

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/functions.html?format=pf

1.3. A description of Example 1.1

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html.

1.3.1. What was in it
Even such a small example has introduced a lot of C. Among other things, it
contained two functions, a #include ‘statement’, and some comment. Since
comment is the easiest bit to handle, let's look at that first.

1.3.2. Layout and comment
The layout of a C program is not very important to the compiler, although for
readability it is important to use this freedom to carry extra information for the
human reader. C allows you to put space, tab or newline characters practically
anywhere in the program without any special effect on the meaning of the program.
All of those three characters are the same as far as the compiler is concerned and
are called collectively white space, because they just move the printing position
without causing any ‘visible’ printing on an output device. White space can occur
practically anywhere in a program except in the middle of identifiers, strings, or
character constants. An identifier is simply the name of a function or some other
object; strings and character constants will be discussed later—don't worry about
them for the moment.

Apart from the special cases, the only place that white space must be used is to
separate things that would otherwise run together and become confused. In the
example above, the fragment void show_message needs space to separate the two
words, whereas show_message(could have space in front of the (or not, it would be
purely a matter of taste.

Comment is introduced to a C program by the pair of characters /*, which must not
have a space between them. From then on, everything found up to and including
the pair of characters */ is gobbled up and the whole lot is replaced by a single
space. In Old C, this was not the case. The rule used to be that comment could
occur anywhere that space could occur: the rule is now that comment is space. The
significance of the change is minor and eventually becomes apparent in Chapter 7
[http://publications.gbdirect.co.uk/c_book/chapter7/] where we discuss the
preprocessor. A consequence of the rule for the end of comment is that you can't
put a piece of comment inside another piece, because the first */ pair will finish all
of it. This is a minor nuisance, but you learn to live with it.

It is common practice to make a comment stand out by making each line of multi-
line comment always start with a *, as the example illustrates.

1.3.3. Preprocessor statements
The first statement in the example is a preprocessor directive. In days gone by, the

Página 1 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

C compiler used to have two phases: the preprocessor, followed by the real
compiler. The preprocessor was a macro processor, whose job was to perform
simple textual manipulation of the program before passing the modified text on to
be compiled. The preprocessor rapidly became seen as an essential aspect of the
compiler and so has now been defined as part of the language and cannot be
bypassed.

The preprocessor only knows about lines of text; unlike the rest of the language it is
sensitive to the end of a line and though it is possible to write multi-line
preprocessor directives, they are uncommon and a source of some wonder when
they are found. Any line whose first visible character is a # is a preprocessor
directive.

In Example 1.1 the preprocessor directive #include causes the line containing it to
be replaced completely by the contents of another file. In this case the filename is
found between the < and > brackets. This is a widely used technique to incorporate
the text of standard header files into your program without having to go through the
effort of typing it all yourself. The <stdio.h> file is an important one, containing the
necessary information that allows you to use the standard library for input and
output. If you want to use the I/O library you must include <stdio.h>. Old C was
more relaxed on this point.

1.3.3.1. Define statements

Another of the preprocessor's talents which is widely exploited is the #define
statement. It is used like this:

#define IDENTIFIER replacement

which says that the name represented by IDENTIFIER will be replaced by the text of
replacement whenever IDENTIFIER occurs in the program text. Invariably, the
identifier is a name in upper-case; this is a stylistic convention that helps the reader
to understand what is going on. The replacement part can be any text at all—
remember the preprocessor doesn't know C, it just works on text. The most
common use of the statement is to declare names for constant numbers:

#define PI 3.141592
#define SECS_PER_MIN 60
#define MINS_PER_HOUR 60
#define HOURS_PER_DAY 24

and to use them like this

circumf = 2*PI*radius;
if(timer >= SECS_PER_MIN){
mins = mins+1;
 timer = timer - SECS_PER_MIN;
}

the output from the preprocessor will be as if you had written this:

circumf = 2*3.141592*radius;
if(timer >= 60){
 mins = mins+1;
 timer = timer - 60;

Página 2 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

}

Summary

Preprocessor statements work on a line-by-line basis, the rest of C does not.

#include statements are used to read the contents of a specified file, typically to
facilitate the use of library functions.

#define statements are typically used to give names for constants. By convention,
the names are in upper case (capitalized).

1.3.4. Function declaration and definition
1.3.4.1. Declaration

After the <stdio.h> file is included comes a function declaration; it tells the compiler
that show_message is a function which takes no arguments and returns no values.
This demonstrates one of the changes made by the Standard: it is an example of a
function prototype, a subject which Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/] discusses in detail. It isn't
always necessary to declare functions in advance—C will use some (old) default
rules in such cases—but it is now strongly recommended that you do declare them
in advance. The distinction between a declaration and a definition is that the former
simply describes the type of the function and any arguments that it might take, the
latter is where the body of a function is provided. These terms become more
important later.

By declaring show_message before it is used, the compiler is able to check that it is
used correctly. The declaration describes three important things about the function:
its name, its type, and the number and type of its arguments. The void
show_message(part indicates that it is a function and that it returns a value of type
void, which is discussed in a moment. The second use of void is in the declaration
of the function's argument list, (void), which indicates that there are no arguments
to this function.

1.3.4.2. Definition

Right at the end of the program is the function definition itself; although it is only
three lines long, it usefully illustrates a complete function.

In C, functions perform the tasks that some other languages split into two parts.
Most languages use a function to return a value of some sort, typical examples
being perhaps trigonometric functions like sin, cos, or maybe a square root function;
C is the same in this respect. Other similar jobs are done by what look very much
like functions but which don't return a value: FORTRAN uses subroutines, Pascal
and Algol call them procedures. C simply uses functions for all of those jobs, with
the type of the function's return value specified when the function is defined. In the
example, the function show_message doesn't return a value so we specify that its
type is void.

The use of void in that way is either crashingly obvious or enormously subtle,

Página 3 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

depending on your viewpoint. We could easily get involved here in an entertaining
(though fruitless) philosophical side-track on whether void really is a value or not,
but we won't. Whichever side of the question you favour, it's clear that you can't do
anything with a void and that's what it means here—“I don't want to do anything
with any value this function might or might not return”.

The type of the function is void, its name is show_message. The parentheses ()
following the function name are needed to let the compiler know that at this point
we are talking about a function and not something else. If the function did take any
arguments, then their names would be put between the parentheses. This one
doesn't take any, which is made explicit by putting void between the parentheses.

For something whose essence is emptiness, abnegation and rejection, void turns
out to be pretty useful.

The body of the function is a compound statement, which is a sequence of other
statements surrounded by curly brackets {}. There is only one statement in there,
but the brackets are still needed. In general, C allows you to put a compound
statement anywhere that the language allows the use of a single simple statement;
the job of the brackets being to turn several statements in a row into what is
effectively a single statement.

It is reasonable to ask whether or not the brackets are strictly needed, if their only
job is to bind multiple statements into one, yet all that we have in the example is a
single statement. Oddly, the answer is yes—they are strictly needed. The only
place in C where you can't put a single statement but must have a compound
statement is when you are defining a function. The simplest function of all is
therefore the empty function, which does nothing at all:

void do_nothing(void){}

The statement inside show_message is a call of the library function printf. printf
is used to format and print things, this example being one of the simplest of its
uses. printf takes one or more arguments, whose values are passed forward from
the point of the call into the function itself. In this case the argument is a string. The
contents of the string are interpreted by printf and used to control the way the
values of the other arguments are printed. It bears a little resemblance to the
FORMAT statement in FORTRAN; but not enough to predict how to use it.

Summary

Declarations are used to introduce the name of a function, its return type and the
type (if any) of its arguments.

A function definition is a declaration with the body of the function given too.

A function returning no value should have its type declared as void. For example,
void func(/* list of arguments */);

A function taking no arguments should be declared with void as its argument list.
For example, void func(void);

Página 4 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

1.3.5. Strings
In C, strings are a sequence of characters surrounded by quote marks:

"like this"

Because a string is a single element, a bit like an identifier, it is not allowed to
continue across a line—although space or tab characters are permitted inside a
string.

"This is a valid string"
"This has a newline in it
and is NOT a valid string"

To get a very long string there are two things that you can do. You could take
advantage of the fact that absolutely everywhere in a C program, the sequence
‘backslash end-of-line’ disappears totally.

"This would not be valid but doesn't have \
a newline in it as far as the compiler is concerned"

The other thing you could do is to to use the string joining feature, which says that
two adjacent strings are considered to be just one.

"All this " "comes out as "
"just one string"

Back to the example. The sequence ‘\n’ in the string is an example of an escape
sequence which in this case represents ‘newline’. Printf simply prints the contents
of the string on the program's output file, so the output will read ‘hello’, followed by a
new line.

To support people working in environments that use character sets which are
‘wider’ than U.S. ASCII, such as the shift-JIS representation used in Japan, the
Standard now allows multibyte characters to be present in strings and comments.
The Standard defines the 96 characters that are the alphabet of C (see Chapter 2
[http://publications.gbdirect.co.uk/c_book/chapter2/]). If your system supports an
extended character set, the only place that you may use these extended characters
is in strings, character constants, comment and the names of header files. Support
for extended character sets is an implementation defined feature, so you will have
to look it up in your system's documentation.

1.3.6. The main function
In Example 1.1 there are actually two functions, show_message and main. Although
main is a bit longer than show_message it is obviously built in the same shape: it has
a name, the parentheses () are there, followed by the opening bracket { of the
compound statement that must follow in a function definition. True, there's a lot
more stuff too, but right at the end of the example you'll find the matching closing
bracket } that goes with the first one to balance the numbers.

This is a much more realistic function now, because there are several statements
inside the function body, not just one. You might also have noticed that the function

Página 5 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

is not declared to be void. There is a good reason for this: it returns a proper value.
Don't worry about its arguments yet; they are discussed in Chapter 10
[http://publications.gbdirect.co.uk/c_book/chapter10/].

The most important thing about main is that it is the first function to be called. In a
hosted environment your C language system arranges, magically, for a call on the
main function (hence its name) when the program is first started. When the function
is over, so is the program. It's obviously an important function. Equally important is
the stuff inside main's compound statement. As mentioned before, there can be
several statements inside a compound statement, so let's look at them in turn.

1.3.7. Declarations
The first statement is this:

int count;

which is not an instruction to do anything, but simply introduces a variable to the
program. It declares something whose name is count, and whose type is ‘integer’;
in C the keyword that declares integers is unaccountably shortened to int. C has
an idiosyncratic approach to these keywords with some having their names spelled
in full and some being shortened like int. At least int has a meaning that is more
or less intuitive; just wait until we get on to static.

As a result of that declaration the compiler now knows that there is something that
will be used to store integral quantities, and that its name is count. In C, all
variables must be declared before they are used; there is none of FORTRAN's
implicit declarations. In a compound statement, all the declarations must come first;
they must precede any ‘ordinary’ statements and are therefore somewhat special.

(Note for pedants: unless you specifically ask, the declaration of a variable like
count is also a definition. The distinction will later be seen to matter.)

1.3.8. Assignment statement
Moving down the example we find a familiar thing, an assignment statement. This is
where the first value is assigned to the variable count, in this case the value
assigned is a constant whose value is zero. Prior to the assignment, the value of
count was undefined and unsafe to use. You might be a little surprised to find that
the assignment symbol (strictly speaking an assignment operator) is a single = sign.
This is not fashionable in modern languages, but hardly a major blemish.

So far then, we have declared a variable and assigned the value of zero to it. What
next?

1.3.9. The while statement
Next is one of C's loop control statements, the while statement. Look carefully at its
form. The formal description of the while statement is this:

while(expression)
 statement

Página 6 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

Is that what we have got? Yes it is. The bit that reads

count < 10

is a relational expression, which is an example of a valid expression, and the
expression is followed by a compound statement, which is a form of valid
statement. As a result, it fits the rules for a properly constructed while statement.

What it does must be obvious to anyone who has written programs before. For as
long as the relationship count < 10 holds true, the body of the loop is executed and
the comparison repeated. If the program is ever to end, then the body of the loop
must do something that will eventually cause the comparison to be false: of course
it does.

There are just two statements in the body of the loop. The first one is a function call,
where the function show_message is invoked. A function call is indicated by the name
of the function followed by the parentheses () which contain its argument list—if it
takes no arguments, then you provide none. If there were any arguments, they
would be put between the parentheses like this:

/* call a function with several arguments */
function_name(first_arg, second_arg, third_arg);

and so on. The call of printf is another example. More is explained in Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/].

The last statement in the loop is another assignment statement. It adds one to the
variable count, so that the requirement for program to stop will eventually be met.

1.3.10. The return statement
The last statement that is left to discuss is the return statement. As it is written, it
looks like another function call, but in fact the rule is that the statement is written

return expression;

where the expression is optional. The example uses a common stylistic convention
and puts the expression into parentheses, which has no effect whatsoever.

The return causes a value to be returned from the current function to its caller. If the
expression is missing, then an unknown value is passed back to the caller—this is
almost certainly a mistake unless the function returns void. Main wasn't declared
with any type at all, unlike show_message, so what type of value does it return? The
answer is int. There are a number of places where the language allows you to
declare things by default: the default type of functions is int, so it is common to see
them used in this way. An equivalent declaration for main would have been

int main(){

and exactly the same results would have occurred.

You can't use the same feature to get a default type for variables because their
types must be provided explicitly.

Página 7 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

What does the value returned from main mean, and where does it go? In Old C, the
value was passed back to the operating system or whatever else was used to start
the program running. In a UNIX-like environment, the value of 0 meant ‘success’ in
some way, any other value (often -1) meant ‘failure’. The Standard has enshrined
this, stating that 0 stands for correct termination of the program. This does not
mean that 0 is to be passed back to the host environment, but whatever is the
appropriate ‘success’ value for that system. Because there is sometimes confusion
around this, you may prefer to use the defined values EXIT_SUCCESS and
EXIT_FAILURE instead, which are defined in the header file <stdlib.h>. Returning
from the main function is the same as calling the library function exit with the return
value as an argument. The difference is that exit may be called from anywhere in
the program, and terminates it at that point, after doing some tidying up activities. If
you intend to use exit, you must include the header file <stdlib.h>. From now on,
we shall use exit rather than returning from main.

Summary

The main function returns an int value.

Returning from main is the same as calling the exit function, but exit can be called
from anywhere in a program.

Returning 0 or EXIT_SUCCESS is the way of indicating success, anything else
indicates failure.

1.3.11. Progress so far
This example program, although short, has allowed us to introduce several
important language features, amongst them:

! Program structure
! Comment
! File inclusion
! Function definition
! Compound statements
! Function calling
! Variable declaration
! Arithmetic
! Looping

although of course none of this has been covered rigorously.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter1/functions.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html]

Página 8 de 8The C Book — A description of Example 1.1

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html?forma...

1.4. Some more programs

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html.

While we're still in the informal phase, let's look at two more examples. You will
have to work out for yourself what some of the code does, but as new or interesting
features appear, they will be explained.

1.4.1. A program to find prime numbers
/*
*
* Dumb program that generates prime numbers.
*/
#include <stdio.h>
#include <stdlib.h>

main(){
 int this_number, divisor, not_prime;

 this_number = 3;

 while(this_number < 10000){
 divisor = this_number / 2;
 not_prime = 0;
 while(divisor > 1){
 if(this_number % divisor == 0){
 not_prime = 1;
 divisor = 0;
 }
 else
 divisor = divisor-1;
 }

 if(not_prime == 0)
 printf("%d is a prime number\n", this_number);
 this_number = this_number + 1;
 }
 exit(EXIT_SUCCESS);
}

Example 1.2

What was interesting in there? A few new points, perhaps. The program works in a
really stupid way: to see if a number is prime, it divides that number by all the
numbers between half its value and two—if any divide without remainder, then the
number isn't prime. The two operators that you haven't seen before are the
remainder operator %, and the equality operator, which is a double equal sign ==.
That last one is without doubt the cause of more bugs in C programs than any other
single factor.

The problem with the equality test is that wherever it can appear it is also legal to
put the single = sign. The first, ==, compares two things to see if they are equal, and

Página 1 de 5The C Book — Some more programs

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html?format...

is generally what you need in fragments like these:

if(a == b)
while (c == d)

The assignment operator = is, perhaps surprisingly, also legal in places like those,
but of course it assigns the value of the right-hand expression to whatever is on the
left. The problem is particularly bad if you are used to the languages where
comparison for equality is done with what C uses for assignment. There's nothing
that you can do to help, so start getting used to it now. (Modern compilers do tend
to produce warnings when they think they have detected ‘questionable’ uses of
assignment operators, but that is a mixed blessing when your choice was
deliberate.)

There is also the introduction for the first time of the if statement. Like the while
statement, it tests an expression to see if the expression is true. You might have
noticed that also like the while statement, the expression that controls the if
statement is in parentheses. That is always the case: all of the conditional control of
flow statements require a parenthesized expression after the keyword that
introduces them. The formal description of the if statement goes like this:

if(expression)
 statement

if(expression)
 statement
else
 statement

showing that it comes in two forms. Of course, the effect is that if the expression
part is evaluated to be true, then the following statement is executed. If the
evaluation is false, then the following statement is not executed. When there is an
else part, the statement associated with it is executed only if the evaluation gives a
false result.

If statements have a famous problem. In the following piece of code, is the
statement-2 executed or not?

if(1 > 0)
 if(1 < 0)
 statement-1
else
 statement-2

The answer is that it is. Ignore the indentation (which is misleading). The else could
belong to either the first or second if, according to the description of the if
statement that has just been given, so an extra rule is needed to make it
unambiguous. The rule is simply that an else is associated with the nearest else-
less if above it. To make the example work the way that the indentation implied,
we have to invoke a compound statement:

if(1 > 0){
 if(1 < 0)
 statement-1
}
else

Página 2 de 5The C Book — Some more programs

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html?format...

 statement-2

Here, at least, C adheres to the practice used by most other languages. In fact a lot
of programmers who are used to languages where the problem exists have never
even realized that it is there—they just thought that the disambiguating rule was
‘obvious’. Let's hope that everyone feels that way.

1.4.2. The division operators
The division operators are the division operator /, and the remainder operator %.
Division does what you would expect, except that when it is applied to integer
operands it gives a result that is truncated towards zero. For example, 5/2 gives 2,
5/3 gives 1. The remainder operator is the way to get the truncated remainder. 5%2
gives 1, 5%3 gives 2. The signs of the remainder and quotient depend on the divisor
and dividend in a way that is defined in the Standard and shown in Chapter 2
[http://publications.gbdirect.co.uk/c_book/chapter2/].

1.4.3. An example performing input
It's useful to be able to perform input as well as to write programs that print out
more or less interesting lists and tables. The simplest of the library routines (and the
only one that we'll look at just now) is called getchar. It reads single characters from
the program's input and returns an integer value. The value returned is a coded
representation for that character and can be used to print the same character on
the program output. It can also be compared against character constants or other
characters that have been read, although the only test that makes sense is to see if
both characters are the same. Comparing for greater or less than each other is not
portable in general; there is no guarantee that 'a' is less than 'b', although on
most common systems that would be the case. The only guarantee that the
Standard makes is that the codes for '0' through to '9' will always be consecutive.
Here is one example.

#include <stdio>
#include <stdlib.h>
main(){
 int ch;

 ch = getchar();
 while(ch != 'a'){
 if(ch != '\n')
 printf("ch was %c, value %d\n", ch, ch);
 ch = getchar();
 }
 exit(EXIT_SUCCESS);
}

Example 1.3

There are two interesting points in there. The first is to notice that at the end of each
line of input read, the character represented by

'\n'

(a character constant) will be seen. This just like the way that the same symbol

Página 3 de 5The C Book — Some more programs

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html?format...

results in a new line when printf prints it. The model of I/O used by C is not based
on a line by line view of the world, but character by character instead; if you choose
to think in a line-oriented way, then '\n' allows you to mark the end of each ‘line’.
Second is the way that %c is used to output a character by printf, when it appears
on the output as a character. Printing it with %d prints the same variable, but
displays the integer value used by your program to represent the character.

If you try that program out, you may find that some systems do not pass characters
one by one to a program, but make you type a whole line of input first. Then the
whole line is made available as input, one character at a time. Beginners have been
known to be confused: the program is started, they type some input, and nothing
comes back. This behaviour is nothing to do with C; it depends on the computer
and operating system in use.

1.4.4. Simple arrays
The use of arrays in C is often a problem for the beginner. The declaration of arrays
isn't too difficult, especially the one-dimensional ones, but a constant source of
confusion is the fact that their indices always count from 0. To declare an array of 5
ints, the declaration would look like this:

int something[5];

In array declarations C uses square brackets, as you can see. There is no support
for arrays with indices whose ranges do not start at 0 and go up; in the example,
the valid array elements are something[0] to something[4]. Notice very carefully
that something[5] is not a valid array element.

This program reads some characters from its input, sorts them into the order
suggested by their representation, then writes them back out. Work out what it does
for yourself; the algorithm won't be given much attention in the explanation which
follows.

#include <stdio>
#include <stdlib.h>
#define ARSIZE 10
main(){
 int ch_arr[ARSIZE],count1;
 int count2, stop, lastchar;

 lastchar = 0;
 stop = 0;
 /*
 * Read characters into array.
 * Stop if end of line, or array full.
 */
 while(stop != 1){
 ch_arr[lastchar] = getchar();
 if(ch_arr[lastchar] == '\n')
 stop = 1;
 else
 lastchar = lastchar + 1;
 if(lastchar == ARSIZE)
 stop = 1;
 }
 lastchar = lastchar-1;

Página 4 de 5The C Book — Some more programs

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html?format...

 /*
 * Now the traditional bubble sort.
 */
 count1 = 0;
 while(count1 < lastchar){
 count2 = count1 + 1;
 while(count2 <= lastchar){
 if(ch_arr[count1] > ch_arr[count2]){
 /* swap */
 int temp;
 temp = ch_arr[count1];
 ch_arr[count1] = ch_arr[count2];
 ch_arr[count2] = temp;
 }
 count2 = count2 + 1;
 }
 count1 = count1 + 1;
 }

 count1 = 0;
 while(count1 <= lastchar){
 printf("%c\n", ch_arr[count1]);
 count1 = count1 + 1;
 }
 exit(EXIT_SUCCESS);
}

Example 1.4

You might note that the defined constant ARSIZE is used everywhere instead of the
actual array size. Because of that, to change the maximum number of characters
that can be sorted by this program simply involves a change to one line and then
re-compiling. Not so obvious but critical to the safety of the program is the detection
of the array becoming full. Look carefully; you'll find that the program stops when
element ARSIZE-1 has been filled. That is because in an N element array, only
elements 0 through to N-1 are available (giving N in total).

Unlike some other languages it is unlikely that you will be told if you ‘run off’ the end
of an array in C. It results in what is known as undefined behaviour on the part of
your program, this generally being to produce obscure errors in the future. Most
skilled programmers avoid this happening by rigorous testing to make sure either
that it can't happen given the particular algorithm in use, or by putting in an explicit
test before accessing a particular member of an array. This is a common source of
run-time errors in C; you have been warned.

Summary
Arrays always number from 0; you have no choice.

A n-element array has members which number from 0 to n-1 only. Element n does
not exist and to access it is a big mistake.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html]

Página 5 de 5The C Book — Some more programs

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html?format...

1.5. Terminology

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html.

In C programs there are two distinct types of things: things used to hold values and
things that are functions. Instead of having to refer to them jointly with a clumsy
phrase that maintains the distinction, we think that it's useful to call them both
loosely ‘objects’. We do quite a lot of that later, because it's often the case that they
follow more or less the same rules. Beware though, that this isn't quite what the
Standard uses the term to mean. In the Standard, an ‘object’ is explicitly a region of
allocated storage that is used to represent a value and a function is something
different; this leads to the Standard often having to say ‘… functions and objects
…’. Because we don't think that it leads to too much confusion and does improve
the readability of the text in most cases, we will continue to use our looser
interpretation of object to include functions and we will explicitly use the terms ‘data
objects’ and ‘functions’ when the distinction is appropriate.

Be prepared to find this slight difference in meaning if you do read the Standard.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/summary.html]

Página 1 de 1The C Book — Terminology

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html?format=pf

1.6. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/summary.html.

This chapter has introduced many of the basics of the language although informally.
Functions, in particular, form the basic building block for C. Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/] provides a full description of
these fundamental objects, but you should by now understand enough about them
to follow their informal use in the intervening material.

Although the idea of library functions has been introduced, it has not been possible
to illustrate the extent of their importance to the C application programmer. The
Standard Library, described in Chapter 9
[http://publications.gbdirect.co.uk/c_book/chapter9/], is extremely important, both in
the way that it helps to improve the portability of programs intended for general use
and also in the aid to productivity that these useful functions can provide.

The use of variables, expressions and arithmetic are soon to be described in great
detail. As this chapter has shown, at a simple level, C differs little from most other
modern programming languages.

Only the use of structured data types still remains to be introduced, although arrays
have had a very brief airing.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html]

Página 1 de 1The C Book — Summary

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/summary.html?format=pf

1.7. Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html.

Exercise 1.1. Type in and test Example 1.1 on your system.

Exercise 1.2. Using Example 1.2 as a pattern, write a program that prints prime
pairs — a pair of prime numbers that differ by 2, for example 11 and 13, 29 and 31.
(If you can detect a pattern between such pairs, congratulations! You are either a
genius or just wrong.)

Exercise 1.3. Write a function that returns an integer: the decimal value of a string
of digits that it reads using getchar. For example, if it reads 1 followed by 4 followed
by 6, it will return the number 146. You may make the assumption that the digits 0–
9 are consecutive in the computer's representation (the Standard says so) and that
the function will only have to deal with valid digits and newline, so error checking is
not needed.

Exercise 1.4. Use the function that you just wrote to read a sequence of numbers.
Put them into an array declared in main, by repeatedly calling the function. Sort
them into ascending numerical order, then print the sorted list.

Exercise 1.5. Again using the function from Exercise 1.3, write a program that will
read numbers from its input, then print them out in binary, decimal and hexadecimal
form. You should not use any features of printf apart from those mentioned in this
chapter (especially the hexadecimal output format!). You are expected to work out
what digits to print by calculating each one in turn and making sure that they are
printed in the right order. This is not particularly difficult, but it is not trivial either.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter1/summary.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter1/]

Página 1 de 1The C Book — Exercises

21/2/2007http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html?format=pf

The C Book — Variables and Arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/?f...

1 of 1 21-02-2007 12:31

Chapter 2

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter2/.

Variables and Arithmetic

2.1. Some fundamentals
[http://publications.gbdirect.co.uk/c_book/chapter2/fundamentals.html]
2.2. The alphabet of C
[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet_of_c.html]
2.3. The Textual Structure of Programs
[http://publications.gbdirect.co.uk/c_book/chapter2/textual_program_structure.html]
2.4. Keywords and identifiers
[http://publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.html]
2.5. Declaration of variables
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html]
2.6. Real types [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html]
2.7. Integral types
[http://publications.gbdirect.co.uk/c_book/chapter2/integral_types.html]
2.8. Expressions and arithmetic
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html]
2.9. Constants [http://publications.gbdirect.co.uk/c_book/chapter2/constants.html]
2.10. Summary [http://publications.gbdirect.co.uk/c_book/chapter2/summary.html]
2.11. Exercises [http://publications.gbdirect.co.uk/c_book/chapter2/exercises.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter3/]

The C Book — Some fundamentals http://publications.gbdirect.co.uk/c_book/chapter2/fu...

1 of 1 21-02-2007 12:31

2.1. Some fundamentals

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter2/fundamentals.html.

Here is where we start to look in detail at the bits that the last chapter chose to
sweep under the carpet while it did its ‘Instant C’ introduction. The problem is, of
course, the usual one of trying to introduce enough of the language to let you get a
feel for what it's all about, without drowning beginners in a froth of detail that isn't
essential at the time.

Because this is a lengthy chapter, and because it deliberately chooses to cover
some subtle problems that are often missed out in introductory texts, you should
make sure that you are in the right mood and proper frame of mind to read it.

The weary brain may find that the breaks for exercises are useful. We strongly
recommend that you do actually attempt the exercises on the way through. They
help to balance the weight of information, which otherwise turns into an indigestible
lump.

It's time to introduce some of the fundamentals.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet_of_c.html]

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

1 of 4 21-02-2007 19:08

2.2. The alphabet of C

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter2/alphabet_of_c.html.

This is an interesting area; alphabets are important. All the same, this is the one part
of this chapter that you can read superficially first time round without missing too
much. Read it to make sure that you've seen the contents once, and make a mental
note to come back to it later on.

2.2.1. Basic Alphabet

Few computer languages bother to define their alphabet rigorously. There's usually
an assumption that the English alphabet augmented by a sprinkling of more or less
arbitrary punctuation symbols will be available in every environment that is trying to
support the language. The assumption is not always borne out by experience. Older
languages suffer less from this sort of problem, but try sending C programs by Telex
or restrictive e-mail links and you'll understand the difficulty.

The Standard talks about two different character sets: the one that programs are
written in and the one that programs execute with. This is basically to allow for
different systems for compiling and execution, which might use different ways of
encoding their characters. It doesn't actually matter a lot except when you are using
character constants in the preprocessor, where they may not have the same value as
they do at execution time. This behaviour is implementation-defined, so it must be
documented. Don't worry about it yet.

The Standard requires that an alphabet of 96 symbols is available for C as follows:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

! " # % & ' () * + , - . /

: ; < = > ? [\] ^ _ { | } ~

space, horizontal and vertical tab

form feed, newline

Table 2.1. The Alphabet of C

It turns out that most of the commonly used computer alphabets contain all the
symbols that are needed for C with a few notorious exceptions. The C alphabetic
characters shown below are missing from the International Standards Organization
ISO 646 standard 7-bit character set, which is as a subset of all the widely used
computer alphabets.

[\] ^ { | } ~

To cater for systems that can't provide the full 96 characters needed by C, the
Standard specifies a method of using the ISO 646 characters to represent the
missing few; the technique is the use of trigraphs.

2.2.2. Trigraphs

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

2 of 4 21-02-2007 19:08

Trigraphs are a sequence of three ISO 646 characters that get treated as if they were
one character in the C alphabet; all of the trigraphs start with two question marks ??
which helps to indicate that ‘something funny’ is going on. Table 2.1 below shows the
trigraphs defined in the Standard.

C character Trigraph

??=

[??(

] ??)

{ ??<

} ??>

\ ??/

| ??!

~ ??-

^ ??'

Table 2.2. Trigraphs

As an example, let's assume that your terminal doesn't have the # symbol. To write
the preprocessor line

#define MAX 32767

isn't possible; you must use trigraph notation instead:

??=define MAX 32767

Of course trigraphs will work even if you do have a # symbol; they are there to help in
difficult circumstances more than to be used for routine programming.

The ? ‘binds to the right’, so in any sequence of repeated ?s, only the two at the right
could possibly be part of a trigraph, depending on what comes next—this disposes of
any ambiguity.

It would be a mistake to assume that programs written to be highly portable would
use trigraphs ‘in case they had to be moved to systems that only support ISO 646’. If
your system can handle all 96 characters in the C alphabet, then that is what you
should be using. Trigraphs will only be seen in restricted environments, and it is
extremely simple to write a character-by-character translator between the two
representations. However, all compilers that conform to the Standard will recognize
trigraphs when they are seen.

Trigraph substitution is the very first operation that a compiler performs on its input
text.

2.2.3. Multibyte Characters

Support for multibyte characters is new in the Standard. Why?

A very large proportion of day-to-day computing involves data that represents text of
one form or another. Until recently, the rather chauvinist computing idustry has
assumed that it is adequate to provide support for about a hundred or so printable
characters (hence the 96 character alphabet of C), based on the requirements of the
English language—not suprising, since the bulk of the development of commercial
computing has been in the US market. This alphabet (technically called the
repertoire) fits conveniently into 7 or 8 bits of storage, which is why the US-ASCII
character set standard and the architecture of mini and microcomputers both give
very heavy emphasis to the use of 8-bit bytes as the basic unit of storage.

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

3 of 4 21-02-2007 19:08

C also has a byte-oriented approach to data storage. The smallest individual item of
storage that can be directly used in C is the byte, which is defined to be at least 8 bits
in size. Older systems or architectures that are not designed explicitly to support this
may incur a performance penalty when running C as a result, although there are not
many that find this a big problem.

Perhaps there was a time when the English alphabet was acceptable for data
processing applications worldwide—when computers were used in environments
where the users could be expected to adapt—but those days are gone. Nowadays it
is absolutely essential to provide for the storage and processing of textual material in
the native alphabet of whoever wants to use the system. Most of the US and Western
European language requirements can be squeezed together into a character set that
still fits in 8 bits per character, but Asian and other languages simply cannot.

There are two general ways of extending character sets. One is to use a fixed
number of bytes (often two) for every character. This is what the wide character
support in C is designed to do. The other method is to use a shift-in shift-out coding
scheme; this is popular over 8-bit communication links. Imagine a stream of
characters that looks like:

a b c <SI> a b g <SO> x y

where <SI> and <SO> mean ‘switch to Greek’ and ‘switch back to English’
respectively. A display device that agreed to use that method might well then display
a, b, c, alpha, beta, gamma, x and y. This is roughly the scheme used by the shift-JIS
Japanese standard, except that once the shift-in has been seen, pairs of characters
together are used as the code for a single Japanese character. Alternative schemes
exist which use more than one shift-in character, but they are less common.

The Standard now allows explicitly for the use of extended character sets. Only the
96 characters defined earlier are used for the C part of a program, but in comments,
strings, character constants and header names (these are really data, not part of the
program as such) extended characters are permitted if your environment supports
them. The Standard lays down a number of pretty obvious rules about how you are
allowed to use them which we will not repeat here. The most significant one is that a
byte whose value is zero is interpreted as a null character irrespective of any shift
state. That is important, because C uses a null character to indicate the end of
strings and many library functions rely on it. An additional requirement is that
multibyte sequences must start and end in the initial shift state.

The char type is specified by the Standard as suitable to hold the value of all of the
characters in the ‘execution character set’, which will be defined in your system's
documentation. This means that (in the example above) it could hold the value of ‘a’
or ‘b’ or even the "switch to Greek" character itself. Because of the shift-in shift-out
mechanism, there would be no difference between the value stored in a char that
was intended to represent ‘a’ or the Greek ‘alpha’ character. To do that would mean
using a different representation - probably needing more than 8 bits, which on many
systems would be too big for a char. That is why the Standard introduces the
wchar_ttype. To use this, you must include the <stddef.h> header, because
wchar_t is simply defined as an alternative name for one of C's other types. We
discuss it further in Section 2.8
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html].

Summary

C requires at least 96 characters in the source program character set.
Not all character sets in common use can stretch to 96 characters, trigraphs
allow the basic ISO 646 character set to be used (at a pinch).
Multibyte character support has been added by the Standard, with support for

Shift-encoded multibyte characters, which can be squeezed into ‘ordinary’

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

4 of 4 21-02-2007 19:08

character arrays, so still have char type.
Wide characters, each of which may use more storage than a regular
character. These usually have a different type from char.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter2/fundamentals.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/textual_program_structure.html]

The C Book — The Textual Structure of Programs http://publications.gbdirect.co.uk/c_book/chapter2/te...

1 of 2 21-02-2007 19:09

2.3. The Textual Structure of Programs

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter2/textual_program_structure.html.

2.3.1. Program Layout

The examples so far have used the sort of indentation and line layout that is
common in languages belonging to the same family as C. They are ‘free format’
languages and you are expected to use that freedom to lay the program out in a
way that enhances its readability and highlights its logical structure. Space
(including horizontal tab) characters can be used for indentation anywhere except in
identifiers or keywords without any effect on the meaning of the program. New lines
work in the same way as space and tab except on preprocessor command lines,
which have a line-by-line structure.

If a line is getting too long for comfort there are two things you can do. Generally it
will be possible to replace one of the spaces by a newline and use simply two lines
instead, as this example shows.

/* a long line */

a = fred + bill * ((this / that) * sqrt(3.14159));

/* the same line */

a = fred + bill *

 ((this / that) *

 sqrt(3.14159));

If you're unlucky it may not be possible to break the lines like that. The preprocessor
suffers most from the problem, because of its reliance on single-line ‘statements’.
To help, it's useful to know that the sequence ‘backslash newline’ becomes invisible
to the C translation system. As a result, the sequence is valid even in unusual
places such as the middle of identifiers, keywords, strings and so on. Only trigraphs
are processed before this step.

/*

 * Example of the use of line joining

 */

#define IMPORTANT_BUT_LONG_PREPROCESSOR_TEXT \

printf("this is effectively all ");\

printf("on a single line ");\

printf("because of line-joining\n");

The only time that you might want to use this way of breaking lines (outside of
preprocessor control lines) is to prevent long strings from disappearing off the
right-hand side of a program listing. New lines are not permitted inside strings and
character constants, so you might think that the following is a good idea.

/* not a good way of folding a string */

printf("This is a very very very\

long string\n");

That will certainly work, but for strings it is preferable to make use of the
string-joining feature introduced by the Standard:

The C Book — The Textual Structure of Programs http://publications.gbdirect.co.uk/c_book/chapter2/te...

2 of 2 21-02-2007 19:09

/* This string joining will not work in Old C */

printf("This is a very very very"

 "long string\n");

The second example allows you to indent the continuation portion of the string
without changing its meaning; adding indentation in the first example would have
put the indentation into the string.

Incidentally, both examples contain what is probably a mistake. There is no space in
front of the ‘long’ in the continuation string, which will contain the sequence
‘verylong’ as a result. Did you notice?

2.3.2. Comment

Comment, as has been said already, is introduced by the character pair /* and
terminated by */. It is translated into a single space wherever it occurs and so it
follows exactly the same rules that spaces do. It's important to realize that it doesn't
simply disappear, which it used to do in Old C, and that it is not possible to put
comment into strings or character constants. Comment in such a place becomes
part of the string or constant:

/*"This is comment"*/

"/*The quotes mean that this is a string*/"

Old C was a bit hazy about what the deletion of comment implied. You could argue
that

int/**/egral();

should have the comment deleted and so be taken by the compiler to be a call of a
function named integral. The Standard C rule is that comment is to be read as if
were a space, so the example must be equivalent to

int egral();

which declares a function egral that returns type int.

2.3.3. Translation phases

The various character translation, line joining, comment recognition and other early
phases of translation must be specified to occur in a certain order. The Standard
says that the translation is to proceed as if the phases occurred in this order (there
are more phases, but these are the important ones):

Trigraph translation.1.
Line joining.2.
Translate comment to space (but not in strings or character constants). At this
stage, multiple white spaces may optionally be condensed into one.

3.

Translate the program.4.

Each stage is completed before the next is started.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet_of_c.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.html]

The C Book — Keywords and identifiers http://publications.gbdirect.co.uk/c_book/chapter2/k...

1 of 2 21-02-2007 19:09

2.4. Keywords and identifiers

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.html.

After covering the underlying alphabet, we can look at more interesting elements
of C. The most obvious of the language elements are keywords and identifiers; their
forms are identical (although their meanings are different).

2.4.1. Keywords

C keeps a small set of keywords for its own use. These keywords cannot be used
as identifiers in the program — a common restriction with modern languages.
Where users of Old C may be surprised is in the introduction of some new
keywords; if those names were used as identifiers in previous programs, then the
programs will have to be changed. It will be easy to spot, because it will provoke
your compiler into telling you about invalid names for things. Here is the list of
keywords used in Standard C; you will notice that none of them use upper-case
letters.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 2.3. Keywords

The new keywords that are likely to surprise old programmers are: const, signed,
void and volatile (although void has been around for a while). Eagle eyed
readers may have noticed that some implementations of C used to use the
keywords entry, asm, and fortran. These are not part of the Standard, and few
will mourn them.

2.4.2. Identifiers

Identifier is the fancy term used to mean ‘name’. In C, identifiers are used to refer to
a number of things: we've already seen them used to name variables and functions.
They are also used to give names to some things we haven't seen yet, amongst
which are labels and the ‘tags’ of structures, unions, and enums.

The rules for the construction of identifiers are simple: you may use the 52 upper
and lower case alphabetic characters, the 10 digits and finally the underscore ‘_’,
which is considered to be an alphabetic character for this purpose. The only
restriction is the usual one; identifiers must start with an alphabetic character.

Although there is no restriction on the length of identifiers in the Standard, this is a
point that needs a bit of explanation. In Old C, as in Standard C, there has never
been any restriction on the length of identifiers. The problem is that there was never

The C Book — Keywords and identifiers http://publications.gbdirect.co.uk/c_book/chapter2/k...

2 of 2 21-02-2007 19:09

any guarantee that more than a certain number of characters would be checked
when names were compared for equality—in Old C this was eight characters, in
Standard C this has changed to 31.

So, practically speaking, the new limit is 31 characters—although identifiers may be
longer, they must differ in the first 31 characters if you want to be sure that your
programs are portable. The Standard allows for implementations to support longer
names if they wish to, so if you do use longer names, make sure that you don't rely
on the checking stopping at 31.

One of the most controversial parts of the Standard is the length of external
identifiers. External identifiers are the ones that have to be visible outside the
current source code file. Typical examples of these would be library routines or
functions which have to be called from several different source files.

The Standard chose to stay with the old restrictions on these external names: they
are not guaranteed to be different unless they differ from each other in the first six
characters. Worse than that, upper and lower case letters may be treated the same!

The reason for this is a pragmatic one: the way that most C compilation systems
work is to use operating system specific tools to bind library functions into a
C program. These tools are outside the control of the C compiler writer, so the
Standard has to impose realistic limits that are likely to be possible to meet. There is
nothing to prevent any specific implementation from giving better limits than these,
but for maximum portability the six monocase characters must be all that you
expect. The Standard warns that it views both the use of only one case and any
restriction on the length of external names to less than 31 characters as
obsolescent features. A later standard may insist that the restrictions are lifted; let's
hope that it is soon.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter2/textual_program_structure.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next
section
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html]

The C Book — Declaration of variables http://publications.gbdirect.co.uk/c_book/chapter2/va...

1 of 2 21-02-2007 19:10

2.5. Declaration of variables

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html.

You may remember that in Chapter 1 [http://publications.gbdirect.co.uk/c_book/chapter1/] we said that
you have to declare the names of things before you can use them (the only exceptions to this rule are
the names of functions returning int, because they are declared by default, and the names of labels).
You can do it either by using a declaration, which introduces just the name and type of something but
allocates no storage, or go further by using a definition, which also allocates the space used by the
thing being declared.

The distinction between declaration and definition is an important one, and it is a shame that the two
words sound alike enough to cause confusion. From now on they will have to be used for their formal
meaning, so if you are in doubt about the differences between them, refer back to this point.

The rules about what makes a declaration into a definition are rather complicated, so they will be
deferred for a while. In the meantime, here are some examples and rule-of-thumb guidelines which will
work for the examples that we have seen so far, and will do for a while to come.

/*

* A function is only defined if its body is given

* so this is a declaration but not a definition

*/

int func_dec(void);

/*

* Because this function has a body, it is also

* a definition.

* Any variables declared inside will be definitions,

* unless the keyword 'extern' is used.

* Don't use 'extern' until you understand it!

*/

int def_func(void){

 float f_var; /* a definition */

 int counter; /* another definition */

 int rand_num(void); /* declare (but not define) another function */

 return(0);

}

Exercise 2.1. Why are trigraphs used?

Exercise 2.2. When would you expect to find them in use, and when not?

Exercise 2.3. When is a newline not equivalent to a space or tab?

Exercise 2.4. When would you see the sequence of ‘backslash newline’ in use?

Exercise 2.5. What happens when two strings are put side by side?

Exercise 2.6. Why can't you put one piece of comment inside another one? (This prevents the
technique of ‘commenting out’ unused bits of program, unless you are careful.)

Exercise 2.7. What are the longest names that may safely be used for variables?

Exercise 2.8. What is a declaration?

The C Book — Declaration of variables http://publications.gbdirect.co.uk/c_book/chapter2/va...

2 of 2 21-02-2007 19:10

Exercise 2.9. What is a definition?

Now we go on to look at the type of variables and expressions.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html]

The C Book — Real types http://publications.gbdirect.co.uk/c_book/chapter2/rea...

1 of 4 21-02-2007 19:10

2.6. Real types

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html.

It's easier to deal with the real types first because there's less to say about them and
they don't get as complicated as the integer types. The Standard breaks new ground
by laying down some basic guarantees on the precision and range of the real
numbers; these are found in the header file float.h which is discussed in detail in
Chapter 9 [http://publications.gbdirect.co.uk/c_book/chapter9/]. For some users this
is extremely important information, but it is of a highly technical nature and is likely
only to be fully understood by numerical analysts.

The varieties of real numbers are these:

float

double

long double

Each of the types gives access to a particular way of representing real numbers in
the target computer. If it only has one way of doing things, they might all turn out to
be the same; if it has more than three, then C has no way of specifying the extra
ones. The type float is intended to be the small, fast representation corresponding
to what FORTRAN would call REAL. You would use double for extra precision, and
long double for even more.

The main points of interest are that in the increasing ‘lengths’ of float, double and
long double, each type must give at least the same range and precision as the
previous type. For example, taking the value in a double and putting it into a long
double must result in the same value.

There is no requirement for the three types of ‘real’ variables to differ in their
properties, so if a machine only has one type of real arithmetic, all of C's three types
could be implemented in the same way. None the less, the three types would be
considered to be different from the point of view of type checking; it would be ‘as if’
they really were different. That helps when you move the program to a system where
the three types really are different—there won't suddenly be a set of warnings
coming out of your compiler about type mismatches that you didn't get on the first
system.

In contrast to more ‘strongly typed’ languages, C permits expressions to mix all of the
scalar types: the various flavours of integers, the real numbers and also the pointer
types. When an expression contains a mixture of arithmetic (integer and real) types
there are implicit conversions invoked which can be used to work out what the overall
type of the result will be. These rules are quite important and are known as the usual
arithmetic conversions; it will be worth committing them to memory later. The full set
of rules is described in Section 2.8
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html];
for the moment, we will investigate only the ones that involve mixing float, double
and long double to see if they make sense.

The only time that the conversions are needed is when two different types are mixed
in an expression, as in the example below:

int f(void){

The C Book — Real types http://publications.gbdirect.co.uk/c_book/chapter2/rea...

2 of 4 21-02-2007 19:10

 float f_var;

 double d_var;

 long double l_d_var;

 f_var = 1; d_var = 1; l_d_var = 1;

 d_var = d_var + f_var;

 l_d_var = d_var + f_var;

 return(l_d_var);

}

Example 2.1

There are a lot of forced conversions in that example. Getting the easiest of them out
of the way first, let's look at the assignments of the constant value 1 to each of the
variables. As the section on constants will point out, that 1 has type int, i.e. it is an
integer, not a real constant. The assignment converts the integer value to the
appropriate real type, which is easy to cope with.

The interesting conversions come next. The first of them is on the line

d_var = d_var + f_var;

What is the type of the expression involving the + operator? The answer is easy
when you know the rules. Whenever two different real types are involved in an
expression, the lower precision type is first implicitly converted to the higher precision
type and then the arithmetic is performed at that precision. The example involves
both a double and a float, so the value of f_var is converted to type double
and is then added to the value of the double d_var. The result of the expression is
naturally of type double too, so it is clearly of the correct type to assign to d_var.

The second of the additions is a little bit more complicated, but still perfectly O.K.
Again, the value of f_var is converted and the arithmetic performed with the
precision of double, forming the sum of the two variables. Now there's a problem.
The result (the sum) is double, but the assignment is to a long double. Once
again the obvious procedure is to convert the lower precision value to the higher one,
which is done, and then make the assignment.

So we've taken the easy ones. The difficult thing to see is what to do when forced to
assign a higher precision result to a lower precision destination. In those cases it may
be necessary to lose precision, in a way specified by the implementation. Basically,
the implementation must specify whether and in what way it rounds or truncates.
Even worse, the destination may be unable to hold the value at all. The Standard
says that in these cases loss of precision may occur; if the destination is unable to
hold the necessary value—say by attempting to add the largest representable
number to itself—then the behaviour is undefined, your program is faulty and you can
make no predictions whatsoever about any subsequent behaviour.

It is no mistake to re-emphasize that last statement. What the Standard means by
undefined behaviour is exactly what it says. Once a program's behaviour has entered
the undefined region, absolutely anything can happen. The program might be
stopped by the operating system with an appropriate message, or just as likely
nothing observable would happen and the program be allowed to continue with an
erroneous value stored in the variable in question. It is your responsibility to prevent
your program from exhibiting undefined behaviour. Beware!

Summary of real arithmatic

Arithmetic with any two real types is done at the highest precision of the
members involved.
Assignment involves loss of precision if the receiving type has a lower precision
than the value being assigned to it.

The C Book — Real types http://publications.gbdirect.co.uk/c_book/chapter2/rea...

3 of 4 21-02-2007 19:10

Further conversions are often implied when expressions mix other types, but
they have not been described yet.

2.6.1. Printing real numbers

The usual output function, printf, can be used to format real numbers and print
them. There are a number of ways to format these numbers, but we'll stick to just one
for now. Table 2.4 below shows the appropriate format description for each of the
real types.

Type Format

float %f

double %f

long double %lf

Table 2.4. Format codes for real numbers

Here's an example to try:

#include <stdio.h>

#include <stdlib.h>

#define BOILING 212 /* degrees Fahrenheit */

main(){

 float f_var; double d_var; long double l_d_var;

 int i;

 i = 0;

 printf("Fahrenheit to Centigrade\n");

 while(i <= BOILING){

 l_d_var = 5*(i-32);

 l_d_var = l_d_var/9;

 d_var = l_d_var;

 f_var = l_d_var;

 printf("%d %f %f %lf\n", i,

 f_var, d_var, l_d_var);

 i = i+1;

 }

 exit(EXIT_SUCCESS);

}

Example 2.2

Try that example on your own computer to see what results you get.

Exercise 2.10. Which type of variable can hold the largest range of values?

Exercise 2.11. Which type of variable can store values to the greatest precision?

Exercise 2.12. Are there any problems possible when assigning a float or double
to a double or long double?

Exercise 2.13. What could go wrong when assigning, say, a long double to a
double?

Exercise 2.14. What predictions can you make about a program showing ‘undefined
behaviour’?

Previous section

The C Book — Real types http://publications.gbdirect.co.uk/c_book/chapter2/rea...

4 of 4 21-02-2007 19:10

[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/integral_types.html]

The C Book — Integral types http://publications.gbdirect.co.uk/c_book/chapter2/int...

1 of 5 21-02-2007 19:10

2.7. Integral types

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter2/integral_types.html.

The real types were the easy ones. The rules for the integral types are more
complicated, but still tolerable, and these rules really should be learnt. Fortunately,
the only types used in C for routine data storage are the real and integer types, or
structures and arrays built up from them. C doesn't have special types for character
manipulation or the handling of logical (boolean) quantities, but uses the integral
types instead. Once you know the rules for the reals and the integers you know them
all.

We will start by looking at the various types and then the conversion rules.

2.7.1. Plain integers

There are two types (often called ‘flavours’) of integer variables. Other types can be
built from these, as we'll see, but the plain undecorated ints are the base. The
most obvious of the pair is the ‘signed’ int, the less obvious is its close relative, the
unsigned int. These variables are supposed to be stored in whatever is the most
convenient unit for the machine running your program. The int is the natural choice
for undemanding requirements when you just need a simple integral variable, say as
a counter in a short loop. There isn't any guarantee about the number of bits that an
int can hold, except that it will always be 16 or more. The standard header file
<limits.h> details the actual number of bits available in a given implementation.

Curiously, Old C had no guarantee whatsoever about the length of an int, but
consensus and common practice has always assumed at least 16 bits.

Actually, <limits.h> doesn't quite specify a number of bits, but gives maximum
and minimum values for an int instead. The values it gives are 32767 and -32767
which implies 16 bits or more, whether ones or twos complement arithmetic is used.
Of course there is nothing to stop a given implementation from providing a greater
range in either direction.

The range specified in the Standard for an unsigned int is 0 to at least 65535,
meaning that it cannot be negative. More about these shortly.

If you aren't used to thinking about the number of bits in a given variable, and are
beginning to get worried about the portability implications of this apparently
machine-dependent concern for the number of bits, then you're doing the right thing.
C takes portability seriously and actually bothers to tell you what values and ranges
are guaranteed to be safe. The bitwise operators encourage you to think about the
number of bits in a variable too, because they give direct access to the bits, which
you manipulate one by one or in groups. Almost paradoxically, the overall result is
that C programmers have a healthy awareness of portability issues which leads to
more portable programs. This is not to say that you can't write C programs that are
horribly non-portable!

2.7.2. Character variables

A bit less obvious than int is the other of the plain integral types, the char. It's

The C Book — Integral types http://publications.gbdirect.co.uk/c_book/chapter2/int...

2 of 5 21-02-2007 19:10

basically just another sort of int, but has a different application. Because so many
C programs do a lot of character handling, it's a good idea to provide a special type
to help, especially if the range provided by an int uses up much more storage than
is needed by characters. The limits file tells us that three things are guaranteed
about char variables: they have at least 8 bits, they can store a value of at
least +127, and the minimum value of a char is zero or lower. This means that the
only guaranteed range is 0–127. Whether or not char variables behave as signed
or unsigned types is implementation defined.

In short, a character variable will probably take less storage than an int and will
most likely be used for character manipulation. It's still an integer type though, and
can be used for arithmetic, as this example shows.

include <limits.h>

include <stdio.h>

include <stdlib.h>

main(){

 char c;

 c = CHAR_MIN;

 while(c != CHAR_MAX){

 printf("%d\n", c);

 c = c+1;

 }

 exit(EXIT_SUCCESS);

}

Example 2.3

Running that program is left as an exercise for the easily amused. If you are
bothered about where CHAR_MIN and CHAR_MAX come from, find limits.h and
read it.

Here's a more enlightening example. It uses character constants, which are formed
by placing a character in single quotes:

'x'

Because of the rules of arithmetic, the type of this sort of constant turns out to be
int, but that doesn't matter since their value is always small enough to assign them
to char variables without any loss of precision. (Unfortunately, there is a related
version where that guarantee does not hold. Ignore it for the moment.) When a
character variable is printed using the %c format with printf, the appropriate
character is output. You can use %d, if you like, to see what integer value is used to
represent the character. Why %d? Because a char is just another integral type.

It's also useful to be able to read characters into a program. The library function
getchar is used for the job. It reads characters from the program's standard input
and returns an int value suitable for storing into a char. The int value is for one
reason only: not only does getchar return all possible character values, but it also
returns an extra value to indicate that end-of-input has been seen. The range of a
char might not be enough to hold this extra value, so the int has to be used.

The following program reads its input and counts the number of commas and full
stops that it sees. On end-of-input, it prints the totals.

#include <stdio.h>

#include <stdlib.h>

main(){

The C Book — Integral types http://publications.gbdirect.co.uk/c_book/chapter2/int...

3 of 5 21-02-2007 19:10

 int this_char, comma_count, stop_count;

 comma_count = stop_count = 0;

 this_char = getchar();

 while(this_char != EOF){

 if(this_char == '.')

 stop_count = stop_count+1;

 if(this_char == ',')

 comma_count = comma_count+1;

 this_char = getchar();

 }

 printf("%d commas, %d stops\n", comma_count,

 stop_count);

 exit(EXIT_SUCCESS);

}

Example 2.4

The two features of note in that example were the multiple assignment to the two
counters and the use of the defined constant EOF. EOF is the value returned by
getchar on end of input (it stands for End Of File), and is defined in <stdio.h>.
The multiple assignment is a fairly common feature of C programs.

Another example, perhaps. This will either print out the whole lower case alphabet, if
your implementation has its characters stored consecutively, or something even
more interesting if they aren't. C doesn't make many guarantees about the ordering
of characters in internal form, so this program produces non-portable results!

#include <stdio.h>

#include <stdlib.h>

main(){

 char c;

 c = 'a';

 while(c <= 'z'){

 printf("value %d char %c\n", c, c);

 c = c+1;

 }

 exit(EXIT_SUCCESS);

}

Example 2.5

Yet again this example emphasizes that a char is only another form of integer
variable and can be used just like any other form of variable. It is not a ‘special’ type
with its own rules.

The space saving that a char offers when compared to an int only becomes
worthwhile if a lot of them are being used. Most character-processing operations
involve the use of not just one or two character variables, but large arrays of them.
That's when the saving can become noticeable: imagine an array of 1024 ints. On
a lot of common machines that would eat up 4096 8-bit bytes of storage, assuming
the common length of 4 bytes per int. If the computer architecture allows it to be
done in a reasonably efficient way, the C implementor will probably have arranged
for char variables to be packed one per byte, so the array would only use
1024 bytes and the space saving would be 3072 bytes.

Sometimes it doesn't matter whether or not a program tries to save space;
sometimes it does. At least C gives you the option of choosing an appropriate type.

The C Book — Integral types http://publications.gbdirect.co.uk/c_book/chapter2/int...

4 of 5 21-02-2007 19:10

2.7.3. More complicated types

The last two types were simple, in both their declaration and subsequent use. For
serious systems programming they just aren't adequate in the precision of control
over storage that they provide and the behaviour that they follow. To correct this
problem, C provides extra forms of integral types, split into the categories of signed
and unsigned. (Although both these terms are reserved words, they will also be
used as adjectives.) The difference between the two types is obvious. Signed types
are those that are capable of being negative, the unsigned types cannot be negative
at any time. Unsigned types are usually used for one of two reasons: to get an extra
bit of precision, or when the concept of being negative is simply not present in the
data that is being represented. The latter is by far the better reason for choosing
them.

Unsigned types also have the special property of never overflowing in arithmetic.
Adding 1 to a signed variable that already contains the maximum possible positive
number for its type will result in overflow, and the program's behaviour becomes
undefined. That can never happen with unsigned types, because they are defined to
work ‘modulo one greater than the maximum number that they can hold’. What this
means is best illustrated by example:

#include <stdio.h>

#include <stdlib.h>

main(){

 unsigned int x;

 x = 0;

 while(x >= 0){

 printf("%u\n", x);

 x = x+1;

 }

 exit(EXIT_SUCCESS);

}

Example 2.6

Assuming that the variable x is stored in 16 bits, then its range of values will be
0–65535 and that sequence will be printed endlessly. The program can't terminate:
the test

x >= 0

must always be true for an unsigned variable.

For both the signed and unsigned integral types there are three subtypes: short,
ordinary and long. Taking those into account, here is a list of all of the possible
integral types in C, except for the character types:

unsigned short int

unsigned int

unsigned long int

signed short int

signed int

signed long int

In the last three, the signed keyword is unnecessary because the int types are
signed types anyway: you have to say unsigned to get anything different. It's also
permissible, but not recommended, to drop the int keyword from any of those
declarations provided that there is at least one other keyword present—the int will

The C Book — Integral types http://publications.gbdirect.co.uk/c_book/chapter2/int...

5 of 5 21-02-2007 19:10

be ‘understood’ to be present. For example long is equivalent to signed long
int. The long and short kinds give you more control over the amount of space used
to store variables. Each has its own minimum range specified in <limits.h> which
in practice means at least 16 bits in a short and an int, and at least 32 bits in a
long, whether signed or unsigned. As always, an implementation can choose to
give you more bits than the minimum if it wants to. The only restriction is that the
limits must be equalled or bettered, and that you don't get more bits in a shorter type
than a longer one (not an unreasonable rule).

The only character types are the signed char and the unsigned char. The
difference between char and int variables is that, unless otherwise stated, all
ints are signed. The same is not true for chars, which are signed or unsigned
depending on the implementor's choice; the choice is presumably taken on efficiency
grounds. You can of course explicitly force signed or unsignedness with the right
keyword. The only time that it is likely to matter is if you are using character
variables as extra short shorts to save more space.

Summary of integral types

The integral types are the short, long, signed, unsigned and plain ints.
The commonest is the ordinary int, which is signed unless declared not to be.
The char variables can be made signed or unsigned, as you prefer, but in the
absence of indications to the contrary, they will be allocated the most efficient
type.

2.7.4. Printing the integral types

Once again you can use printf to print these various types. Character variables
work exactly the same way that the other integral variables do, so you can use the
standard format letters to print their contents—although the actual numbers stored in
them are not likely to be very interesting. To see their contents interpreted as
characters, use %c as was done earlier. All of the integral types can be printed as if
they were signed decimal numbers by using the %d format, or %ld for long types.
Other useful formats are shown in Table 2.5; notice that in every case a letter ‘l’ is
put in front of the normal format letter if a long is to be printed. That's not just there
to get the right result printed: the behaviour of printf is undefined if the wrong
format is given.

Format Use with

%c char (in character form)

%d decimal signed int, short, char

%u decimal unsigned int, unsigned short, unsigned char

%x hexadecimal int, short, char

%o octal int, short, char

%ld decimal signed long

%lu %lx %lo as above, but for longs

Table 2.5. More format codes

A full description of the format codes that you can use with printf is given in
Chapter 9 [http://publications.gbdirect.co.uk/c_book/chapter9/].

Previous section [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next
section
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html]

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

1 of 16 21-02-2007 19:11

2.8. Expressions and arithmetic

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html.

Expressions in C can get rather complicated because of the number of different types
and operators that can be mixed together. This section explains what happens, but can
get deep at times. You may need to re-read it once or twice to make sure that you have
understood all of the points.

First, a bit of terminology. Expressions in C are built from combinations of operators
and operands, so for example in this expression

x = a+b*(-c)

we have the operators =, + * and -. The operands are the variables x, a, b and c. You
will also have noticed that parentheses can be used for grouping sub-expressions such
as the -c. Most of C's unusually rich set of operators are either binary operators, which
take two operands, or unary operators, which take only one. In the example, the - was
being used as a unary operator, and is performing a different task from the binary
subtraction operator which uses the same - symbol. It may seem like hair-splitting to
argue that they are different operators when the job that they do seems conceptually
the same, or at least similar. It's worth doing though, because, as you will find later,
some of the operators have both a binary and a unary form where the two meanings
bear no relation to each other; a good example would be the binary multiplication
operator *, which in its unary form means indirection via a pointer variable!

A peculiarity of C is that operators may appear consecutively in expressions without the
need for parentheses to separate them. The previous example could have been written
as

x = a+b*-c;

and still have been a valid expression. Because of the number of operators that C has,
and because of the strange way that assignment works, the precedence of the
operators (and their associativity) is of much greater importance to the C programmer
than in most other languages. It will be discussed fully after the introduction of the
important arithmetic operators.

Before that, we must investigate the type conversions that may occur.

2.8.1. Conversions

C allows types to be mixed in expressions, and permits operations that result in type
conversions happening implicitly. This section describes the way that the conversions
must occur. Old C programmers should read this carefully, because the rules have
changed — in particular, the promotion of float to double, the promotions of short
integral types and the introduction of value preserving rules are genuinely different in
Standard C.

Although it isn't directly relevant at the moment, we must note that the integral and the
floating types are jointly known as arithmetic types and that C also supports other types
(notably pointer types). The rules that we discuss here are appropriate only in
expressions that have arithmetic types throughout - additional rules come into play

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

2 of 16 21-02-2007 19:11

when expressions mix pointer types with arithmetic types and these are discussed
much later.

There are various types of conversion in arithmetic expressions:

The integral promotions
Conversions between integral types
Conversions between floating types
Conversions between floating and integral types

Conversions between floating (real) types were discussed in Section 2.8
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html];
what we do next is to specify how the other conversions are to be performed, then look
at when they are required. You will need to learn them by heart if you ever intend to
program seriously in C.

The Standard has, among some controversy, introduced what are known as value
preserving rules, where a knowledge of the target computer is required to work out
what the type of an expression will be. Previously, whenever an unsigned type occurred
in an expression, you knew that the result had to be unsigned too. Now, the result will
only be unsigned if the conversions demand it; in many cases the result will be an
ordinary signed type.

The reason for the change was to reduce some of the surprises possible when you mix
signed and unsigned quantities together; it isn't always obvious when this has
happened and the intention is to produce the ‘more commonly required’ result.

2.8.1.1. Integral promotions

No arithmetic is done by C at a precision shorter than int, so these conversions are
implied almost whenever you use one of the objects listed below in an expression. The
conversion is defined as follows:

Whenever a short or a char (or a bitfield or enumeration type which we haven't
met yet) has the integral promotions applied

if an int can hold all of the values of the original type then the value is
converted to int
otherwise, the conversion will be to unsigned int

This preserves both the value and the sign of the original type. Note that whether a
plain char is treated as signed or unsigned is implementation dependent.

These promotions are applied very often—they are applied as part of the usual
arithmetic conversions, and to the operands of the shift, unary +, -, and ~ operators.
They are also applied when the expression in question is an argument to a function but
no type information has been provided as part of a function prototype, as explained in
Chapter 4 [http://publications.gbdirect.co.uk/c_book/chapter4/].

2.8.1.2. Signed and unsigned integers

A lot of conversions between different types of integers are caused by mixing the
various flavours of integers in expressions. Whenever these happen, the integral
promotions will already have been done. For all of them, if the new type can hold all of
the values of the old type, then the value remains unchanged.

When converting from a signed integer to an unsigned integer whose length is equal to
or longer than the original type, then if the signed value was nonnegative, its value is
unchanged. If the value was negative, then it is converted to the signed form of the
longer type and then made unsigned by conceptually adding it to one greater than the
maximum that can be held in the unsigned type. In a twos complement system, this
preserves the original bit-pattern for positive numbers and guarantees ‘sign-extension’

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

3 of 16 21-02-2007 19:11

of negative numbers.

Whenever an integer is converted into a shorter unsigned type, there can be no
‘overflow’, so the result is defined to be ‘the non-negative remainder on division by the
number one greater than the largest unsigned number that can be represented in the
shorter type’. That simply means that in a two's complement environment the low-order
bits are copied into the destination and the high-order ones discarded.

Converting an integer to a shorter signed type runs into trouble if there is not enough
room to hold the value. In that case, the result is implementation defined (although
most old-timers would expect that simply the low-order bit pattern is copied).

That last item could be a bit worrying if you remember the integral promotions, because
you might interpret it as follows—if I assign a char to another char, then the one on
the right is first promoted to one of the kinds of int; could doing the assignment result
in converting (say) an int to a char and provoking the ‘implementation defined’
clause? The answer is no, because assignment is specified not to involve the integral
promotions, so you are safe.

2.8.1.3. Floating and integral

Converting a floating to an integral type simply throws away any fractional part. If the
integral type can't hold the value that is left, then the behaviour is undefined—this is a
sort of overflow.

As has already been said, going up the scale from float to double to long double,
there is no problem with conversions—each higher one in the list can hold all the
values of the lower ones, so the conversion occurs with no loss of information.

Converting in the opposite direction, if the value is outside the range that can be held,
the behaviour is undefined. If the value is in range, but can't be held exactly, then the
result is one of the two nearest values that can be held, chosen in a way that the
implementation defines. This means that there will be a loss of precision.

2.8.1.4. The usual arithmetic conversions

A lot of expressions involve the use of subexpressions of mixed types together with
operators such as +, * and so on. If the operands in an expression have different types,
then there will have to be a conversion applied so that a common resulting type can be
established; these are the conversions:

If either operand is a long double, then the other one is converted to long
double and that is the type of the result.
Otherwise, if either operand is a double, then the other one is converted to
double, and that is the type of the result.
Otherwise, if either operand is a float, then the other one is converted to
float, and that is the type of the result.
Otherwise the integral promotions are applied to both operands and the following
conversions are applied:

If either operand is an unsigned long int, then the other one is
converted to unsigned long int, and that is the type of the result.
Otherwise, if either operand is a long int, then the other one is converted
to long int, and that is the type of the result.
Otherwise, if either operand is an unsigned int, then the other one is
converted to unsigned int, and that is the type of the result.
Otherwise, both operands must be of type int, so that is the type of the
result.

The Standard contains a strange sentence: ‘The values of floating operands and of the
results of floating expressions may be represented in greater precision and range than
that required by the type; the types are not changed thereby’. This is in fact to allow the

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

4 of 16 21-02-2007 19:11

Old C treatment of floats. In Old C, float variables were automatically promoted to
double, the way that the integral promotions promote char to int. So, an expression
involving purely float variables may be done as if they were double, but the type of
the result must appear to be float. The only effect is likely to be on performance and
is not particularly important to most users.

Whether or not conversions need to be applied, and if so which ones, is discussed at
the point where each operator is introduced.

In general, the type conversions and type mixing rules don't cause a lot of trouble, but
there is one pitfall to watch out for. Mixing signed and unsigned quantities is fine until
the signed number is negative; then its value can't be represented in an unsigned
variable and something has to happen. The standard says that to convert a negative
number to unsigned, the largest possible number that can be held in the unsigned plus
one is added to the negative number; that is the result. Because there can be no
overflow in an unsigned type, the result always has a defined value. Taking a 16-bit
int for an example, the unsigned version has a range of 0–65535. Converting a
signed value of -7 to this type involves adding 65536, resulting in 65529. What is
happening is that the Standard is enshrining previous practice, where the bit pattern in
the signed number is simply assigned to the unsigned number; the description in the
standard is exactly what would happen if you did perform the bit pattern assignment on
a two's complement computer. The one's complement implementations are going to
have to do some real work to get the same result.

Putting it plainly, a small magnitude negative number will result in a large positive
number when converted to unsigned. If you don't like it, suggest a better solution—it is
plainly a mistake to try to assign a negative number to an unsigned variable, so it's your
own fault.

Well, it's easy to say ‘don't do it’, but it can happen by accident and the results can be
very surprising. Look at this example.

#include <stdio.h>
#include <stdlib.h>
main(){
 int i;
 unsigned int stop_val;

 stop_val = 0;
 i = -10;

 while(i <= stop_val){
 printf("%d\n", i);
 i = i + 1;
 }
 exit(EXIT_SUCCESS);
}

Example 2.7

You might expect that to print out the list of values from -10 to 0, but it won't. The
problem is in the comparison. The variable i, with a value of -10, is being compared
against an unsigned 0. By the rules of arithmetic (check them) we must convert both
types to unsigned int first, then make the comparison. The -10 becomes at
least 65526 (see <limits.h>) when it's converted, and is plainly somewhat larger
than 0, so the loop is never executed. The moral is to steer clear of unsigned numbers
unless you really have to use them, and to be perpetually on guard when they are
mixed with signed numbers.

2.8.1.5. Wide characters

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

5 of 16 21-02-2007 19:11

The Standard, as we've already said, now makes allowances for extended character
sets. You can either use the shift-in shift-out encoding method which allows the
multibyte charactes to be stored in ordinary C strings (which are really arrays of chars,
as we explore later), or you can use a representation that uses more than one byte of
storage per character for every character. The use of shift sequences only works if you
process the characters in strict order; it is next to useless if you want to create an array
of characters and access them in non-sequential order, since the actual index of each
char in the array and the logical index of each of the encoded characters are not easily
determined. Here's the illustration we used before, annotated with the actual and the
logical array indexes:

0 1 2 3 4 5 6 7 8 9 (actual array index)
a b c <SI> a b g <SO> x y
0 1 2 3 4 5 6 7 (logical index)

We're still in trouble even if we do manage to use the index of 5 to access the ‘correct’
array entry, since the value retrieved is indistinguishable from the value that encodes
the letter ‘g’ anyhow. Clearly, a better approach for this sort of thing is to come up with
a distinct value for all of the characters in the character set we are using, which may
involve more bits than will fit into a char, and to be able to store each one as a separate
item without the use of shifts or other position-dependent techniques. That is what the
wchar_t type is for.

Although it is always a synonym for one of the other integral types, wchar_t (whose
definition is found in <stddef.h>) is defined to be the implementation-dependent type
that should be used to hold extended characters when you need an array of them. The
Standard makes the following guarantees about the values in a wide character:

A wchar_t can hold distinct values for each member of the largest character set
supported by the implementation.
The null character has the value of zero.
Each member of the basic character set (see Section 2.2.1
[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet_of_c.html#section-1])
is encoded in a wchar_t with the same value as it has in a char.

There is further support for this method of encoding characters. Strings, which we have
already seen, are implemented as arrays of char, even though they look like this:

"a string"

To get strings whose type is wchar_t, simply prefix a string with the letter L. For
example:

L"a string"

In the two examples, it is very important to understand the differences. Strings are
implemented as arrays and although it might look odd, it is entirely permissible to use
array indexing on them:

"a string"[4]
L"a string"[4]

are both valid expressions. The first results in an expression whose type is char and
whose value is the internal representation of the letter ‘r’ (remember arrays index from
zero, not one). The second has the type wchar_t and also has the value of the
internal representation of the letter ‘r’.

It gets more interesting if we are using extended characters. If we use the notation <a>,
, and so on to indicate ‘additional’ characters beyond the normal character set
which are encoded using some form of shift technique, then these examples show the

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

6 of 16 21-02-2007 19:11

problems.

"abc<a>"[3]
L"abc<a>"[3]

The second one is easiest: it has a type of wchar_t and the appropriate internal
encoding for whatever <a> is supposed to be—say the Greek letter alpha. The first one
is unpredictable. Its type is unquestionably char, but its value is probably the value of
the ‘shift-in’ marker.

As with strings, there are also wide character constants.

'a'

has type char and the value of the encoding for the letter ‘a’.

L'a'

is a constant of type wchar_t. If you use a multibyte character in the first one, then you
have the same sort of thing as if you had written

'xy'

—multiple characters in a character constant (actually, this is valid but means
something funny). A single multibyte character in the second example will simply be
converted into the appropriate wchar_t value.

If you don't understand all the wide character stuff, then all we can say is that we've
done our best to explain it. Come back and read it again later, when it might suddenly
click. In practice it does manage to address the support of extended character sets in C
and once you're used to it, it makes a lot of sense.

Exercise 2.15. Assuming that chars, ints and longs are respectively 8, 16
and 32 bits long, and that char defaults to unsigned char on a given system, what
is the resulting type of expressions involving the following combinations of variables,
after the usual arithmetic conversions have been applied?

Simply signed char.a.
Simply unsigned char.b.
int, unsigned int.c.
unsigned int, long.d.
int, unsigned long.e.
char, long.f.
char, float.g.
float, float.h.
float, long double.i.

2.8.1.6. Casts

From time to time you will find that an expression turns out not to have the type that you
wanted it to have and you would like to force it to have a different type. That is what
casts are for. By putting a type name in parentheses, for example

(int)

you create a unary operator known as a cast. A cast turns the value of the expression
on its right into the indicated type. If, for example, you were dividing two integers a/b
then the expression would use integer division and discard any remainder. To force the
fractional part to be retained, you could either use some intermediate float variables, or
a cast. This example does it both ways.

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

7 of 16 21-02-2007 19:11

#include <stdio.h>
#include <stdlib.h>

/*
* Illustrates casts.
* For each of the numbers between 2 and 20,
* print the percentage difference between it and the one
* before
*/
main(){
 int curr_val;
 float temp, pcnt_diff;

 curr_val = 2;
 while(curr_val <= 20){
 /*
 * % difference is
 * 1/(curr_val)*100
 */
 temp = curr_val;
 pcnt_diff = 100/temp;
 printf("Percent difference at %d is %f\n",
 curr_val, pcnt_diff);
 /*
 * Or, using a cast:
 */
 pcnt_diff = 100/(float)curr_val;
 printf("Percent difference at %d is %f\n",
 curr_val, pcnt_diff);
 curr_val = curr_val + 1;
 }
 exit(EXIT_SUCCESS);
}

Example 2.8

The easiest way to remember how to write a cast is to write down exactly what you
would use to declare a variable of the type that you want. Put parentheses around the
entire declaration, then delete the variable name; that gives you the cast. Table 2.6
shows a few simple examples—some of the types shown will be new to you, but it's the
complicated ones that illustrate best how casts are written. Ignore the ones that you
don't understand yet, because you will be able to use the table as a reference later.

Declaration Cast Type

int x; (int) int

float f; (float) float

char x[30]; (char [30]) array of char

int *ip; (int *) pointer to int

int (*f)(); (int (*)()) pointer to function returning int

Table 2.6. Casts

2.8.2. Operators

2.8.2.1. The multiplicative operators

Or, put another way, multiplication *, division / and the remainder operator %.

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

8 of 16 21-02-2007 19:11

Multiplication and division do what is expected of them for both real and integral types,
with integral division producing a truncated result. The truncation is towards zero. The
remainder operator is only defined to work with integral types, because the division of
real numbers supposedly doesn't produce a remainder.

If the division is not exact and neither operand is negative, the result of / is positive and
rounded toward zero—to get the remainder, use %. For example,

9/2 == 4
9%2 == 1

If either operand is negative, the result of / may be the nearest integer to the true result
on either side, and the sign of the result of % may be positive or negative. Both of these
features are implementation defined.

It is always true that the following expression is equal to zero:

(a/b)*b + a%b - a

unless b is zero.

The usual arithmetic conversions are applied to both of the operands.

2.8.2.2. Additive operators

Addition + and subtraction - also follow the rules that you expect. The binary operators
and the unary operators both have the same symbols, but rather different meanings.
For example, the expressions a+b and a-b both use a binary operator (the + or -
operators), and result in addition or subtraction. The unary operators with the same
symbols would be written +b or -b.

The unary minus has an obvious function—it takes the negative value of its operand;
what does the unary plus do? In fact the answer is almost nothing. The unary plus is a
new addition to the language, which balances the presence of the unary minus, but
doesn't have any effect on the value of the expression. Very few Old C users even
noticed that it was missing.

The usual arithmetic conversions are applied to both of the operands of the binary
forms of the operators. Only the integral promotions are performed on the operands of
the unary forms of the operators.

2.8.2.3. The bitwise operators

One of the great strengths of C is the way that it allows systems programmers to do
what had, before the advent of C, always been regarded as the province of the
assembly code programmer. That sort of code was by definition highly non-portable. As
C demonstrates, there isn't any magic about that sort of thing, and into the bargain it
turns out to be surprisingly portable. What is it? It's what is often referred to as
‘bit-twiddling’—the manipulation of individual bits in integer variables. None of the
bitwise operators may be used on real operands because they aren't considered to
have individual or accessible bits.

There are six bitwise operators, listed in Table 2.7, which also shows the arithmetic
conversions that are applied.

Operator Effect Conversions

& bitwise AND usual arithmetic conversions

| bitwise OR usual arithmetic conversions

^ Bitwise XOR usual arithmetic conversions

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

9 of 16 21-02-2007 19:11

Operator Effect Conversions

<< left shift integral promotions

>> right shift integral promotions

~ one's complement integral promotions

Table 2.7. Bitwise operators

Only the last, the one's complement, is a unary operator. It inverts the state of every bit
in its operand and has the same effect as the unary minus on a one's complement
computer. Most modern computers work with two's complement, so it isn't a waste of
time having it there.

Illustrating the use of these operators is easier if we can use hexadecimal notation
rather than decimal, so now is the time to see hexadecimal constants. Any number
written with 0x at its beginning is interpreted as hexadecimal; both 15 and 0xf (or 0XF)
mean the same thing. Try running this or, better still, try to predict what it does first and
then try running it.

#include <stdio.h>
#include <stdlib.h>

main(){
 int x,y;
 x = 0; y = ~0;

 while(x != y){
 printf("%x & %x = %x\n", x, 0xff, x&0xff);
 printf("%x | %x = %x\n", x, 0x10f, x|0x10f);
 printf("%x ^ %x = %x\n", x, 0xf00f, x^0xf00f);
 printf("%x >> 2 = %x\n", x, x >> 2);
 printf("%x << 2 = %x\n", x, x << 2);
 x = (x << 1) | 1;
 }
 exit(EXIT_SUCCESS);
}

Example 2.9

The way that the loop works in that example is the first thing to study. The controlling
variable is x, which is initialized to zero. Every time round the loop it is compared
against y, which has been set to a word-length independent pattern of all 1s by taking
the one's complement of zero. At the bottom of the loop, x is shifted left once and has 1
ORed into it, giving rise to a sequence that starts 0, 1, 11, 111, … in binary.

For each of the AND, OR, and XOR (exclusive OR) operators, x is operated on by the
operator and some other interesting operand, then the result printed.

The left and right shift operators are in there too, giving a result which has the type and
value of their left-hand operand shifted in the required direction a number of places
specified by their right-hand operand; the type of both of the operands must be integral.
Bits shifted off either end of the left operand simply disappear. Shifting by more bits
than there are in a word gives an implementation dependent result.

Shifting left guarantees to shift zeros into the low-order bits.

Right shift is fussier. Your implementation is allowed to choose whether, when shifting
signed operands, it performs a logical or arithmetic right shift. This means that a logical
shift shifts zeros into the most significant bit positions; an arithmetic shift copies the
current contents of the most significant bit back into itself. The position is clearer if an
unsigned operand is right shifted, because there is no choice: it must be a logical shift.
For that reason, whenever right shift is being used, you would expect to find that the

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

10 of 16 21-02-2007 19:11

thing being shifted had been declared to be unsigned, or cast to unsigned for the shift,
as in the example:

int i,j;
i = (unsigned)j >> 4;

The second (right-hand) operand of a shift operator does not have to be a constant;
any integral expression is legal. Importantly, the rules involving mixed types of
operands do not apply to the shift operators. The result of the shift has the same type
as the thing that got shifted (after the integral promotions), and depends on nothing
else.

Now something different; one of those little tricks that C programmers find helps to write
better programs. If for any reason you want to form a value that has 1s in all but its
least significant so-many bits, which are to have some other pattern in them, you don't
have to know the word length of the machine. For example, to set the low order bits of
an int to 0x0f0 and all the other bits to 1, this is the way to do it:

int some_variable;
some_variable = ~0xf0f;

The one's complement of the desired low-order bit pattern has been one's
complemented. That gives exactly the required result and is completely independent of
word length; it is a very common sight in C code.

There isn't a lot more to say about the bit-twiddling operators, and our experience of
teaching C has been that most people find them easy to learn. Let's move on.

2.8.2.4. The assignment operators

No, that isn't a mistake, ‘operators’ was meant to be plural. C has several assignment
operators, even though we have only seen the plain = so far. An interesting thing about
them is that they are all like the other binary operators; they take two operands and
produce a result, the result being usable as part of an expression. In this statement

x = 4;

the value 4 is assigned to x. The result has the type of x and the value that was
assigned. It can be used like this

a = (x = 4);

where a will now have the value 4 assigned to it, after x has been assigned to. All of
the simpler assignments that we have seen until now (except for one example) have
simply discarded the resulting value of the assignment, even though it is produced.

It's because assignment has a result that an expression like

a = b = c = d;

works. The value of d is assigned to c, the result of that is assigned to b and so on. It
makes use of the fact that expressions involving only assignment operators are
evaluated from right to left, but is otherwise like any other expression. (The rules
explaining what groups right to left and vice versa are given in Table 2.9.)

If you look back to the section describing ‘conversions’, there is a description of what
happens if you convert longer types to shorter types: that is what happens when the
left-hand operand of an assignment is shorter than the right-hand one. No conversions
are applied to the right-hand operand of the simple assignment operator.

The remaining assignment operators are the compound assignment operators. They
allow a useful shorthand, where an assignment containing the same left- and right-hand

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

11 of 16 21-02-2007 19:11

sides can be compressed; for example

x = x + 1;

can be written as

x += 1;

using one of the compound assignment operators. The result is the same in each case.
It is a useful thing to do when the left-hand side of the operator is a complicated
expression, not just a variable; such things occur when you start to use arrays and
pointers. Most experienced C programmers tend to use the form given in the second
example because somehow it ‘feels better’, a sentiment that no beginner has ever been
known to agree with. Table 2.8 lists the compound assignment operators; you will see
them used a lot from now on.

*= /= %=

+= -=

&= |= ^=

>>= <<=

Table 2.8. Compound assignment operators

In each case, arithmetic conversions are applied as if the expression had been written
out in full, for example as if a+=b had been written a=a+b.

Reiterating: the result of an assignment operator has both the value and the type of the
object that was assigned to.

2.8.2.5. Increment and decrement operators

It is so common to simply add or subtract 1 in an expression that C has two special
unary operators to do the job. The increment operator ++ adds 1, the decrement --
subtracts 1. They are used like this:

x++;
++x;
x--;
--x;

where the operator can come either before or after its operand. In the cases shown it
doesn't matter where the operator comes, but in more complicated cases the difference
has a definite meaning and must be used properly.

Here is the difference being used.

#include <stdio.h>
#include <stdlib.h>
main(){
 int a,b;
 a = b = 5;
 printf("%d\n", ++a+5);
 printf("%d\n", a);
 printf("%d\n", b++ +5);
 printf("%d\n", b);
 exit(EXIT_SUCCESS);
}

Example 2.10

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

12 of 16 21-02-2007 19:11

The results printed were

11
6
10
6

The difference is caused by the different positions of the operators. If the inc/decrement
operator appears in front of the variable, then its value is changed by one and the new
value is used in the expression. If the operator comes after the variable, then the old
value is used in the expression and the variable's value is changed afterwards.

C programmers never add or subtract one with statements like this

x += 1;

they invariably use one of

x++; /* or */ ++x;

as a matter of course. A warning is in order though: it is not safe to use a variable more
than once in an expression if it has one of these operators attached to it. There is no
guarantee of when, within an expression, the affected variable will actually change
value. The compiler might choose to ‘save up’ all of the changes and apply them at
once, so an expression like this

y = x++ + --x;

does not guarantee to assign twice the original value of x to y. It might be evaluated as
if it expanded to this instead:

y = x + (x-1);

because the compiler notices that the overall effect on the value of x is zero.

The arithmetic is done exactly as if the full addition expression had been used, for
example x=x+1, and the usual arithmetic conversions apply.

Exercise 2.16. Given the following variable definitions

int i1, i2;
float f1, f2;

How would you find the remainder when i1 is divided by i2?a.
How would you find the remainder when i1 is divided by the value of f1,
treating f1 as an integer?

b.

What can you predict about the sign of the remainders calculated in the previous
two questions?

c.

What meanings can the - operator have?d.
How would you turn off all but the low-order four bits in i1?e.
How would you turn on all the low-order four bits in i1?f.
How would you turn off only the low-order four bits in i1?g.
How would you put into i1 the low-order 8 bits in i2, but swapping the
significance of the lowest four with the next

h.

What is wrong with the following expression?

f2 = ++f1 + ++f1;

i.

2.8.3. Precedence and grouping

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

13 of 16 21-02-2007 19:11

After looking at the operators we have to consider the way that they work together. For
things like addition it may not seem important; it hardly matters whether

a + b + c

is done as

(a + b) + c

or

a + (b + c)

does it? Well, yes in fact it does. If a+b would overflow and c held a value very close
to -b, then the second grouping might give the correct answer where the first would
cause undefined behaviour. The problem is much more obvious with integer division:

a/b/c

gives very different results when grouped as

a/(b/c)

or

(a/b)/c

If you don't believe that, try it with a=10, b=2, c=3. The first gives 10/(2/3); 2/3 in
integer division gives 0, so we get 10/0 which immediately overflows. The second
grouping gives (10/2), obviously 5, which divided by 3 gives 1.

The grouping of operators like that is known as associativity. The other question is one
of precedence, where some operators have a higher priority than others and force
evaluation of sub-expressions involving them to be performed before those with lower
precedence operators. This is almost universal practice in high-level languages, so we
‘know’ that

a + b * c + d

groups as

a + (b * c) + d

indicating that multiplication has higher precedence than addition.

The large set of operators in C gives rise to 15 levels of precedence! Only very boring
people bother to remember them all. The complete list is given in Table 2.9, which
indicates both precedence and associativity. Not all of the operators have been
mentioned yet. Beware of the use of the same symbol for both unary and binary
operators: the table indicates which are which.

Operator Direction Notes

() [] -> . left to right 1

! ~ ++ -- - + (cast) * & sizeof right to left all unary

* / % left to right binary

+ - left to right binary

<< >> left to right binary

< <= > >= left to right binary

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

14 of 16 21-02-2007 19:11

Operator Direction Notes

== != left to right binary

& left to right binary

^ left to right binary

| left to right binary

&& left to right binary

|| left to right binary

?: right to left 2

= += and all combined assignment right to left binary

, left to right binary

1. Parentheses are for expression grouping, not function call.

2. This is unusual. See Section 3.4.1
[http://publications.gbdirect.co.uk/c_book/chapter3/strange_operators.html#section-1].

Table 2.9. Operator precedence and associativity

The question is, what can you do with that information, now that it's there? Obviously
it's important to be able to work out both how to write expressions that evaluate in the
proper order, and also how to read other people's. The technique is this: first, identify
the unary operators and the operands that they refer to. This isn't such a difficult task
but it takes some practice, especially when you discover that operators such as unary *
can be applied an arbitrary number of times to their operands; this expression

a*****b

means a multiplied by something, where the something is an expression involving b
and several unary * operators.

It's not too difficult to work out which are the unary operators; here are the rules.

++ and - are always unary operators.1.
The operator immediately to the right of an operand is a binary operator unless
(1) applies, when the operator to its right is binary.

2.

All operators to the left of an operand are unary unless (2) applies.3.

Because the unary operators have very high precedence, you can work out what they
do before worrying about the other operators. One thing to watch out for is the way
that ++ and -- can be before or after their operands; the expression

a + -b++ + c

has two unary operators applied to b. The unary operators all associate right to left, so
although the - comes first when you read the expression, it really parenthesizes (for
clarity) like this:

a + -(b++) + c

The case is a little clearer if the prefix, rather than the postfix, form of the
increment/decrement operators is being used. Again the order is right to left, but at
least the operators come all in a row.

After sorting out what to do with the unary operators, it's easy to read the expression
from left to right. Every time you see a binary operator, remember it. Look to the right: if
the next binary operator is of a lower precedence, then the operator you just
remembered is part of a subexpression to evaluate before anything else is seen. If the
next operator is of the same precedence, keep repeating the procedure as long as
equal precedence operators are seen. When you eventually find a lower precedence
operator, evaluate the subexpression on the left according to the associativity rules. If a
higher precedence operator is found on the right, forget the previous stuff: the operand

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

15 of 16 21-02-2007 19:11

to the left of the higher precedence operator is part of a subexpression separate from
anything on the left so far. It belongs to the new operator instead.

If that lot isn't clear don't worry. A lot of C programmers have trouble with this area and
eventually learn to parenthesize these expressions ‘by eye’, without ever using formal
rules.

What does matter is what happens when you have fully parenthesized these
expressions. Remember the ‘usual arithmetic conversions’? They explained how you
could predict the type of an expression from the operands involved. Now, even if you
mix all sorts of types in a complicated expression, the types of the subexpressions are
determined only from the the types of the operands in the subexpression. Look at this.

#include <stdio.h>
#include <stdlib.h>

main(){
 int i,j;
 float f;

 i = 5; j = 2;
 f = 3.0;

 f = f + j / i;
 printf("value of f is %f\n", f);
 exit(EXIT_SUCCESS);
}

Example 2.11

The value printed is 3.0000, not 5.0000—which might surprise some, who thought
that because a float was involved the whole statement involving the division would
be done in that real type.

Of course, the division operator had only int types on either side, so the arithmetic was
done as integer division and resulted in zero. The addition had a float and an int on
either side, so the conversions meant that the int was converted to float for the
arithmetic, and that was the correct type for the assignment, so there were no further
conversions.

The previous section on casts showed one way of changing the type of an expression
from its natural one to the one that you want. Be careful though:

(float)(j/i)

would still use integer division, then convert the result to float. To keep the
remainder, you should use

(float)j/i

which would force real division to be used.

2.8.4. Parentheses

C allows you to override the normal effects of precedence and associativity by the use
of parentheses as the examples have illustrated. In Old C, the parentheses had no
further meaning, and in particular did not guarantee anything about the order of
evaluation in expressions like these:

int a, b, c;
a+b+c;

The C Book — Expressions and arithmetic http://publications.gbdirect.co.uk/c_book/chapter2/ex...

16 of 16 21-02-2007 19:11

(a+b)+c;
a+(b+c);

You used to need to use explicit temporary variables to get a particular order of
evaluation—something that matters if you know that there are risks of overflow in a
particular expression, but by forcing the evaluation to be in a certain order you can
avoid it.

Standard C says that evaluation must be done in the order indicated by the precedence
and grouping of the expression, unless the compiler can tell that the result will not be
affected by any regrouping it might do for optimization reasons.

So, the expression a = 10+a+b+5; cannot be rewritten by the compiler as a =
15+a+b; unless it can be guaranteed that the resulting value of a will be the same for
all combinations of initial values of a and b. That would be true if the variables were
both unsigned integral types, or if they were signed integral types but in that particular
implementation overflow did not cause a run-time exception and overflow was
reversible.

2.8.5. Side Effects

To repeat and expand the warning given for the increment operators: it is unsafe to use
the same variable more than once in an expression if evaluating the expression
changes the variable and the new value could affect the result of the expression. This is
because the change(s) may be ‘saved up’ and only applied at the end of the statement.
So f = f+1; is safe even though f appears twice in a value-changing
expression, f++; is also safe, but f = f++; is unsafe.

The problem can be caused by using an assignment, use of the increment or
decrement operators, or by calling a function that changes the value of an external
variable that is also used in the expression. These are generally known as ‘side
effects’. C makes almost no promise that side effects will occur in a predictable order
within a single expression. (The discussion of ‘sequence points’ in Chapter 8
[http://publications.gbdirect.co.uk/c_book/chapter8/] will be of interest if you care about
this.)

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter2/integral_types.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/constants.html]

The C Book — Constants http://publications.gbdirect.co.uk/c_book/chapter2/co...

1 of 4 21-02-2007 19:11

2.9. Constants

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter2/constants.html.

2.9.1. Integer constants

The normal integral constants are obvious: things like 1, 1034 and so on. You can
put l or L at the end of an integer constant to force it to be long. To make the
constant unsigned, one of u or U can be used to do the job.

Integer constants can be written in hexadecimal by preceding the constant with 0x
or 0X and using the upper or lower case letters a, b, c, d, e, f in the usual way.

Be careful about octal constants. They are indicated by starting the number with 0
and only using the digits 0, 1, 2, 3, 4, 5, 6, 7. It is easy to write 015 by accident, or
out of habit, and not to realize that it is not in decimal. The mistake is most common
with beginners, because experienced C programmers already carry the scars.

The Standard has now invented a new way of working out what type an integer
constant is. In the old days, if the constant was too big for an int, it got promoted to
a long (without warning). Now, the rule is that a plain decimal constant will be fitted
into the first in this list

int long unsigned long

that can hold the value.

Plain octal or hexadecimal constants will use this list

int unsigned int long unsigned long

If the constant is suffixed by u or U:

unsigned int unsigned long

If it is suffixed by l or L:

long unsigned long

and finally, if it suffixed by both u or U and l or L, it can only be an unsigned
long.

All that was done to try to give you ‘what you meant’; what it does mean is that it is
hard to work out exactly what the type of a constant expression is if you don't know
something about the hardware. Hopefully, good compilers will warn when a constant
is promoted up to another length and the U or L etc. is not specified.

A nasty bug hides here:

printf("value of 32768 is %d\n", 32768);

On a 16-bit two's complement machine, 32768 will be a long by the rules given

The C Book — Constants http://publications.gbdirect.co.uk/c_book/chapter2/co...

2 of 4 21-02-2007 19:11

above. But printf is only expecting an int as an argument (the %d indicates that).
The type of the argument is just wrong. For the ultimate in safety-conscious
programming, you should cast such cases to the right type:

printf("value of 32768 is %d\n", (int)32768);

It might interest you to note that there are no negative constants; writing -23 is an
expression involving a positive constant and an operator.

Character constants actually have type int (for historical reasons) and are written
by placing a sequence of characters between single quote marks:

'a'

'b'

'like this'

Wide character constants are written just as above, but prefixed with L:

L'a'

L'b'

L'like this'

Regrettably it is valid to have more than one character in the sequence, giving a
machine-dependent result. Single characters are the best from the portability point of
view, resulting in an ordinary integer constant whose value is the machine
representation of the single character. The introduction of extended characters may
cause you to stumble over this by accident; if '<a>' is a multibyte character
(encoded with a shift-in shift-out around it) then '<a>' will be a plain character
constant, but containing several characters, just like the more obvious 'abcde'.
This is bound to lead to trouble in the future; let's hope that compilers will warn about
it.

To ease the way of representing some special characters that would otherwise be
hard to get into a character constant (or hard to read; does ' ' contain a space or a
tab?), there is what is called an escape sequence which can be used instead.
Table 2.10 shows the escape sequences defined in the Standard.

Sequence Represents

\a audible alarm

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\v vertical tab

\\ backslash

\' quote

\" double quote

\? question mark

Table 2.10. C escape sequences

It is also possible to use numeric escape sequences to specify a character in terms
of the internal value used to represent it. A sequence of either \ooo or \xhhhh,
where the ooo is up to three octal digits and hhhh is any number of hexadecimal
digits respectively. A common version of it is '\033', which is used by those who
know that on an ASCII based machine, octal 33 is the ESC (escape) code. Beware
that the hexadecimal version will absorb any number of valid following hexadecimal

The C Book — Constants http://publications.gbdirect.co.uk/c_book/chapter2/co...

3 of 4 21-02-2007 19:11

digits; if you want a string containing the character whose value is hexadecimal ff
followed by a letter f, then the safe way to do it is to use the string joining feature:

"\xff" "f"

The string

"\xfff"

only contains one character, with all three of the fs eaten up in the hexadecimal
sequence.

Some of the escape sequences aren't too obvious, so a brief explanation is needed.
To get a single quote as a character constant you type '\'', to get a question mark
you may have to use '\?'; not that it matters in that example, but to get two of them
in there you can't use '??', because the sequence ??' is a trigraph! You would
have to use '\?\?'. The escape \" is only necessary in strings, which will come
later.

There are two distinct purposes behind the escape sequences. It's obviously
necessary to be able to represent characters such as single quote and backslash
unambiguously: that is one purpose. The second purpose applies to the following
sequences which control the motions of a printing device when they are sent to it, as
follows:

\a
Ring the bell if there is one. Do not move.

\b
Backspace.

\f
Go to the first position on the ‘next page’, whatever that may mean for the
output device.

\n
Go to the start of the next line.

\r
Go back to the start of the current line.

\t
Go to the next horizontal tab position.

\v
Go to the start of the line at the next vertical tab position.

For \b, \t, \v, if there is no such position, the behaviour is unspecified. The
Standard carefully avoids mentioning the physical directions of movement of the
output device which are not necessarily the top to bottom, left to right movements
common in Western cultural environments.

It is guaranteed that each escape sequence has a unique integral value which can
be stored in a char.

2.9.2. Real constants

These follow the usual format:

1.0

2.

.1

2.634

.125

2.e5

2.e+5

The C Book — Constants http://publications.gbdirect.co.uk/c_book/chapter2/co...

4 of 4 21-02-2007 19:11

.125e-3

2.5e5

3.1E-6

and so on. For readability, even if part of the number is zero, it is a good idea to
show it:

1.0

0.1

The exponent part shows the number of powers of ten that the rest of the number
should be raised to, so

3.0e3

is equivalent in value to the integer constant

3000

As you can see, the e can also be E. These constants all have type double unless
they are suffixed with f or F to mean float or l or L to mean long double.

For completeness, here is the formal description of a real constant:

A real constant is one of:

A fractional constant followed by an optional exponent.
A digit sequence followed by an exponent.

In either case followed by an optional one of f, l, F, L, where:

A fractional constant is one of:
An optional digit sequence followed by a decimal point followed by a digit
sequence.
A digit sequence followed by a decimal point.

An exponent is one of
e or E followed by an optional + or - followed by a digit sequence.

A digit sequence is an arbitrary combination of one or more digits.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next
section [http://publications.gbdirect.co.uk/c_book/chapter2/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter2/s...

1 of 1 21-02-2007 19:12

2.10. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter2/summary.html.

This has been a lengthy, and perhaps disconcerting chapter.

The alphabet of C, although of relevance, is not normally a day-to-day consideration
of practising programmers, so it has been discussed but can now be largely ignored.

Much the same can be said regarding keywords and identifiers, since the topic is not
complicated and simply becomes committed to memory.

The declaration of variables is rarely a problem, although it is worth re-emphasizing
the distinction between a declaration and a definition. If that still remains unclear, you
might find it of benefit to go back and re-read the description.

Beyond any question, the real complexity lies in what happens when the integral
promotions and the arithmetic conversions occur. For beginners, it is often
worthwhile to remember that here is a difficult and arduous piece of terrain. Nothing
else in the language requires so much attention or is so important to the production
of correct, reliable programs. Beginners should not try to remember it all, but to go on
now and to gain confidence with the rest of the language. After two or three months'
practice at using the easier parts of the language, the time really does come when
you can no longer afford to ignore Section 2.8
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html].

Many highly experienced C programmers never bother to learn the different
precedences of operators, except for a few important cases. A precedence table
pinned above your desk, for easy reference, is a valuable tool.

The Standard has substantially affected parts of the language described in this
chapter. In particular, the changes to the conversions and the change from
‘unsignedness preserving’ to ‘value preserving’ rules of arithmetic may cause some
surprises to experienced C programmers. Even they have some real re-learning to
do.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter2/constants.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/exercises.html]

The C Book — Exercises http://publications.gbdirect.co.uk/c_book/chapter2/exe...

1 of 1 21-02-2007 19:12

2.11. Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter2/exercises.html.

Exercise 2.17. First, fully parenthesize the following expressions according to the
precedence and associativity rules. Then, replacing the variables and constants
with the appropriate type names, show how the type of the expression is derived by
replacing the highest precedence expressions with its resulting type.

The variables are:

char c;

int i;

unsigned u;

float f;

For example: i = u+1; parenthesizes as (i = (u + 1));

The types are

(int = (unsigned + int));

then

(int = (unsigned)); /* usual arithmetic conversions */

then

(int); /* assignment */

c = u * f + 2.6L;a.
u += --f / u % 3;b.
i <<= u * - ++f;c.
u = i + 3 + 4 + 3.1;d.
u = 3.1 + i + 3 + 4;e.
c = (i << - --f) & 0xf;f.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter2/summary.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter2/]

The C Book — Control of Flow and Logical Expressions http://publications.gbdirect.co.uk/c_book/chapter3/?f...

1 of 1 21-02-2007 19:15

Chapter 3

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter3/.

Control of Flow and Logical Expressions

3.1. The Task ahead
[http://publications.gbdirect.co.uk/c_book/chapter3/task_ahead.html]
3.2. Control of flow
[http://publications.gbdirect.co.uk/c_book/chapter3/flow_control.html]
3.3. More logical expressions
[http://publications.gbdirect.co.uk/c_book/chapter3/logical_expressions.html]
3.4. Strange operators
[http://publications.gbdirect.co.uk/c_book/chapter3/strange_operators.html]
3.5. Summary
[http://publications.gbdirect.co.uk/c_book/chapter3/summary.html]
3.6. Exercises
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter4/]

The C Book — The Task ahead http://publications.gbdirect.co.uk/c_book/chapter3/ta...

1 of 2 21-02-2007 19:16

3.1. The Task ahead

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter3/task_ahead.html.

In this chapter we look at the various ways that the control of flow statements can
be used in a C program, including some statements that haven't been introduced so
far. They are almost always used in conjunction with logical expressions to select
the next action. Examples of logical expressions that have been seen already are
some simple ones used in if or while statements. As you might have expected,
you can use expressions more complicated than simple comparison (>, <=, ==
etc.); what may surprise you is the type of the result.

3.1.1. Logical expressions and Relational Operators

All of the examples we have used so far have deliberately avoided using
complicated logical expressions in the control of flow statements. We have seen
expressions like this

if(a != 100){...

and presumably you have formed the idea that C supports the concept of ‘true’ and
‘false’ for these relationships. In a way, it does, but in a way that differs from what is
often expected.

All of the relational operators shown in Table 3.1 are used to compare two operands
in the way indicated. When the operands are arithmetic types, the usual arithmetic
conversions are applied to them.

Operator Operation

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

Table 3.1. Relational operators

Be extra careful of the test for equality, ==. As we have already pointed out, it is
often valid to use assignment = where you might have meant == and C can't tell you
about your mistake. The results are normally different and it takes a long time for
beginners to get used to using == and =.

Now, that usefully introduces the question ‘why?’. Why are both valid? The answer
is simple. C's concept of ‘true’ and ‘false’ boils down to simply ‘non-zero’ and ‘zero’,
respectively. Where we have seen expressions involving relational operators used
to control do and if statements, we have just been using expressions with numeric
results. If the expression evaluates to non-zero, then the result is effectively true. If
the reverse is the case, then of course the result is false. Anywhere that the
relational operators appear, so may any other expression.

The relational operators work by comparing their operands and giving zero for false

The C Book — The Task ahead http://publications.gbdirect.co.uk/c_book/chapter3/ta...

2 of 2 21-02-2007 19:16

and (remember this) one for true. The result is of type int. This example shows
how they work.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 i = -10;

 while(i <= 5){

 printf("value of i is %d, ", i);

 printf("i == 0 = %d, ", i==0);

 printf("i > -5 = %d\n", i > -5);

 i++;

 }

 exit(EXIT_SUCCESS);

}

Example 3.1

Which produces this on its standard output:

value of i is -10, i == 0 = 0, i > -5 = 0

value of i is -9, i == 0 = 0, i > -5 = 0

value of i is -8, i == 0 = 0, i > -5 = 0

value of i is -7, i == 0 = 0, i > -5 = 0

value of i is -6, i == 0 = 0, i > -5 = 0

value of i is -5, i == 0 = 0, i > -5 = 0

value of i is -4, i == 0 = 0, i > -5 = 1

value of i is -3, i == 0 = 0, i > -5 = 1

value of i is -2, i == 0 = 0, i > -5 = 1

value of i is -1, i == 0 = 0, i > -5 = 1

value of i is 0, i == 0 = 1, i > -5 = 1

value of i is 1, i == 0 = 0, i > -5 = 1

value of i is 2, i == 0 = 0, i > -5 = 1

value of i is 3, i == 0 = 0, i > -5 = 1

value of i is 4, i == 0 = 0, i > -5 = 1

value of i is 5, i == 0 = 0, i > -5 = 1

In this probably mistaken piece of code, what do you think happens?

if(a = b)...

The value of b is assigned to a. As you know, the result has the type of a and
whatever value was assigned to a. The if will execute the next statement if the value
assigned is not zero. If zero is assigned, the next statement is ignored. So now you
understand what happens if you confuse the assignment with the equality operator!

In all of the statements that test the value of an expression, the if, while, do, and
for statements, the expression is simply tested to see if its value is zero or not.

We will look at each one in turn.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter3/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter3/flow_control.html]

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

1 of 9 21-02-2007 19:16

3.2. Control of flow

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter3/flow_control.html.

3.2.1. The if statement

The if statement has two forms:

if(expression) statement

if(expression) statement1

else statement2

In the first form, if (and only if) the expression is non-zero, the statement is
executed. If the expression is zero, the statement is ignored. Remember that the
statement can be compound; that is the way to put several statements under the
control of a single if.

The second form is like the first except that if the statement shown as statement1 is
selected then statement2 will not be, and vice versa.

Either form is considered to be a single statement in the syntax of C, so the
following is completely legal.

if(expression)

 if(expression) statement

The first if (expression) is followed by a properly formed, complete if
statement. Since that is legally a statement, the first if can be considered to read

if(expression) statement

and is therefore itself properly formed. The argument can be extended as far as you
like, but it's a bad habit to get into. It is better style to make the statement compound
even if it isn't necessary. That makes it a lot easier to add extra statements if they
are needed and generally improves readability.

The form involving else works the same way, so we can also write this.

if(expression)

 if(expression)

 statement

 else

 statement

As Chapter 1 [http://publications.gbdirect.co.uk/c_book/chapter1/] has said already,
this is now ambiguous. It is not clear, except as indicated by the indentation, which
of the ifs is responsible for the else. If we follow the rules that the previous
example suggests, then the second if is followed by a statement, and is therefore
itself a statement, so the else belongs to the first if.

That is not the way that C views it. The rule is that an else belongs to the first if

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

2 of 9 21-02-2007 19:16

above that hasn't already got an else. In the example we're discussing, the else
goes with the second if.

To prevent any unwanted association between an else and an if just above it, the
if can be hidden away by using a compound statement. To repeat the example in
Chapter 1 [http://publications.gbdirect.co.uk/c_book/chapter1/], here it is.

if(expression){

 if(expression)

 statement

}else

 statement

Putting in all the compound statement brackets, it becomes this:

if(expression){

 if(expression){

 statement

 }

}else{

 statement

}

If you happen not to like the placing of the brackets, it is up to you to put them
where you think they look better; just be consistent about it. You probably need to
know that this a subject on which feelings run deep.

3.2.2. The while and do statements

The while is simple:

while(expression)

 statement

The statement is only executed if the expression is non-zero. After every execution
of the statement, the expression is evaluated again and the process repeats if it is
non-zero. What could be plainer than that? The only point to watch out for is that the
statement may never be executed, and that if nothing in the statement affects the
value of the expression then the while will either do nothing or loop for ever,
depending on the initial value of the expression.

It is occasionally desirable to guarantee at least one execution of the statement
following the while, so an alternative form exists known as the do statement. It looks
like this:

do

 statement

while(expression);

and you should pay close attention to that semicolon—it is not optional! The effect is
that the statement part is executed before the controlling expression is evaluated,
so this guarantees at least one trip around the loop. It was an unfortunate decision
to use the keyword while for both purposes, but it doesn't seem to cause too many
problems in practice.

If you feel the urge to use a do, think carefully. It is undoubtedly essential in certain
cases, but experience has shown that the use of do statements is often associated
with poorly constructed code. Not every time, obviously, but as a general rule you
should stop and ask yourself if you have made the right choice. Their use often
indicates a hangover of thinking methods learnt with other languages, or just sloppy

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

3 of 9 21-02-2007 19:16

design. When you do convince yourself that nothing else will give you just what is
wanted, then go ahead - be daring—use it.

3.2.2.1. Handy hints

A very common trick in C programs is to use the result of an assignment to control
while and do loops. It is so commonplace that, even if you look at it the first time
and blench, you've got no alternative but to learn it. It falls into the category of
‘idiomatic’ C and eventually becomes second nature to anybody who really uses the
language. Here is the most common example of all:

#include <stdio.h>

#include <stdlib.h>

main(){

 int input_c;

 /* The Classic Bit */

 while((input_c = getchar()) != EOF){

 printf("%c was read\n", input_c);

 }

 exit(EXIT_SUCCESS);

}

Example 3.2

The clever bit is the expression assigning to input_c. It is assigned to, compared
with EOF (End Of File), and used to control the loop all in one go. Embedding the
assignment like that is a handy embellishment. Admittedly it only saves one line of
code, but the benefit in terms of readability (once you have got used to seeing it) is
quite large. Learn where the parentheses are, too. They're necessary for
precedence reasons—work out why!

Note that input_c is an int. This is because getchar has to be able to return
not only every possible value of a char, but also an extra value, EOF. To do that, a
type longer than a char is necessary.

Both the while and the do statements are themselves syntactically a single
statement, just like an if statement. They occur anywhere that any other single
statement is permitted. If you want them to control several statements, then you will
have to use a compound statement, as the examples of if illustrated.

3.2.3. The for statement

A very common feature in programs is loops that are controlled by variables used
as a counter. The counter doesn't always have to count consecutive values, but the
usual arrangement is for it to be initialized outside the loop, checked every time
around the loop to see when to finish and updated each time around the loop. There
are three important places, then, where the loop control is concentrated: initialize,
check and update. This example shows them.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 /* initialise */

 i = 0;

 /* check */

 while(i <= 10){

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

4 of 9 21-02-2007 19:16

 printf("%d\n", i);

 /* update */

 i++;

 }

 exit(EXIT_SUCCESS);

}

Example 3.3

As you will have noticed, the initialization and check parts of the loop are close
together and their location is obvious because of the presence of the while
keyword. What is harder to spot is the place where the update occurs, especially if
the value of the controlling variable is used within the loop. In that case, which is by
far the most common, the update has to be at the very end of the loop: far away
from the initialize and check. Readability suffers because it is hard to work out how
the loop is going to perform unless you read the whole body of the loop carefully.
What is needed is some way of bringing the initialize, check and update parts into
one place so that they can be read quickly and conveniently. That is exactly what
the for statement is designed to do. Here it is.

for (initialize; check; update) statement

The initialize part is an expression; nearly always an assignment expression which
is used to initialize the control variable. After the initialization, the check expression
is evaluated: if it is non-zero, the statement is executed, followed by evaluation of
the update expression which generally increments the control variable, then the
sequence restarts at the check. The loop terminates as soon as the check
evaluates to zero.

There are two important things to realize about that last description: one, that each
of the three parts of the for statement between the parentheses are just
expressions; two, that the description has carefully explained what they are
intended to be used for without proscribing alternative uses—that was done
deliberately. You can use the expressions to do whatever you like, but at the
expense of readability if they aren't used for their intended purpose.

Here is a program that does the same thing twice, the first time using a while loop,
the second time with a for. The use of the increment operator is exactly the sort of
use that you will see in everyday practice.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 i = 0;

 while(i <= 10){

 printf("%d\n", i);

 i++;

 }

 /* the same done using ``for'' */

 for(i = 0; i <= 10; i++){

 printf("%d\n", i);

 }

 exit(EXIT_SUCCESS);

}

Example 3.4

There isn't any difference betweeen the two, except that in this case the for loop is

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

5 of 9 21-02-2007 19:16

more convenient and maintainable than the while statement. You should always
use the for when it's appropriate; when a loop is being controlled by some sort of
counter. The while is more at home when an indeterminate number of cycles of
the loop are part of the problem. As always, it needs a degree of judgement on
behalf of the author of the program; an understanding of form, style, elegance and
the poetry of a well written program. There is no evidence that the software
business suffers from a surfeit of those qualities, so feel free to exercise them if you
are able.

Any of the initialize, check and update expressions in the for statement can be
omitted, although the semicolons must stay. This can happen if the counter is
already initialized, or gets updated in the body of the loop. If the check expression is
omitted, it is assumed to result in a ‘true’ value and the loop never terminates. A
common way of writing never-ending loops is either

for(;;)

or

while(1)

and both can be seen in existing programs.

3.2.4. A brief pause

The control of flow statements that we've just seen are quite adequate to write
programs of any degree of complexity. They lie at the core of C and even a quick
reading of everyday C programs will illustrate their importance, both in the provision
of essential functionality and in the structure that they emphasize. The remaining
statements are used to give programmers finer control or to make it easier to deal
with exceptional conditions. Only the switch statement is enough of a heavyweight
to need no justification for its use; yes, it can be replaced with lots of ifs, but it
adds a lot of readability. The others, break, continue and goto, should be
treated like the spices in a delicate sauce. Used carefully they can turn something
commonplace into a treat, but a heavy hand will drown the flavour of everything
else.

3.2.5. The switch statement

This is not an essential part of C. You could do without it, but the language would
have become significantly less expressive and pleasant to use.

It is used to select one of a number of alternative actions depending on the value of
an expression, and nearly always makes use of another of the lesser statements:
the break. It looks like this.

switch (expression){

case const1: statements

case const2: statements

default: statements

}

The expression is evaluated and its value is compared with all of the const1 etc.
expressions, which must all evaluate to different constant values (strictly they are
integral constant expressions, see Chapter 6
[http://publications.gbdirect.co.uk/c_book/chapter6/] and below). If any of them has
the same value as the expression then the statement following the case label is
selected for execution. If the default is present, it will be selected when there is
no matching value found. If there is no default and no matching value, the entire
switch statement will do nothing and execution will continue at the following

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

6 of 9 21-02-2007 19:16

statement.

One curious feature is that the cases are not exclusive, as this example shows.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 for(i = 0; i <= 10; i++){

 switch(i){

 case 1:

 case 2:

 printf("1 or 2\n");

 case 7:

 printf("7\n");

 default:

 printf("default\n");

 }

 }

 exit(EXIT_SUCCESS);

}

Example 3.5

The loop cycles with i having values 0–10. A value of 1 or 2 will cause the printing
of the message 1 or 2 by selecting the first of the printf statements. What you
might not expect is the way that the remaining messages would also appear! It's
because the switch only selects one entry point to the body of the statement; after
starting at a given point all of the following statements are also executed. The case
and default labels simply allow you to indicate which of the statements is to be
selected. When i has the value of 7, only the last two messages will be printed.
Any value other than 1, 2, or 7 will find only the last message.

The labels can occur in any order, but no two values may be the same and you are
allowed either one or no default (which doesn't have to be the last label). Several
labels can be put in front of one statement and several statements can be put after
one label.

The expression controlling the switch can be of any of the integral types. Old C
used to insist on only int here, and some compilers would forcibly truncate longer
types, giving rise on rare occasions to some very obscure bugs.

3.2.5.1. The major restriction

The biggest problem with the switch statement is that it doesn't allow you to select
mutually exclusive courses of action; once the body of the statement has been
entered any subsequent statements within the body will all be executed. What is
needed is the break statement. Here is the previous example, but amended to
make sure that the messages printed come out in a more sensible order. The
break statements cause execution to leave the switch statement immediately
and prevent any further statements in the body of the switch from being executed.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 for(i = 0; i <= 10; i++){

 switch(i){

 case 1:

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

7 of 9 21-02-2007 19:16

 case 2:

 printf("1 or 2\n");

 break;

 case 7:

 printf("7\n");

 break;

 default:

 printf("default\n");

 }

 }

 exit(EXIT_SUCCESS);

}

Example 3.6

The break has further uses. Its own section follows soon.

3.2.5.2. Integral Constant Expression

Although Chapter 6 [http://publications.gbdirect.co.uk/c_book/chapter6/] deals with
constant expressions, it is worth looking briefly at what an integral constant
expression is, since that is what must follow the case labels in a switch
statement. Loosely speaking, it is any expression that does not involve any
value-changing operation (like increment or assignment), function calls or comma
operators. The operands in the expression must all be integer constants, character
constants, enumeration constants, sizeof epressions and floating-point constants
that are the immediate operands of casts. Any cast operators must result in integral
types.

Much what you would expect, really.

3.2.6. The break statement

This is a simple statement. It only makes sense if it occurs in the body of a switch,
do, while or for statement. When it is executed the control of flow jumps to the
statement immediately following the body of the statement containing the break. Its
use is widespread in switch statements, where it is more or less essential to get
the control that most people want.

The use of the break within loops is of dubious legitimacy. It has its moments, but
is really only justifiable when exceptional circumstances have happened and the
loop has to be abandoned. It would be nice if more than one loop could be
abandoned with a single break but that isn't how it works. Here is an example.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 for(i = 0; i < 10000; i++){

 if(getchar() == 's')

 break;

 printf("%d\n", i);

 }

 exit(EXIT_SUCCESS);

}

Example 3.7

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

8 of 9 21-02-2007 19:16

It reads a single character from the program's input before printing the next in a
sequence of numbers. If an ‘s’ is typed, the break causes an exit from the loop.

If you want to exit from more than one level of loop, the break is the wrong thing to
use. The goto is the only easy way, but since it can't be mentioned in polite
company, we'll leave it till last.

3.2.7. The continue statement

This statement has only a limited number of uses. The rules for its use are the same
as for break, with the exception that it doesn't apply to switch statements.
Executing a continue starts the next iteration of the smallest enclosing do, while
or for statement immediately. The use of continue is largely restricted to the top
of loops, where a decision has to be made whether or not to execute the rest of the
body of the loop. In this example it ensures that division by zero (which gives
undefined behaviour) doesn't happen.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 for(i = -10; i < 10; i++){

 if(i == 0)

 continue;

 printf("%f\n", 15.0/i);

 /*

 * Lots of other statements

 */

 }

 exit(EXIT_SUCCESS);

}

Example 3.7

You could take a puritanical stance and argue that, instead of a conditional
continue,, the body of the loop should be made conditional instead—but you
wouldn't have many supporters. Most C programmers would rather have the
continue than the extra level of indentation, particularly if the body of the loop is
large.

Of course the continue can be used in other parts of a loop, too, where it may
occasionally help to simplify the logic of the code and improve readability. It
deserves to be used sparingly.

Do remember that continue has no special meaning to a switch statement,
where break does have. Inside a switch, continue is only valid if there is a loop
that encloses the switch, in which case the next iteration of the loop will be
started.

There is an important difference between loops written with while and for. In a
while, a continue will go immediately to the test of the controlling expression. The
same thing in a for will do two things: first the update expression is evaluated, then
the controlling expresion is evaluated.

3.2.8. goto and labels

Everybody knows that the goto statement is a ‘bad thing’. Used without care it is a

The C Book — Control of flow http://publications.gbdirect.co.uk/c_book/chapter3/fl...

9 of 9 21-02-2007 19:16

great way of making programs hard to follow and of obscuring any structure in their
flow. Dijkstra wrote a famous paper in 1968 called ‘Goto Statement Considered
Harmful’, which everybody refers to and almost nobody has read.

What's especially annoying is that there are times when it is the most appropriate
thing to use in the circumstances! In C, it is used to escape from multiple nested
loops, or to go to an error handling exit at the end of a function. You will need a
label when you use a goto; this example shows both.

goto L1;

/* whatever you like here */

L1: /* anything else */

A label is an identifier followed by a colon. Labels have their own ‘name space’ so
they can't clash with the names of variables or functions. The name space only
exists for the function containing the label, so label names can be re-used in
different functions. The label can be used before it is declared, too, simply by
mentioning it in a goto statement.

Labels must be part of a full statement, even if it's an empty one. This usually only
matters when you're trying to put a label at the end of a compound statement—like
this.

label_at_end: ; /* empty statement */

}

The goto works in an obvious way, jumping to the labelled statements. Because
the name of the label is only visible inside its own function, you can't jump from one
function to another one.

It's hard to give rigid rules about the use of gotos but, as with the do, continue
and the break (except in switch statements), over-use should be avoided. Think
carefully every time you feel like using one, and convince yourself that the structure
of the program demands it. More than one goto every 3–5 functions is a symptom
that should be viewed with deep suspicion.

Summary

Now we've seen all of the control of flow statements and examples of their use.
Some should be used whenever possible, some are not for use line by line but for
special purposes where their particular job is called for. It is possible to write elegant
and beautiful programs in C if you are prepared to take the extra bit of care
necessary; the specialized control of flow statements give you the chance to add
the extra polish that some other languages lack.

All that remains to be done to complete the picture of flow of control in C is to finish
off the logical operators.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter3/task_ahead.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter3/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter3/logical_expressions.html]

The C Book — More logical expressions http://publications.gbdirect.co.uk/c_book/chapter3/log...

1 of 2 21-02-2007 19:17

3.3. More logical expressions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter3/logical_expressions.html.

This chapter has already shown how C makes no distinction between ‘logical’ and
other values. The relational operators all give a result of 0 or 1 for false and true,
respectively. Whenever the control of flow statements demand it, an expression is
evaluated to determine what to do next. A 0 means ‘don't do it’; anything else
means ‘do’. It means that the fragments below are all quite reasonable.

while (a<b)...
while (a)....
if ((c=getchar()) != EOF)...

No experienced C programmer would be surprised by any of them. The second of
them, while (a), is a common abbreviation for while (a != 0), as you should
be able to work out.

What we need now is a way of writing more complicated expressions involving
these logical true and false values. So far, it has to be done like this, when we
wanted to say if(a<b AND c<d)

if (a < b){
 if (c < d)...
}

It will not be a source of great amazement to find that there is a way of expressing
such a statement.

There are three operators involved in this sort of operation: the logical AND &&, the
logical OR || and the NOT !. The last is unary, the other two are binary. All of
them take expressions as their operands and give as results either 1 or 0. The &&
gives 1 only when both of its operands are non-zero. The || gives 0 only when
both operands are zero. The ! gives 0 if its operand is non-zero and vice versa.
Easy really. The results are of type int for all three.

Do not confuse & and | (the bitwise operators) with their logical counterparts. They
are not the same.

One special feature of the logical operators, found in very few of the other
operators, is their effect on the sequence of evaluation of an expression. They
evaluate left to right (after precedence is taken into account) and every logical
expression ceases evaluation as soon as the overall result can be determined. For
example, a sequence of ||s can stop as soon as one operand is found to be
non-zero. This next fragment guarantees never to divide by zero.

if (a!=0 && b/a > 5)...
/* alternative */
if (a && b/a > 5)

In either version b/a will only be evaluated if a is non-zero. If a were zero, the
overall result would already have been decided, so the evaluation must stop to
conform with C's rules for the logical operators.

The C Book — More logical expressions http://publications.gbdirect.co.uk/c_book/chapter3/log...

2 of 2 21-02-2007 19:17

The unary NOT is simple. It isn't all that common to see it in use largely because
most expresssions can be rearranged to do without it. The examples show how.

if (!a)...
/* alternative */
if (a==0)...

if(!(a>b))
/* alternative */
if(a <= b)

if (!(a>b && c<d))...
/* alternative */
if (a<=b || c>=d)...

Each of the examples and the alternatives serve to show ways of avoiding (or at
least doing without) the ! operator. In fact, it's most useful as an aid to readability. If
the problem that you are solving has a natural logical relationship inherent in it—say
the (b*b-4*a*c) > 0 found in quadratic equation solving—then it probably reads
better if you write if(!((b*b-4*a*c) > 0)) than if((b*b-4*a*c) <=
0)—but it's up to you. Pick the one that feels right.

Most expressions using these logical operators work out just about right in terms of
the precedence rules, but you can get a few nasty surprises. If you look back to the
precedence tables, you will find that there are some operators with lower
precedence than the logical ones. In particular, this is a very common mistake:

if(a&b == c){...

What happens is that b is compared for equality with c, then the 1 or 0 result is
anded with a! Some distinctly unexpected behaviour has been caused by that sort
of error.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter3/flow_control.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter3/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter3/strange_operators.html]

The C Book — Strange operators http://publications.gbdirect.co.uk/c_book/chapter3/st...

1 of 3 21-02-2007 19:17

3.4. Strange operators

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter3/strange_operators.html.

There are two operators left to mention which look decidedly odd. They aren't
‘essential’, but from time to time do have their uses. Don't ignore them completely.
This is the only place where we describe them, so our description includes what
happens when they are mixed with pointer types, which makes them look more
complicated than they really are.

3.4.1. The ?: operator

Like playing the accordion, this is easier to demonstrate than to describe.

expression1?expression2:expression3

If expression1 is true, then the result of the whole expression is expression2,
otherwise it is expression3; depending on the value of expression1, only one of
them will be evaluated when the result is calculated.

The various combinations of types that are permitted for expression2 and
expression3 and, based on those, the resulting type of the whole expression, are
complicated. A lot of the complexity is due to types and notions that we haven't
seen so far. For completeness they are described in detail below, but you'll have to
put up with a number of forward references.

The easiest case is when both expressions have arithmetic type (i.e. integral or
real). The usual arithmetic conversions are applied to find a common type for both
expressions and then that is the type of the result. For example

a>b?1:3.5

contains a constant (1) of type int and another (3.5) of type double. Applying the
arithmetic conversions gives a result of type double.

Other combinations are also permitted.

If both operands are of compatible structure or union types, then that is the
type of the result.
If both operands have void type, then that is the type of the result.

Various pointer types can be mixed.

Both operands may be pointers to (possibly qualified) compatible types.
One operand may be a pointer and the other a null pointer constant.
One operand may be a pointer to an object or incomplete type and the other a
pointer to (possibly qualified) void.

The type of the result when pointers are involved is derived in two separate steps.

If either of the operands is a pointer to a qualified type, the result is a pointer
to a type that is qualified by all the qualifiers of both operands.

1.

If one operand is a null pointer constant, then the result has the type of the
other operand. If one operand is a pointer to void, the other operand is

2.

The C Book — Strange operators http://publications.gbdirect.co.uk/c_book/chapter3/st...

2 of 3 21-02-2007 19:17

converted to pointer to void and that is the type of the result. If both operands
are pointers to compatible types (ignoring any qualifiers) the the result has the
composite type.

Qualifiers, composite types and compatible types are all subjects discussed later.

The shortest useful example that we can think of is this one, where the string to be
printed by printf is selected using this magical operator.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i;

 for(i=0; i <= 10; i++){

 printf((i&1) ? "odd\n" : "even\n");

 }

 exit(EXIT_SUCCESS);

}

Example 3.9

It's cute when you need it, but the first time that they see it most people look very
uncomfortable for a while, then recollect an urgent appointment somewhere else.

After evaluating the first operand there is one of the sequence points described in
Chapter 8 [http://publications.gbdirect.co.uk/c_book/chapter8/].

3.4.2. The comma operator

This wins the prize for ‘most obscure operator’. It allows a list of expressions to be
separated by commas:

expression-1,expression-2,expression-3,...,expression-n

and it goes on as long as you like. The expressions are evaluated strictly left to right
and their values discarded, except for the last one, whose type and value determine
the result of the overall expression. Don't confuse this version of the comma with
any of the other uses C finds for it, especially the one that separates function
arguments. Here are a couple of examples of it in use.

#include <stdio.h>

#include <stdlib.h>

main(){

 int i, j;

 /* comma used - this loop has two counters */

 for(i=0, j=0; i <= 10; i++, j = i*i){

 printf("i %d j %d\n", i, j);

 }

 /*

 * In this futile example, all but the last

 * constant value is discarded.

 * Note use of parentheses to force a comma

 * expression in a function call.

 */

 printf("Overall: %d\n", ("abc", 1.2e6, 4*3+2));

The C Book — Strange operators http://publications.gbdirect.co.uk/c_book/chapter3/st...

3 of 3 21-02-2007 19:17

 exit(EXIT_SUCCESS);

}

Example 3.10

Unless you are feeling very adventurous, the comma operator is just as well
ignored. Be prepared to see it only on special occasions.

After evaluating each operand there is one of the sequence points described in
Chapter 8 [http://publications.gbdirect.co.uk/c_book/chapter8/].

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter3/logical_expressions.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter3/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter3/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter3/s...

1 of 1 21-02-2007 19:17

3.5. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter3/summary.html.

This chapter has described the entire range of control of flow available in C. The
only areas that cause even moderate surprise are the way in which cases in a
switch statement are not mutually exclusive, and the fact that goto cannot transfer
control to any function except the one that is currently active. None of this is
intellectually deep and it has never been known to cause problems either to
beginners or programmers experienced in other languages.

The logical expressions all give integral results. This is perhaps slightly unusual, but
once again takes very little time to learn.

Probably the most surprising part about the whole chapter will have been to learn of
the conditional and comma operators. A strong case could be made for the abolition
of the conditional operator, were it not for compatibility with existing code, but the
comma operator does have important uses, especially for automatic generators of
C programs.

The Standard has not had much effect on the contents of this chapter. Prospective
users of C should ensure that they are completely familiar with all of the topics
discussed here (except the conditional and comma operators). They are essential
to the practical use of the language, and none of the material is hard.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter3/strange_operators.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter3/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html]

The C Book — Exercises http://publications.gbdirect.co.uk/c_book/chapter3/exe...

1 of 1 21-02-2007 19:17

3.6. Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html.

Exercise 3.1. What is the type and value of the result of the relational operators?

Exercise 3.2. What is the type and value of the result of the logical operators (&&,
||, and !)?

Exercise 3.3. What is unusual about the logical operators?

Exercise 3.4. Why is break useful in switch statements?

Exercise 3.5. Why is continue not very useful in switch statements?

Exercise 3.6. What is a possible problem using continue in while statements?

Exercise 3.7. How can you jump from one function to another?

Previous section [http://publications.gbdirect.co.uk/c_book/chapter3/summary.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter3/]

The C Book — Functions http://publications.gbdirect.co.uk/c_book/chapter4/?f...

1 of 1 21-02-2007 19:21

Chapter 4

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter4/.

Functions

4.1. Changes [http://publications.gbdirect.co.uk/c_book/chapter4/changes.html]
4.2. The type of functions
[http://publications.gbdirect.co.uk/c_book/chapter4/function_types.html]
4.3. Recursion and argument passing
[http://publications.gbdirect.co.uk/c_book/chapter4/recursion_and_argument_passing.html]
4.4. Linkage [http://publications.gbdirect.co.uk/c_book/chapter4/linkage.html]
4.5. Summary [http://publications.gbdirect.co.uk/c_book/chapter4/summary.html]
4.6. Exercises [http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter3/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter5/]

The C Book — Changes http://publications.gbdirect.co.uk/c_book/chapter4/ch...

1 of 1 21-02-2007 19:21

4.1. Changes

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter4/changes.html.

The single worst feature of Old C was that there was no way to declare the number
and types of a function's arguments and to have the compiler check that the use of
the function was consistent with its declaration. Although it didn't do a lot of damage
to the success of C, it did result in portability and maintainability problems that we
all could have done without.

The Standard has changed that state of affairs. You can now declare functions in a
way that allows their use to be checked, and which is also largely compatible with
the old style (so old programs still work, provided they had no errors before).
Another useful feature is a portable way of using functions with a variable number of
arguments, like printf, which used to be non-portable; the only way to implement
it relied upon intimate knowledge of the hardware involved.

The Standard's way of fixing this problem was in large measure to plagiarize from
C++, which had already tried out the new ideas in practice. This model has been so
successful that lots of ‘Old’ C compilers adopted it on their way to conforming to the
Standard.

The Standard still retains compatibility with Old C function declarations, but that is
purely for the benefit of existing programs. Any new programs should make full use
of the much tighter checking that the Standard permits and strenuously avoid the
old syntax (which may disappear one day).

Footnotes

1. Stroustrup B. (1991). The C++ Programming Language 2nd edn. Reading, MA:
Addison-Wesley

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter4/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter4/function_types.html]

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

1 of 10 21-02-2007 19:21

4.2. The type of functions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter4/function_types.html.

All functions have a type: they return a value of that type whenever they are used. The
reason that C doesn't have ‘procedures’, which in most other languages are simply
functions without a value, is that in C it is permissible (in fact well-nigh mandatory) to
discard the eventual value of most expressions. If that surprises you, think of an
assignment

 a = 1;

That's a perfectly valid assignment, but don't forget that it has a value too. The value is
discarded. If you want a bigger surprise, try this one:

 1;

That is an expression followed by a semicolon. It is a well formed statement according to
the rules of the language; nothing wrong with it, it is just useless. A function used as a
procedure is used in the same way—a value is always returned, but you don't use it:

 f(argument);

is also an expression with a discarded value.

It's all very well saying that the value returned by a function can be ignored, but the fact
remains that if the function really does return a value then it's probably a programming
error not to do something with it. Conversely, if no useful value is returned then it's a good
idea to be able to spot anywhere that it is used by mistake. For both of those reasons,
functions that don't return a useful value should be declared to be void.

Functions can return any type supported by C (except for arrays and functions), including
the pointers, structures and unions which are described in later chapters. For the types
that can't be returned from functions, the restrictions can often be sidestepped by using
pointers instead.

All functions can be called recursively.

4.2.1. Declaring functions

Unfortunately, we are going to have to use some jargon now. This is one of the times that
the use of an appropriate technical term really does reduce the amount of repetitive
descriptive text that would be needed. With a bit of luck, the result is a shorter, more
accurate and less confusing explanation. Here are the terms.

declaration
The point at which a name has a type associated with it.

definition
Also a declaration, but at this point some storage is reserved for the named object.
The rules for what makes a declaration into a definition can be complicated, but are
easy for functions: You turn a function declaration into a definition by providing a
body for the function in the form of a compound statement.

formal parameters
parameters

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

2 of 10 21-02-2007 19:21

These are the names used inside a function to refer to its arguments.
actual arguments
arguments

These are the values used as arguments when the function is actually called. In
other words, the values that the formal parameters will have on entry to the function.

The terms ‘parameter’ and ‘argument’ do tend to get used as if they were interchangeable,
so don't read too much into it if you see one or the other in the text below.

If you use a function before you declare it, it is implicitly declared to be ‘function returning
int’. Although this will work, and was widely used in Old C, in Standard C it is bad
practice—the use of undeclared functions leads to nasty problems to do with the number
and type of arguments that are expected for them. All functions should be fully declared
before they are used. For example, you might be intending to use a function in a private
library called, say, aax1. You know that it takes no arguments and returns a double. Here
is how it should be declared:

 double aax1(void);

and here is how it might be used:

main(){
 double return_v, aax1(void);
 return_v = aax1();
 exit(EXIT_SUCCESS);
}

Example 4.1

The declaration was an interesting one. It defined return_v, actually causing a variable
to come into existence. It also declared aax1 without defining it; as we know, functions
only become defined when a body is provided for them. Without a declaration in force, the
default rules mean that aax1 would have been assumed to be int, even though it really
does return a double—which means that your program will have undefined behaviour.
Undefined behaviour is disastrous!

The presence of void in the argument list in the declaration shows that the function really
takes no arguments. If it had been missing, the declaration would have been taken to give
no information about the function's arguments. That way, compatibility with Old C is
maintained at the price of the ability of the compiler to check.

To define a function you also have to provide a body for it, in the form of a compound
statement. Since no function can itself contain the definition of a function, functions are all
separate from each other and are only found at the outermost level of the program's
structure. Here is a possible definition for the function aax1.

 double
 aax1(void) {
 /* code for function body */
 return (1.0);
 }

It is unusual for a block-structured language to prohibit you from defining functions inside
other functions, but this is one of the characteristics of C. Although it isn't obvious, this
helps to improve the run-time performance of C by reducing the housekeeping associated
with function calls.

4.2.2. The return statement

The return statement is very important. Every function except those returning void
should have at least one, each return showing what value is supposed to be returned at

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

3 of 10 21-02-2007 19:21

that point. Although it is possible to return from a function by falling through the last },
unless the function returns void an unknown value will be returned, resulting in undefined
behaviour.

Here is another example function. It uses getchar to read characters from the program
input and returns whatever it sees except for space, tab or newline, which it throws away.

#include <stdio.h>

int
non_space(void){
 int c;
 while ((c=getchar ())=='\t' || c== '\n' || c==' ')
 ; /* empty statement */
 return (c);
}

Look at the way that all of the work is done by the test in the while statement, whose
body was an empty statement. It is not an uncommon sight to see the semicolon of the
empty statement sitting there alone and forlorn, with only a piece of comment for company
and readability. Please, please, never write it like this:

 while (something);

with the semicolon hidden away at the end like that. It's too easy to miss it when you read
the code, and to assume that the following statement is under the control of the while.

The type of expression returned must match the type of the function, or be capable of
being converted to it as if an assignment statement were in use. For example, a function
declared to return double could contain

 return (1);

and the integral value will be converted to double. It is also possible to have just return
without any expression—but this is probably a programming error unless the function
returns void. Following the return with an expression is not permitted if the function
returns void.

4.2.3. Arguments to functions

Before the Standard, it was not possible to give any information about a function's
arguments except in the definition of the function itself. The information was only used in
the body of the function and was forgotten at the end. In those bad old days, it was quite
possible to define a function that had three double arguments and only to pass it one
int, when it was called. The program would compile normally, but simply not work
properly. It was considered to be the programmer's job to check that the number and the
type of arguments to a function matched correctly. As you would expect, this turned out to
be a first-rate source of bugs and portability problems. Here is an example of the definition
and use of a function with arguments, but omitting for the moment to declare the function
fully.

#include <stdio.h>
#include <stdlib.h>
main(){
 void pmax(); /* declaration */
 int i,j;
 for(i = -10; i <= 10; i++){
 for(j = -10; j <= 10; j++){
 pmax(i,j);
 }

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

4 of 10 21-02-2007 19:21

 }
 exit(EXIT_SUCCESS);
}
/*
* Function pmax.
* Returns: void
* Prints larger of its two arguments.
*/
void
pmax(int a1, int a2){ /* definition */
 int biggest;

 if(a1 > a2){
 biggest = a1;
 }else{
 biggest = a2;
 }

 printf("larger of %d and %d is %d\n",
 a1, a2, biggest);
}

Example 4.2

What can we learn from this? To start with, notice the careful declaration that pmax returns
void. In the function definition, the matching void occurs on the line before the function
name. The reason for writing it like that is purely one of style; it makes it easier to find
function definitions if their names are always at the beginning of a line.

The function declaration (in main) gave no indication of any arguments to the function, yet
the use of the function a couple of lines later involved two arguments. That is permitted by
both the old and Standard versions of C, but must nowadays be considered to be bad
practice. It is much better to include information about the arguments in the declaration
too, as we will see. The old style is now an ‘obsolescent feature’ and may disappear in a
later version of the Standard.

Now on to the function definition, where the body is supplied. The definition shows that the
function takes two arguments, which will be known as a1 and a2 throughout the body of
the function. The types of the arguments are specified too, as can be seen.

In the function definition you don't have to specify the type of each argument because they
will default to int, but this is bad style. If you adopt the practice of always declaring
arguments, even if they do happen to be int, it adds to a reader's confidence. It indicates
that you meant to use that type, instead of getting it by accident: it wasn't simply forgotten.
The definition of pmax could have been this:

 /* BAD STYLE OF FUNCTION DEFINITION */

 void
 pmax(a1, a2){
 /* and so on */

The proper way to declare and define functions is through the use of prototypes.

4.2.4. Function prototypes

The introduction of function prototypes is the biggest change of all in the Standard.

A function prototype is a function declaration or definition which includes information about
the number and types of the arguments that the function takes.

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

5 of 10 21-02-2007 19:21

Although you are allowed not to specify any information about a function's arguments in a
declaration, it is purely because of backwards compatibility with Old C and should be
avoided.

A declaration without any information about the arguments is not a prototype.

Here's the previous example ‘done right’.

#include <stdio.h>
#include <stdlib.h>

main(){
 void pmax(int first, int second); /*declaration*/
 int i,j;
 for(i = -10; i <= 10; i++){
 for(j = -10; j <= 10; j++){
 pmax(i,j);
 }
 }
 exit(EXIT_SUCCESS);
}

void
pmax(int a1, int a2){ /*definition*/
 int biggest;

 if(a1 > a2){
 biggest = a1;
 }
 else{
 biggest = a2;
 }

 printf("largest of %d and %d is %d\n",
 a1, a2, biggest);
}

Example 4.3

This time, the declaration provides information about the function arguments, so it's a
prototype. The names first and second are not an essential part of the declaration, but
they are allowed to be there because it makes it easier to refer to named arguments when
you're documenting the use of the function. Using them, we can describe the function
simply by giving its declaration

 void pmax (int xx, int yy);

and then say that pmax prints whichever of the arguments xx or yy is the larger. Referring
to arguments by their position, which is the alternative (e.g. the fifth argument), is tedious
and prone to miscounting.

All the same, you can miss out the names if you want to. This declaration is entirely
equivalent to the one above.

 void pmax (int,int);

All that is needed is the type names.

For a function that has no arguments the declaration is

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

6 of 10 21-02-2007 19:21

 void f_name (void);

and a function that has one int, one double and an unspecified number of other
arguments is declared this way:

 void f_name (int,double,...);

The ellipsis (...) shows that other arguments follow. That's useful because it allows
functions like printf to be written. Its declaration is this:

 int printf (const char *format_string,...)

where the type of the first argument is ‘pointer to const char’; we'll discuss what that
means later.

Once the compiler knows the types of a function's arguments, having seen them in a
prototype, it's able to check that the use of the function conforms to the declaration.

If a function is called with arguments of the wrong type, the presence of a prototype means
that the actual argument is converted to the type of the formal argument ‘as if by
assignment’. Here's an example: a function is used to evaluate a square root using
Newton's method of successive approximations.

#include <stdio.h>
#include <stdlib.h>
#define DELTA 0.0001
main(){
 double sq_root(double); /* prototype */
 int i;

 for(i = 1; i < 100; i++){
 printf("root of %d is %f\n", i, sq_root(i));
 }
 exit(EXIT_SUCCESS);
}

double
sq_root(double x){ /* definition */
 double curr_appx, last_appx, diff;

 last_appx = x;
 diff = DELTA+1;

 while(diff > DELTA){
 curr_appx = 0.5*(last_appx
 + x/last_appx);
 diff = curr_appx - last_appx;
 if(diff < 0)
 diff = -diff;
 last_appx = curr_appx;
 }
 return(curr_appx);
}

Example 4.4

The prototype tells everyone that sq_root takes a single argument of type double. The
argument actually passed in the main function is an int, so it has to be converted to
double first. The critical point is that if no prototype had been seen, C would assume that

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

7 of 10 21-02-2007 19:21

the programmer had meant to pass an int and an int is what would be passed. The
Standard simply notes that this results in undefined behaviour, which is as understated as
saying that catching rabies is unfortunate. This is a very serious error and has led to many,
many problems in Old C programs.

The conversion of int to double could be done because the compiler had seen a
protoytpe for the function and knew what to do about it. As you would expect, there are
various rules used to decide which conversions are appropriate, so we need to look at
them next.

4.2.5. Argument Conversions

When a function is called, there are a number of possible conversions that will be applied
to the values supplied as arguments depending on the presence or absence of a
prototype. Let's get one thing clear: although you can use these rules to work out what to
do if you haven't used prototypes, it is a recipe for pain and misery in the long run. It's so
easy to use prototypes that there really is no excuse for not having them, so the only time
you will need to use these rules is if you are being adventurous and using functions with a
variable number of arguments, using the ellipsis notation in the prototype that is explained
in Chapter 9 [http://publications.gbdirect.co.uk/c_book/chapter9/].

The rules mention the default argument promotions and compatible type. Where they are
used, the default argument promotions are:

Apply the integral promotions (see Chapter 2
[http://publications.gbdirect.co.uk/c_book/chapter2/]) to the value of each argument
If the type of the argument is float it is converted to double

The introduction of prototypes (amongst other things) has increased the need for precision
about ‘compatible types’, which was not much of an issue in Old C. The full list of rules for
type compatibility is deferred until Chapter 8
[http://publications.gbdirect.co.uk/c_book/chapter8/], because we suspect that most C
programmers will never need to learn them. For the moment, we will simply work on the
basis that if two types are the same, they are indisputably compatible.

The conversions are applied according to these rules (which are intended to be guidance
on how to apply the Standard, not a direct quote):

At the point of calling a function, if no prototype is in scope, the arguments all
undergo the default argument promotions. Furthermore:

If the number of arguments does not agree with the number of formal
parameters to the function, the behaviour is undefined.
If the function definition was not a definition containing a prototype, then the
type of the actual arguments after promotion must be compatible with the types
of the formal parameters in the definition after they too have had the
promotions applied. Otherwise the behaviour is undefined.
If the function definition was a definition containing a prototype, and the types
of the actual arguments after promotion are not compatible with the formal
parameters in the prototype, then the behaviour is undefined. The behaviour is
also undefined it the prototype included ellipsis (, ...).

1.

At the point of calling a function, if a prototype is in scope, the arguments are
converted, as if by assignment, to the types specified in the prototype. Any
arguments which fall under the variable argument list category (specified by the ...
in the prototype) still undergo the default argument conversions.

It is possible to write a program so badly that you have a prototype in scope when
you call the function, but for the function definition itself not to have a prototype. Why
anyone should do this is a mystery, but in this case, the function that is called must
have a type that is compatible with the apparent type at the point of the call.

2.

The order of evaluation of the arguments in the function call is explicitly not defined by the

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

8 of 10 21-02-2007 19:21

Standard.

4.2.6. Function definitions

Function prototypes allow the same text to be used for both the declaration and definition
of a function. To turn a declaration:

double
some_func(int a1, float a2, long double a3);

into a definition, we provide a body for the function:

double
some_func(int a1, float a2, long double a3){
 /* body of function */
 return(1.0);
}

by replacing the semicolon at the end of the declaration with a compound statement.

In either a definition or a declaration of a function, it serves as a prototype if the parameter
types are specified; both of the examples above are prototypes.

The Old C syntax for the declaration of a function's formal arguments is still supported by
the Standard, although it should not be used by new programs. It looks like this, for the
example above:

double
some_func(a1, a2, a3)
 int a1;
 float a2;
 long double a3;
{

 /* body of function */
 return(1.0);
}

Because no type information is provided for the parameters at the point where they are
named, this form of definition does not act as a prototype. It declares only the return type
of the function; nothing is remembered by the compiler about the types of the arguments at
the end of the definition.

The Standard warns that support for this syntax may disappear in a later version. It will not
be discussed further.

Summary

Functions can be called recursively.1.
Functions can return any type that you can declare, except for arrays and functions
(you can get around that restriction to some extent by using pointers). Functions
returning no value should return void.

2.

Always use function prototypes.3.
Undefined behaviour results if you call or define a function anywhere in a program
unless either

a prototype is always in scope for every call or definition, or
you are very, very careful.

4.

Assuming that you are using prototypes, the values of the arguments to a function
call are converted to the types of the formal parameters exactly as if they had been
assigned using the = operator.

5.

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

9 of 10 21-02-2007 19:21

Functions taking no arguments should have a prototype with (void) as the argument
specification.

6.

Functions taking a variable number of arguments must take at least one named
argument; the variable arguments are indicated by ... as shown:

int
vfunc(int x, float y, ...);

Chapter 9 [http://publications.gbdirect.co.uk/c_book/chapter9/] describes how to write
this sort of function.

7.

4.2.7. Compound statements and declarations

As we have seen, functions always have a compound statement as their body. It is
possible to declare new variables inside any compound statement; if any variables of the
same name already exist, then the old ones are hidden by the new ones within the new
compound statement. This is the same as in every other block-structured language. C
restricts the declarations to the head of the compound statement (or ‘block’); once any
other kind of statement has been seen in the block, declarations are no longer permitted
within that block.

How can it be possible for names to be hidden? The following example shows it
happening:

int a; /* visible from here onwards */

void func(void){
 float a; /* a different 'a' */
 {
 char a; /* yet another 'a' */
 }
 /* the float 'a' reappears */
}
 /* the int 'a' reappears */

Example 4.5

A name declared inside a block hides any outer versions of the same name until the end of
the block where it is declared. Inner blocks can also re-declare that name—you can do this
for ever.

The scope of a name is the range in which it has meaning. Scope starts from the point at
which the name is mentioned and continues from there onwards to the end of the block in
which it is declared. If it is external (outside of any function) then it continues to the end of
the file. If it is internal (inside a function), then it disappears at the end of the block
containing it. The scope of any name can be suspended by redeclaring the name inside a
block.

Using knowledge of the scope rules, you can play silly tricks like this one:

main () {}
int i;
f () {}
f2 () {}

Now f and f2 can use i, but main can't, because the declaration of the variable comes
later than that of main. This is not an aspect that is used very much, but it is implicit in the
way that C processes declarations. It is a source of confusion for anyone reading the file
(external declarations are generally expected to precede any function definitions in a file)
and should be avoided.

The C Book — The type of functions http://publications.gbdirect.co.uk/c_book/chapter4/fun...

10 of 10 21-02-2007 19:21

The Standard has changed things slightly with respect to a function's formal parameters.
They are now considered to have been declared inside the first compound statement, even
though textually they aren't: this goes for both the new and old ways of function definition.
So, if a function has a formal parameter with the same name as something declared in the
outermost compound statement, this causes an error which will be detected by the
compiler.

In Old C, accidental redefinition of a function's formal parameter was a horrible and
particularly difficult mistake to track down. Here is what it would look like:

/* erroneous redeclaration of arguments */

func(a, b, c){
 int a; /* AAAAgh! */
}

The pernicious bit is the new declaration of a in the body of the function, which hides the
parameter called a. Since the problem has now been eliminated we won't investigate it any
further.

Footnotes

1. Stroustrup B. (1991). The C++ Programming Language 2nd edn. Reading, MA:
Addison-Wesley

Previous section [http://publications.gbdirect.co.uk/c_book/chapter4/changes.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter4/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter4/recursion_and_argument_passing.html]

The C Book — Recursion and argument passing http://publications.gbdirect.co.uk/c_book/chapter4/re...

1 of 6 21-02-2007 19:22

4.3. Recursion and argument passing

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter4/recursion_and_argument_passing.html.

So far, we've seen how to give functions a type (how to declare the return value and
the type of any arguments the function takes), and how the definition is used to give
the body of the function. Next we need to see what the arguments can be used for.

4.3.1. Call by value

The way that C treats arguments to functions is both simple and consistent, with no
exceptions to the single rule.

When a function is called, any arguments that are provided by the caller are simply
treated as expressions. The value of each expression has the appropriate
conversions applied and is then used to initialize the corresponding formal
parameter in the called function, which behaves in exactly the same way as any
other local variables in the function. It's illustrated here:

void called_func(int, float);

main(){
 called_func(1, 2*3.5);
 exit(EXIT_SUCCESS);
}

void
called_func(int iarg, float farg){
 float tmp;

 tmp = iarg * farg;
}

Example 4.6

The arguments to called_func in main are two expressions, which are
evaluated. The value of each expression is used to initialize the parameters iarg
and farg in called_func, and the parameters are indistinguishable from the
other local variable declared in called_func, which is tmp.

The initialization of the formal parameters is the last time that any communication
occurs between the caller and the called function, except for the return value.

For those who are used to FORTRAN and var arguments in Pascal, where a
function can change the values of its arguments: forget it. You cannot affect the
values of a function's actual arguments by anything that you try. Here is an example
to show what we mean.

#include <stdio.h>
#include <stdlib.h>
main(){
 void changer(int);

The C Book — Recursion and argument passing http://publications.gbdirect.co.uk/c_book/chapter4/re...

2 of 6 21-02-2007 19:22

 int i;

 i = 5;
 printf("before i=%d\n", i);
 changer(i);
 printf("after i=%d\n", i);
 exit(EXIT_SUCCESS);
}

void
changer(int x){
 while(x){
 printf("changer: x=%d\n", x);
 x--;
 }
}

Example 4.7

The result of running that is:

before i=5
changer: x=5
changer: x=4
changer: x=3
changer: x=2
changer: x=1
after i=5

The function changer uses its formal parameter x as an ordinary variable—which
is exactly what it is. Although the value of x is changed, the variable i (in main) is
unaffected. That is the whole point—the arguments in C are passed into a function
by their value only, no changes made by the function are passed back.

4.3.2. Call by reference

It is possible to write functions that take pointers as their arguments, giving a form of
call by reference. This is described in Chapter 5
[http://publications.gbdirect.co.uk/c_book/chapter5/] and does allow functions to
change values in their callers.

4.3.3. Recursion

With argument passing safely out of the way we can look at recursion. Recursion is
a topic that often provokes lengthy and unenlightening arguments from opposing
camps. Some think it is wonderful, and use it at every opportunity; some others take
exactly the opposite view. Let's just say that when you need it, you really do need it,
and since it doesn't cost much to put into a language, as you would expect, C
supports recursion.

Every function in C may be called from any other or itself. Each invocation of a
function causes a new allocation of the variables declared inside it. In fact, the
declarations that we have been using until now have had something missing: the
keyword auto, meaning ‘automatically allocated’.

/* Example of auto */
main(){
 auto int var_name;
 .

The C Book — Recursion and argument passing http://publications.gbdirect.co.uk/c_book/chapter4/re...

3 of 6 21-02-2007 19:22

 .
 .
}

The storage for auto variables is automatically allocated and freed on function entry
and return. If two functions both declare large automatic arrays, the program will
only have to find room for both arrays if both functions are active at the same time.
Although auto is a keyword, it is never used in practice because it's the default for
internal declarations and is invalid for external ones. If an explicit initial value (see ‘
initialization’) isn't given for an automatic variable, then its value will be unknown
when it is declared. In that state, any use of its value will cause undefined
behaviour.

The real problem with illustrating recursion is in the selection of examples. Too
often, simple examples are used which don't really get much out of recursion. The
problems where it really helps are almost always well out of the grasp of a beginner
who is having enough trouble trying to sort out the difference between, say,
definition and declaration without wanting the extra burden of having to wrap his or
her mind around a new concept as well. The chapter on data structures will show
examples of recursion where it is a genuinely useful technique.

The following example uses recursive functions to evaluate expressions involving
single digit numbers, the operators *, %, /, +, - and parentheses in the same way

that C does. (Stroustrup
1

[http://publications.gbdirect.co.uk/c_book/chapter4/recursion_and_argument_passing.html#foot1]
, in

his book about C++, uses almost an identical example to illustrate recursion. This
happened purely by chance.) The whole expression is evaluated and its value
printed when a character not in the ‘language’ is read. For simplicity no error
checking is performed. Extensive use is made of the ungetc library function, which
allows the last character read by getchar to be ‘unread’ and become once again
the next character to be read. Its second argument is one of the things declared in
stdio.h.

Those of you who understand BNF notation might like to know that the expressions
it will understand are described as follows:

<primary> ::= digit | (<exp>)
<unary> ::= <primary> | -<unary> | +<unary>
<mult> ::= <unary> | <mult> * <unary> |
 <mult> / <unary> | <mult> % <unary>
<exp> ::= <exp> + <mult> | <exp> - <mult> | <mult>

The main places where recursion occurs are in the function unary_exp, which
calls itself, and at the bottom level where primary calls the top level all over again
to evaluate parenthesized expressions.

If you don't understand what it does, try running it. Trace its actions by hand on
inputs such as

1
1+2
1+2 * 3+4
1+--4
1+(2*3)+4

That should keep you busy for a while!

/*
* Recursive descent parser for simple C expressions.
* Very little error checking.
*/

The C Book — Recursion and argument passing http://publications.gbdirect.co.uk/c_book/chapter4/re...

4 of 6 21-02-2007 19:22

#include <stdio.h>
#include <stdlib.h>

int expr(void);
int mul_exp(void);
int unary_exp(void);
int primary(void);

main(){
 int val;

 for(;;){
 printf("expression: ");
 val = expr();
 if(getchar() != '\n'){
 printf("error\n");
 while(getchar() != '\n')
 ; /* NULL */
 } else{
 printf("result is %d\n", val);
 }
 }
 exit(EXIT_SUCCESS);
}

int
expr(void){
 int val, ch_in;

 val = mul_exp();
 for(;;){
 switch(ch_in = getchar()){
 default:
 ungetc(ch_in,stdin);
 return(val);
 case '+':
 val = val + mul_exp();
 break;
 case '-':
 val = val - mul_exp();
 break;
 }
 }
}

int
mul_exp(void){
 int val, ch_in;

 val = unary_exp();
 for(;;){
 switch(ch_in = getchar()){
 default:
 ungetc(ch_in, stdin);
 return(val);
 case '*':
 val = val * unary_exp();
 break;

The C Book — Recursion and argument passing http://publications.gbdirect.co.uk/c_book/chapter4/re...

5 of 6 21-02-2007 19:22

 case '/':
 val = val / unary_exp();
 break;
 case '%':
 val = val % unary_exp();
 break;
 }
 }
}

int
unary_exp(void){
 int val, ch_in;

 switch(ch_in = getchar()){
 default:
 ungetc(ch_in, stdin);
 val = primary();
 break;
 case '+':
 val = unary_exp();
 break;
 case '-':
 val = -unary_exp();
 break;
 }
 return(val);
}

int
primary(void){
 int val, ch_in;

 ch_in = getchar();
 if(ch_in >= '0' && ch_in <= '9'){
 val = ch_in - '0';
 goto out;
 }
 if(ch_in == '('){
 val = expr();
 getchar(); /* skip closing ')' */
 goto out;
 }
 printf("error: primary read %d\n", ch_in);
 exit(EXIT_FAILURE);
out:
 return(val);
}

Example 4.8

Footnotes

1. Stroustrup B. (1991). The C++ Programming Language 2nd edn. Reading, MA:
Addison-Wesley

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter4/function_types.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter4/] | Next section

The C Book — Recursion and argument passing http://publications.gbdirect.co.uk/c_book/chapter4/re...

6 of 6 21-02-2007 19:22

[http://publications.gbdirect.co.uk/c_book/chapter4/linkage.html]

The C Book — Linkage http://publications.gbdirect.co.uk/c_book/chapter4/lin...

1 of 5 21-02-2007 19:22

4.4. Linkage

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter4/linkage.html.

Although the simple examples have carefully avoided the topic, we now have to look into
the effects of scope and linkage, terms used to describe the accessibility of various objects
in a C program. Why bother? It's because realistic programs are built up out of multiple
files and of course libraries. It is clearly crucial that that functions in one file should be able
to refer to functions (or other objects) in other files and libraries; naturally there are a
number of concepts and rules that apply to this mechanism.

If you are relatively new to C, there are more important subjects to cover first. Come back
to this stuff later instead.

There are essentially two types of object in C: the internal and external objects. The
distinction between external and internal is to do with functions: anything declared outside
a function is external, anything inside one, including its formal parameters, is internal.
Since no function can be defined inside another, functions themselves are always external.
At the outermost level, a C program is a collection of external objects.

Only external objects participate in this cross-file and library communication.

The term used by the Standard to describe the accessibility of objects from one file to
another, or even within the same file, is linkage. There are three types of linkage: external
linkage, internal linkage and no linkage. Anything internal to a function—its arguments,
variables and so on—always has no linkage and so can only be accessed from inside the
function itself. (The way around this is to declare something inside a function but prefix it
with the keyword extern which says ‘it isn't really internal’, but we needn't worry about
that just yet.)

Objects that have external linkage are all considered to be located at the outermost level of
the program; this is the default linkage for functions and anything declared outside of a
function. All instances of a particular name with external linkage refer to the same object in
the program. If two or more declarations of the same name have external linkage but
incompatible types, then you've done something very silly and have undefined behaviour.
The most obvious example of external linkage is the printf function, whose declaration in
<stdio.h> is

int printf(const char *, ...);

From that we can tell that it's a function returning int and with a particular prototype—so we
know everything about its type. We also know that it has external linkage, because that is
the default for every external object. As a result, everywhere that the name print is used
with external linkage, we are referring to this function.

Quite often, you want to be able to declare functions and other objects within a single file in
a way that allows them to reference each other but not to be accessible from outside that
file. This is often necessary in the modules that support library functions, where the
additional framework that makes those functions work is not interesting to the user and
would be a positive nuisance if the names of those things became visible outside the
module. You do it through the use of internal linkage.

Names with internal linkage only refer to the same object within a single source file. You
do this by prefixing their declarations with the keyword static, which changes the linkage
of external objects from external linkage to internal linkage. It is also possible to declare

The C Book — Linkage http://publications.gbdirect.co.uk/c_book/chapter4/lin...

2 of 5 21-02-2007 19:22

internal objects to be static, but that has an entirely different meaning which we can
defer for the moment.

It's confusing that the types of linkage and the types of object are both described by the
terms ‘internal’ and ‘external’; this is to some extent historical. C archaeologists may know
that at one time the two were equivalent and one implied the other—for us it's unfortunate
that the terms remain but the meanings have diverged. To summarize:

Type of linkage Type of object Accessibility

external external throughout the program

internal external a single file

none internal local to a single function

Table 4.1. Linkage and accessibility

Finally, before we see an example, it is important to know that all objects with external
linkage must have one and only one definition, although there can be as many compatible
declarations as you like. Here's the example.

/* first file */

int i; /* definition */

main () {

 void f_in_other_place (void); /* declaration */

 i = 0

}

/* end of first file */

/* start of second file */

extern int i; /* declaration */

void f_in_other_place (void){ /* definition */

 i++;

}

/* end of second file */

Example 4.9

Although the full set of rules is a bit more complex, the basic way of working out what
constitutes a definition and a declaration is not hard:

A function declaration without a body for the function is just a declaration.
A function declaration with a body for the function is a definition.
At the external level, a declaration of an object (like the variablei) is a definition
unless it has the keyword extern in front of it, when it is a declaration only.

Chapter 8 [http://publications.gbdirect.co.uk/c_book/chapter8/] revisits the definition and
declaration criteria to a depth that will cause decompression sickness when you surface.

In the example it's easy to see that each file is able to access the objects defined in the
other by using their names. Just from that example alone you should be able to work out
how to construct programs with multiple files and functions and variables declared or
defined as appropriate in each of them.

Here's another example, using static to restrict the accessibility of functions and other
things.

/* example library module */

/* only 'callable' is visible outside */

static buf [100];

The C Book — Linkage http://publications.gbdirect.co.uk/c_book/chapter4/lin...

3 of 5 21-02-2007 19:22

static length;

static void fillup(void);

int

callable (){

 if (length ==0){

 fillup ();

 }

 return (buf [length--]);

}

static void

fillup (void){

 while (length <100){

 buf [length++] = 0;

 }

}

Example 4.10

A user of this module can safely re-use the names declared here, length, buf, and
fillup, without any danger of surprising effects. Only the name callable is accessible
outside this module.

A very useful thing to know is that any external object that has no other initalizer (and
except for functions we haven't seen any initializers yet) is always set to the value of zero
before the program starts. This is widely used and relied on—the previous example relies
on it for the initial value of length.

4.4.1. Effect of scope

There's one additional complicating factor beyond simply linkage. Linkage allows you to
couple names together on a per-program or a per-file basis, but scope determines the
visibility of the names. Fortunately, the rules of scope are completely independent of
anything to do with linkage, so you don't have to remember funny combinations of both.

What introduces the complexity is the dreaded extern keyword. The nice regular block
structure gets blown to pieces with this, which although at a first glance is simple and
obvious, does some very nasty things to the fabric of the language. We'll leave its nasty
problems to Chapter 8 [http://publications.gbdirect.co.uk/c_book/chapter8/], since they only
rear up if you deliberately start to do perverse things with it and then say ‘what does this
mean’? We've already seen it used to ensure that the declaration of something at the outer
block level (the external level) of the program is a declaration and not a definition (but
beware: you can still override the extern by, for example, providing an initializer for the
object).

Unless you prefix it with extern, the declaration of any data object (not a function) at the
outer level is also a definition. Look back to Example 4.9 to see this in use.

All function declarations implicitly have the extern stuck in front of them, whether or not
you put it there too. These two ways of declaring some_function are equivalent and are
always declarations:

void some_function(void);

extern void some_function(void);

The thing that mysteriously turns those declarations into definitions is that when you also
provide the body of the function, that is effectively the initializer for the function, so the
comment about initializers comes into effect and the declaration becomes a definition. So

The C Book — Linkage http://publications.gbdirect.co.uk/c_book/chapter4/lin...

4 of 5 21-02-2007 19:22

far, no problem.

Now, what is going on here?

void some_function(void){

 int i_var;

 extern float e_f_var;

}

void another_func(void){

 int i;

 i = e_f_var; /* scope problem */

}

What happened was that although the declaration of e_f_var declares that something
called e_f_var is of type float and is accessible throughout the entire program, the
scope of the name disappears at the end of the function that contains it. That's why it is
meaningless inside another_func—the name of e_f_var is out of scope, just as much
as i_var is.

So what use is that? It's sometimes handy if you only want to make use of an external
object from within a single function. If you followed the usual practice and declared it at the
head of the particular source file, then there is no easy way for the reader of that file to see
which functions actually use it. By restricting the access and the scope of the name to the
place where is needed, you do communicate to a later reader of the program that this is a
very restricted use of the name and that there is no intention to make widespread use of it
throughout the file. Of course, any half-way decent cross-reference listing would
communicate that anyway, so the argument is a bit hard to maintain.

Chapter 8 [http://publications.gbdirect.co.uk/c_book/chapter8/] is the place to find out
more. There's a set of guidelines for how to get the results that are most often wanted from
multi-file construction, and a good deal more detail on what happens when you mix
extern, static and internal and external declarations. It isn't the sort of reading that
you're likely to do for pleasure, but it does answer the ‘what if’ questions.

4.4.2. Internal static

You are also allowed to declare internal objects as static. Internal variables with this
attribute have some interesting properties: they are initialized to zero when the program
starts, they retain their value between entry to and exit from the statement containing their
declaration and there is only one copy of each one, which is shared between all recursive
calls of the function containing it.

Internal statics can be used for a number of things. One is to count the number of times
that a function has been called; unlike ordinary internal variables whose value is lost after
leaving their function, statics are convenient for this. Here's a function that always returns
a number between 0 and 15, but remembers how often it was called.

int

small_val (void) {

 static unsigned count;

 count ++;

 return (count % 16);

}

Example 4.11

They can help detect excessive recursion:

void

The C Book — Linkage http://publications.gbdirect.co.uk/c_book/chapter4/lin...

5 of 5 21-02-2007 19:22

r_func (void){

 static int depth;

 depth++;

 if (depth > 200) {

 printf ("excessive recursion\n");

 exit (1);

 }

 else {

 /* do usual thing,

 * not shown here.

 * This last action

 * occasionally results in another

 * call on r_func()

 */

 x_func();

 }

 depth--;

}

Example 4.12

Footnotes

1. Stroustrup B. (1991). The C++ Programming Language 2nd edn. Reading, MA:
Addison-Wesley

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter4/recursion_and_argument_passing.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter4/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter4/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter4/s...

1 of 2 21-02-2007 19:22

4.5. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter4/summary.html.

With the appropriate declarations, you can have names that are visible throughout
the program or limited to a single file or limited to a single function, as appropriate.

Here are the combinations of the use of the keywords, the types of declarations and
the resulting linkage:

Declaration Keyword Resulting Linkage Accessibility Note

external none external entire program 2

external extern external entire program 2

external static internal a single file 2

internal none none a single function

internal extern external entire program 1

internal static none a single function 2

Although the accessibility of internal declarations prefixed with extern is
program-wide, watch out for the scope of the name.

External (or internal static) objects are initialized once only, at program start-up.
The absence of explicit initialization is taken to be a default initialization of zero.

Table 4.2. Summary of Linkage

There are a few golden rules for the use of functions that are worth re-stating too.

To use a function returning other than int, a declaration or definition must be
in scope.
Do not return from a function by falling out of its body unless its type is void.

A declaration of the types of arguments that a function takes is not mandatory, but it
is extremely strongly recommended.

Functions taking a variable number of arguments can be written portably if you use
the methods described in Section 9.9
[http://publications.gbdirect.co.uk/c_book/chapter9/stdarg.html].

Functions are the cornerstone of C. Of all the changes to the language, the
Standard has had by far its most obvious effect by introducing function prototypes.
This change has won widespread approval throughout the user community and
should help to produce a substantial improvement in reliability of C programs, as
well as opening the possibility of optimization by compilers in areas previously
closed to them.

The use of call-by-value is sometimes surprising to people who have used
languages that prefer a different mechanism, but at least the C approach is the
‘safest’ most of the time.

The attempts by the Standard to remove ambiguity in the scope and meaning of
declarations are interesting, but frankly have explored an obscure region which
rarely caused any difficulties in practice.

From the beginner's point of view, it is important to learn thoroughly everything

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter4/s...

2 of 2 21-02-2007 19:22

discussed in this chapter, perhaps with the exception of the linkage rules. They can
be deferred for a more leisurely inspection at some later time.

Footnotes

1. Stroustrup B. (1991). The C++ Programming Language 2nd edn. Reading, MA:
Addison-Wesley

Previous section [http://publications.gbdirect.co.uk/c_book/chapter4/linkage.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter4/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html]

The C Book — Exercises http://publications.gbdirect.co.uk/c_book/chapter4/exe...

1 of 1 21-02-2007 19:22

4.6. Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html.

If you skipped the section on Linkage, then Exercise 4.2, Exercise 4.3, and
Exercise 4.4 will cause you problems; it's up to you whether or not you want to read
it and then try them.

Write a function and the appropriate declaration for the following tasks:

Exercise 4.1. A function called abs_val that returns int and takes an int
argument. It returns the absolute value of its argument, by negating it if it is
negative.

Exercise 4.2. A function called output that takes a single character argument and
sends it to the program output with putchar. It will remember the current line
number and column number reached on the output device—the only values passed
to the function are guaranteed to be alphanumeric, punctuation, space and newline
characters.

Exercise 4.3. Construct a program to test output, where that function is in a
separate file from the functions that are used to test it. In the same file as output
will be two functions called current_line and current_column which return
the values of the line and column counters. Ensure that those counters are made
accessible only from the file that contains them.

Exercise 4.4. Write and test a recursive function that performs the admittedly dull
task of printing a list of numbers from 100 down to 1. On entry to the function it
increments a static variable. If the variable has a value below 100, it calls itself
again. Then it prints the value of the variable, decrements it and returns. Check that
it works.

Exercise 4.5. Write functions to calculate the sine and cosine of their input. Choose
appropriate types for both argument and return value. The series (given below) can
be used to approximate the answer. The function should return when the value of
the final term is less than 0.000001 of the current value of the function.

sin x = x - pow(x,3)/fact(3) + pow(x,5)/fact(5)...

cos x = 1 - pow(x,2)/fact(2) + pow(x,5)/fact(5)...

Note the fact that the sign in front of each term alternates (--+--+--+...).
pow(x,n) returns x to the nth power, fact(n) factorial of n (1 × 2 × 3 × ⋯ × n).
You will have to write such functions. Check the results against published tables.

Footnotes

1. Stroustrup B. (1991). The C++ Programming Language 2nd edn. Reading, MA:
Addison-Wesley

Previous section [http://publications.gbdirect.co.uk/c_book/chapter4/summary.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter4/]

The C Book — Arrays and Pointers http://publications.gbdirect.co.uk/c_book/chapter5/?f...

1 of 1 21-02-2007 19:25

Chapter 5

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter5/.

Arrays and Pointers

5.1. Opening shots
[http://publications.gbdirect.co.uk/c_book/chapter5/opening_shots.html]
5.2. Arrays [http://publications.gbdirect.co.uk/c_book/chapter5/arrays.html]
5.3. Pointers [http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html]
5.4. Character handling
[http://publications.gbdirect.co.uk/c_book/chapter5/character_handling.html]
5.5. Sizeof and storage allocation
[http://publications.gbdirect.co.uk/c_book/chapter5/sizeof_and_malloc.html]
5.6. Pointers to functions
[http://publications.gbdirect.co.uk/c_book/chapter5/function_pointers.html]
5.7. Expressions involving pointers
[http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html]
5.8. Arrays, the & operator and function declarations
[http://publications.gbdirect.co.uk/c_book/chapter5/arrays_and_address_of.html]
5.9. Summary
[http://publications.gbdirect.co.uk/c_book/chapter5/summary.html]
5.10. Exercises
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter4/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter6/]

The C Book — Opening shots http://publications.gbdirect.co.uk/c_book/chapter5/op...

1 of 1 21-02-2007 19:25

5.1. Opening shots

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter5/opening_shots.html.

5.1.1. So why is this important?

The arithmetic data types and operators of C are interesting but hardly rivetting.
They show, collectively, a certain imagination and spirit that has stamped C with a
special flavour, but they form the sauce, not the meat, of this particular dish. For
most users, it's functions and the parts of the language covered in this chapter that
provide the real feel of C.

For the new reader, this is the part of the language that causes the biggest
problems. Most beginners with C are at least familiar with the use of arithmetic,
functions and arrays; those are not the problem areas. The difficulties arise when
we get on to the structured types (structures and unions), and the way that C just
wouldn't be C without the use of pointers.

Pointers aren't a feature that you can choose to ignore. They're used everywhere;
their influence affects the whole language and must be the single most noticeable
feature of all but the simplest C programs. If you think that this is one of the bits you
can skip because it's hard and doesn't look too important, you are wrong! Most of
the examples used so far in this book have had pointers used in them (although not
obviously), so you might as well accept the inevitable and learn how to use them
properly.

The most natural way to introduce the use of pointers is by looking into arrays first.
C intertwines arrays and pointers so closely that they are hard to separate. Since
you are expected to be familiar with the use of arrays, their treatment will be brief
and aimed at using them to illustrate the use of pointers when they are seen later.

5.1.2. Effect of the Standard

The new Standard has left very little mark on the contents of this chapter; a lot of it
would be nearly word for word the same even if it only talked about Old C. The
inference to be drawn is that nothing was wrong with the old version of the
language, and that there was nothing to be gained by fixing what wasn't broken.
This may be received with some relief by those readers who already knew this part
of the old language and who, like the Committee, felt that it was good enough to
leave alone.

Even so, the introduction of qualified types by the Standard does add some
complexity to this chapter. The rules about exactly how the various arithmetic and
relational operators work when they are applied to pointers have been clarified,
which adds bulk to the text but has not changed things substantially. In the early
examples we do not pay a lot of attention to them, but after that they are introduced
gradually and where appropriate.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/arrays.html]

The C Book — Arrays http://publications.gbdirect.co.uk/c_book/chapter5/ar...

1 of 2 21-02-2007 19:25

5.2. Arrays

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter5/arrays.html.

Like other languages, C uses arrays as a way of describing a collection of variables with
identical properties. The group has a single name for all of the members, with the individual
members being selected by an index. Here's an array being declared:

double ar[100];

The name of the array is ar and its members are accessed as ar[0] through to ar[99]
inclusive, as Figure 5.1 shows.

Figure 5.1. 100 element array

Each of the hundred members is a separate variable whose type is double. Without
exception, all arrays in C are numbered from 0 up to one less than the bound given in the
declaration. This is a prime cause of surprise to beginners—watch out for it. For simple
examples of the use of arrays, look back at earlier chapters where several problems are solved
with their help.

One important point about array declarations is that they don't permit the use of varying
subscripts. The numbers given must be constant expressions which can be evaluated at
compile time, not run time. For example, this function incorrectly tries to use its argument in the
size of an array declaration:

f(int x){

 char var_sized_array[x]; /* FORBIDDEN */

}

It's forbidden because the value of x is unknown when the program is compiled; it's a run-time,
not a compile-time, value.

To tell the truth, it would be easy to support arrays whose first dimension is variable, but neither
Old C nor the Standard permits it, although we do know of one Very Old C compiler that used
to do it.

5.2.1. Multidimensional arrays

Multidimensional arrays can be declared like this:

int three_dee[5][4][2];

int t_d[2][3]

The use of the brackets gives a clue to what is going on. If you refer to the precedence table
given in Section 2.8.3
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html#section-3]
(Table 2.9), you'll see that [] associates left to right and that, as a result, the first declaration
gives us a five-element array called three_dee. The members of that array are each a four
element array whose members are an array of two ints. We have declared arrays of arrays, as
Figure 5.2 shows for two dimensions.

The C Book — Arrays http://publications.gbdirect.co.uk/c_book/chapter5/ar...

2 of 2 21-02-2007 19:25

Figure 5.2. Two-dimensional array, showing layout

In the diagram, you will notice that t_d[0] is one element, immediately followed by t_d[1]
(there is no break). It so happens that both of those elements are themselves arrays of three
integers. Because of C's storage layout rules, t_d[1][0] is immediately after t_d[0][2]. It
would be possible (but very poor practice) to access t_d[1][0] by making use of the lack of
array-bound checking in C, and to use the expression t_d[0][3]. That is not
recommended—apart from anything else, if the declaration of t_d ever changes, then the
results will be likely to surprise you.

That's all very well, but does it really matter in practice? Not much it's true; but it is interesting
to note that in terms of actual machine storage layout the rightmost subscript ‘varies fastest’.
This has an impact when arrays are accessed via pointers. Otherwise, they can be used just as
would be expected; expressions like these are quite in order:

three_dee[1][3][1] = 0;

three_dee[4][3][1] += 2;

The second of those is interesting for two reasons. First, it accesses the very last member of
the entire array—although the subscripts were declared to be [5][4][2], the highest usable
subscript is always one less than the one used in the declaration. Second, it shows where the
combined assignment operators are a real blessing. For the experienced C programmer it is
much easier to tell that only one array member is being accessed, and that it is being
incremented by two. Other languages would have to express it like this:

three_dee[4][3][1] = three_dee[4][3][1] + 2;

It takes a conscious effort to check that the same array member is being referenced on both
sides of the assignment. It makes thing easier for the compiler too: there is only one array
indexing calculation to do, and this is likely to result in shorter, faster code. (Of course a clever
compiler would notice that the left- and right-hand sides look alike and would be able to
generate equally efficient code—but not all compilers are clever and there are lots of special
cases where even clever compilers are unable to make use of the information.)

It may be of interest to know that although C offers support for multidimensional arrays, they
aren't particularly common to see in practice. One-dimensional arrays are present in most
programs, if for no other reason than that's what strings are. Two dimensional arrays are seen
occasionally, and arrays of higher order than that are most uncommon. One of the reasons is
that the array is a rather inflexible data structure, and the ease of building and manipulating
other types of data structures in C means that they tend to replace arrays in the more
advanced programs. We will see more of this when we look at pointers.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter5/opening_shots.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html]

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

1 of 10 21-02-2007 19:25

5.3. Pointers

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html.

Using pointers is a bit like riding a bicycle. Just when you think that you'll never understand
them—suddenly you do! Once learned the trick is hard to forget. There's no real magic to
pointers, and a lot of readers will already be familiar with their use. The only peculiarity of C
is how heavily it relies on the use of pointers, compared with other languages, and the
relatively permissive view of what you can do with them.

5.3.1. Declaring pointers

Of course, just like other variables, you have to declare pointers before you can use them.
Pointer declarations look much like other declarations: but don't be misled. When pointers
are declared, the keyword at the beginning (c int, char and so on) declares the type of
variable that the pointer will point to. The pointer itself is not of that type, it is of type pointer
to that type. A given pointer only points to one particular type, not to all possible types.
Here's the declaration of an array and a pointer:

int ar[5], *ip;

We now have an array and a pointer (see Figure 5.3):

Figure 5.3. An array and a pointer

The * in front of ip in the declaration shows that it is a pointer, not an ordinary variable. It is
of type pointer to int, and can only be used to refer to variables of type int. It's still
uninitialized, so to do anything useful with it, it has to be made to point to something. You
can't just stick some integer value into it, because integer values have the type int, not
pointer to int, which is what we want. (In any case, what would it mean if this fragment
were valid:

ip = 6;

What would ip be pointing to? In fact it could be construed to have a number of meanings,
but the simple fact is that, in C, that sort of thing is just wrong.)

Here is the right way to initialize a pointer:

int ar[5], *ip;

ip = &ar[3];

In that example, the pointer is made to point to the member of the array ar whose index is
3, i.e. the fourth member. This is important. You can assign values to pointers just like
ordinary variables; the difference is simply in what the value means. The values of the

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

2 of 10 21-02-2007 19:25

variables that we have now are shown in Figure 5.4 (?? means uninitialized).

Figure 5.4. Array and initialized pointer

You can see that the variable ip has the value of the expression &ar[3]. The arrow
indicates that, when used as a pointer, ip points to the variable ar[3].

What is this new unary &? It is usually described as the ‘address-of’ operator, since on many
systems the pointer will hold the store address of the thing that it points to. If you understand
what addresses are, then you will probably have more trouble than those who don't: thinking
about pointers as if they were addresses generally leads to grief. What seems a perfectly
reasonable address manipulation on processor X can almost always be shown to be
impossible on manufacturer Y's washing machine controller which uses 17-bit addressing
when it's on the spin cycle, and reverses the order of odd and even bits when it's out of
bleach. (Admittedly, it's unlikely that anyone could get C to work an an architecture like that.
But you should see some of the ones it does work on; they aren't much better.)

We will continue to use the term ‘address of’ though, because to invent a different one would
be even worse.

Applying the & operator to an operand returns a pointer to the operand:

int i;

float f;

 /* '&i' would be of type pointer to int */

 /* '&f' would be of type pointer to float */

In each case the pointer would point to the object named in the expression.

A pointer is only useful if there's some way of getting at the thing that it points to; C uses the
unary * operator for this job. If p is of type ‘pointer to something’, then *p refers to the thing
that is being pointed to. For example, to access the variable x via the pointer p, this would
work:

#include <stdio.h>

#include <stdlib.h>

main(){

 int x, *p;

 p = &x; /* initialise pointer */

 p = 0; / set x to zero */

 printf("x is %d\n", x);

 printf("*p is %d\n", *p);

 p += 1; / increment what p points to */

 printf("x is %d\n", x);

 (*p)++; /* increment what p points to */

 printf("x is %d\n", x);

 exit(EXIT_SUCCESS);

}

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

3 of 10 21-02-2007 19:25

Example 5.1

You might be interested to note that, since & takes the address of an object, returning a
pointer to it, and since * means ‘the thing pointed to by the pointer’, the & and * in the
combination *& effectively cancel each other out. (But be careful. Some things, constants
for example, don't have addresses and the & operator cannot be applied to them; &1.5 is
not a pointer to anything, it's an error.) It's also interesting to see that C is one of the few
languages that allows an expression on the left-hand side of an assignment operator. Look
back at the example: the expression *p occurs twice in that position, and then the amazing
(*p)++; statement. That last one is a great puzzle to most beginners—even if you've
managed to wrap your mind around the concept that *p = 0 writes zero into the thing
pointed to by p, and that *p += 1 adds one to where p points, it still seems a bit much to
apply the ++ operator to *p.

The precedence of (*p)++ deserves some thought. It will be given more later, but for the
moment let's work out what happens. The brackets ensure that the * applies to p, so what
we have is ‘post-increment the thing pointed to by p’. Looking at Table 2.9, it turns out that
++ and * have equal precedence, but they associate right to left; in other words, without the
brackets, the implied operation would have been *(p++), whatever that would mean. Later
on you'll be more used to it—for the moment, we'll be careful with brackets to show the way
that those expressions work.

So, provided that a pointer holds the address of something, the notation *pointer is
equivalent to giving the name of the something directly. What benefit do we get from all this?
Well, straight away it gets round the call-by-value restriction of functions. Imagine a function
that has to return, say, two integers representing a month and a day within that month. The
function has some (unspecified) way of determining these values; the hard thing to do is to
return two separate values. Here's a skeleton of the way that it can be done:

#include <stdio.h>

#include <stdlib.h>

void

date(int *, int *); /* declare the function */

main(){

 int month, day;

 date (&day, &month);

 printf("day is %d, month is %d\n", day, month);

 exit(EXIT_SUCCESS);

}

void

date(int *day_p, int *month_p){

 int day_ret, month_ret;

 /*

 * At this point, calculate the day and month

 * values in day_ret and month_ret respectively.

 */

 *day_p = day_ret;

 *month_p = month_ret;

}

Example 5.2

Notice carefully the advance declaration of date showing that it takes two arguments of
type ‘pointer to int’. It returns void, because the values are passed back via the pointers,
not the usual return value. The main function passes pointers as arguments to date, which
first uses the internal variables day_ret and month_ret for its calculations, then takes
those values and assigns them to the places pointed to by its arguments.

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

4 of 10 21-02-2007 19:25

When date is called, the situation looks like Figure 5.5.

Figure 5.5. Just as date is called

The arguments have been passed to date, but in main, day and month are uninitialized.
When date reaches the return statement, the situation is as shown in Figure 5.6 (assuming
that the values for day and month are 12 and 5 respectively).

Figure 5.6. Just as date is about to return

One of the great benefits introduced by the new Standard is that it allows the types of the
arguments to date to be declared in advance. A great favourite (and disastrous) mistake in
C is to forget that a function expects pointers as its arguments, and to pass something else
instead. Imagine what would have happened if the call of date above had read

date(day, month);

and no previous declaration of date had been visible. The compiler would not have known
that date expects pointers as arguments, so it would pass the int values of day and month
as the arguments. On a large number of computers, pointers and integers can be passed in
the same way, so the function would execute, then pass back its return values by putting
them into wherever day and month would point if their contents were pointers. This is very
unlikely to give any sensible results, and in general causes unexpected corruption of data
elsewhere in the computer's store. It can be extremely hard to track down!

Fortunately, by declaring date in advance, the compiler has enough information to warn
that a mistake has almost certainly been made.

Perhaps surprisingly, it isn't all that common to see pointers used to give this
call-by-reference functionality. In the majority of cases, call-by-value and a single return
value are adequate. What is much more common is to use pointers to ‘walk’ along arrays.

5.3.2. Arrays and pointers

Array elements are just like other variables: they have addresses.

int ar[20], *ip;

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

5 of 10 21-02-2007 19:25

ip = &ar[5];

ip = 0; / equivalent to ar[5] = 0; */

The address of ar[5] is put into ip, then the place pointed to has zero assigned to it. By
itself, this isn't particularly exciting. What is interesting is the way that pointer arithmetic
works. Although it's simple, it's one of the cornerstones of C.

Adding an integral value to a pointer results in another pointer of the same type. Adding n
gives a pointer which points n elements further along an array than the original pointer did.
(Since n can be negative, subtraction is obviously possible too.) In the example above, a
statement of the form

*(ip+1) = 0;

would set ar[6] to zero, and so on. Again, this is not obviously any improvement on
‘ordinary’ ways of accessing an array, but the following is.

int ar[20], *ip;

for(ip = &ar[0]; ip < &ar[20]; ip++)

 *ip = 0;

That example is a classic fragment of C. A pointer is set to point to the start of an array,
then, while it still points inside the array, array elements are accessed one by one, the
pointer incrementing between each one. The Standard endorses existing practice by
guaranteeing that it's permissible to use the address of ar[20] even though no such
element exists. This allows you to use it for checks in loops like the one above. The
guarantee only extends to one element beyond the end of an array and no further.

Why is the example better than indexing? Well, most arrays are accessed sequentially. Very
few programming examples actually make use of the ‘random access’ feature of arrays. If
you do just want sequential access, using a pointer can give a worthwhile improvement in
speed. In terms of the underlying address arithmetic, on most architectures it takes one
multiplication and one addition to access a one-dimensional array through a subscript.
Pointers require no arithmetic at all—they nearly always hold the store address of the object
that they refer to. In the example above, the only arithmetic that has to be done is in the for
loop, where one comparison and one addition are done each time round the loop. The
equivalent, using indexes, would be this:

int ar[20], i;

for(i = 0; i < 20; i++)

 ar[i] = 0;

The same amount of arithmetic occurs in the loop statement, but an extra address
calculation has to be performed for every array access.

Efficiency is not normally an important issue, but here it can be. Loops often get traversed a
substantial number of times, and every microsecond saved in a big loop can matter. It isn't
always easy for even a smart compiler to recognize that this is the sort of code that could be
‘pointerized’ behind the scenes, and to convert from indexing (what the programmer wrote)
to actually use a pointer in the generated code.

If you have found things easy so far, read on. If not, it's a good idea to skip to Section 5.3.3
[http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html#section-3]. What follows,
while interesting, isn't essential. It has been known to frighten even experienced C
programmers.

To be honest, C doesn't really ‘understand’ array indexing, except in declarations. As far as
the compiler is concerned, an expression like x[n] is translated into *(x+n) and use made
of the fact that an array name is converted into a pointer to the array's first element
whenever the name occurs in an expression. That's why, amongst other things, array

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

6 of 10 21-02-2007 19:25

elements count from zero: if x is an array name, then in an expression, x is equivalent to
&x[0], i.e. a pointer to the first element of the array. So, since *(&x[0]) uses the pointer
to get to x[0], *(&x[0] + 5) is the same as *(x + 5) which is the same as x[5]. A
curiosity springs out of all this. If x[5] is translated into *(x + 5), and the expression x +
5 gives the same result as 5 + x (it does), then 5[x] should give the identical result to
x[5]! If you don't believe that, here is a program that compiles and runs successfully:

#include <stdio.h>

#include <stdlib.h>

#define ARSZ 20

main(){

 int ar[ARSZ], i;

 for(i = 0; i < ARSZ; i++){

 ar[i] = i;

 i[ar]++;

 printf("ar[%d] now = %d\n", i, ar[i]);

 }

 printf("15[ar] = %d\n", 15[ar]);

 exit(EXIT_SUCCESS);

}

Example 5.3

Summary

Arrays always index from zero—end of story.
There are no multidimensional arrays; you use arrays of arrays instead.
Pointers point to things; pointers to different types are themselves different types. They
have nothing in common with each other or any other types in C; there are no
automatic conversions between pointers and other types.
Pointers can be used to simulate ‘call by reference’ to functions, but it takes a little
work to do it.
Incrementing or adding something to a pointer can be used to step along arrays.
To facilitate array access by incrementing pointers, the Standard guarantees that in an
n element array, although element n does not exist, use of its address is not an
error—the valid range of addresses for an array declared as int ar[N] is &ar[0]
through to &ar[N]. You must not try to access this last pseudo-element.

5.3.3. Qualified types

If you are confident that you have got a good grasp of the basic declaration and use of
pointers we can continue. If not, it's important to go back over the previous material and
make sure that there is nothing in it that you still find obscure; although what comes next
looks more complicated than it really is, there's no need to make it worse by starting
unprepared.

The Standard introduces two things called type qualifiers, neither of which were in Old C.
They can be applied to any declared type to modify its behaviour—hence the term
‘qualifier’—and although one of them can be ignored for the moment (the one named
volatile), the other, const, cannot.

If a declaration is prefixed with the keyword const, then the thing that is declared is
announced to the world as being constant. You must not attempt to modify (change the
value of) const objects, or you get undefined behaviour. Unless you have used some very
dirty tricks, the compiler will know that the thing you are trying to modify is constant, so it can
warn you.

There are two benefits in being able to declare things to be const.

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

7 of 10 21-02-2007 19:25

It documents the fact that the thing is unmodifiable and the compiler helps to check.
This is especially reassuring in the case of functions which take pointers as
arguments. If the declaration of a function shows that the arguments are pointers to
constant objects, then you know that the function is not allowed to change them
through the pointers.

1.

If the compiler knows that things are constant, it can often do increased amounts of
optimization or generate better code.

2.

Of course, constants are not much use unless you can assign an initial value to them. We
won't go into the rules about initialization here (they are in Chapter 6
[http://publications.gbdirect.co.uk/c_book/chapter6/]), but for the moment just note that any
declaration can also assign the value of a constant expression to the thing being declared.
Here are some example declarations involving const:

const int x = 1; /* x is constant */

const float f = 3.5; /* f is constant */

const char y[10]; /* y is an array of 10 const ints */

 /* don't think about initializing it yet! */

What is more interesting is that pointers can have this qualifier applied in two ways: either to
the thing that it points to (pointer to const), or to the pointer itself (constant pointer). Here are
examples of that:

int i; /* i is an ordinary int */

const int ci = 1; /* ci is a constant int */

int *pi; /* pi is a pointer to an int */

const int *pci; /* pc is a pointer to a constant int */

 /* and now the more complicated stuff */

/* cpi is a constant pointer to an int */

int *const cpi = &i;

/* cpci is a constant pointer to an constant int */

const int *const cpci = &ci;

The first declaration (of i) is unsurprising. Next, the declaration of ci shows that it is a
constant integer, and therefore may not be modified. If we didn't initialize it, it would be
pretty well useless.

It isn't hard to understand what a pointer to an integer and a pointer to a constant integer
do—but note that they are different types of pointer now and can't be freely intermixed. You
can change the values of both pi and pci (so that they point to other things); you can
change the value of the thing that pi points to (it's not a constant integer), but you are only
allowed to inspect the value of the thing that pci points to because that is a constant.

The last two declarations are the most complicated. If the pointers themselves are constant,
then you are not allowed to make them point somewhere else—so they need to be
initialized, just like ci. Independent of the const or other status of the pointer itself,
naturally the thing that it points to can also be const or non-const, with the appropriate
constraints on what you can do with it.

A final piece of clarification: what constitutes a qualified type? In the example, ci was
clearly of a qualified type, but pci was not, since the pointer was not qualified, only the thing
that it points to. The only things that had qualified type in that list were: ci, cpi, and cpci.

Although the declarations do take some mental gymnastics to understand, it just takes a
little time to get used to seeing them, after which you will find that they seem quite natural.
The complications come later when we have to explain whether or not you are allowed to
(say) compare an ordinary pointer with a constant pointer, and if so, what does it mean?
Most of those rules are ‘obvious’ but they do have to be stated.

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

8 of 10 21-02-2007 19:25

Type qualifiers are given a further airing in Chapter 8
[http://publications.gbdirect.co.uk/c_book/chapter8/].

5.3.4. Pointer arithmetic

Although a more rigorous description of pointer arithmetic is given later, we'll start with an
approximate version that will do for the moment.

Not only can you add an integral value to a pointer, but you can also compare or subtract
two pointers of the same type. They must both point into the same array, or the result is
undefined. The difference between two pointers is defined to be the number of array
elements separating them; the type of this difference is implementation defined and will be
one of short, int, or long. This next example shows how the difference can be calculated
and used, but before you read it, you need to know an important point.

In an expression the name of an array is converted to a pointer to the first element of the
array. The only places where that is not true are when an array name is used in conjunction
with sizeof, when a string is used to initialize an array or when the array name is the
subject of the address-of operator (unary &). We haven't seen any of those cases yet, they
will be discussed later. Here's the example.

#include <stdio.h>

#include <stdlib.h>

#define ARSZ 10

main(){

 float fa[ARSZ], *fp1, *fp2;

 fp1 = fp2 = fa; /* address of first element */

 while(fp2 != &fa[ARSZ]){

 printf("Difference: %d\n", (int)(fp2-fp1));

 fp2++;

 }

 exit(EXIT_SUCCESS);

}

Example 5.4

The pointer fp2 is stepped along the array, and the difference between its current and
original values is printed. To make sure that printf isn't handed the wrong type of
argument, the difference between the two pointers is forced to be of type int by using the
cast (int). That allows for machines where the difference between two pointers is
specified to be long.

Unfortunately, if the difference does happen to be long and the array is enormous, the last
example may give the wrong answers. This is a safe version, using a cast to force a long
value to be passed:

#include <stdio.h>

#define ARSZ 10

main(){

 float fa[ARSZ], *fp1, *fp2;

 fp1 = fp2 = fa; /* address of first element */

 while(fp2 != &fa[ARSZ]){

 printf("Difference: %ld\n", (long)(fp2-fp1));

 fp2++;

 }

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

9 of 10 21-02-2007 19:25

 return(0);

}

Example 5.5

5.3.5. void, null and dubious pointers

C is careful to keep track of the type of each pointer and will not in general allow you to use
pointers of different types in the same expression. A pointer to char is a different type of
pointer from a pointer to int (say) and you cannot assign one to the other, compare them,
substitute one for the other as an argument to a function in fact they may even be stored
differently in memory and even be of different lengths.

Pointers of different types are not the same. There are no implicit conversions from one to
the other (unlike the arithmetic types).

There are a few occasions when you do want to be able to sidestep some of those
restrictions, so what can you do?

The solution is to use the special type, introduced for this purpose, of ‘pointer to void’. This
is one of the Standard's invented features: before, it was tacitly assumed that ‘pointer to
char’ was adequate for the task. This has been a reasonably successful assumption, but
was a rather untidy thing to do; the new solution is both safer and less misleading. There
isn't any other use for a pointer of that type—void * can't actually point to anything—so it
improves readability. A pointer of type void * can have the value of any other pointer
assigned to and can, conversely, be assigned to any other pointer. This must be used with
great care, because you can end up in some heinous situations. We'll see it being used
safely later with the malloc library function.

You may also on occasion want a pointer that is guaranteed not to point to any object—the
so-called null pointer. It's common practice in C to write routines that return pointers. If, for
some reason, they can't return a valid pointer (perhaps in case of an error), then they will
indicate failure by returning a null pointer instead. An example could be a table lookup
routine, which returns a pointer to the object searched for if it is in the table, or a null pointer
if it is not.

How do you write a null pointer? There are two ways of doing it and both of them are
equivalent: either an integral constant with the value of 0 or that value converted to type
void * by using a cast. Both versions are called the null pointer constant. If you assign a
null pointer constant to any other pointer, or compare it for equality with any other pointer,
then it is first converted the type of that other pointer (neatly solving any problems about
type compatibility) and will not appear to have a value that is equal to a pointer to any object
in the program.

The only values that can be assigned to pointers apart from 0 are the values of other
pointers of the same type. However, one of the things that makes C a useful replacement for
assembly language is that it allows you to do the sort of things that most other languages
prevent. Try this:

int *ip;

ip = (int *)6;

*ip = 0xFF;

What does that do? The pointer has been initialized to the value of 6 (notice the cast to turn
an integer 6 into a pointer). This is a highly machine-specific operation, and the bit pattern
that ends up in the pointer is quite possibly nothing like the machine representation of 6.
After the initialization, hexadecimal FF is written into wherever the pointer is pointing. The int
at location 6 has had 0xFF written into it—subject to whatever ‘location 6’ means on this
particular machine.

It may or may not make sense to do that sort of thing; C gives you the power to express it,

The C Book — Pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

10 of 10 21-02-2007 19:25

it's up to you to get it right. As always, it's possible to do things like this by accident, too, and
to be very surprised by the results.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter5/arrays.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/character_handling.html]

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter5/ch...

1 of 6 21-02-2007 19:26

5.4. Character handling

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter5/character_handling.html.

C is widely used for character and string handling applications. This is odd, in some ways,
because the language doesn't really have any built-in string handling features. If you're used
to languages that know about string handling, you will almost certainly find C tedious to begin
with.

The standard library contains lots of functions to help with string processing but the fact
remains that it still feels like hard work. To compare two strings you have to call a function
instead of using an equality operator. There is a bright side to this, though. It means that the
language isn't burdened by having to support string processing directly, which helps to keep it
small and less cluttered. What's more, once you get your string handling programs working in
C, they do tend to run very quickly.

Character handling in C is done by declaring arrays (or allocating them dynamically) and
moving characters in and out of them ‘by hand’. Here is an example of a program which reads
text a line at a time from its standard input. If the line consists of the string of characters
stop, it stops; otherwise it prints the length of the line. It uses a technique which is invariably
used in C programs; it reads the characters into an array and indicates the end of them with
an extra character whose value is explicitly 0 (zero). It uses the library strcmp function to
compare two strings.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define LINELNG 100 /* max. length of input line */

main(){
 char in_line[LINELNG];
 char *cp;
 int c;

 cp = in_line;
 while((c = getc(stdin)) != EOF){
 if(cp == &in_line[LINELNG-1] || c == '\n'){
 /*
 * Insert end-of-line marker
 */
 *cp = 0;
 if(strcmp(in_line, "stop") == 0)
 exit(EXIT_SUCCESS);
 else
 printf("line was %d characters long\n",
 (int)cp-in_line);
 cp = in_line;
 }
 else
 *cp++ = c;
 }
 exit(EXIT_SUCCESS);

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter5/ch...

2 of 6 21-02-2007 19:26

}

Example 5.6

Once more, the example illustrates some interesting methods used widely in C programs. By
far the most important is the way that strings are represented and manipulated.

Here is a possible implementation of strcmp, which compares two strings for equality and
returns zero if they are the same. The library function actually does a bit more than that, but
the added complication can be ignored for the moment. Notice the use of const in the
argument declarations. This shows that the function will not modify the contents of the strings,
but just inspects them. The definitions of the standard library functions make extensive use of
this technique.

/*
* Compare two strings for equality.
* Return 'false' if they are.
*/
int
str_eq(const char *s1, const char *s2){
 while(*s1 == *s2){
 /*
 * At end of string return 0.
 */
 if(*s1 == 0)
 return(0);
 s1++; s2++;
 }
 /* Difference detected! */
 return(1);
}

Example 5.7

5.4.1. Strings

Every C programmer ‘knows’ what a string is. It is an array of char variables, with the last
character in the string followed by a null. ‘But I thought a string was something in double
quote marks’, you cry. You are right, too. In C, a sequence like this

"a string"

is really a character array. It's the only example in C where you can declare something at the
point of its use.

Be warned: in Old C, strings were stored just like any other character array, and were
modifiable. Now, the Standard states that although they are are arrays of char, (not const
char), attempting to modify them results in undefined behaviour.

Whenever a string in quotes is seen, it has two effects: it provides a declaration and a
substitute for a name. It makes a hidden declaration of a char array, whose contents are
initialized to the character values in the string, followed by a character whose integer value is
zero. The array has no name. So, apart from the name being present, we have a situation like
this:

char secret[9];
secret[0] = 'a';
secret[1] = ' ';
secret[2] = 's';
secret[3] = 't';

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter5/ch...

3 of 6 21-02-2007 19:26

secret[4] = 'r';
secret[5] = 'i';
secret[6] = 'n';
secret[7] = 'g';
secret[8] = 0;

an array of characters, terminated by zero, with character values in it. But when it's declared
using the string notation, it hasn't got a name. How can we use it?

Whenever C sees a quoted string, the presence of the string itself serves as the name of the
hidden array—not only is the string an implicit sort of declaration, it is as if an array name had
been given. Now, we all remember that the name of an array is equivalent to giving the
address of its first element, so what is the type of this?

"a string"

It's a pointer of course: a pointer to the first element of the hidden unnamed array, which is of
type char, so the pointer is of type ‘pointer to char’. The situation is shown in Figure 5.7.

Figure 5.7. Effect of using a string

For proof of that, look at the following program:

#include <stdio.h>
#include <stdlib.h>
main(){
 int i;
 char *cp;

 cp = "a string";
 while(*cp != 0){
 putchar(*cp);
 cp++;
 }
 putchar('\n');

 for(i = 0; i < 8; i++)
 putchar("a string"[i]);
 putchar('\n');
 exit(EXIT_SUCCESS);
}

Example 5.8

The first loop sets a pointer to the start of the array, then walks along until it finds the zero at
the end. The second one ‘knows’ about the length of the string and is less useful as a result.
Notice how the first one is independent of the length—that is a most important point to
remember. It's the way that strings are handled in C almost without exception; it's certainly the
format that all of the library string manipulation functions expect. The zero at the end allows
string processing routines to find out that they have reached the end of the string—look back
now to the example function str_eq. The function takes two character pointers as

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter5/ch...

4 of 6 21-02-2007 19:26

arguments (so a string would be acceptable as one or both arguments). It compares them for
equality by checking that the strings are character-for-character the same. If they are the
same at any point, then it checks to make sure it hasn't reached the end of them both with
if(*s1 == 0): if it has, then it returns 0 to show that they were equal. The test could just as
easily have been on *s2, it wouldn't have made any difference. Otherwise a difference has
been detected, so it returns 1 to indicate failure.

In the example, strcmp is called with two arguments which look quite different. One is a
character array, the other is a string. In fact they're the same thing—a character array
terminated by zero (the program is careful to put a zero in the first ‘empty’ element of
in_line), and a string in quotes—which is a character array terminated by a zero. Their use
as arguments to strcmp results in character pointers being passed, for the reasons explained
to the point of tedium above.

5.4.2. Pointers and increment operators

We said that we'd eventually revisit expressions like

(*p)++;

and now it's time. Pointers are used so often to walk down arrays that it just seems natural to
use the ++ and -- operators on them. Here we write zeros into an array:

#define ARLEN 10

int ar[ARLEN], *ip;

ip = ar;
while(ip < &ar[ARLEN])
 *(ip++) = 0;

Example 5.9

The pointer ip is set to the start of the array. While it remains inside the array, the place that
it points to has zero written into it, then the increment takes effect and the pointer is stepped
one element along the array. The postfix form of ++ is particularly useful here.

This is very common stuff indeed. In most programs you'll find pointers and increment
operators used together like that, not just once or twice, but on almost every line (or so it
seems while you find them difficult). What is happening, and what combinations can we get?
Well, the * means indirection, and ++ or -- mean increment; either pre- or post-increment.
The combinations can be pre- or post-increment of either the pointer or the thing it points to,
depending on where the brackets are put. Table 5.1 gives a list.

++(*p) pre-increment thing pointed to

(*p)++ post-increment thing pointed to

*(p++) access via pointer, post-increment pointer

*(++p) access via pointer which has already been incremented

Table 5.1. Pointer notation

Read it carefully; make sure that you understand the combinations.

The expressions in the list above can usually be understood after a bit of head-scratching.
Now, given that the precedence of *, ++ and -- is the same in all three cases and that they
associate right to left, can you work out what happens if the brackets are removed? Nasty,
isn't it? Table 5.2 shows that there's only one case where the brackets have to be there.

With parentheses Without, if possible

++(*p) ++*p

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter5/ch...

5 of 6 21-02-2007 19:26

With parentheses Without, if possible

(*p)++ (*p)++

*(p++) *p++

*(++p) *++p

Table 5.2. More pointer notation

The usual reaction to that horrible sight is to decide that you don't care that the parentheses
can be removed; you will always use them in your code. That's all very well but the problem is
that most C programmers have learnt the important precedence rules (or at least learnt the
table above) and they very rarely put the parentheses in. Like them, we don't—so if you want
to be able to read the rest of the examples, you had better learn to read those expressions
with or without parentheses. It'll be worth the effort in the end.

5.4.3. Untyped pointers

In certain cases it's essential to be able to convert pointers from one type to another. This is
always done with the aid of casts, in expressions like the one below:

(type *) expression

The expression is converted into ‘pointer to type’, regardless of the expression's previous
type. This is only supposed to be done if you're sure that you know what you're trying to do. It
is not a good idea to do much of it until you have got plenty of experience. Furthermore, do
not assume that the cast simply suppresses diagnostics of the ‘mismatched pointer’ sort from
your compiler. On several architectures it is necessary to calculate new values when pointer
types are changed.

There are also some occasions when you will want to use a ‘generic’ pointer. The most
common example is the malloc library function, which is used to allocate storage for objects
that haven't been declared. It is used by telling it how much storage is wanted—enough for a
float, or an array of int, or whatever. It passes back a pointer to enough storage, which it
allocates in its own mysterious way from a pool of free storage (the way that it does this is its
own business). That pointer is then cast into the right type—for example if a float needs 4
bytes of free store, this is the flavour of what you would write:

float *fp;

fp = (float *)malloc(4);

Malloc finds 4 bytes of store, then the address of that piece of storage is cast into
pointer-to-float and assigned to the pointer.

What type should malloc be declared to have? The type must be able to represent every
known value of every type of pointer; there is no guarantee that any of the basic types in C
can hold such a value.

The solution is to use the void * type that we've already talked about. Here is the last
example with a declaration of malloc:

void *malloc();
float *fp;

fp = (float *)malloc(4);

The rules for assignment of pointers show that there is no need to use a cast on the return
value from malloc, but it is often done in practice.

Obviously there needs to be a way to find out what value the argument to malloc should be:
it will be different on different machines, so you can't just use a constant like 4. That is what

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter5/ch...

6 of 6 21-02-2007 19:26

the sizeof operator is for.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/sizeof_and_malloc.html]

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

1 of 10 21-02-2007 19:26

5.5. Sizeof and storage allocation

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter5/sizeof_and_malloc.html.

The sizeof operator returns the size in bytes of its operand. Whether the result of
sizeof is unsigned int or unsigned long is implementation defined—which is why
the declaration of malloc above ducked the issue by omitting any parameter information;
normally you would use the stdlib.h header file to declare malloc correctly. Here is the
last example done portably:

#include <stdlib.h> /* declares malloc() */

float *fp;

fp = (float *)malloc(sizeof(float));

The operand of sizeof only has to be parenthesized if it's a type name, as it was in the
example. If you are using the name of a data object instead, then the parentheses can be
omitted, but they rarely are.

#include <stdlib.h>

int *ip, ar[100];

ip = (int *)malloc(sizeof ar);

In the last example, the array ar is an array of 100 ints; after the call to malloc
(assuming that it was successful), ip will point to a region of store that can also be treated
as an array of 100 ints.

The fundamental unit of storage in C is the char, and by definition

sizeof(char)

is equal to 1, so you could allocate space for an array of ten chars with

malloc(10)

while to allocate room for an array of ten ints, you would have to use

malloc(sizeof(int[10]))

If malloc can't find enough free space to satisfy a request it returns a null pointer to
indicate failure. For historical reasons, the stdio.h header file contains a defined
constant called NULL which is traditionally used to check the return value from malloc
and some other library functions. An explicit 0 or (void *)0 could equally well be used.

As a first illustration of the use of malloc, here's a program which reads up to MAXSTRING
strings from its input and sort them into alphabetical order using the library strcmp routine.
The strings are terminated by a ‘\n’ character. The sort is done by keeping an array of
pointers to the strings and simply exchanging the pointers until the order is correct. This
saves having to copy the strings themselves, which improves the efficency somewhat.

The example is done first using fixed size arrays, then another version uses malloc and
allocates space for the strings at run time. Unfortunately, the array of pointers is still fixed

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

2 of 10 21-02-2007 19:26

in size: a better solution would use a linked list or similar data structure to store the
pointers and would have no fixed arrays at all. At the moment, we haven't seen how to do
that.

The overall structure is this:

while(number of strings read < MAXSTRING

 && input still remains){

 read next string;

}

sort array of pointers;

print array of pointers;

exit;

A number of functions are used to implement this program:

char *next_string(char *destination)

Read a line of characters terminated by ‘\n’ from the program's input. The first
MAXLEN-1 characters are written into the array pointed to by destination.

If the first character read is EOF, return a null pointer, otherwise return the address of
the start of the string (destination). On return, destination always points to a
null-terminated string.

void sort_arr(const char *p_array[])

P_array[] is an array of pointers to characters. The array can be arbitrarily long; its
end is indicated by the first element containing a null pointer.

Sort_arr sorts the pointers so that the pointers point to strings which are in
alphabetical order when the array is traversed in index order.

void print_arr(const char *p_array[])

Like sort_arr, but prints the strings in index order.

It will help to understand the examples if you remember that in an expression, an array's
name is converted to the address of its first element. Similarly, for a two-dimensional array
(such as strings below), then the expression strings[1][2] has type char, but
strings[1] has type ‘array of char’ which is therefore converted to the address of the
first element: it is equivalent to &strings[1][0].

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAXSTRING 50 /* max no. of strings */

#define MAXLEN 80 /* max length. of strings */

void print_arr(const char *p_array[]);

void sort_arr(const char *p_array[]);

char *next_string(char *destination);

main(){

 /* leave room for null at end */

 char *p_array[MAXSTRING+1];

 /* storage for strings */

 char strings[MAXSTRING][MAXLEN];

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

3 of 10 21-02-2007 19:26

 /* count of strings read */

 int nstrings;

 nstrings = 0;

 while(nstrings < MAXSTRING &&

 next_string(strings[nstrings]) != 0){

 p_array[nstrings] = strings[nstrings];

 nstrings++;

 }

 /* terminate p_array */

 p_array[nstrings] = 0;

 sort_arr(p_array);

 print_arr(p_array);

 exit(EXIT_SUCCESS);

}

void print_arr(const char *p_array[]){

 int index;

 for(index = 0; p_array[index] != 0; index++)

 printf("%s\n", p_array[index]);

}

void sort_arr(const char *p_array[]){

 int comp_val, low_index, hi_index;

 const char *tmp;

 for(low_index = 0;

 p_array[low_index] != 0 &&

 p_array[low_index+1] != 0;

 low_index++){

 for(hi_index = low_index+1;

 p_array[hi_index] != 0;

 hi_index++){

 comp_val=strcmp(p_array[hi_index],

 p_array[low_index]);

 if(comp_val >= 0)

 continue;

 /* swap strings */

 tmp = p_array[hi_index];

 p_array[hi_index] = p_array[low_index];

 p_array[low_index] = tmp;

 }

 }

}

char *next_string(char *destination){

 char *cp;

 int c;

 cp = destination;

 while((c = getchar()) != '\n' && c != EOF){

 if(cp-destination < MAXLEN-1)

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

4 of 10 21-02-2007 19:26

 *cp++ = c;

 }

 *cp = 0;

 if(c == EOF && cp == destination)

 return(0);

 return(destination);

}

Example 5.10

It is no accident that next_string returns a pointer. We can now dispense with the
strings array by getting next_string to allocate its own storage.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAXSTRING 50 /* max no. of strings */

#define MAXLEN 80 /* max length. of strings */

void print_arr(const char *p_array[]);

void sort_arr(const char *p_array[]);

char *next_string(void);

main(){

 char *p_array[MAXSTRING+1];

 int nstrings;

 nstrings = 0;

 while(nstrings < MAXSTRING &&

 (p_array[nstrings] = next_string()) != 0){

 nstrings++;

 }

 /* terminate p_array */

 p_array[nstrings] = 0;

 sort_arr(p_array);

 print_arr(p_array);

 exit(EXIT_SUCCESS);

}

void print_arr(const char *p_array[]){

 int index;

 for(index = 0; p_array[index] != 0; index++)

 printf("%s\n", p_array[index]);

}

void sort_arr(const char *p_array[]){

 int comp_val, low_index, hi_index;

 const char *tmp;

 for(low_index = 0;

 p_array[low_index] != 0 &&

 p_array[low_index+1] != 0;

 low_index++){

 for(hi_index = low_index+1;

 p_array[hi_index] != 0;

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

5 of 10 21-02-2007 19:26

 hi_index++){

 comp_val=strcmp(p_array[hi_index],

 p_array[low_index]);

 if(comp_val >= 0)

 continue;

 /* swap strings */

 tmp = p_array[hi_index];

 p_array[hi_index] = p_array[low_index];

 p_array[low_index] = tmp;

 }

 }

}

char *next_string(void){

 char *cp, *destination;

 int c;

 destination = (char *)malloc(MAXLEN);

 if(destination != 0){

 cp = destination;

 while((c = getchar()) != '\n' && c != EOF){

 if(cp-destination < MAXLEN-1)

 *cp++ = c;

 }

 *cp = 0;

 if(c == EOF && cp == destination)

 return(0);

 }

 return(destination);

}

Example 5.11

Finally, for the extremely brave, here is the whole thing with even p_array allocated using
malloc. Further, most of the array indexing is rewritten to use pointer notation. If you are
feeling queasy, skip this example. It is hard. One word of explanation: char **p means a
pointer to a pointer to a character. Many C programmers find this hard to deal with.

#include <stdio.h>

#include <stdlib.hi>

#include <string.h>

#define MAXSTRING 50 /* max no. of strings */

#define MAXLEN 80 /* max length. of strings */

void print_arr(const char **p_array);

void sort_arr(const char **p_array);

char *next_string(void);

main(){

 char **p_array;

 int nstrings; /* count of strings read */

 p_array = (char **)malloc(

 sizeof(char *[MAXSTRING+1]));

 if(p_array == 0){

 printf("No memory\n");

 exit(EXIT_FAILURE);

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

6 of 10 21-02-2007 19:26

 }

 nstrings = 0;

 while(nstrings < MAXSTRING &&

 (p_array[nstrings] = next_string()) != 0){

 nstrings++;

 }

 /* terminate p_array */

 p_array[nstrings] = 0;

 sort_arr(p_array);

 print_arr(p_array);

 exit(EXIT_SUCCESS);

}

void print_arr(const char **p_array){

 while(*p_array)

 printf("%s\n", *p_array++);

}

void sort_arr(const char **p_array){

 const char **lo_p, **hi_p, *tmp;

 for(lo_p = p_array;

 *lo_p != 0 && *(lo_p+1) != 0;

 lo_p++){

 for(hi_p = lo_p+1; *hi_p != 0; hi_p++){

 if(strcmp(*hi_p, *lo_p) >= 0)

 continue;

 /* swap strings */

 tmp = *hi_p;

 *hi_p = *lo_p;

 *lo_p = tmp;

 }

 }

}

char *next_string(void){

 char *cp, *destination;

 int c;

 destination = (char *)malloc(MAXLEN);

 if(destination != 0){

 cp = destination;

 while((c = getchar()) != '\n' && c != EOF){

 if(cp-destination < MAXLEN-1)

 *cp++ = c;

 }

 *cp = 0;

 if(c == EOF && cp == destination)

 return(0);

 }

 return(destination);

}

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

7 of 10 21-02-2007 19:26

Example 5.12

To further illustrate the use of malloc, another example program follows which can cope
with arbitrarily long strings. It simply reads strings from its standard input, looking for a
newline character to mark the end of the string, then prints the string on its standard
output. It stops when it detects end-of-file. The characters are put into an array, the end of
the string being indicated (as always) by a zero. The newline is not stored, but used to
detect when a full line of input should be printed on the output. The program doesn't know
how long the string will be, so it starts by allocating ten characters—enough for a short
string.

If the string is more than ten characters long, malloc is called to allocate room for the
current string plus ten more characters. The current characters are copied into the new
space, the old storage previously allocated is released and the program continues using
the new storage.

To release storage allocated by malloc, the library function free is used. If you don't
release storage when it isn't needed any more, it just hangs around taking up space. Using
free allows it to be ‘given away’, or at least re-used later.

The program reports errors by using fprintf, a close cousin of printf. The only
difference between them is that fprintf takes an additional first argument which indicates
where its output should go. There are two constants of the right type for this purpose
defined in stdio.h. Using stdout indicates that the program's standard output is to be
used; stderr refers to the program's standard error stream. On some systems both may
be the same, but other systems do make the distinction.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define GROW_BY 10 /* string grows by 10 chars */

main(){

 char *str_p, *next_p, *tmp_p;

 int ch, need, chars_read;

 if(GROW_BY < 2){

 fprintf(stderr,

 "Growth constant too small\n");

 exit(EXIT_FAILURE);

 }

 str_p = (char *)malloc(GROW_BY);

 if(str_p == NULL){

 fprintf(stderr,"No initial store\n");

 exit(EXIT_FAILURE);

 }

 next_p = str_p;

 chars_read = 0;

 while((ch = getchar()) != EOF){

 /*

 * Completely restart at each new line.

 * There will always be room for the

 * terminating zero in the string,

 * because of the check further down,

 * unless GROW_BY is less than 2,

 * and that has already been checked.

 */

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

8 of 10 21-02-2007 19:26

 if(ch == '\n'){

 /* indicate end of line */

 *next_p = 0;

 printf("%s\n", str_p);

 free(str_p);

 chars_read = 0;

 str_p = (char *)malloc(GROW_BY);

 if(str_p == NULL){

 fprintf(stderr,"No initial store\n");

 exit(EXIT_FAILURE);

 }

 next_p = str_p;

 continue;

 }

 /*

 * Have we reached the end of the current

 * allocation ?

 */

 if(chars_read == GROW_BY-1){

 next_p = 0; / mark end of string */

 /*

 * use pointer subtraction

 * to find length of

 * current string.

 */

 need = next_p - str_p +1;

 tmp_p = (char *)malloc(need+GROW_BY);

 if(tmp_p == NULL){

 fprintf(stderr,"No more store\n");

 exit(EXIT_FAILURE);

 }

 /*

 * Copy the string using library.

 */

 strcpy(tmp_p, str_p);

 free(str_p);

 str_p = tmp_p;

 /*

 * and reset next_p, character count

 */

 next_p = str_p + need-1;

 chars_read = 0;

 }

 /*

 * Put character at end of current string.

 */

 *next_p++ = ch;

 chars_read++;

 }

 /*

 * EOF - but do unprinted characters exist?

 */

 if(str_p - next_p){

 *next_p = 0;

 fprintf(stderr,"Incomplete last line\n");

 printf("%s\n", str_p);

 }

 exit(EXIT_SUCCESS);

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

9 of 10 21-02-2007 19:26

}

Example 5.13

That may not be a particularly realistic example of how to handle arbitrarily long
strings—for one thing, the maximum storage demand is twice the amount needed for the
longest string—but it does actually work. It also costs rather a lot in terms of copying
around. Both problems could be reduced by using the library realloc function instead.

A more sophisticated method might use a linked list, implemented with the use of
structures, as described in the next chapter. That would have its drawbacks too though,
because then the standard library routines wouldn't work for a different method of storing
strings.

5.5.1. What sizeof can't do

One common mistake made by beginners is shown below:

#include <stdio.h>

#include <stdlib.h>

const char arr[] = "hello";

const char *cp = arr;

main(){

 printf("Size of arr %lu\n", (unsigned long)

 sizeof(arr));

 printf("Size of *cp %lu\n", (unsigned long)

 sizeof(*cp));

 exit(EXIT_SUCCESS);

}

Example 5.14

The numbers printed will not be the same. The first will, correctly, identify the size of arr
as 6; five characters followed by a null. The second one will always, on every system, print
1. That's because the type of *cp is const char, which can only have a size of 1,
whereas the type of arr is different: array of const char. The confusion arises because
this is the one place that the use of an array is not converted into a pointer first. It is never
possible, using sizeof, to find out how long an array a pointer points to; you must have a
genuine array name instead.

5.5.2. The type of sizeof

Now comes the question of just what this does:

sizeof (sizeof (anything legal))

That is to say, what type does the result of sizeof have? The answer is that it is
implementation defined, and will be either unsigned long or unsigned int,
depending on your implementation. There are two safe things to do: either always cast the
return value to unsigned long, as the examples have done, or to use the defined type
size_t provided in the <stddef.h> header file. For example:

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

main(){

The C Book — Sizeof and storage allocation http://publications.gbdirect.co.uk/c_book/chapter5/siz...

10 of 10 21-02-2007 19:26

 size_t sz;

 sz = sizeof(sz);

 printf("size of sizeof is %lu\n",

 (unsigned long)sz);

 exit(EXIT_SUCCESS);

}

Example 5.15

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter5/character_handling.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/function_pointers.html]

The C Book — Pointers to functions http://publications.gbdirect.co.uk/c_book/chapter5/fun...

1 of 2 21-02-2007 19:26

5.6. Pointers to functions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter5/function_pointers.html.

A useful technique is the ability to have pointers to functions. Their declaration is
easy: write the declaration as it would be for the function, say

int func(int a, float b);

and simply put brackets around the name and a * in front of it: that declares the
pointer. Because of precedence, if you don't parenthesize the name, you declare a
function returning a pointer:

/* function returning pointer to int */

int *func(int a, float b);

/* pointer to function returning int */

int (*func)(int a, float b);

Once you've got the pointer, you can assign the address of the right sort of function
just by using its name: like an array, a function name is turned into an address when
it's used in an expression. You can call the function using one of two forms:

(*func)(1,2);

/* or */

func(1,2);

The second form has been newly blessed by the Standard. Here's a simple
example.

#include <stdio.h>

#include <stdlib.h>

void func(int);

main(){

 void (*fp)(int);

 fp = func;

 (*fp)(1);

 fp(2);

 exit(EXIT_SUCCESS);

}

void

func(int arg){

 printf("%d\n", arg);

}

Example 5.16

The C Book — Pointers to functions http://publications.gbdirect.co.uk/c_book/chapter5/fun...

2 of 2 21-02-2007 19:26

If you like writing finite state machines, you might like to know that you can have an
array of pointers to functions, with declaration and use like this:

void (*fparr[])(int, float) = {

 /* initializers */

 };

/* then call one */

fparr[5](1, 3.4);

Example 5.17

But we'll draw a veil over it at this point!

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter5/sizeof_and_malloc.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html]

The C Book — Expressions involving pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

1 of 3 21-02-2007 19:26

5.7. Expressions involving pointers

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html.

Because of the introduction of qualified types and of the notion of incomplete types,
together with the use of void *, there are now some complicated rules about how you
can mix pointers and what arithmetic with pointers really permits you to do. Most people
will survive quite well without ever learning this explicitly, because a lot of it is ‘obvious’,
but we will include it here in case you do want to know. For the final word in accuracy,
obviously you will want to see what the Standard says. What follows is our interpretation
in (hopefully) plainer English.

You don't yet know the Standard means when it talks about objects or incomplete types.
So far we have tended to use the term loosely, but properly speaking an object is a
piece of data storage whose contents is to be interpreted as a value. A function is not an
object. An incomplete type is one whose name and type are mostly known, but whose
size hasn't yet been determined. You can get these in two ways:

By declaring an array but omitting information about its size: int x[];. In that
case, there must be additional information given later in a definition for the array.
The type remains incomplete until the later definition.

1.

By declaring a structure or union but not defining its contents. The contents must
be defined in a later declaration. The type remains incomplete until the later
declaration.

2.

There will be some more discussion of incomplete types in later chapters.

Now for what you are allowed to do with pointers. Note that wherever we talk about
qualified types they can be qualified with const, volatile, or both; the examples are
illustrated with const only.

5.7.1. Conversions

Pointers to void can be freely converted backwards and forwards with pointers to any
object or incomplete type. Converting a pointer to an object or an incomplete type to
void * and then back gives a value which is equal to the original one:

int i;

int *ip;

void *vp;

ip = &i;

vp = ip;

ip = vp;

if(ip != &i)

 printf("Compiler error\n");

An unqualified pointer type may be converted to a qualified pointer type, but the reverse
is not true. The two values will be equal:

int i;

int *ip, *const cpi;

The C Book — Expressions involving pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

2 of 3 21-02-2007 19:26

ip = &i;

cpi = ip; /* permitted */

if(cpi != ip)

 printf("Compiler error\n");

ip = cpi; /* not permitted */

A null pointer constant (see earlier) will not be equal to a pointer to any object or
function.

5.7.2. Arithmetic

Expressions can add (or subtract, which is equivalent to adding negative values)
integral values to the value of a pointer to any object type. The result has the type of the
pointer and if n is added, then the result points n array elements away from the pointer.
The most common use is repeatedly to add 1 to a pointer to step it from the start to the
end of an array, but addition or subtraction of values other than one is possible.

It the pointer resulting from the addition points in front of the array or past the
non-existent element just after the last element of the array, then you have had overflow
or underflow and the result is undefined.

The last-plus-one element of an array has always been assumed to be a valid address
for a pointer and the Standard confirms this. You mustn't actually access that element,
but the address is guaranteed to exist rather than being an overflow condition.

We've been careful to use the term ‘expression’ rather than saying that you actually add
something to the pointer itself. You can do that, but only if the pointer is not qualified
with const (of course). The increment and decrement operators are equivalent to
adding or subtracting 1.

Two pointers to compatible types whether or not qualified may be subtracted. The result
has the type ptrdiff_t, which is defined in the header file <stddef.h>. Both
pointers must point into the same array, or one past the end of the array, otherwise the
behaviour is undefined. The value of the result is the number of array elements that
separate the two pointers. E.g.:

int x[100];

int *pi, *cpi = &x[99]; /* cpi points to the last element of x */

pi = x;

if((cpi - pi) != 99)

 printf("Error\n");

pi = cpi;

pi++; /* increment past end of x */

if((pi - cpi) != 1)

 printf("Error\n");

5.7.3. Relational expressions

These allow us to compare pointers with each other. You can only compare

Pointers to compatible object types with each other
Pointers to compatible incomplete types with each other

It does not matter if the types that are pointed to are qualified or unqualified.

If two pointers compare equal to each other then they point to the same thing, whether it
is an object or the non-existent element off the end of an array (see arithmetic, above). If
two pointers point to the same thing, then they compare equal to each other. The

The C Book — Expressions involving pointers http://publications.gbdirect.co.uk/c_book/chapter5/po...

3 of 3 21-02-2007 19:26

relational operators >, <= and so on all give the result that you would expect if the
pointers point into the same array: if one pointer compares less than another, then it
points nearer to the front of the array.

A null pointer constant can be assigned to a pointer; that pointer will then compare
equal to the null pointer constant (which is pretty obvious). A null pointer constant or a
null pointer will not compare equal to a pointer that points to anything which actually
exists.

5.7.4. Assignment

You can use pointers with the assignment operators if the following conditions are met:

The left-hand operand is a pointer and the right-hand operand is a null pointer
constant.
One operand is a pointer to an object or incomplete type; the other is a pointer to
void (whether qualified or not).
Both of the operands are pointers to compatible types (whether qualified or not).

In the last two cases, the type pointed to by the left-hand side must have at least the
same qualifiers as the type pointed to by the right-hand side (possibly more).

So, you can assign a pointer to int to a pointer to const int (more qualifiers on the left
than the right) but you cannot assign a pointer to const int to a pointer to int. If you
think about it, it makes sense.

The += and -= operators can involve pointers as long as the left-hand side is a pointer
to an object and the right-hand side is an integral expression. The arithmetic rules
above describe what happens.

5.7.5. Conditional operator

The description of the behaviour of this operator when it is used with pointers has
already been given in Chapter 3 [http://publications.gbdirect.co.uk/c_book/chapter3/].

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter5/function_pointers.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/arrays_and_address_of.html]

The C Book — Arrays, the & operator and function http://publications.gbdirect.co.uk/c_book/chapter5/ar...

1 of 2 21-02-2007 19:27

5.8. Arrays, the & operator and function

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter5/arrays_and_address_of.html.

We have already emphasized that in most cases, the name of an array is converted into the
address of its first element; one notable exception being when it is the operand of sizeof, which
is essential if the stuff to do with malloc is to work. Another case is when an array name is the
operand of the & address-of operator. Here, it is converted into the address of the whole array.
What's the difference? Even if you think that addresses would be in some way ‘the same’, the
critical difference is that they have different types. For an array of n elements of type T, then the
address of the first element has type ‘pointer to T’; the address of the whole array has type
‘pointer to array of n elements of type T’; clearly very different. Here's an example of it:

int ar[10];

int *ip;

int (*ar10i)[10]; /* pointer to array of 10 ints */

ip = ar; /* address of first element */

ip = &ar[0]; /* address of first element */

ar10i = &ar; /* address of whole array */

Where do pointers to arrays matter? Not often, in truth, although of course we know that
declarations that look like multidimensional arrays are really arrays of arrays. Here is an example
which uses that fact, but you'll have to work out what it does for yourself. It is not common to do
this sort of thing in practice:

int ar2d[5][4];

int (*ar4i)[4]; /* pointer to array of 4 ints */

for(ar4i= ar2d; ar4i < &(ar2d[5]); ar4i++)

 (*ar4i)[2] = 0; /* ar2d[n][2] = 0 */

More important than addresses of arrays is what happens when you declare a function that takes
an array as an argument. Because of the ‘conversion to the address of its first element’ rule, even
if you do try to pass an array to a function by giving its name as an argument, you actually end up
passing a pointer to its first element. The usual rule really does apply in this case! But what if you
declare that the function does have an argument whose type is ‘array of something’—like this:

void f(int ar[10]);

What happens? The answer may suprise you slightly. The compiler looks at that and says to itself
‘Ho ho. That's going to be a pointer when the function is called’ and then rewrites the parameter
type to be a pointer. As a result, all three of these declarations are identical:

void f(int ar[10]);

void f(int *ar);

void f(int ar[]); /* since the size of the array is irrelevant! */

Having seen that, your reaction might be to look for a solid object to bang your head against for a
while, but we don't recommend it. Take a grip on yourself instead and put in the effort to work out:

Why that is isn't really such a shock
Why, given a function declaration like that, then within the function, expressions of the form
ar[5] and so on work as expected anyhow

The C Book — Arrays, the & operator and function http://publications.gbdirect.co.uk/c_book/chapter5/ar...

2 of 2 21-02-2007 19:27

Give that last one some thought. When you get to the bottom of it, you really will have grasped
what arrays and pointers are about.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter5/s...

1 of 1 21-02-2007 19:27

5.9. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter5/summary.html.

You have been introduced to arrays, pointers and the storage allocater. The last of
the topics will prove to be more useful in the next chapter, but the other two are are
central to the language.

You cannot use C properly without understanding the use of pointers. Arrays are
simple and unsurprising, except for the fact that when it's used in an expression, an
array name usually converts into a pointer to its first element; that often takes time
to sink in.

The C approach to support for strings often causes raised eyebrows. The
null-terminated array of character model is both powerful and flexible. The fact that
string manipulation is not built in to the language at first glance seems to rule C out
of serious contention for character-oriented work, yet that is exactly where the
language scores well compared with the alternatives, at least when speed is
important. All the same, it's hard work for the programmer.

Pointer arithmetic is easy and extremely convenient. It's harder for ex-assembler
programmers to learn, because of the tendency to try to translate it into what they
‘know’ the machine is doing. However, much harder for people with very low-level
experience is the idea of the non-equivalence of pointers of different types. Try hard
to throw away the idea that pointers contain addresses (in the hardware sense) and
it will repay the effort.

The facility to obtain arbitrary pieces of storage using malloc and the associated
stuff is extremely important. You might wish to defer it for a while, but don't leave it
for too long. An obvious feature of C programs written by inexperienced users is
their dependence on fixed size arrays. Malloc gives you considerably more
flexibility and is worth the effort to learn about.

The examples of the use of sizeof should help to eliminate a few common
misconceptions about what it does. You may not use it all that often, but when you
do need it, there's no substitute.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter5/arrays_and_address_of.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html]

The C Book — Exercises http://publications.gbdirect.co.uk/c_book/chapter5/exe...

1 of 1 21-02-2007 19:27

5.10. Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html.

Exercise 5.1. What is the valid range of indices for an array of ten objects?

Exercise 5.2. What happens if you take the address of the 11th member of that
array?

Exercise 5.3. When is it valid to compare the values of two pointers?

Exercise 5.4. What is the use of a pointer to void?

Exercise 5.5. Write functions which:

Compare two strings for equality. If they are equal, zero is returned, otherwise
the difference in value between the first two non-matching characters.

a.

Find the first occurrence of a specific character in a given string. Return a
pointer to the occurrence in the string, or zero if it is not found.

b.

Take two strings as arguments. If the first exists in the second as a substring,
return a pointer to the first occurrence, otherwise zero.

c.

Exercise 5.6. Explain the examples using malloc to somebody else.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter5/summary.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter5/]

The C Book — Structured Data Types http://publications.gbdirect.co.uk/c_book/chapter6/?f...

1 of 1 05-03-2007 16:06

Chapter 6

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter6/.

Structured Data Types

6.1. History [http://publications.gbdirect.co.uk/c_book/chapter6/history.html]
6.2. Structures [http://publications.gbdirect.co.uk/c_book/chapter6/structures.html]
6.3. Unions [http://publications.gbdirect.co.uk/c_book/chapter6/unions.html]
6.4. Bitfields [http://publications.gbdirect.co.uk/c_book/chapter6/bitfields.html]
6.5. Enums [http://publications.gbdirect.co.uk/c_book/chapter6/enums.html]
6.6. Qualifiers and derived types
[http://publications.gbdirect.co.uk/c_book/chapter6/qualifiers_and_derived_types.html]
6.7. Initialization [http://publications.gbdirect.co.uk/c_book/chapter6/initialization.html]
6.8. Summary [http://publications.gbdirect.co.uk/c_book/chapter6/summary.html]
6.9. Exercises [http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter5/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter7/]

The C Book — History http://publications.gbdirect.co.uk/c_book/chapter6/his...

1 of 1 05-03-2007 16:07

6.1. History

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter6/history.html.

The development of the early computer languages went either one way or the other.
COBOL concentrated on the structure of data but not on arithmetic or algorithms,
FORTRAN and Algol leant the other way. Scientific users wanted to do numeric
work on relatively unstructured data (although arrays were soon found to be
indispensable) and commercial users needed only basic arithmetic but knew that
the key issue was the structure of the data.

The ideas that have influenced C are a mixture of the two schools; it has the
structured control of flow expected in a language of its age, and has also made a
start on data structures. So far we have concentrated on the algorithmic aspects of
the language and haven't thought hard about data storage. Whilst it's true that
arrays fall into the general category of data structuring, they are so simple, and so
commonly in use, that they don't deserve a chapter to themselves. Until now we
have been looking at a kind of block-structured FORTRAN.

The trend in the late 1980s and early '90s seems to be towards integrating both the
data and the algorithms; it's then called Object-Oriented programming. There is no
specific support for that in C. C++ is a language based on C that does offer support
for Object-Oriented techniques, but it is out of our scope to discuss it further.

For a large class of problems in computing, it is the data and not the algorithms that
are the most interesting. If the initial design gets its data structures right, the rest of
the effort in putting a program together is often quite small. However, you need help
from the language. If there is no support for structured data types other than arrays,
writing programs becomes both less convenient and also more prone to errors. It is
the job of a good language to do more than just allow you to do something; it must
actively help as well.

C offers arrays, structures and unions as its contribution to data structuring. They
have proved to be entirely adequate for most users' needs over the years and
remain essentially unchanged by the Standard.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter6/structures.html]

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

1 of 14 05-03-2007 16:07

6.2. Structures

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter6/structures.html.

Arrays allow for a named collection of identical objects. This is suitable for a number of tasks, but
isn't really very flexible. Most real data objects are complicated things with an inherent structure
that does not fit well on to array style storage. Let's use a concrete example.

Imagine that the job is something to do with a typesetting package. In this system, the individual
characters have not only their character values but also some additional attributes like font and
point size. The font doesn't affect the character as such, but only the way that it is displayed: this
is the normal font, this is in italics and this is in bold font. Point size is similar. It describes the size
of the characters when they are printed. For example, the point size of this text increases now. It
goes back again now. If our characters have three independent attributes, how can they be
represented in a single object?

With C it's easy. First work out how to represent the individual attributes in the basic types. Let's
assume that we can still store the character itself in a char, that the font can be encoded into a
short (1 for regular, 2 italic, 3 bold etc.) and that the point size will also fit a short. These are all
quite reasonable assumptions. Most systems only support a few tens of fonts even if they are
very sophisticated, and point sizes are normally in the range 6 to the small hundreds. Below 6 is
almost invisible, above 50 is bigger than the biggest newspaper banner headlines. So we have a
char and two shorts that are to be treated as a single entity. Here's how to declare it in C.

struct wp_char{
 char wp_cval;
 short wp_font;
 short wp_psize;
};

That effectively declares a new type of object which can be used in your program. The whole
thing is introduced by the struct keyword, which is followed by an optional identifier known as
the tag, wp_char in this case. The tag only serves the purpose of giving a name to this type of
structure and allows us to refer to the type later on. After a declaration like the one just seen, the
tag can be used like this:

struct wp_char x, y;

That defines two variables called x and y just as it would have done if the definition had been

int x, y;

but of course in the first example the variables are of type struct wp_char, and in the second
their type is int. The tag is a name for the new type that we have introduced.

It's worth remembering that structure tags can safely be used as ordinary identifiers as well. They
only mean something special when they are preceded by the keyword struct. It is quite
common to see a structured object being defined with the same name as its structure tag.

struct wp_char wp_char;

That defines a variable called wp_char of type struct wp_char. This is described by saying
that structure tags have their own ‘name space’ and cannot collide with other names. We'll
investigate tags some more in the discussion of ‘incomplete types’.

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

2 of 14 05-03-2007 16:07

Variables can also be defined immediately following a structure declaration.

struct wp_char{
 char wp_cval;
 short wp_font;
 short wp_psize;
}v1;

struct wp_char v2;

We now have two variables, v1 and v2. If all the necessary objects are defined at the end of the
structure declaration, the way that v1 was, then the tag becomes unneccessary (except if it is
needed later for use with sizeof and in casts) and is often not present.

The two variables are structured objects, each containing three separate members called
wp_cval, wp_font and wp_psize. To access the individual members of the structures, the ‘dot’
operator is used:

v1.wp_cval = 'x';
v1.wp_font = 1;
v1.wp_psize = 10;

v2 = v1;

The individual members of v1 are initialized to suitable values, then the whole of v1 is copied into
v2 in an assignment.

In fact the only operation permitted on whole structures is assignment: they can be assigned to
each other, passed as arguments to functions and returned by functions. However, it is not a very
efficient operation to copy structures and most programs avoid structure copying by manipulating
pointers to structures instead. It is generally quicker to copy pointers around than structures. A
surprising omission from the language is the facility to compare structures for equality, but there is
a good reason for this which will be mentioned shortly.

Here is an example using an array of structures like the one before. A function is used to read
characters from the program's standard input and return an appropriately initialized structure.
When a newline has been read or the array is full, the structures are sorted into order depending
on the character value, and then printed out.

#include <stdio.h>
#include <stdlib.h>

#define ARSIZE 10

struct wp_char{
 char wp_cval;
 short wp_font;
 short wp_psize;
}ar[ARSIZE];

/*
* type of the input function -
* could equally have been declared above;
* it returns a structure and takes no arguments.
*/
struct wp_char infun(void);

main(){
 int icount, lo_indx, hi_indx;

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

3 of 14 05-03-2007 16:07

 for(icount = 0; icount < ARSIZE; icount++){
 ar[icount] = infun();
 if(ar[icount].wp_cval == '\n'){
 /*
 * Leave the loop.
 * not incrementing icount means that the
 * '\n' is ignored in the sort
 */
 break;
 }
 }

 /* now a simple exchange sort */

 for(lo_indx = 0; lo_indx <= icount-2; lo_indx++)
 for(hi_indx = lo_indx+1; hi_indx <= icount-1; hi_indx++){
 if(ar[lo_indx].wp_cval > ar[hi_indx].wp_cval){
 /*
 * Swap the two structures.
 */
 struct wp_char wp_tmp = ar[lo_indx];
 ar[lo_indx] = ar[hi_indx];
 ar[hi_indx] = wp_tmp;
 }
 }

 /* now print */
 for(lo_indx = 0; lo_indx < icount; lo_indx++){
 printf("%c %d %d\n", ar[lo_indx].wp_cval,
 ar[lo_indx].wp_font,
 ar[lo_indx].wp_psize);
 }
 exit(EXIT_SUCCESS);
}

struct wp_char
infun(void){
 struct wp_char wp_char;

 wp_char.wp_cval = getchar();
 wp_char.wp_font = 2;
 wp_char.wp_psize = 10;

 return(wp_char);
}

Example 6.1

Once it is possible to declare structures it seems pretty natural to declare arrays of them, use
them as members of other structures and so on. In fact the only restriction is that a structure
cannot contain an example of itself as a member—in which case its size would be an interesting
concept for philosophers to debate, but hardly useful to a C programmer.

6.2.1. Pointers and structures

If what the last paragraph says is true—that it is more common to use pointers to structures than
to use the structures directly—we need to know how to do it. Declaring pointers is easy of course:

struct wp_char *wp_p;

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

4 of 14 05-03-2007 16:07

gives us one straight away. But how do we access the members of the structure? One way might
be to look through the pointer to get the whole structure, then select the member:

/* get the structure, then select a member */
(*wp_p).wp_cval

that would certainly work (the parentheses are there because . has a higher precedence than *).
It's not an easy notation to work with though, so C introduces a new operator to clean things up; it
is usually known as the ‘pointing-to’ operator. Here it is being used:

/* the wp_cval in the structure wp_p points to */
wp_p->wp_cval = 'x';

and although it might not look a lot easier than its alternative, it pays off when the structure
contains pointers, as in a linked list. The pointing-to syntax is much easier if you want to follow
two or three stages down the links of a linked list. If you haven't come across linked lists before,
you're going to learn a lot more than just the use of structures before this chapter finishes!

If the thing on the left of the . or -> operator is qualified (with const or volatile) then the
result is also has those qualifiers associated with it. Here it is, illustrated with pointers; when the
pointer points to a qualified type the result that you get is also qualified:

#include <stdio.h>
#include <stdlib.h>

struct somestruct{
 int i;
};

main(){
 struct somestruct *ssp, s_item;
 const struct somestruct *cssp;

 s_item.i = 1; /* fine */
 ssp = &s_item;
 ssp->i += 2; /* fine */
 cssp = &s_item;
 cssp->i = 0; /* not permitted - cssp points to const objects */

 exit(EXIT_SUCCESS);
}

Not all compiler writers seem to have noticed that requirement—the compiler that we used to test
the last example failed to warn that the final assignment violated a constraint.

Here is the Example 6.1 rewritten using pointers, and with the input function infun changed to
accept a pointer to a structure rather than returning one. This is much more likely to be what
would be seen in practice.

(It is fair to say that, for a really efficient implementation, even the copying of structures would
probably be dropped, especially if they were large. Instead, an array of pointers would be used,
and the pointers exchanged until the sorted data could be found by traversing the pointer array in
index order. That would complicate things too much for a simple example.)

#include <stdio.h>
#include <stdlib.h>

#define ARSIZE 10

struct wp_char{

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

5 of 14 05-03-2007 16:07

 char wp_cval;
 short wp_font;
 short wp_psize;
}ar[ARSIZE];

void infun(struct wp_char *);

main(){
 struct wp_char wp_tmp, *lo_indx, *hi_indx, *in_p;

 for(in_p = ar; in_p < &ar[ARSIZE]; in_p++){
 infun(in_p);
 if(in_p->wp_cval == '\n'){
 /*
 * Leave the loop.
 * not incrementing in_p means that the
 * '\n' is ignored in the sort
 */
 break;
 }
 }

 /*
 * Now a simple exchange sort.
 * We must be careful to avoid the danger of pointer underflow,
 * so check that there are at least two entries to sort.
 */

 if(in_p-ar > 1) for(lo_indx = ar; lo_indx <= in_p-2; lo_indx++){
 for(hi_indx = lo_indx+1; hi_indx <= in_p-1; hi_indx++){
 if(lo_indx->wp_cval > hi_indx->wp_cval){
 /*
 * Swap the structures.
 */
 struct wp_char wp_tmp = *lo_indx;
 *lo_indx = *hi_indx;
 *hi_indx = wp_tmp;
 }
 }
 }

 /* now print */
 for(lo_indx = ar; lo_indx < in_p; lo_indx++){
 printf("%c %d %d\n", lo_indx->wp_cval,
 lo_indx->wp_font,
 lo_indx->wp_psize);
 }
 exit(EXIT_SUCCESS);
}

void
infun(struct wp_char *inp){

 inp->wp_cval = getchar();
 inp->wp_font = 2;
 inp->wp_psize = 10;

 return;
}

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

6 of 14 05-03-2007 16:07

Example 6.2

The next issue is to consider what a structure looks like in terms of storage layout. It's best not to
worry about this too much, but it is sometimes useful if you have to use C to access
record-structured data written by other programs. The wp_char structure will be allocated
storage as shown in Figure 6.1.

Figure 6.1. Storage Layout of a Structure

The diagram assumes a number of things: that a char takes 1 byte of storage; that a short
needs 2 bytes; and that shorts must be aligned on even byte addresses in this architecture. As
a result the structure contains an unnamed 1-byte member inserted by the compiler for
architectural reasons. Such addressing restrictions are quite common and can often result in
structures containing ‘holes’.

The Standard makes some guarantees about the layout of structures and unions:

Members of a structure are allocated within the structure in the order of their appearance in
the declaration and have ascending addresses.
There must not be any padding in front of the first member.
The address of a structure is the same as the address of its first member, provided that the
appropriate cast is used. Given the previous declaration of struct wp_char, if item is of
type struct wp_char, then (char *)item == &item.wp_cval.
Bit fields (see Section 6.4 [http://publications.gbdirect.co.uk/c_book/chapter6/bitfields.html])
don't actually have addresses, but are conceptually packed into units which obey the rules
above.

6.2.2. Linked lists and other structures

The combination of structures and pointers opens up a lot of interesting possibilities. This is not a
textbook on complex linked data structures, but it will go on to describe two very common
examples of the breed: linked lists and trees. Both have a feature in common: they consist of
structures containing pointers to other structures, all the structures typically being of the same
type. Figure 6.2 shows a picture of a linked list.

Figure 6.2. List linked by pointers

The sort of declaration needed for that is this:

struct list_ele{
 int data; /* or whatever you like here */
 struct list_ele *ele_p;
};

Now, at first glance, it seems to contain itself—which is forbidden—but in fact it only contains a
pointer to itself. How come the pointer declaration is allowed? Well, by the time the compiler
reaches the pointer declaration it already knows that there is such a thing as a struct
list_ele so the declaration is permitted. In fact, it is possible to make a incomplete declaration
of a structure by saying

struct list_ele;

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

7 of 14 05-03-2007 16:07

at some point before the full declaration. A declaration like that declares an incomplete type. This
will allow the declaration of pointers before the full declaration is seen. It is also important in the
case of cross-referencing structures where each must contain a pointer to the other, as shown in
the following example.

struct s_1; /* incomplete type */

struct s_2{
 int something;
 struct s_1 *sp;
};

struct s_1{ /* now the full declaration */
 float something;
 struct s_2 *sp;
};

Example 6.3

This illustrates the need for incomplete types. It also illustrates an important thing about the
names of structure members: they inhabit a name-space per structure, so element names can be
the same in different structures without causing any problems.

Incomplete types may only be used where the size of the structure isn't needed yet. A full
declaration must have been given by the time that the size is used. The later full declaration
mustn't be in an inner block because then it becomes a new declaration of a different structure.

struct x; /* incomplete type */

/* valid uses of the tag */
struct x *p, func(void);

void f1(void){
 struct x{int i;}; /* redeclaration! */
}

/* full declaration now */
struct x{
 float f;
}s_x;

void f2(void){
 /* valid statements */
 p = &s_x;
 *p = func();
 s_x = func();
}

struct x
func(void){
 struct x tmp;
 tmp.f = 0;
 return (tmp);
}

Example 6.4

There's one thing to watch out for: you get a incomplete type of a structure simply by mentioning
its name! That means that this works:

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

8 of 14 05-03-2007 16:07

struct abc{ struct xyz *p;};
 /* the incomplete type 'struct xyz' now declared */
struct xyz{ struct abc *p;};
 /* the incomplete type is now completed */

There's a horrible danger in the last example, though, as this shows:

struct xyz{float x;} var1;

main(){
 struct abc{ struct xyz *p;} var2;

 /* AAAGH - struct xyz REDECLARED */
 struct xyz{ struct abc *p;} var3;
}

The result is that var2.p can hold the address of var1, but emphatically not the address of
var3 which is of a different type! It can be fixed (assuming that it's not what you wanted) like this:

struct xyz{float x;} var1;

main(){
 struct xyz; /* new incomplete type 'struct xyz' */
 struct abc{ struct xyz *p;} var2;
 struct xyz{ struct abc *p;} var3;
}

The type of a structure or union is completed when the closing } of its declaration is seen; it must
contain at least one member or the behaviour is undefined.

The other principal way to get incomplete types is to declare arrays without specifying their
size—their type is incomplete until a later declaration provides the missing information:

int ar[]; /* incomplete type */
int ar[5]; /* completes the type */

If you try that out, it will only work if the declarations are outside any blocks (external
declarations), but that's for other reasons.

Back to the linked list. There were three elements linked into the list, which could have been built
like this:

struct list_ele{
 int data;
 struct list_ele *pointer;
}ar[3];

main(){

 ar[0].data = 5;
 ar[0].pointer = &ar[1];
 ar[1].data = 99;
 ar[1].pointer = &ar[2];
 ar[2].data = -7;
 ar[2].pointer = 0; /* mark end of list */
 return(0);
}

Example 6.5

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

9 of 14 05-03-2007 16:07

and the contents of the list can be printed in two ways. The array can be traversed in order of
index, or the pointers can be used as in the following example.

#include <stdio.h>
#include <stdlib.h>

struct list_ele{
 int data;
 struct list_ele *pointer;
}ar[3];

main(){

 struct list_ele *lp;

 ar[0].data = 5;
 ar[0].pointer = &ar[1];
 ar[1].data = 99;
 ar[1].pointer = &ar[2];
 ar[2].data = -7;
 ar[2].pointer = 0; /* mark end of list */

 /* follow pointers */
 lp = ar;
 while(lp){
 printf("contents %d\n", lp->data);
 lp = lp->pointer;
 }
 exit(EXIT_SUCCESS);
}

Example 6.6

It's the way that the pointers are followed which makes the example interesting. Notice how the
pointer in each element is used to refer to the next one, until the pointer whose value is 0 is found.
That value causes the while loop to stop. Of course the pointers can be arranged in any order at
all, which is what makes the list such a flexible structure. Here is a function which could be
included as part of the last program to sort the linked list into numeric order of its data fields. It
rearranges the pointers so that the list, when traversed in pointer sequence, is found to be in
order. It is important to note that the data itself is not copied. The function must return a pointer to
the head of the list, because that is not necessarily at ar[0] any more.

struct list_ele *
sortfun(struct list_ele *list)
{

 int exchange;
 struct list_ele *nextp, *thisp, dummy;

 /*
 * Algorithm is this:
 * Repeatedly scan list.
 * If two list items are out of order,
 * link them in the other way round.
 * Stop if a full pass is made and no
 * exchanges are required.
 * The whole business is confused by
 * working one element behind the
 * first one of interest.

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

10 of 14 05-03-2007 16:07

 * This is because of the simple mechanics of
 * linking and unlinking elements.
 */

 dummy.pointer = list;
 do{
 exchange = 0;
 thisp = &dummy;
 while((nextp = thisp->pointer)
 && nextp->pointer){
 if(nextp->data < nextp->pointer->data){
 /* exchange */
 exchange = 1;
 thisp->pointer = nextp->pointer;
 nextp->pointer =
 thisp->pointer->pointer;
 thisp->pointer->pointer = nextp;
 }
 thisp = thisp->pointer;
 }
 }while(exchange);

 return(dummy.pointer);
}

Example 6.7

Expressions such as thisp->pointer->pointer are commonplace in list processing. It's
worth making sure that you understand it; the notation emphasizes the way that links are
followed.

6.2.3. Trees

Another very popular data structure is the tree. It's actually a linked list with branches; a common
type is the binary tree which has elements (nodes) looking like this:

struct tree_node{
 int data;
 struct tree_node *left_p, *right_p;
};

For historical and essentially irrelevant reasons, trees in computer science work upside down.
They have their root node at the top and their branches spread out downwards. In Figure 6.3, the
‘data’ members of the nodes are replaced by values which will be used in the discussion that
follows.

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

11 of 14 05-03-2007 16:07

Figure 6.3. A tree

Trees may not seem very exciting if your main interest lies in routine character handling and
processing, but they are extremely important to the designers of databases, compilers and other
complex tools.

The advantage of a tree is that, if it is properly arranged, the layout of the data can support binary
searching very simply. It is always possible to add new nodes to a tree at the appropriate place
and a tree is basically a flexible and useful data structure.

Look at Figure 6.3. The tree is carefully constructed so that it can be searched to find whether a
given value can be found in the data portions of the nodes. Let's say we want to find if a value x is
already present in the tree. The algorithm is this:

Start at the root of the tree:
if the tree is empty (no nodes)
 then return ‘failure’.
else if the data in the current node is equal
 to the value being searched for
 then return ‘success’.
else if the data in the current node is greater than the
 value being searched for
 then search the tree indicated by the left pointer
else search the tree indicated by the right pointer.

Here it is in C:

#include <stdio.h>
#include <stdlib.h>
struct tree_node{
 int data;
 struct tree_node *left_p, *right_p;
}tree[7];
/*
* Tree search algorithm.
* Searches for value 'v' in tree,
* returns pointer to first node found containing
* the value otherwise 0.
*/
struct tree_node *
t_search(struct tree_node *root, int v){

 while(root){

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

12 of 14 05-03-2007 16:07

 if(root->data == v)
 return(root);
 if(root->data > v)
 root = root->left_p;
 else
 root = root->right_p;
 }
 /* value not found, no tree left */
 return(0);
}

main(){
 /* construct tree by hand */
 struct tree_node *tp, *root_p;
 int i;
 for(i = 0; i < 7; i++){
 int j;
 j = i+1;

 tree[i].data = j;
 if(j == 2 || j == 6){
 tree[i].left_p = &tree[i-1];
 tree[i].right_p = &tree[i+1];
 }
 }
 /* root */
 root_p = &tree[3];
 root_p->left_p = &tree[1];
 root_p->>right_p = &tree[5];

 /* try the search */
 tp = t_search(root_p, 9);
 if(tp)
 printf("found at position %d\n", tp-tree);
 else
 printf("value not found\n");
 exit(EXIT_SUCCESS);
}

Example 6.8

So that works fine. It is also interesting to note that, given a value, it can always be inserted at the
appropriate point in the tree. The same search algorithm is used, but, instead of giving up when it
finds that the value is not already in the tree, a new node is allocated by malloc, and is hung on
the tree at the very place where the first null pointer was found. This is a mite more complicated to
do because of the problem of handling the root pointer itself, and so a pointer to a pointer is used.
Read the example carefully; it is not likely that you ever find anything more complicated than this
in practice. If you can understand it, there is not much that should worry you about the vast
majority of C language programs.

#include <stdio.h>
#include <stdlib.h>

struct tree_node{
 int data;
 struct tree_node *left_p, *right_p;
};

/*
* Tree search algorithm.

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

13 of 14 05-03-2007 16:07

* Searches for value 'v' in tree,
* returns pointer to first node found containing
* the value otherwise 0.
*/
struct tree_node *
t_search(struct tree_node *root, int v){

 while(root){
 printf("looking for %d, looking at %d\n",
 v, root->data);
 if(root->data == v)
 return(root);
 if(root->data > v)
 root = root->left_p;
 else
 root = root->right_p;
 }
 /* value not found, no tree left */
 return(0);
}
/*
* Insert node into tree.
* Return 0 for success,
* 1 for value already in tree,
* 2 for malloc error
*/
int
t_insert(struct tree_node **root, int v){

 while(*root){
 if((*root)->data == v)
 return(1);
 if((*root)->data > v)
 root = &((*root)->left_p);
 else
 root = &((*root)->right_p);
 }
 /* value not found, no tree left */
 if((*root = (struct tree_node *)
 malloc(sizeof (struct tree_node)))
 == 0)
 return(2);
 (*root)-&data = v;
 (*root)-&left_p = 0;
 (*root)-&right_p = 0;
 return(0);
}

main(){
 /* construct tree by hand */
 struct tree_node *tp, *root_p = 0;
 int i;

 /* we ingore the return value of t_insert */
 t_insert(&root_p, 4);
 t_insert(&root_p, 2);
 t_insert(&root_p, 6);
 t_insert(&root_p, 1);
 t_insert(&root_p, 3);

The C Book — Structures http://publications.gbdirect.co.uk/c_book/chapter6/str...

14 of 14 05-03-2007 16:07

 t_insert(&root_p, 5);
 t_insert(&root_p, 7);

 /* try the search */
 for(i = 1; i < 9; i++){
 tp = t_search(root_p, i);
 if(tp)
 printf("%d found\n", i);
 else
 printf("%d not found\n", i);
 }
 exit(EXIT_SUCCESS);
}

Example 6.9

Finally, the algorithm that allows you to walk along the tree visiting all the nodes in order is
beautiful. It is the cleanest example of recursion that you are likely to see. Look at it and work out
what it does.

void
t_walk(struct tree_node *root_p){

 if(root_p == 0)
 return;
 t_walk(root_p->left_p);
 printf("%d\n", root_p->data);
 t_walk(root_p->right_p);
}

Example 6.10

Previous section [http://publications.gbdirect.co.uk/c_book/chapter6/history.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter6/unions.html]

The C Book — Unions http://publications.gbdirect.co.uk/c_book/chapter6/un...

1 of 3 05-03-2007 16:07

6.3. Unions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter6/unions.html.

Unions don't take long to explain. They are the same as structures, except that,
where you would have written struct before, now you write union. Everything
works the same way, but with one big exception. In a structure, the members are
allocated separate consecutive chunks of storage. In a union, every member is
allocated the same piece of storage. What would you use them for? Well,
sometimes you want a structure to contain different values of different types at
different times but to conserve space as much as possible. Using a union, it's up to
you to keep track of whatever type you put into it and make sure that you retrieve
the right type at the right time. Here's an example:

#include <stdio.h>

#include <stdlib.h>

main(){

 union {

 float u_f;

 int u_i;

 }var;

 var.u_f = 23.5;

 printf("value is %f\n", var.u_f);

 var.u_i = 5;

 printf("value is %d\n", var.u_i);

 exit(EXIT_SUCCESS);

}

Example 6.11

If the example had, say, put a float into the union and then extracted it as an int, a
strange value would have resulted. The two types are almost certainly not only
stored differently, but of different lengths. The int retrieved would probably be the
low-order bits of the machine representation of a float, and might easily be made
up of part of the mantissa of the float plus a piece of the exponent. The Standard
says that if you do this, the behaviour is implementation defined (not undefined).
The behaviour is defined by the Standard in one case: if some of the members of a
union are structures with a ‘common initial sequence’ (the first members of each
structure have compatible type and in the case of bitfields are the same length), and
the union currently contains one of them, then the common initial part of each can
be used interchangeably. Oh good.

The C compiler does no more than work out what the biggest member in a union
can be and allocates enough storage (appropriately aligned if neccessary). In
particular, no checking is done to make sure that the right sort of use is made of the
members. That is your task, and you'll soon find out if you get it wrong. The
members of a union all start at the same address—there is guaranteed to be no
padding in front of any of them.

The most common way of remembering what is in a union is to embed it in a
structure, with another member of the structure used to indicate the type of thing
currently in the union. Here is how it might be used:

The C Book — Unions http://publications.gbdirect.co.uk/c_book/chapter6/un...

2 of 3 05-03-2007 16:07

#include <stdio.h>

#include <stdlib.h>

/* code for types in union */

#define FLOAT_TYPE 1

#define CHAR_TYPE 2

#define INT_TYPE 3

struct var_type{

 int type_in_union;

 union{

 float un_float;

 char un_char;

 int un_int;

 }vt_un;

}var_type;

void

print_vt(void){

 switch(var_type.type_in_union){

 default:

 printf("Unknown type in union\n");

 break;

 case FLOAT_TYPE:

 printf("%f\n", var_type.vt_un.un_float);

 break;

 case CHAR_TYPE:

 printf("%c\n", var_type.vt_un.un_char);

 break;

 case INT_TYPE:

 printf("%d\n", var_type.vt_un.un_int);

 break;

 }

}

main(){

 var_type.type_in_union = FLOAT_TYPE;

 var_type.vt_un.un_float = 3.5;

 print_vt();

 var_type.type_in_union = CHAR_TYPE;

 var_type.vt_un.un_char = 'a';

 print_vt();

 exit(EXIT_SUCCESS);

}

Example 6.12

That also demonstrates how the dot notation is used to access structures or unions
inside other structures or unions. Some current C compilers allow you to miss bits
out of the names of embedded objects provided that they are not ambiguous. In the
example, such an unambiguous name would be var_type.un_int and the
compiler would work out what you meant. None the less this is not permitted by the
Standard.

The C Book — Unions http://publications.gbdirect.co.uk/c_book/chapter6/un...

3 of 3 05-03-2007 16:07

It is because of unions that structures cannot be compared for equality. The
possibility that a structure might contain a union makes it hard to compare such
structures; the compiler can't tell what the union currently contains and so wouldn't
know how to compare the structures. This sounds a bit hard to swallow and isn't
100% true—most structures don't contain unions—but there is also a philosophical
issue at stake about just what is meant by ‘equality’ when applied to structures.
Anyhow, the union business gives the Standard a good excuse to avoid the issue by
not supporting structure comparison.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter6/structures.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next
section [http://publications.gbdirect.co.uk/c_book/chapter6/bitfields.html]

The C Book — Bitfields http://publications.gbdirect.co.uk/c_book/chapter6/bitf...

1 of 2 05-03-2007 16:08

6.4. Bitfields

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter6/bitfields.html.

While we're on the subject of structures, we might as well look at bitfields. They can
only be declared inside a structure or a union, and allow you to specify some very
small objects of a given number of bits in length. Their usefulness is limited and
they aren't seen in many programs, but we'll deal with them anyway. This example
should help to make things clear:

struct {

 /* field 4 bits wide */

 unsigned field1 :4;

 /*

 * unnamed 3 bit field

 * unnamed fields allow for padding

 */

 unsigned :3;

 /*

 * one-bit field

 * can only be 0 or -1 in two's complement!

 */

 signed field2 :1;

 /* align next field on a storage unit */

 unsigned :0;

 unsigned field3 :6;

}full_of_fields;

Example 6.13

Each field is accessed and manipulated as if it were an ordinary member of a
structure. The keywords signed and unsigned mean what you would expect,
except that it is interesting to note that a 1-bit signed field on a two's complement
machine can only take the values 0 or -1. The declarations are permitted to include
the const and volatile qualifiers.

The main use of bitfields is either to allow tight packing of data or to be able to
specify the fields within some externally produced data files. C gives no guarantee
of the ordering of fields within machine words, so if you do use them for the latter
reason, you program will not only be non-portable, it will be compiler-dependent too.
The Standard says that fields are packed into ‘storage units’, which are typically
machine words. The packing order, and whether or not a bitfield may cross a
storage unit boundary, are implementation defined. To force alignment to a storage
unit boundary, a zero width field is used before the one that you want to have
aligned.

Be careful using them. It can require a surprising amount of run-time code to
manipulate these things and you can end up using more space than they save.

Bit fields do not have addresses—you can't have pointers to them or arrays of them.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter6/unions.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next section

The C Book — Bitfields http://publications.gbdirect.co.uk/c_book/chapter6/bitf...

2 of 2 05-03-2007 16:08

[http://publications.gbdirect.co.uk/c_book/chapter6/enums.html]

The C Book — Enums http://publications.gbdirect.co.uk/c_book/chapter6/e...

1 of 2 05-03-2007 16:08

6.5. Enums

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter6/enums.html.

These fall into the category of ‘half baked’. They aren't proper enumerated types, as
in Pascal, and only really serve to help you reduce the number of #define
statements in your program. They look like this:

enum e_tag{

 a, b, c, d=20, e, f, g=20, h

}var;

Just as with structures and unions, the e_tag is the tag, and var is the definition of a
variable.

The names declared inside the enumeration are constants with int type. Their
values are these:

a == 0

b == 1

c == 2

d == 20

e == 21

f == 22

g == 20

h == 21

so you can see that, in the absence of anything to the contrary, the values assigned
start at zero and increase. A specific value can be given if you want, when the
increase will continue one at a time afterwards; the specific value must be an integral
constant (see later) that is representable in an int. It is possible for more than one of
the names to have the same value.

The only use for these things is to give a better-scoped version of this:

#define a 0

#define b 1

/* and so on */

It's better scoped because the declaration of enumerations follows the standard scope
rules for C, whereas #define statements have file scope.

Not that you are likely to care, but the Standard states that enumeration types are of a
type that is compatible with an implementation-defined one of the integral types. So
what? For interest's sake here is an illustration:

enum ee{a,b,c}e_var, *ep;

The names a, b, and c all behave as if they were int constants when you use them;
e_var has type enum ee and ep is a pointer to enum ee. The compatibility
requirement means that (amongst other implications) there will be an integral type
whose address can be assigned to ep without violating the type-compatibility
requirements for pointers.

The C Book — Enums http://publications.gbdirect.co.uk/c_book/chapter6/e...

2 of 2 05-03-2007 16:08

Previous section [http://publications.gbdirect.co.uk/c_book/chapter6/bitfields.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter6/qualifiers_and_derived_types.html]

The C Book — Qualifiers and derived types http://publications.gbdirect.co.uk/c_book/chapter6/qua...

1 of 1 05-03-2007 16:08

6.6. Qualifiers and derived types

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter6/qualifiers_and_derived_types.html.

Arrays, structures and unions are ‘derived from’ (contain) other types; none of them
may be derived from incomplete types. This means that a structure or union cannot
contain an example of itself, because its own type is incomplete until the declaration
is complete. Since a pointer to an incomplete type is not itself an incomplete type, it
can be used in the derivation of arrays, structures and unions.

If any of the types that these things are derived from are qualified with const or
volatile, they do not inherit that qualification. This means that if a structure
contains a const object, the structure itself is not qualified with const and any
non-const members can still be modified. This is what you would expect. However,
the Standard does says that if any derived type contains a type that is qualified with
const (or recursively any inner type does) then it is not modifiable—so a structure
that contains a const cannot be on the left-hand side of an assignment operator.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter6/enums.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter6/initialization.html]

The C Book — Initialization http://publications.gbdirect.co.uk/c_book/chapter6/init...

1 of 5 05-03-2007 16:09

6.7. Initialization

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter6/initialization.html.

Now that we have seen all of the data types supported by C, we can look at the
subject of initialization. C allows ordinary variables, structures, unions and arrays to
be given initial values in their definitions. Old C had some strange rules about this,
reflecting an unwillingness by compiler writers to work too hard. The Standard has
rationalized this, and now it is possible to initialize things as and when you want.

There are basically two sorts of initialization: at compile time, and at run time. Which
one you get depends on the storage duration of the thing being initialized.

Objects with static duration are declared either outside functions, or inside them with
the keyword extern or static as part of the declaration. These can only be
initialized at compile time.

Any other object has automatic duration, and can only be initialized at run time. The
two categories are mutually exclusive.

Although they are related, storage duration and linkage (see Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/]) are different and should not be
confused.

Compile-time initialization can only be done using constant expressions; run-time
initialization can be done using any expression at all. The Old C restriction, that only
simple variables (not arrays, structures or unions) could be initialized at run time, has
been lifted.

6.7.1. Constant expressions

There are a number of places where constant expressions must be used. The
definition of what constitutes a constant expression is relatively simple.

A constant expression is evaluated by the compiler, not at run-time. It may be used
anywhere that a constant may be used. Unless it is part of the operand of sizeof, it
may not contain any assignment, increment or decrement operations, function calls or
comma operators; that may seem odd, but it's because sizeof only needs to
evaluate the type of an expression, not its value.

If real numbers are evaluated at compile-time, then the Standard insists that they are
evaluated with at least as much precision and range as will be used at run-time.

A more restricted form, called the integral constant expression exists. This has
integral type and only involves operands that are integer constants, enumeration
constants, character constants, sizeof expressions and real constants that are the
immediate operands of casts. Any cast operators are only allowed to convert
arithmetic types to integral types. As with the previous note on sizeof expressions,
since they don't have to be evaluated, just their type determined, no restrictions apply
to their contents.

The arithmetic constant expression is like the integral constant expression, but allows
real constants to be used and restricts the use of casts to converting one arithmetic
type to another.

The C Book — Initialization http://publications.gbdirect.co.uk/c_book/chapter6/init...

2 of 5 05-03-2007 16:09

The address constant is a pointer to an object that has static storage duration or a
pointer to a function. You can get these by using the & operator or through the usual
conversions of array and function names into pointers when they are used in
expressions. The operators [], ., ->, & (address of) and * (pointer dereference) as
well as casts of pointers can all be used in the expression as long as they don't
involve accessing the value of any object.

6.7.2. More initialization

The various types of constants are permitted in various places; integral constant
expressions are particularly important because they are the only type of expression
that may be used to specify the size of arrays and the values in case statement
prefixes. The types of constants that are permitted in initializer expressions are less
restricted; you are allowed to use: arithmetic constant expressions; null pointer or
address constants; an address constant for an object plus or minus an integral
constant expression. Of course it depends on the type of thing being initialized
whether or not a particular type of constant expression is appropriate.

Here is an example using several initialized variables:

#include <stdio.h>

#include <stdlib.h>

#define NMONTHS 12

int month = 0;

short month_days[] =

 {31,28,31,30,31,30,31,31,30,31,30,31};

char *mnames[] ={

 "January", "February",

 "March", "April",

 "May", "June",

 "July", "August",

 "September", "October",

 "November", "December"

};

main(){

 int day_count = month;

 for(day_count = month; day_count < NMONTHS;

 day_count++){

 printf("%d days in %s\n",

 month_days[day_count],

 mnames[day_count]);

 }

 exit(EXIT_SUCCESS);

}

Example 6.14

Initializing ordinary variables is easy: put = expression after the variable name in a
declaration, and the variable is initialized to the value of the expression. As with all
objects, whether you can use any expression, or just a constant expression, depends
on its storage duration.

The C Book — Initialization http://publications.gbdirect.co.uk/c_book/chapter6/init...

3 of 5 05-03-2007 16:09

Initializing arrays is easy for one-dimensional arrays. Just put a list of the values you
want, separated by commas, inside curly brackets. The example shows how to do it.
If you don't give a size for the array, then the number of initializers will determine the
size. If you do give a size, then there must be at most that many initializers in the list.
Too many is an error, too few will just initialize the first elements of the array.

You could build up a string like this:

char str[] = {'h', 'e', 'l', 'l', 'o', 0};

but because it is so often necessary to do that, it is also permitted to use a quoted
string literal to initialize an array of chars:

char str[] = "hello";

In that case, the null at the end of the string will also be included if there is room, or if
no size was specified. Here are examples:

/* no room for the null */

char str[5] = "hello";

/* room for the null */

char str[6] = "hello";

The example program used string literals for a different purpose: there they were
being used to initialize an array of character pointers; a very different prospect.

For structures that have automatic duration, an expression of the right type can be
used to initialize them, or else a bracketed list of constant expressions must be used:

#include <stdio.h>

#include <stdlib.h>

struct s{

 int a;

 char b;

 char *cp;

}ex_s = {

 1, 'a', "hello"

 };

main(){

 struct s first = ex_s;

 struct s second = {

 2, 'b', "byebye"

 };

 exit(EXIT_SUCCESS);

}

Example 6.15

Only the first member of a union can be initialized.

If a structure or union contains unnamed members, whether unnamed bitfields or
padding for alignment, they are ignored in the initialization process; they don't have to
be counted when you provide the initializers for the real members of the structure.

For objects that contain sub-objects within them, there are two ways of writing the
initializer. It can be written out with an initializer for each member:

The C Book — Initialization http://publications.gbdirect.co.uk/c_book/chapter6/init...

4 of 5 05-03-2007 16:09

struct s{

 int a;

 struct ss{

 int c;

 char d;

 }e;

}x[] = {

 1, 2, 'a',

 3, 4, 'b'

 };

Example 6.16

which will assign 1 to x[0].a, 2 to x[0].e.c, a to x[0].e.d and 3 to x[1].a and
so on.

It is much safer to use internal braces to show what you mean, or one missed value
will cause havoc.

struct s{

 int a;

 struct ss{

 int c;

 char d;

 }e;

}x[] = {

 {1, {2, 'a'}},

 {3, {4, 'b'}}

 };

Example 6.17

Always fully bracket initializers—that is much the safest thing to do.

It is the same for arrays as for structures:

float y[4][3] = {

 {1, 3, 5}, /* y[0][0], y[0][1], y[0][2] */

 {2, 4, 6}, /* y[1][0], y[1][1], y[1][2] */

 {3, 5, 7} /* y[2][0], y[2][1], y[2][2] */

};

Example 6.18

that gives full initialization to the first three rows of y. The fourth row, y[3], is
uninitialized.

Unless they have an explicit initializer, all objects with static duration are given implicit
initializers—the effect is as if the constant 0 had been assigned to their components.
This is in fact widely used—it is an assumption made by most C programs that
external objects and internal static objects start with the value zero.

Initialization of objects with automatic duration is only guaranteed if their compound
statement is entered ‘at the top’. Jumping into the middle of one may result in the
initialization not happening—this is often undesirable and should be avoided. It is
explicitly noted by the Standard with regard to switch statements, where providing
initializers in declarations cannot be of any use; this is because a declaration is not
linguistically a ‘statement’ and only statements may be labelled. As a result it is not
possible for initializers in switch statements ever to be executed, because the entry
to the block containing them must be below the declarations!

The C Book — Initialization http://publications.gbdirect.co.uk/c_book/chapter6/init...

5 of 5 05-03-2007 16:09

A declaration inside a function (block scope) can, using various techniques outlined in
Chapter 4 [http://publications.gbdirect.co.uk/c_book/chapter4/] and Chapter 8
[http://publications.gbdirect.co.uk/c_book/chapter8/], be made to refer to an object
that has either external or internal linkage. If you've managed to do that, and it's not
likely to happen by accident, then you can't initialize the object as part of that
declaration. Here is one way of trying it:

int x; /* external linkage */

main(){

 extern int x = 5; /* forbidden */

}

Our test compiler didn't notice that one, either.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter6/qualifiers_and_derived_types.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter6/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter6/s...

1 of 1 05-03-2007 16:09

6.8. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter6/summary.html.

You now understand structures and unions. Bitfields and enumeration types really
are not very important and you could manage quite well without them.

It is hard to emphasize how important is the use of structures, pointers and malloc
in serious programs. If you aren't familiar with the use of structured data in the form
of lists, trees and so on, get a good book now. Better still, try to enrol on a good
course. Except in very specialized applications, it is usually the ability to structure
data well, not the ability to write complicated algorithms, that makes it possible to
construct clean, small and maintainable programs. Experienced software designers
often say that once the right structure of the data has been determined, the rest is
‘simple’.

Undoubtedly, one of the reasons for the popularity of C among experienced
software specialists is the freedom that it gives in the structuring of data, without
sacrificing speed.

Initialization should not be overlooked. Although simple in concept, it is surprising
how inconvenient many other languages make this. The ludicrous extreme is to
insist on the use of assignment statements; C has a practical and convenient
approach. If the concept of ‘fully bracketed initializers’ seems a bit unpleasant, don't
worry. It is rare that you have to do it in practice; all that you need is to know how to
do simple initialization and to know a book that describes the more complex
initialization. To get the full low-down read the Standard, which is
uncharacteristically penetrable when it discusses the matter; verging at times on
lucidity.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter6/initialization.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html]

The C Book — Exercises http://publications.gbdirect.co.uk/c_book/chapter6/exe...

1 of 1 05-03-2007 16:09

6.9. Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html.

Exercise 6.1. What is the declaration of an untagged structure containing two ints
called a and b?

Exercise 6.2. Why is such a declaration of limited use?

Exercise 6.3. What would the structure look like with a tag of int_struc and two
variables called x and y of the structure type being defined?

Exercise 6.4. How would you declare a third variable later, with the the same type
as x and y but called z?

Exercise 6.5. Assuming that p is the right type of pointer, how would you make it
point to z and then set z.a to zero, using the pointer?

Exercise 6.6. What are the two ways of declaring a structure with incomplete type?

Exercise 6.7. What is unusual about a string "like this" when it's used to
initialize a character array?

Exercise 6.8. What if it initializes a char *?

Exercise 6.9. Find out what a doubly linked list is. Reimplement the linked list
example using one. Is it any easier to insert and delete elements in a doubly linked
list?

Previous section [http://publications.gbdirect.co.uk/c_book/chapter6/summary.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter6/]

The C Book — The Preprocessor http://publications.gbdirect.co.uk/c_book/chapter7/?f...

1 of 1 05-03-2007 16:15

Chapter 7

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter7/.

The Preprocessor

7.1. Effect of the Standard
[http://publications.gbdirect.co.uk/c_book/chapter7/effect_of_the_standard.html]
7.2. How the preprocessor works
[http://publications.gbdirect.co.uk/c_book/chapter7/how_the_preprocessor_works.html]
7.3. Directives [http://publications.gbdirect.co.uk/c_book/chapter7/directives.html]
7.4. Summary [http://publications.gbdirect.co.uk/c_book/chapter7/summary.html]
7.5. Exercises [http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter6/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter8/]

The C Book — Effect of the Standard http://publications.gbdirect.co.uk/c_book/chapter7/eff...

1 of 1 05-03-2007 16:15

7.1. Effect of the Standard

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter7/effect_of_the_standard.html.

There's a neither-fish-nor-fowl feel to the preprocessor. It leads an uncomfortable
existence bolted on to the side of C without the benefit of either integrating properly
with the rest of the language or, given one's natural reaction of revulsion at its ugly
nature, being something that you could choose to do without. Back in the pre-history of
C it actually was optional and people did write C without it; it's more or less an accident
that it's come to be seen as being part of the bag and baggage of the C programming
environment. It was used to make up for a couple of modest deficiencies in the
language—the definition of constants and the inclusion of standard definitions—and
slipped in through the back door as a result.

There has never been a widely accepted formal standard for a lot of what the
preprocessor does and differing versions of it have been implemented in different
systems. As a result, programs using anything other than the very basic features have
proved to be a problem: it's hard to port them.

The primary job of the Standard was to define the behaviour of the preprocessor in line
with common practice; this has been done and will not surprise anyone who was
familiar with Old C. The Standard has gone further, amid an element of controversy,
and specifies a number of additional features that were pioneered in some of the
preprocessor's more popular dialects. The controversy results from the fact that
although these features may be useful, there has never been much agreement on how
to implement them. On the grounds that programs using these techniques were clearly
non-portable already, the Standard has not worried too much about backwards
compatibility in these areas. The fact that there is now a standard for these advanced
features should improve the overall portability of C programs in the future.

At the simplest level the preprocessor is easy to use and can help a lot to make
programs easy to read and maintain. Using the advanced features is best left to
experts. In our experience, only the very simplest use of #define and the conditional
compilation #if family are suitable for beginners. If this is your first encounter with C,
read the chapter once to see what you can pick up and use the exercises to test your
basic understanding. Otherwise, we would suggest that at least six months experience
is the minimum prerequisite for a full attack. Because of that, we don't try too hard to
give an easy introduction in this chapter, but concentrate on getting down to detail.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter7/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter7/how_the_preprocessor_works.html]

The C Book — How the preprocessor works http://publications.gbdirect.co.uk/c_book/chapter7/ho...

1 of 1 05-03-2007 16:15

7.2. How the preprocessor works

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter7/how_the_preprocessor_works.html.

Although the preprocessor (Figure 7.1) is probably going to be implemented as an
integral part of an Standard C compiler, it can equally well be though of as a
separate program which transforms C source code containing preprocessor
directives into source code with the directives removed.

Figure 7.1. The preprocessor

It's important to remember that the preprocessor is not working to the same rules as
the rest of C. It works on a line-by-line basis, so the end of a line means something
special to it. The rest of C thinks that end-of-line is little different from a space or tab
character.

The preprocessor doesn't know about the scope rules of C. Preprocessor directives
like #define take effect as soon as they are seen and remain in effect until the end
of the file that contains them; the program's block structure is irrelevant. This is one
of the reasons why it's a good idea to make sparing use of these directives. The
less you have in your program that doesn't obey the ‘normal’ scope rules, the less
likely you are to make mistakes. This is mainly what gives rise to our comments
about the poor level of integration between the preprocessor and the rest of C.

The Standard gives some complicated rules for the syntax of the preprocessor,
especially with respect to tokens. To understand the operation of the preprocessor
you need to know a little about them. The text that is being processed is not
considered to be a uniform stream of characters, but is separated into tokens then
processed piecemeal.

For a full definition of the process, it is best to refer to the Standard, but an informal
description follows. Each of the terms used to head the list below is used later in
descriptions of the rules.

header-name
‘<’ almost any character ‘>’

1.

preprocessing-token
a header-name as above but only when the subject of #include,
or an identifier which is any C identifier or keyword,
or a constant which is any integral or floating constant,
or a string-literal which is a normal C string,
or an operator which is one of the C operators,
or one of [] () { } * , : = ; ... # (punctuators)
or any non-white-space character not covered by the list above.

2.

The ‘almost any character’ above means any character except ‘>’ or newline.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter7/effect_of_the_standard.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter7/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter7/directives.html]

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

1 of 11 05-03-2007 16:16

7.3. Directives

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter7/directives.html.

Directives are always introduced by a line that starts with a # character, optionally
preceded by white space characters (although it isn't common practice to indent the #).
Table 7.1 below is a list of the directives defined in the Standard.

Directive Meaning

include include a source file

define define a macro

undef undefine a macro

if conditional compilation

ifdef conditional compilation

ifndef conditional compilation

elif conditional compilation

else conditional compilation

endif conditional compilation

line control error reporting

error force an error message

pragma used for implementation-dependent control

null directive; no effect

Table 7.1. Preprocessor directives

The meanings and use of these features are described in the following sections. Make
a note that the # and the following keyword, if any, are individual items. They may be
separated by white space.

7.3.1. The null directive

This is simple: a plain # on a line by itself does nothing!

7.3.2. # define

There are two ways of defining macros, one of which looks like a function and one
which does not. Here is an example of each:

#define FMAC(a,b) a here, then b

#define NONFMAC some text here

Both definitions define a macro and some replacement text, which will be used to
replace later occurrences of the macro name in the rest of the program. After those
definitions, they can be used as follows, with the effect of the macro replacement
shown in comments:

NONFMAC

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

2 of 11 05-03-2007 16:16

/* some text here */

FMAC(first text, some more)

/* first text here, then some more */

For the non-function macro, its name is simply replaced by its replacement text. The
function macro is also replaced by its replacement text; wherever the replacement text
contains an identifier which is the name of one of the macro's ‘formal parameters’, the
actual text given as the argument is used in place of the identifier in the replacement
text. The scope of the names of the formal parameters is limited to the body of the
#define directive.

For both forms of macro, leading or trailing white space around the replacement text is
discarded.

A curious ambiguity arises with macros: how do you define a non-function macro
whose replacement text happens to start with the opening parenthesis character (?
The answer is simple. If the definition of the macro has a space in front of the (, then it
isn't the definition of a function macro, but a simple replacement macro instead. When
you use function-like macros, there's no equivalent restriction.

The Standard allows either type of macro to be redefined at any time, using another
define, provided that there isn't any attempt to change the type of the macro and
that the tokens making up both the original definition and the redefinition are identical
in number, ordering, spelling and use of white space. In this context all white space is
considered equal, so this would be correct:

define XXX abc/*comment*/def hij

define XXX abc def hij

because comment is a form of white space. The token sequence for both cases (w-s
stands for a white-space token) is:

w-s define w-s XXX w-s abc w-s def w-s hij w-s

7.3.2.1. Macro substitution

Where will occurrences of the macro name cause the replacement text to be
substituted in its place? Practically anywhere in a program that the identifier is
recognized as a separate token, except as the identifier following the # of a
preprocessor directive. You can't do this:

#define define XXX

#define YYY ZZZ

and expect the second #define to be replaced by #XXX, causing an error.

When the identifier associated with a non-function macro is seen, it is replaced by the
macro replacement tokens, then rescanned (see later) for further replacements to
make.

Function macros can be used like real functions; white space around the macro name,
the argument list and so on, may include the newline character:

#define FMAC(a, b) printf("%s %s\n", a, b)

FMAC ("hello",

 "sailor"

);

/* results in */

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

3 of 11 05-03-2007 16:16

printf("%s %s\n", "hello", "sailor")

The ‘arguments’ of a function macro can be almost any arbitrary token sequence.
Commas are used to separate the arguments from each other but can be hidden by
enclosing them within parentheses, (and). Matched pairs of (and) inside the
argument list balance each other out, so a) only ends the invocation of the macro if
the corresponding (is the one that started the macro invocation.

#define CALL(a, b) a b

CALL(printf, ("%d %d %s\n",1, 24, "urgh"));

/* results in */

printf ("%d %d %s\n",1, 24, "urgh");

Note very carefully that the parentheses around the second argument to CALL were
preserved in the replacement: they were not stripped from the text.

If you want to use macros like printt, taking a variable number of arguments, the
Standard is no help to you. They are not supported.

If any argument contains no preprocessor tokens then the behaviour is undefined. The
same is true if the sequence of preprocessor tokens that forms the argument would
otherwise have been another preprocessor directive:

#define CALL(a, b) a b

/* undefined behaviour in each case.... */

CALL(,hello)

CALL(xyz,

#define abc def)

In our opinion, the second of the erroneous uses of CALL should result in defined
behaviour—anyone capable of writing that would clearly benefit from the attentions of
a champion weightlifter wielding a heavy leather bullwhip.

When a function macro is being processed, the steps are as follows:

All of its arguments are identified.1.
Except in the cases listed in item 3 below, if any of the tokens in an argument are
themselves candidates for macro replacement, the replacement is done until no
further replacement is possible. If this introduces commas into the argument list,
there is no danger of the macro suddenly seeming to have a different number of
arguments; the arguments are only determined in the step above.

2.

In the macro replacement text, identifiers naming one of the macro formal
arguments are replaced by the (by now expanded) token sequence supplied as
the actual argument. The replacement is suppressed only if the identifier is
preceded by one of # or ##, or followed by ##.

3.

7.3.2.2. Stringizing

There is special treatment for places in the macro replacement text where one of the
macro formal parameters is found preceded by #. The token list for the actual
argument has any leading or trailing white space discarded, then the # and the token
list are turned into a single string literal. Spaces between the tokens are treated as
space characters in the string. To prevent ‘unexpected’ results, any " or \ characters
within the new string literal are preceded by \.

This example demonstrates the feature:

#define MESSAGE(x) printf("Message: %s\n", #x)

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

4 of 11 05-03-2007 16:16

MESSAGE (Text with "quotes");

/*

* Result is

* printf("Message: %s\n", "Text with \"quotes\"");

*/

7.3.2.3. Token pasting

A ## operator may occur anywhere in the replacement text for a macro except at the
beginning or end. If a parameter name of a function macro occurs in the replacement
text preceded or followed by one of these operators, the actual token sequence for the
corresponding macro argument is used to replace it. Then, for both function and
non-function macros, the tokens surrounding the ## operator are joined together. If
they don't form a valid token, the behaviour is undefined. Then rescanning occurs.

As an example of token pasting, here is a multi-stage operation, involving rescanning
(which is described next).

#define REPLACE some replacement text

#define JOIN(a, b) a ## b

JOIN(REP, LACE)

becomes, after token pasting,

REPLACE

becomes, after rescanning

some replacement text

7.3.2.4. Rescanning

Once the processing described above has occurred, the replacement text plus the
following tokens of the source file is rescanned, looking for more macro names to
replace. The one exception is that, within a macro's replacement text, the name of the
macro itself is not expanded. Because macro replacement can be nested, it is possible
for several macros to be in the process of being replaced at any one point: none of
their names is a candidate for further replacement in the ‘inner’ levels of this process.
This allows redefinition of existing functions as macros:

#define exit(x) exit((x)+1)

These macro names which were not replaced now become tokens which are immune
from future replacement, even if later processing might have meant that they had
become available for replacement. This prevents the danger of infinite recursion
occurring in the preprocessor. The suppression of replacement is only if the macro
name results directly from replacement text, not the other source text of the program.
Here is what we mean:

#define m(x) m((x)+1)

/* so */

m(abc);

/* expands to */

m((abc)+1);

/*

* even though the m((abc)+1) above looks like a macro,

* the rules say it is not to be re-replaced

*/

m(m(abc));

/*

* the outer m(starts a macro invocation,

* but the inner one is replaced first (as above)

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

5 of 11 05-03-2007 16:16

* with m((abc)+1), which becomes the argument to the outer call,

* giving us effectively

*/

m(m((abc+1));

/*

* which expands to

*/

m((m((abc+1))+1);

If that doesn't make your brain hurt, then go and read what the Standard says about it,
which will.

7.3.2.5. Notes

There is a subtle problem when using arguments to function macros.

/* warning - subtle problem in this example */

#define SQR(x) (x * x)

/*

* Wherever the formal parameters occur in

* the replacement text, they are replaced

* by the actual parameters to the macro.

*/

printf("sqr of %d is %d\n", 2, SQR(2));

The formal parameter of SQR is x; the actual argument is 2. The replacement text
results in

printf("sqr of %d is %d\n", 2, (2 * 2));

The use of the parentheses should be noticed. The following example is likely to give
trouble:

/* bad example */

#define DOUBLE(y) y+y

printf("twice %d is %d\n", 2, DOUBLE(2));

printf("six times %d is %d\n", 2, 3*DOUBLE(2));

The problem is that the last expression in the second printf is replaced by

3*2+2

which results in 8, not 12! The rule is that when using macros to build expressions,
careful parenthesizing is necessary. Here's another example:

SQR(3+4)

/* expands to */

(3+4 * 3+4)

/* oh dear, still wrong! */

so, when formal parameters occur in the replacement text, you should look carefully at
them too. Correct versions of SQR and DOUBLE are these:

#define SQR(x) ((x)*(x))

#define DOUBLE(x) ((x)+(x))

Macros have a last little trick to surprise you with, as this shows.

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

6 of 11 05-03-2007 16:16

#include <stdio.h>

#include <stdlib.h>

#define DOUBLE(x) ((x)+(x))

main(){

 int a[20], *ip;

 ip = a;

 a[0] = 1;

 a[1] = 2;

 printf("%d\n", DOUBLE(*ip++));

 exit(EXIT_SUCCESS);

}

Example 7.1

Why is this going to cause problems? Because the replacement text of the macro
refers to *ip++ twice, so ip gets incremented twice. Macros should never be used
with expressions that involve side effects, unless you check very carefully that they are
safe.

Despite these warnings, they provide a very useful feature, and one which will be used
a lot from now on.

7.3.3. # undef

The name of any #defined identifier can be forcibly forgotten by saying

#undef NAME

It isn't an error to #undef a name which isn't currently defined.

This occasionally comes in handy. Chapter 9
[http://publications.gbdirect.co.uk/c_book/chapter9/] points out that some library
functions may actually be macros, not functions, but by undefing their names you are
guaranteed access to a real function.

7.3.4. # include

This comes in two flavours:

#include <filename>

#include "filename"

both of which cause a new file to be read at the point where they occur. It's as if the
single line containing the directive is replaced by the contents of the specified file. If
that file contains erroneous statements, you can reasonably expect that the errors will
be reported with a correct file name and line number. It's the compiler writer's job to get
that right. The Standard specifies that at least eight nested levels of # include must
be supported.

The effect of using brackets <> or quotes " " around the filename is to change the
places searched to find the specified file. The brackets cause a search of a number of
implementation defined places, the quotes cause a search of somewhere associated
with the original source file. Your implementation notes must tell you the specific
details of what is meant by ‘place’. If the form using quotes can't find the file, it tries
again as if you had used brackets.

In general, brackets are used when you specify standard library header files, quotes

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

7 of 11 05-03-2007 16:16

are used for private header files—often specific to one program only.

Although the Standard doesn't define what constitutes a valid file name, it does specify
that there must be an implementation-defined unique way of translating file names of
the form xxx.x (where x represents a ‘letter’), into source file names. Distinctions of
upper and lower case may be ignored and the implementation may choose only to use
six significant characters before the ‘.’ character.

You can also write this:

define NAME <stdio.h>

include NAME

to get the same effect as

include <stdio.h>

but it's a rather roundabout way of doing it, and unfortunately it's subject to
implementation defined rules about how the text between < and > is treated.

It's simpler if the replacement text for NAME comes out to be a string, for example

#define NAME "stdio.h"

#include NAME

There is no problem with implementation defined behaviour here, but the paths
searched are different, as explained above.

For the first case, what happens is that the token sequence which replaces NAME is
(by the rules already given)

<

stdio

.

h

>

and for the second case

"stdio.h"

The second case is easy, since it's just a string-literal which is a legal token for a #
include directive. It is implementation defined how the first case is treated, and
whether or not the sequence of tokens forms a legal header-name.

Finally, the last character of a file which is being included must be a plain newline.
Failure to include a file successfully is treated as an error.

7.3.5. Predefined names

The following names are predefined within the preprocessor:

__LINE__
The current source file line number, a decimal integer constant.

__FILE__
The ‘name’ of the current source code file, a string literal.

__DATE__

The current date, a string literal. The form is

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

8 of 11 05-03-2007 16:16

Apr 21 1990

where the month name is as defined in the library function asctime and the first
digit of the date is a space if the date is less than 10.

__TIME__
The time of the translation; again a string literal in the form produced by asctime,
which has the form "hh:mm:ss".

__STDC__

The integer constant 1. This is used to test if the compiler is
Standard-conforming, the intention being that it will have different values for
different releases of the Standard.

A common way of using these predefined names is the following:

#define TEST(x) if(!(x))\

 printf("test failed, line %d file %s\n",\

 __LINE__, __FILE__)

/**/

TEST(a != 23);

/**/

Example 7.2

If the argument to TEST gives a false result, the message is printed, including the
filename and line number in the message.

There's only one minor caveat: the use of the if statement can cause confusion in a
case like this:

if(expression)

 TEST(expr2);

else

 statement_n;

The else will get associated with the hidden if generated by expanding the TEST
macro. This is most unlikely to happen in practice, but will be a thorough pain to track
down if it ever does sneak up on you. It's good style to make the bodies of every
control of flow statement compound anyway; then the problem goes away.

None of the names __LINE__, __FILE__, __DATE__, __TIME__, __STDC__ or
defined may be used in #define or #undef directives.

The Standard specifies that any other reserved names will either start with an
underscore followed by an upper case letter or another underscore, so you know that
you are free to use any other names for your own purposes (but watch out for
additional names reserved in Library header files that you may have included).

7.3.6. #line

This is used to set the value of the built in names __LINE__ and __FILE__. Why do
this? Because a lot of tools nowadays actually generate C as their output. This
directive allows them to control the current line number. It is of very limited interest to
the ‘ordinary’ C programmer.

Its form is

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

9 of 11 05-03-2007 16:16

line number optional-string-literal newline

The number sets the value of __LINE__, the string literal, if present, sets the value of
__FILE__.

In fact, the sequence of tokens following #line will be macro expanded. After
expansion, they are expected to provide a valid directive of the right form.

7.3.7. Conditional compilation

A number of the directives control conditional compilation, which allows certain
portions of a program to be selectively compiled or ignored depending upon specified
conditions. The directives concerned are: #if, #ifdef, #ifndef, #elif, #else,
#endif together with the preprocessor unary operator defined.

The way that they are used is like this:

#ifdef NAME

/* compile these lines if NAME is defined */

#endif

#ifndef NAME

/* compile these lines if NAME is not defined */

#else

/* compile these lines if NAME is defined */

#endif

So, #ifdef and #endif can be used to test the definition or otherwise of a given
macro name. Of course the #else can be used with #ifdef (and #if or #elif) too.
There is no ambiguity about what a given #else binds to, because the use of #endif
to delimit the scope of these directives eliminates any possible ambiguity. The
Standard specifies that at least eight levels of nesting of conditional directives must be
supported, but in practice there is not likely to be any real limit.

These directives are most commonly used to select small fragments of C that are
machine specific (when it is not possible to make the whole program completely
machine independent), or sometimes to select different algorithms depending on the
need to make trade-offs.

The #if and #elif constructs take a single integral constant expression as their
arguments. Preprocessor integral constant expressions are the same as other integral
constant expressions except that they must not contain cast operators. The token
sequence that makes up the constant expression undergoes macro replacement,
except that names prefixed by defined are not expanded. In this context, the
expression defined NAME or defined (NAME) evaluates to 1 if NAME is currently
defined, 0 if it is not. Any other identifiers in the expression including those that are C
keywords are replaced with the value 0. Then the expression is evaluated. The
replacement even of keywords means that sizeof can't be used in these expressions
to get the result that you would normally expect.

As with the other conditional statements in C, a resulting value of zero is used to
represent ‘false’, anything else is ‘true’.

The preprocessor always must use arithmetic with at least the ranges defined in the
<limits.h> file and treats int expressions as long int and unsigned int as unsigned
long int. Character constants do not necessarily have the same values as they do at
execution time, so for highly portable programs, it's best to avoid using them in
preprocessor expressions. Overall, the rules mean that it is possible to get arithmetic
results from the preprocessor which are different from the results at run time; although
presumably only if the translation and execution are done on different machines.

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

10 of 11 05-03-2007 16:16

Here's an example.

#include <limits.h>

#if ULONG_MAX+1 != 0

 printf("Preprocessor: ULONG_MAX+1 != 0\n");

#endif

 if(ULONG_MAX+1 != 0)

 printf("Runtime: ULONG_MAX+1 != 0\n");

Example 7.3

It is conceivable that the preprocessor might perform arithmetic with a greater range
than that used in the target environment. In that case, the preprocessor expression
ULONG_MAX+1 might not ‘overflow’ to give the result of 0, whereas in the execution
environment, it must.

The following skeleton example illustrates the use of such constants and also the
‘conditional else’, #elif.

#define NAME 100

#if ((NAME > 50) && (defined __STDC__))

/* do something */

#elif NAME > 25

/* do something else*/

#elif NAME > 10

/* do something else */

#else

/* last possibility */

#endif

A word of warning. These conditional compilation directives do not obey the same
scope rules as the rest of C. They should be used sparingly, unless your program is
rapidly to become unreadable. It is impossible to read C when it is laced with these
things every few lines. The urge to maim the author of a piece of code becomes very
strong when you suddenly come across

#else

 }

#endif

with no #if or whatever immediately visible above. They should be treated like chilli
sauce; essential at times, but more than a tiny sprinkle is too much.

7.3.8. #pragma

This was the Standard Committee's way of ‘opening the back door’. It allows
implementation-defined things to take place. If the implementation was not expecting
what you wrote (i.e. doesn't recognize it), it is ignored. Here is a possible example:

#pragma byte_align

which could be used to tell the implementation that all structure members should be
aligned on byte addresses - some processor architectures are able to cope with
word-sized structure members aligned on byte addresses, but with a penalty in access
speed being incurred.

It could, of course, mean anything else that the implementation chooses it to mean.

The C Book — Directives http://publications.gbdirect.co.uk/c_book/chapter7/dir...

11 of 11 05-03-2007 16:16

If your implementation doesn't have any special meaning for this, then it will have no
effect. It will not count as an error.

It will be interesting to see the sort of things that this gets used for.

7.3.9. #error

This directive is followed by one or more tokens at the end of the line. A diagnostic
message is produced by the compiler, which includes those tokens, but no further
detail is given in the Standard. It might be used like this to abort a compilation on
unsuitable hardware:

#include <limits.h>

#if CHAR_MIN > -128

#error character range smaller than required

#endif

which would be expected to produce some sort of meaningful compilation error and
message.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter7/how_the_preprocessor_works.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter7/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter7/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter7/s...

1 of 1 05-03-2007 16:16

7.4. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter7/summary.html.

To be honest, although many of the facilities provided by the preprocessor
undoubtedly provide extra power and flexibility, it really is rather overcomplicated.

There are only a very few aspects that are really important.

The ability to define macros and function macros is very important, being widely
used in almost every C program except the most trivial.

The conditional compilation has two important uses; one is the ability to compile
with or without debugging statements included in a program, the other is to be able
to select machine or application dependent statements.

Obviously, file inclusion is fundamentally important.

Having said the above, most of the rest of the features described in this chapter can
be forgotten with very little loss of functionality. Perhaps each programming team
should have just one preprocessor specialist who has the job of designing
project-dependent macros using the arcane features such as stringizing and token
pasting. Most users of C would benefit much more by putting that learning effort into
other parts of the language, or, when they fully understand C, techniques of
software quality control. The world would be a better place.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter7/directives.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter7/] | Next
section [http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html]

The C Book — Exercises http://publications.gbdirect.co.uk/c_book/chapter7/exe...

1 of 1 05-03-2007 16:16

7.5. Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html.

These exercises are intended to test only a basic understanding of the
preprocessor, suitable for a beginner. Many users will never need a more detailed
understanding.

Exercise 7.1. How would you arrange that the identifier MAXLEN is replaced by the
value 100 throughout a program?

Exercise 7.2. What is likely to cause problems in a definition of the form #define
VALUE 100+MAXLEN?

Exercise 7.3. Write a macro called REM which takes two integer arguments and
‘returns’ the remainder when the first is divided by the second.

Exercise 7.4. Repeat the last example, but use casts so that any arithmetic type of
argument may be used, assuming that there are no overflow problems.

Exercise 7.5. What do the <> brackets around a filename in a #include directive
signify?

Exercise 7.6. What would "" mean in place of the <>?

Exercise 7.7. How would you use the preprocessor to select
implementation-specific fragments of a program?

Exercise 7.8. What sort of arithmetic does the preprocessor use?

Previous section [http://publications.gbdirect.co.uk/c_book/chapter7/summary.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter7/]

The C Book — Specialized Areas of C http://publications.gbdirect.co.uk/c_book/chapter8/?f...

1 of 1 05-03-2007 16:20

Chapter 8

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter8/.

Specialized Areas of C

8.1. Government Health Warning
[http://publications.gbdirect.co.uk/c_book/chapter8/health_warning.html]
8.2. Declarations, Definitions and Accessibility
[http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html]
8.3. Typedef [http://publications.gbdirect.co.uk/c_book/chapter8/typedef.html]
8.4. Const and volatile
[http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html]
8.5. Sequence points
[http://publications.gbdirect.co.uk/c_book/chapter8/sequence_points.html]
8.6. Summary [http://publications.gbdirect.co.uk/c_book/chapter8/summary.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter7/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter9/]

The C Book — Government Health Warning http://publications.gbdirect.co.uk/c_book/chapter8/he...

1 of 1 05-03-2007 16:20

8.1. Government Health Warning

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter8/health_warning.html.

The previous chapters have introduced the fundamentals of the language and have
covered nearly all of the language that the Standard defines. There are a number of
murky and convoluted backwaters left unexplored on grounds of sympathy and
compassion for the sufferer, and some without any better home. This chapter gathers
them together—it's the toxic waste dump for the nasty bits of C.

Pull on your rubber gloves, read the following sections and make notes where you
think the material is important to you; re-read them from time to time as well. What
seemed uninteresting and painful the first time round may change as your
experience grows, or your natural immunity improves.

What we cover here is not an exhumation of all the pathogenic elements—we leave
that for another book—but it does serve to round up most of the commonly
encountered difficult or extraordinary material.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter8/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html]

The C Book — Declarations, Definitions and Accessibility http://publications.gbdirect.co.uk/c_book/chapter8/de...

1 of 7 05-03-2007 16:20

8.2. Declarations, Definitions and
Accessibility

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html.

Chapter 4 [http://publications.gbdirect.co.uk/c_book/chapter4/] introduced the concepts of
scope and linkage, showing how they can be combined to control the accessibility of things
throughout a program. We deliberately gave a vague description of exactly what constitutes a
definition on the grounds that it would give you more pain than gain at that stage. Eventually it
has to be spelled out in detail, which we do in this chapter. Just to make things interesting, we
need to throw in storage class too.

You'll probably find the interactions between these various elements to be both complex and
confusing: that's because they are! We try to eliminate some of the confusion and give some
useful rules of thumb in Section 8.2.6
[http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html#section-6]
below—but to understand them, you still need to read the stuff in between at least once.

For a full understanding, you need a good grasp of three distinct but related concepts. The
Standard calls them:

duration
scope
linkage

and describes what they mean in a fairly readable way (for a standard). Scope and linkage
have already been described in Chapter 4 [http://publications.gbdirect.co.uk/c_book/chapter4/],
although we do present a review of them below.

8.2.1. Storage class specifiers

There are five keywords under the category of storage class specifiers, although one of them,
typedef, is there more out of convenience than utility; it has its own section later since it
doesn't really belong here. The ones remaining are auto, extern, register, and static.

Storage class specifiers help you to specify the type of storage used for data objects. Only one
storage class specifier is permitted in a declaration—this makes sense, as there is only one
way of storing things—and if you omit the storage class specifier in a declaration, a default is
chosen. The default depends on whether the declaration is made outside a function (external
declarations) or inside a function (internal declarations). For external declarations the default
storage class specifier will be extern and for internal declarations it will be auto. The only
exception to this rule is the declaration of functions, whose default storage class specifier is
always extern.

The positioning of a declaration, the storage class specifiers used (or their defaults) and, in
some cases, preceding declarations of the same name, can all affect the linkage of a name,
although fortunately not its scope or duration. We will investigate the easier items first.

8.2.1.1. Duration

The duration of an object describes whether its storage is allocated once only, at program
start-up, or is more transient in its nature, being allocated and freed as necessary.

The C Book — Declarations, Definitions and Accessibility http://publications.gbdirect.co.uk/c_book/chapter8/de...

2 of 7 05-03-2007 16:20

There are only two types of duration of objects: static duration and automatic duration. Static
duration means that the object has its storage allocated permanently, automatic means that the
storage is allocated and freed as necessary. It's easy to tell which is which: you only get
automatic duration if

the declaration is inside a function
and the declaration does not contain the static or extern keywords
and the declaration is not the declaration of a function

(if you work through the rules, you'll find that the formal parameters of a function always meet
all three requirements—they are always ‘automatic’).

Although the presence of static in a declaration unambiguously ensures that it has static
duration, it's interesting to see that it is by no means the only way. This is a notorious source of
confusion, but we just have to accept it.

Data objects declared inside functions are given the default storage class specifier of auto
unless some other storage class specifier is used. In the vast majority of cases, you don't want
these objects to be accessible from outside the function, so you want them to have no linkage.
Either the default, auto, or the explicit register storage class specifier results in an object
with no linkage and automatic duration. Neither auto nor register can be applied to a
declaration that occurs outside a function.

The register storage class is quite interesting, although it is tending to fall into disuse
nowadays. It suggests to the compiler that it would be a good idea to store the object in one or
more hardware registers in the interests of speed. The compiler does not have to take any
notice of this, but to make things easy for it, register variables do not have an address (the &
address-of operator is forbidden) because some computers don't support the idea of
addressable registers. Declaring too many register objects may slow the program down,
rather than speed it up, because the compiler may either have to save more registers on
entrance to a function, often a slow process, or there won't be enough registers remaining to be
used for intermediate calculations. Determining when to use registers will be a machine-specific
choice and should only be taken when detailed measurements show that a particular function
needs to be speeded up. Then you will have to experiment. In our opinion, you should never
declare register variables during program development. Get the program working first, then
measure it, then, maybe, judicious use of registers will give a useful increase in performance.
But that work will have to be repeated for every type of processor you move the program to;
even within one family of processors the characteristics are often different.

A final note on register variables: this is the only storage class specifier that may be used in
a function prototype or function definition. In a function prototype, the storage class specifier is
simply ignored, in a function definition it is a hint that the actual parameter should be stored in a
register if possible. This example shows how it might be used:

#include <stdio.h>

#include <stdlib.h>

void func(register int arg1, double arg2);

main(){

 func(5, 2);

 exit(EXIT_SUCCESS);

}

/*

* Function illustrating that formal parameters

* may be declared to have register storage class.

*/

void func(register int arg1, double arg2){

The C Book — Declarations, Definitions and Accessibility http://publications.gbdirect.co.uk/c_book/chapter8/de...

3 of 7 05-03-2007 16:20

 /*

 * Illustrative only - nobody would do this

 * in this context.

 * Cannot take address of arg1, even if you want to

 */

 double *fp = &arg2;

 while(arg1){

 printf("res = %f\n", arg1 * (*fp));

 arg1--;

 }

}

Example 8.1

So, the duration of an object depends on the storage class specifier used, whether it's a data
object or function, and the position (block or file scope) of the declaration concerned. The
linkage is also dependent on the storage class specifier, what kind of object it is and the scope
of the declaration. Table 8.1 and Table 8.2 show the resulting storage duration and apparent
linkage for the various combinations of storage class specifiers and location of the declaration.
The actual linkage of objects with static duration is a bit more complicated, so use these tables
only as a guide to the simple cases and take a look at what we say later about definitions.

Storage Class Specifier Function or Data Object Linkage Duration

static either internal static

extern either probably external static

none function probably external static

none data object external static

Table 8.1. External declarations (outside a function)

The table above omits the register and auto storage class specifiers because they are not
permitted in file-scope (external) declarations.

Storage Class Specifier Function or Data Object Linkage Duration

register data object only none automatic

auto data object only none automatic

static data object only none static

extern either probably external static

none data object none automatic

none function probably external static

Table 8.2. Internal declarations

Internal static variables retain their values between calls of the function that contains them,
which is useful in certain circumstances (see Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/]).

8.2.2. Scope

Now we must look again at the scope of the names of objects, which defines when and where a
given name has a particular meaning. The different types of scope are the following:

function scope
file scope
block scope
function prototype scope

The easiest is function scope. This only applies to labels, whose names are visible throughout

The C Book — Declarations, Definitions and Accessibility http://publications.gbdirect.co.uk/c_book/chapter8/de...

4 of 7 05-03-2007 16:20

the function where they are declared, irrespective of the block structure. No two labels in the
same function may have the same name, but because the name only has function scope, the
same name can be used for labels in every function. Labels are not objects—they have no
storage associated with them and the concepts of linkage and duration have no meaning for
them.

Any name declared outside a function has file scope, which means that the name is usable at
any point from the declaration on to the end of the source code file containing the declaration.
Of course it is possible for these names to be temporarily hidden by declarations within
compound statements. As we know, function definitions must be outside other functions, so the
name introduced by any function definition will always have file scope.

A name declared inside a compound statement, or as a formal parameter to a function, has
block scope and is usable up to the end of the associated } which closes the compound
statement. Any declaration of a name within a compound statement hides any outer declaration
of the same name until the end of the compound statement.

A special and rather trivial example of scope is function prototype scope where a declaration of
a name extends only to the end of the function prototype. That means simply that this is wrong
(same name used twice):

void func(int i, int i);

and this is all right:

void func(int i, int j);

The names declared inside the parentheses disappear outside them.

The scope of a name is completely independent of any storage class specifier that may be
used in its declaration.

8.2.3. Linkage

We will briefly review the subject of linkage here, too. Linkage is used to determine what makes
the same name declared in different scopes refer to the same thing. An object only ever has
one name, but in many cases we would like to be able to refer to the same object from different
scopes. A typical example is the wish to be able to call printf from several different places in
a program, even if those places are not all in the same source file.

The Standard warns that declarations which refer to the same thing must all have compatible
type, or the behaviour of the program will be undefined. A full description of compatible type is
given later; for the moment you can take it to mean that, except for the use of the storage class
specifier, the declarations must be identical. It's the responsibility of the programmer to get this
right, though there will probably be tools available to help you check this out.

The three different types of linkage are:

external linkage
internal linkage
no linkage

In an entire program, built up perhaps from a number of source files and libraries, if a name has
external linkage, then every instance of a that name refers to the same object throughout the
program.

For something which has internal linkage, it is only within a given source code file that
instances of the same name will refer to the same thing.

Finally, names with no linkage refer to separate things.

The C Book — Declarations, Definitions and Accessibility http://publications.gbdirect.co.uk/c_book/chapter8/de...

5 of 7 05-03-2007 16:20

8.2.4. Linkage and definitions

Every data object or function that is actually used in a program (except as the operand of a
sizeof operator) must have one and only one corresponding definition. This is actually very
important, although we haven't really come across it yet because most of our examples have
used only data objects with automatic duration, whose declarations are axiomatically
definitions, or functions which we have defined by providing their bodies.

This ‘exactly one’ rule means that for objects with external linkage there must be exactly one
definition in the whole program; for things with internal linkage (confined to one source code
file) there must be exactly one definition in the file where it is declared; for things with no
linkage, whose declaration is always a definition, there is exactly one definition as well.

Now we try to draw everything together. The real questions are

How do I get the sort of linkage that I want?1.
What actually constitutes a definition?2.

We need to look into linkage first, then definitions.

How do you get the appropriate linkage for a particular name? The rules are a little
complicated.

A declaration outside a function (file scope) which contains the static storage class
specifier results in internal linkage for that name. (The Standard requires that function
declarations which contain static must be at file scope, outside any block)

1.

If a declaration contains the extern storage class specifier, or is the declaration of a
function with no storage class specifier (or both), then:

If there is already a visible declaration of that identifier with file scope, the resulting
linkage is the same as that of the visible declaration;
otherwise the result is external linkage.

2.

If a file scope declaration is neither the declaration of a function nor contains an explicit
storage class specifier, then the result is external linkage.

3.

Any other form of declaration results in no linkage.4.
In any one source code file, if a given identifer has both internal and external linkage then
the result is undefined.

5.

These rules were used to derive the ‘linkage’ columns of Table 8.1 and Table 8.2, without the
full application of rule 2—hence the use of the ‘probably external’ term. Rule 2 allows you to
determine the precise linkage in those cases.

What makes a declaration into a definition?

Declarations that result in no linkage are also definitions.
Declarations that include an initializer are always definitions; this includes the
‘initialization’ of functions by providing their body. Declarations with block scope may only
have initializers if they also have no linkage.
Otherwise, the declaration of a name with file scope and with either no storage class
specifier or with the static storage class specifier is a tentative definition. If a source
code file contains one or more tentative definitions for an object, then if that file contains
no actual definitions, a default definition is provided for that object as if it had an initializer
of 0. (Structures and arrays have all their elements initialized to 0). Functions do not have
tentative definitions.

A consequence of the foregoing is that unless you also provide an initializer, declarations that
explicitly include the extern storage class specifier do not result in a definition.

8.2.5. Realistic use of linkage and definitions

The rules that determine the linkage and definition associated with declarations look quite

The C Book — Declarations, Definitions and Accessibility http://publications.gbdirect.co.uk/c_book/chapter8/de...

6 of 7 05-03-2007 16:20

complicated. The combinations used in practice are nothing like as bad; so let's investigate the
usual cases.

The three types of accessibility that you will want of data objects or functions are:

throughout the entire program,
restricted to one source file,
restricted to one function (or perhaps a single compound statement).

For the three cases above, you will want external linkage, internal linkage, and no linkage
respectively. The recommended practice for the first two cases is to declare all of the names in
each of the relevant source files before you define any functions. The recommended layout of a
source file would be as shown in Figure 8.1.

Figure 8.1. Layout of a source file

The external linkage declarations would be prefixed with extern, the internal linkage
declarations with static. Here's an example.

/* example of a single source file layout */

#include <stdio.h>

/* Things with external linkage:

* accessible throughout program.

* These are declarations, not definitions, so

* we assume their definition is somewhere else.

*/

extern int important_variable;

extern int library_func(double, int);

/*

* Definitions with external linkage.

*/

extern int ext_int_def = 0; /* explicit definition */

int tent_ext_int_def; /* tentative definition */

/*

* Things with internal linkage:

* only accessible inside this file.

* The use of static means that they are also

* tentative definitions.

*/

static int less_important_variable;

static struct{

 int member_1;

 int member_2;

}local_struct;

/*

The C Book — Declarations, Definitions and Accessibility http://publications.gbdirect.co.uk/c_book/chapter8/de...

7 of 7 05-03-2007 16:20

* Also with internal linkage, but not a tentative

* definition because this is a function.

*/

static void lf(void);

/*

* Definition with internal linkage.

*/

static float int_link_f_def = 5.3;

/*

* Finally definitions of functions within this file

*/

/*

* This function has external linkage and can be called

* from anywhere in the program.

*/

void f1(int a){}

/*

* These two functions can only be invoked by name from

* within this file.

*/

static int local_function(int a1, int a2){

 return(a1 * a2);

}

static void lf(void){

 /*

 * A static variable with no linkage,

 * so usable only within this function.

 * Also a definition (because of no linkage)

 */

 static int count;

 /*

 * Automatic variable with no linkage but

 * an initializer

 */

 int i = 1;

 printf("lf called for time no %d\n", ++count);

}

/*

* Actual definitions are implicitly provided for

* all remaining tentative definitions at the end of

* the file

*/

Example 8.2

We suggest that your re-read the preceding sections to see how the rules have been applied in
Example 8.2.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter8/health_warning.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter8/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter8/typedef.html]

The C Book — Typedef http://publications.gbdirect.co.uk/c_book/chapter8/ty...

1 of 3 05-03-2007 16:21

8.3. Typedef

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter8/typedef.html.

Although typedef is thought of as being a storage class, it isn't really. It allows you to
introduce synonyms for types which could have been declared some other way. The
new name becomes equivalent to the type that you wanted, as this example shows.

typedef int aaa, bbb, ccc;

typedef int ar[15], arr[9][6];

typedef char c, *cp, carr[100];

/* now declare some objects */

/* all ints */

aaa int1;

bbb int2;

ccc int3;

ar yyy; /* array of 15 ints */

arr xxx; /* 9*6 array of int */

c ch; /* a char */

cp pnt; /* pointer to char */

carr chry; /* array of 100 char */

The general rule with the use of typedef is to write out a declaration as if you were
declaring variables of the types that you want. Where a declaration would have
introduced names with particular types, prefixing the whole thing with typedef means
that, instead of getting variables declared, you declare new type names instead.
Those new type names can then be used as the prefix to the declaration of variables
of the new type.

The use of typedef isn't a particularly common sight in most programs; it's typically
found only in header files and is rarely the province of day-to-day coding.

It is sometimes found in applications requiring very high portability: there, new types
will be defined for the basic variables of the program and appropriate typedefs
used to tailor the program to the target machine. This can lead to code which C
programmers from other environments will find difficult to interpret if it's used to
excess. The flavour of it is shown below:

/* file 'mytype.h' */

typedef short SMALLINT /* range *******30000 */

typedef int BIGINT /* range ******* 2E9 */

/* program */

#include "mytype.h"

SMALLINT i;

BIGINT loop_count;

On some machines, the range of an int would not be adequate for a BIGINT which

The C Book — Typedef http://publications.gbdirect.co.uk/c_book/chapter8/ty...

2 of 3 05-03-2007 16:21

would have to be re- typedef'd to be long.

To re-use a name already declared as a typedef, its declaration must include at
least one type specifier, which removes any ambiguity:

typedef int new_thing;

func(new_thing x){

 float new_thing;

 new_thing = x;

}

As a word of warning, typedef can only be used to declare the type of return value
from a function, not the overall type of the function. The overall type includes
information about the function's parameters as well as the type of its return value.

/*

* Using typedef, declare 'func' to have type

* 'function taking two int arguments, returning int'

*/

typedef int func(int, int);

/* ERROR */

func func_name{ /*....*/ }

/* Correct. Returns pointer to a type 'func' */

func *func_name(){ /*....*/ }

/*

* Correct if functions could return functions,

* but C can't.

*/

func func_name(){ /*....*/ }

If a typedef of a particular identifier is in scope, that identifer may not be used as
the formal parameter of a function. This is because something like the following
declaration causes a problem:

typedef int i1_t, i2_t, i3_t, i4_t;

int f(i1_t, i2_t, i3_t, i4_t)/*THIS IS POINT 'X'*/

A compiler reading the function declaration reaches point ‘X’ and still doesn't know
whether it is looking at a function declaration, essentially similar to

int f(int, int, int, int) /* prototype */

or

int f(a, b, c, d) /* not a prototype */

—the problem is only resolvable (in the worst case) by looking at what follows point
‘X’; if it is a semicolon, then that was a declaration, if it is a { then that was a
definition. The rule forbidding typedef names to be formal parameters means that a
compiler can always tell whether it is processing a declaration or a definition by
looking at the first identifier following the function name.

The use of typedef is also valuable when you want to declare things whose
declaration syntax is painfully impenetrable, like ‘array of ten pointers to array of five
integers’, which tends to cause panic even amongst the hardy. Hiding it in a typedef
means you only have to read it once and can also help to break it up into
manageable pieces:

The C Book — Typedef http://publications.gbdirect.co.uk/c_book/chapter8/ty...

3 of 3 05-03-2007 16:21

typedef int (*a10ptoa5i[10])[5];

/* or */

typedef int a5i[5];

typedef a5i *atenptoa5i[10];

Try it out!

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html]
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter8/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html]

The C Book — Const and volatile http://publications.gbdirect.co.uk/c_book/chapter8/co...

1 of 7 05-03-2007 16:21

8.4. Const and volatile

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html.

These are new in Standard C, although the idea of const has been borrowed from C++. Let us
get one thing straight: the concepts of const and volatile are completely independent. A
common misconception is to imagine that somehow const is the opposite of volatile and
vice versa. They are unrelated and you should remember the fact.

Since const declarations are the simpler, we'll look at them first, but only after we have seen
where both of these type qualifiers may be used. The complete list of relevant keywords is

char long float volatile
short signed double void
int unsigned const

In that list, const and volatile are type qualifiers, the rest are type specifiers. Various
combinations of type specifiers are permitted:

char, signed char, unsigned char
int, signed int, unsigned int
short int, signed short int, unsigned short int
long int, signed long int, unsigned long int
float
double
long double

A few points should be noted. All declarations to do with an int will be signed anyway, so
signed is redundant in that context. If any other type specifier or qualifier is present, then the int
part may be dropped, as that is the default.

The keywords const and volatile can be applied to any declaration, including those of
structures, unions, enumerated types or typedef names. Applying them to a declaration is
called qualifying the declaration—that's why const and volatile are called type qualifiers, rather
than type specifiers. Here are a few representative examples:

volatile i;
volatile int j;
const long q;
const volatile unsigned long int rt_clk;
struct{
 const long int li;
 signed char sc;
}volatile vs;

Don't be put off; some of them are deliberately complicated: what they mean will be explained
later. Remember that they could also be further complicated by introducing storage class
specifications as well! In fact, the truly spectacular

extern const volatile unsigned long int rt_clk;

is a strong possibility in some real-time operating system kernels.

The C Book — Const and volatile http://publications.gbdirect.co.uk/c_book/chapter8/co...

2 of 7 05-03-2007 16:21

8.4.1. Const

Let's look at what is meant when const is used. It's really quite simple: const means that
something is not modifiable, so a data object that is declared with const as a part of its type
specification must not be assigned to in any way during the run of a program. It is very likely that
the definition of the object will contain an initializer (otherwise, since you can't assign to it, how
would it ever get a value?), but this is not always the case. For example, if you were accessing a
hardware port at a fixed memory address and promised only to read from it, then it would be
declared to be const but not initialized.

Taking the address of a data object of a type which isn't const and putting it into a pointer to the
const-qualified version of the same type is both safe and explicitly permitted; you will be able to
use the pointer to inspect the object, but not modify it. Putting the address of a const type into a
pointer to the unqualified type is much more dangerous and consequently prohibited (although
you can get around this by using a cast). Here is an example:

#include <stdio.h>
#include <stdlib.h>

main(){
 int i;
 const int ci = 123;

 /* declare a pointer to a const.. */
 const int *cpi;

 /* ordinary pointer to a non-const */
 int *ncpi;

 cpi = &ci;
 ncpi = &i;

 /*
 * this is allowed
 */
 cpi = ncpi;

 /*
 * this needs a cast
 * because it is usually a big mistake,
 * see what it permits below.
 */
 ncpi = (int *)cpi;

 /*
 * now to get undefined behaviour...
 * modify a const through a pointer
 */
 *ncpi = 0;

 exit(EXIT_SUCCESS);
}

Example 8.3

As the example shows, it is possible to take the address of a constant object, generate a pointer
to a non-constant, then use the new pointer. This is an error in your program and results in
undefined behaviour.

The C Book — Const and volatile http://publications.gbdirect.co.uk/c_book/chapter8/co...

3 of 7 05-03-2007 16:21

The main intention of introducing const objects was to allow them to be put into read-only store,
and to permit compilers to do extra consistency checking in a program. Unless you defeat the
intent by doing naughty things with pointers, a compiler is able to check that const objects are
not modified explicitly by the user.

An interesting extra feature pops up now. What does this mean?

char c;
char *const cp = &c;

It's simple really; cp is a pointer to a char, which is exactly what it would be if the const
weren't there. The const means that cp is not to be modified, although whatever it points to can
be—the pointer is constant, not the thing that it points to. The other way round is

const char *cp;

which means that now cp is an ordinary, modifiable pointer, but the thing that it points to must
not be modified. So, depending on what you choose to do, both the pointer and the thing it
points to may be modifiable or not; just choose the appropriate declaration.

8.4.2. Volatile

After const, we treat volatile. The reason for having this type qualifier is mainly to do with the
problems that are encountered in real-time or embedded systems programming using C.
Imagine that you are writing code that controls a hardware device by placing appropriate values
in hardware registers at known absolute addresses.

Let's imagine that the device has two registers, each 16 bits long, at ascending memory
addresses; the first one is the control and status register (csr) and the second is a data port. The
traditional way of accessing such a device is like this:

/* Standard C example but without const or volatile */
/*
* Declare the device registers
* Whether to use int or short
* is implementation dependent
*/

struct devregs{
 unsigned short csr; /* control & status */
 unsigned short data; /* data port */
};

/* bit patterns in the csr */
#define ERROR 0x1
#define READY 0x2
#define RESET 0x4

/* absolute address of the device */
#define DEVADDR ((struct devregs *)0xffff0004)

/* number of such devices in system */
#define NDEVS 4

/*
* Busy-wait function to read a byte from device n.
* check range of device number.
* Wait until READY or ERROR
* if no error, read byte, return it

The C Book — Const and volatile http://publications.gbdirect.co.uk/c_book/chapter8/co...

4 of 7 05-03-2007 16:21

* otherwise reset error, return 0xffff
*/
unsigned int read_dev(unsigned devno){

 struct devregs *dvp = DEVADDR + devno;

 if(devno >= NDEVS)
 return(0xffff);

 while((dvp->csr & (READY | ERROR)) == 0)
 ; /* NULL - wait till done */

 if(dvp->csr & ERROR){
 dvp->csr = RESET;
 return(0xffff);
 }

 return((dvp->data) & 0xff);
}

Example 8.4

The technique of using a structure declaration to describe the device register layout and names
is very common practice. Notice that there aren't actually any objects of that type defined, so the
declaration simply indicates the structure without using up any store.

To access the device registers, an appropriately cast constant is used as if it were pointing to
such a structure, but of course it points to memory addresses instead.

However, a major problem with previous C compilers would be in the while loop which tests the
status register and waits for the ERROR or READY bit to come on. Any self-respecting optimizing
compiler would notice that the loop tests the same memory address over and over again. It
would almost certainly arrange to reference memory once only, and copy the value into a
hardware register, thus speeding up the loop. This is, of course, exactly what we don't want; this
is one of the few places where we must look at the place where the pointer points, every time
around the loop.

Because of this problem, most C compilers have been unable to make that sort of optimization
in the past. To remove the problem (and other similar ones to do with when to write to where a
pointer points), the keyword volatile was introduced. It tells the compiler that the object is
subject to sudden change for reasons which cannot be predicted from a study of the program
itself, and forces every reference to such an object to be a genuine reference.

Here is how you would rewrite the example, making use of const and volatile to get what
you want.

/*
* Declare the device registers
* Whether to use int or short
* is implementation dependent
*/

struct devregs{
 unsigned short volatile csr;
 unsigned short const volatile data;
};

/* bit patterns in the csr */
#define ERROR 0x1
#define READY 0x2
#define RESET 0x4

The C Book — Const and volatile http://publications.gbdirect.co.uk/c_book/chapter8/co...

5 of 7 05-03-2007 16:21

/* absolute address of the device */
#define DEVADDR ((struct devregs *)0xffff0004)

/* number of such devices in system */
#define NDEVS 4

/*
* Busy-wait function to read a byte from device n.
* check range of device number.
* Wait until READY or ERROR
* if no error, read byte, return it
* otherwise reset error, return 0xffff
*/
unsigned int read_dev(unsigned devno){

 struct devregs * const dvp = DEVADDR + devno;

 if(devno >= NDEVS)
 return(0xffff);

 while((dvp->csr & (READY | ERROR)) == 0)
 ; /* NULL - wait till done */

 if(dvp->csr & ERROR){
 dvp->csr = RESET;
 return(0xffff);
 }

 return((dvp->data) & 0xff);
}

Example 8.5

The rules about mixing volatile and regular types resemble those for const. A pointer to a
volatile object can be assigned the address of a regular object with safety, but it is
dangerous (and needs a cast) to take the address of a volatile object and put it into a pointer
to a regular object. Using such a derived pointer results in undefined behaviour.

If an array, union or structure is declared with const or volatile attributes, then all of the
members take on that attribute too. This makes sense when you think about it—how could a
member of a const structure be modifiable?

That means that an alternative rewrite of the last example would be possible. Instead of
declaring the device registers to be volatile in the structure, the pointer could have been
declared to point to a volatile structure instead, like this:

struct devregs{
 unsigned short csr; /* control & status */
 unsigned short data; /* data port */
};
volatile struct devregs *const dvp=DEVADDR+devno;

Since dvp points to a volatile object, it not permitted to optimize references through the
pointer. Our feeling is that, although this would work, it is bad style. The volatile declaration
belongs in the structure: it is the device registers which are volatile and that is where the
information should be kept; it reinforces the fact for a human reader.

So, for any object likely to be subject to modification either by hardware or asynchronous
interrupt service routines, the volatile type qualifier is important.

The C Book — Const and volatile http://publications.gbdirect.co.uk/c_book/chapter8/co...

6 of 7 05-03-2007 16:21

Now, just when you thought that you understood all that, here comes the final twist. A
declaration like this:

volatile struct devregs{
 /* stuff */
}v_decl;

declares the type struct devregs and also a volatile-qualified object of that type, called
v_decl. A later declaration like this

struct devregs nv_decl;

declares nv_decl which is not qualified with volatile! The qualification is not part of the type
of struct devregs but applies only to the declaration of v_decl. Look at it this way round,
which perhaps makes the situation more clear (the two declarations are the same in their effect):

struct devregs{
 /* stuff */
}volatile v_decl;

If you do want to get a shorthand way of attaching a qualifier to another type, you can use
typedef to do it:

struct x{
 int a;
};
typedef const struct x csx;

csx const_sx;
struct x non_const_sx = {1};

const_sx = non_const_sx; /* error - attempt to modify a const */

8.4.2.1. Indivisible Operations

Those of you who are familiar with techniques that involve hardware interrupts and other ‘real
time’ aspects of programming will recognise the need for volatile types. Related to this area
is the need to ensure that accesses to data objects are ‘atomic’, or uninterruptable. To discuss
this is any depth would take us beyond the scope of this book, but we can at least outline some
of the issues.

Be careful not to assume that any operations written in C are uninterruptable. For example,

extern const volatile unsigned long realtimeclock;

could be a counter which is updated by a clock interrupt routine. It is essential to make it
volatile because of the asynchronous updates to it, and it is marked const because it
should not be changed by anything other than the interrupt routine. If the program accesses it
like this:

unsigned long int time_of_day;

time_of_day = real_time_clock;

there may be a problem. What if, to copy one long into another, it takes several machine
instructions to copy the two words making up real_time_clock and time_of_day? It is
possible that an interrupt will occur in the middle of the assignment and that in the worst case,
when the low-order word of real_time_clock is 0xffff and the high-order word is 0x0000,
then the low-order word of time_of_day will receive 0xffff. The interrupt arrives and

The C Book — Const and volatile http://publications.gbdirect.co.uk/c_book/chapter8/co...

7 of 7 05-03-2007 16:21

increments the low-order word of real_time_clock to 0x0 and then the high-order word to
0x1, then returns. The rest of the assignment then completes, with time_of_day ending up
containing 0x0001ffff and real_time_clock containing the correct value, 0x00010000.

This whole class of problem is what is known as a critical region, and is well understood by
those who regularly work in asynchronous environments. It should be understood that Standard
C takes no special precautions to avoid these problems, and that the usual techniques should
be employed.

The header ‘signal.h’ declares a type called sig_atomic_t which is guaranteed to be
modifiable safely in the presence of asynchronous events. This means only that it can be
modified by assigning a value to it; incrementing or decrementing it, or anything else which
produces a new value depending on its previous value, is not safe.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter8/typedef.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter8/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter8/sequence_points.html]

The C Book — Sequence points http://publications.gbdirect.co.uk/c_book/chapter8/se...

1 of 2 05-03-2007 16:21

8.5. Sequence points

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter8/sequence_points.html.

Associated with, but distinct from, the problems of real-time programming are
sequence points. These are the Standard's attempt to define when certain sorts of
optimization may and may not be permitted to be in effect. For example, look at this
program:

#include <stdio.h>
#include <stdlib.h>

int i_var;
void func(void);

main(){
 while(i_var != 10000){
 func();
 i_var++;
 }
 exit(EXIT_SUCCESS);
}

void
func(void){
 printf("in func, i_var is %d\n", i_var);
}

Example 8.6

The compiler might want to optimize the loop so that i_var can be stored in a
machine register for speed. However, the function needs to have access to the
correct value of i_var so that it can print the right value. This means that the
register must be stored back into i_var at each function call (at least). When and
where these conditions must occur are described by the Standard. At each
sequence point, the side effects of all previous expressions will be completed. This
is why you cannot rely on expressions such as:

a[i] = i++;

because there is no sequence point specified for the assignment, increment or
index operators, you don't know when the effect of the increment on i occurs.

The sequence points laid down in the Standard are the following:

The point of calling a function, after evaluating its arguments.
The end of the first operand of the && operator.
The end of the first operand of the || operator.
The end of the first operand of the ?: conditional operator.
The end of the each operand of the comma operator.
Completing the evaluation of a full expression. They are the following:

Evaluating the initializer of an auto object.
The expression in an ‘ordinary’ statement—an expression followed by

The C Book — Sequence points http://publications.gbdirect.co.uk/c_book/chapter8/se...

2 of 2 05-03-2007 16:21

semicolon.
The controlling expressions in do, while, if, switch or for
statements.
The other two expressions in a for statement.
The expression in a return statement.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter8/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter8/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter8/s...

1 of 1 05-03-2007 16:21

8.6. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter8/summary.html.

This is a chapter describing specialized areas of the language.

Undoubtedly, the issues of scope, linkage and duration are important. If you find the
whole topic too much to digest, just learn the simple rules. The problem is that the
Standard tries to be complete and unambiguous, so it has to lay down lots of rules.
It's much easier if you just stick to the easy way of doing things and don't try to get
too clever. Use Example 8.2 as a model if in doubt.

The use of typedef depends on your level of experience. Its most common use is
to help avoid some of the more unpleasant aspects of complicated type
declarations.

The use of const will be widespread in many programs. The idea of a pointer to
something which is not modifiable is well and truly emphasized in the library
function prototypes.

Only specialized applications will use volatile. If you work in the field of real-time
programming, or embedded systems, this will matter to you. Otherwise it probably
won't. The same goes for sequence points. How well the early compilers will
support these last two features will be a very interesting question.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter8/sequence_points.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter8/]

The C Book — Libraries http://publications.gbdirect.co.uk/c_book/chapter9/?f...

1 of 1 05-03-2007 16:28

Chapter 9

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/.

Libraries

9.1. Introduction
[http://publications.gbdirect.co.uk/c_book/chapter9/introduction.html]
9.2. Diagnostics
[http://publications.gbdirect.co.uk/c_book/chapter9/diagnostics.html]
9.3. Character handling
[http://publications.gbdirect.co.uk/c_book/chapter9/character_handling.html]
9.4. Localization
[http://publications.gbdirect.co.uk/c_book/chapter9/localization.html]
9.5. Limits [http://publications.gbdirect.co.uk/c_book/chapter9/limits.html]
9.6. Mathematical functions
[http://publications.gbdirect.co.uk/c_book/chapter9/maths_functions.html]
9.7. Non-local jumps
[http://publications.gbdirect.co.uk/c_book/chapter9/nonlocal_jumps.html]
9.8. Signal handling
[http://publications.gbdirect.co.uk/c_book/chapter9/signal_handling.html]
9.9. Variable numbers of arguments
[http://publications.gbdirect.co.uk/c_book/chapter9/stdarg.html]
9.10. Input and output
[http://publications.gbdirect.co.uk/c_book/chapter9/input_and_output.html]
9.11. Formatted I/O
[http://publications.gbdirect.co.uk/c_book/chapter9/formatted_io.html]
9.12. Character I/O
[http://publications.gbdirect.co.uk/c_book/chapter9/character_io.html]
9.13. Unformatted I/O
[http://publications.gbdirect.co.uk/c_book/chapter9/unformatted_io.html]
9.14. Random access functions
[http://publications.gbdirect.co.uk/c_book/chapter9/random_access_io.html]
9.15. General Utilities
[http://publications.gbdirect.co.uk/c_book/chapter9/general_utilities.html]
9.16. String handling
[http://publications.gbdirect.co.uk/c_book/chapter9/string_handling.html]
9.17. Date and time
[http://publications.gbdirect.co.uk/c_book/chapter9/date_and_time.html]
9.18. Summary
[http://publications.gbdirect.co.uk/c_book/chapter9/summary.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter8/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter10/]

The C Book — Introduction http://publications.gbdirect.co.uk/c_book/chapter9/int...

1 of 3 05-03-2007 16:33

9.1. Introduction

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/introduction.html.

There is no doubt that the Standard Committee's decision to define a set of library
routines will prove to be a huge benefit to users of C. Previously there were no
standard, accepted, definitions of library routines to provide support for the
language. As a result, portability suffered seriously.

The library routines do not have to be present; they will only be present in a hosted
environment—typically the case for applications programmers. Writers of
embedded systems and the writers of the hosted environment libraries will not have
the libraries present. They are using ‘raw’ C, in a freestanding environment, and this
chapter will not be of much interest to them.

The descriptions (except for this introduction) are not meant to be read as a whole
chapter, but as individual pieces. The material included here is meant more for
information and convenient reference than as a full tutorial introduction. It would
take a full book by itself to do real justice to the libraries.

9.1.1. Headers and standard types

A number of types and macros are used widely by the library functions. Where
necessary, they are defined in the appropriate #include file for that function. The
header will also declare appropriate types and prototypes for the library functions.
Some important points should be noted here:

All external identifiers and macro names declared in any of the library headers
are reserved. They must not be used, or redefined, for any other purpose. In
some cases they may be ‘magic’—their names may be known to the compiler
and cause it to use special methods to implement them.
All identifiers that begin with an underscore are reserved.
Headers may be included in any order, and more than once, but must be
included outside of any external declaration or definition and before any use of
the functions or macros defined inside them.
Giving a ‘bad value’ to a function—say a null pointer, or a value outside the
range of values expected by the function—results in undefined behaviour
unless otherwise stated.

The Standard isn't quite as restrictive about identifiers as the list above is, but it's a
brave move to make use of the loopholes. Play safe instead.

The Standard headers are:

<assert.h> <locale.h> <stddef.h>

<ctype.h> <math.h> <stdio.h>

<errno.h> <setjmp.h> <stdlib.h>

<float.h> <signal.h> <string.h>

<limits.h> <stdarg.h> <time.h>

A last general point is that many of the library routines may be implemented as
macros, provided that there will be no problems to do with side-effects (as
Chapter 7 [http://publications.gbdirect.co.uk/c_book/chapter7/] describes). The
Standard guarantees that, if a function is normally implemented as a macro, there

The C Book — Introduction http://publications.gbdirect.co.uk/c_book/chapter9/int...

2 of 3 05-03-2007 16:33

will also be a true function provided to do the same job. To use the real function,
either undefine the macro name with #undef, or enclose its name in parentheses,
which ensures that it won't be treated as a macro:

some function("Might be a macro\n");

(some function)("Can't be a macro\n");

9.1.2. Character set and cultural dependencies

The Committee has introduced features that attempt to cater for the use of C in
environments which are not based on the character set of US ASCII and where
there are cultural dependencies such as the use of comma or full stop to indicate
the decimal point. Facilities have been provided (see Section 9.4
[http://publications.gbdirect.co.uk/c_book/chapter9/localization.html]) for setting a
program's idea of its locale, which is used to control the behaviour of the library
functions.

Providing full support for different native languages and customs is a difficult and
poorly understood task; the facilities provided by the C library are only a first step on
the road to a full solution.

In several places the ‘C locale’ is referred to. This is the only locale defined by the
Standard and effectively provides support for the way that Old C worked. Other
locale settings may provide different behaviour in implementation-defined ways.

9.1.3. The <stddef.h> Header

There are a small number of types and macros, found in <stddef.h>, which are
widely used in other headers. They are described in the following paragraphs.

Subtracting one pointer from another gives a result whose type differs between
different implementations. To allow safe use of the difference, the type is defined in
<stddef.h> to be ptrdiff_t. Similarly, you can use size_t to store the result
of sizeof.

For reasons which still escape us, there is an ‘implementation defined null pointer
constant’ defined in <stddef.h> called NULL. Since the language explicitly defines
the integer constant 0 to be the value which can be assigned to, and compared
with, a null pointer, this would seem to be unnecessary. However, it is very common
practice among experienced C programmers to write this sort of thing:

#include <stdio.h>

#include <stddef.h>

FILE *fp;

if((fp = fopen("somefile", "r")) != NULL){

 /* and so on */

There is also a macro called offsetof which can be used to find the offset, in
bytes, of a structure member. The offset is the distance between the member and
the start of the structure. It would be used like this:

#include <stdio.h>

#include <stdlib.h>

#include <stddef.h>

main(){

 size_t distance;

 struct x{

 int a, b, c;

The C Book — Introduction http://publications.gbdirect.co.uk/c_book/chapter9/int...

3 of 3 05-03-2007 16:33

 }s_tr;

 distance = offsetof(s_tr, c);

 printf("Offset of x.c is %lu bytes\n",

 (unsigned long)distance);

 exit(EXIT_SUCCESS);

}

Example 9.1

The expression s_tr.c must be capable of evaluation as an address constant (see
Chapter 6 [http://publications.gbdirect.co.uk/c_book/chapter6/]). If the member
whose offset you want is a bitfield, then you're out of luck; offsetof has undefined
behaviour in that case.

Note carefully the way that a size_t has to be cast to the longest possible
unsigned type to ensure that not only is the argument to printf of the type that it
expects (%luis the format string for unsigned long), but also no precision is lost.
This is all because the type of size_t is not known to the programmer.

The last item declared in <stddef.h> is wchar_t, an integral type large enough
to hold a wide character from any supported extended character sets.

9.1.4. The <errno.h> Header

This header defines errno along with the macros EDOM and ERANGE, which expand
to nonzero integral constant expressions; their form is additionally guaranteed to be
acceptable to #if directives. The latter two are used by the mathematical functions
to report which kind of errors they encountered and are more fully described later.

errno is provided to tell you when library functions have detected an error. It is not
necessarily, as it used to be, an external variable, but is now a modifiable lvalue that
has type int. It is set to zero at program start-up, but from then on never reset
unless explicitly assigned to; in particular, the library routines never reset it. If an
error occurs in a library routine, errno is set to a particular value to indicate what
went wrong, and the routine returns a value (often −1) to indicate that it failed. The
usual use is like this:

#include <stdio.h>

#include <stddef.h>

#include <errno.h>

errno = 0;

if(some_library_function(arguments) < 0){

 /* error processing code... */

 /* may use value of errno directly */

The implementation of errno is not known to the programmer, so don't try to do
anything other than reset it or inspect its value. It isn't guaranteed to have an
address, for example.

What's more, you should only check errno if the particular library function in use
documents its effect on errno.

Other library functions are free to set it to arbitrary values after a call unless their
description explicitly states what they do with it.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/diagnostics.html]

The C Book — Diagnostics http://publications.gbdirect.co.uk/c_book/chapter9/di...

1 of 1 05-03-2007 16:33

9.2. Diagnostics

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/diagnostics.html.

While you are debugging programs, it is often useful to check that the value of an
expression is the one that you expected. The assert function provides such a
diagnostic aid.

In order to use assert you must first include the header file <assert.h>. The
function is defined as

#include <assert.h>

void assert(int expression)

If the expression evaluates to zero (i.e. false) then assert will write a message
about the failing expression, including the name of the source file, the line at which
the assertion was made and the expression itself. After this, the abort function is
called, which will halt the program.

assert(1 == 2);

/* Might result in */

Assertion failed: 1 == 2, file silly.c, line 15

Assert is actually defined as a macro, not as a real function. In order to disable
assertions when a program is found to work satisfactorily, defining the name
NDEBUG before including <assert.h> will disable assertions totally. You should
beware of side effects that the expression may have: when assertions are turned off
with NDEBUG, the expression is not evaluated. Thus the following example will
behave unexpectedly when debugging is turned off with the #define NDEBUG.

#define NDEBUG

#include <assert.h>

void

func(void)

{

 int c;

 assert((c = getchar()) != EOF);

 putchar(c);

}

Example 9.2

Note that assert returns no value.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/introduction.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/character_handling.html]

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter9/ch...

1 of 2 05-03-2007 16:33

9.3. Character handling

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/character_handling.html.

There are a variety of functions provided for testing and mapping characters. The
testing functions, which are described first, allow you to test if a character is of a
particular type, such as alphabetic, upper or lower case, numeric, a control
character, a punctuation mark, printable or not and so on. The character testing
functions return an integer, either zero if the character supplied is not of the
category specified, or non-zero if it was. The functions all take an integer argument,
which should either be an int, the value of which should be representable as
unsigned char, or the integer constant EOF, as returned from functions such as
getchar(). The behaviour is undefined if it is not.

These functions depend on the program's locale setting.

A printing character is a member of an implementation defined character set. Each
printing character occupies one printing position. A control character is a member of
an implementation defined character set, each of which is not a printing character. If
the 7-bit ASCII character set is used, the printing characters are those that lie
between space (0x20) and tilde (0x7e), the control characters are those
between NUL (0x0) and US (0x1f), and the character DEL (0x7f).

The following is a summary of all the character testing functions. The header
<ctype.h> must be included before any of them is used.

isalnum(int c)
True if c is alphabetic or a digit; specifically (isalpha(c)||isdigit(c)).

isalpha(int c)

True if (isupper(c)||islower(c)).

Also true for an implementation-defined set of characters which do not return
true results from any of iscntrl, isdigit, ispunct or isspace. In the C locale, this
extra set of characters is empty.

iscntrl(int c)
True if c is a control character.

isdigit(int c)
True if c is a decimal digit.

isgraph(int c)
True if c is any printing character except space.

islower(int c)
True if c is a lower case alphabetic letter. Also true for an implementation
defined set of characters which do not return true results from any of
iscntrl, isdigit, ispunct or isspace. In the C locale, this extra set of
characters is empty.

isprint(int c)
True if c is a printing character (including space).

ispunct(int c)
True if c is any printing character that is neither a space nor a character which
would return true from isalnum.

isspace(int c)

The C Book — Character handling http://publications.gbdirect.co.uk/c_book/chapter9/ch...

2 of 2 05-03-2007 16:33

True if c is either a white space character (one of ' ' '\f' '\n' '\r'
'\t' '\v') or, in other than the C locale, characters which would not return
true from isalnum

isupper(int c)

True if c is an upper case alphabetic character.

Also true for an implementation-defined set of characters which do not return
true results from any of iscntrl, isdigit, ispunct or isspace. In the C
locale, this extra set of characters is empty.

isxdigit(int c)
True if c is a valid hexadecimal digit.

Two additional functions map characters from one set into another. The function
tolower will, if given a upper case character as its argument, return the lower case
equivalent. For example,

tolower('A') == 'a'

If tolower is given any character other than an upper case letter, it will return that
character.

The converse function toupper maps lower case alphabetic letters onto their
upper case equivalent.

For each, the conversion is only performed if there is a corresponding character in
the alternate case. In some locales, not all upper case characters have lower case
equivalents, and vice versa.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/diagnostics.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/localization.html]

The C Book — Localization http://publications.gbdirect.co.uk/c_book/chapter9/loc...

1 of 4 05-03-2007 16:32

9.4. Localization

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/localization.html.

This is where the program's idea of its current locale can be controlled. The header
file <locale.h> declares the setlocale and localeconv functions and a number of
macros:

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

all of which expand to integral constant expressions and are used as values of the
category argument to setlocale (other names may also be defined: they will all
start with LC_X where X is an upper case letter), and the type

struct lconv

which is used for storing information about the formatting of numeric values. For
members of type char, CHAR_MAX is used to indicate that the value is not available
in the current locale.

lconv contains at least the following members:

char *decimal_point
The character used for the decimal point in formatted non-monetary values.
"." in the C locale.

char *thousands_sep
The character used for separating groups of digits to the left of the decimal
point in formatted non-monetary values. "" in the C locale.

char *grouping
Defines the number of digits in each group when formatting non-monetary
values. The elements are interpreted as follows: A value of CHAR_MAX
indicates that no further grouping is to be performed; 0 indicates that the
previous element should be repeated for the remaining digits; if any other
character is used, its integer value represents the number of digits that
comprise the current group (the next character in the sequence is interpreted
before grouping). "" in the C locale. As an example, "\3" specifies that digits
should be grouped in threes; the terminating null in the string signifies that the
\3 repeats.

char *int_curr_symbol
The first three characters are used to hold the alphabetic international
currency symbol for the current locale, the fourth character is used to separate
the international currency symbol from the monetary quantity. "" in the C
locale.

char *currency_symbol

The currency symbol for the current locale. "" in the C locale.
char *mon_decimal_point

The character used as the decimal point when formatting monetary values. ""
in the C locale.

The C Book — Localization http://publications.gbdirect.co.uk/c_book/chapter9/loc...

2 of 4 05-03-2007 16:32

char *mon_thousands_sep

The digit group separator for formatted monetary values. "" in the C locale.
char *mon_grouping

Defines the number of digits in each group when formatting monetary values.
Its elements are interpreted as those for grouping. "" in the C locale.

char *positive_sign

The string used to signify a non-negative monetary value. "" in the C locale.
char *negative_sign

The string used to signify a negative monetary value. "" in the C locale.
char int_frac_digits

The number of digits to be displayed after the decimal point in an
internationally formatted monetary value. CHAR_MAX in the C locale.

char frac_digits
The number of digits to be displayed after the decimal point in a
non-internationally formatted monetary value. CHAR_MAX in the C locale.

char p_cs_precedes

A value of 1 indicates that the currency_symbol should precede the value
when formatting a non-negative monetary quantity; a value of 0 indicates that
it should follow. CHAR_MAX in the C locale.

char p_sep_by_space
A value of 1 indicates that the currency symbol is separated by a space from
the value when formatting a non-negative monetary quantity; 0 indicates no
space. CHAR_MAX in the C locale.

char n_cs_precedes

As p_cs_precedes for negative monetary values. CHAR_MAX in the C locale.
char n_sep_by_space

As p_sep_by_space for negative monetary values. CHAR_MAX in the C
locale.

char p_sign_posn

Indicates the position of the positive_sign for a non-negative formatted
monetary value according to the following:

parentheses surround quantity and currency_symbol
the string precedes the quantity and currency_symbol
the string follows the quantity and currency_symbol
the string precedes the currency_symbol
the string follows the currency_symbol

CHAR_MAX in the C locale.

char n_sign_posn

As p_sign_posn for negative monetary values. CHAR_MAX in the C locale.

9.4.1. The setlocale function

#include <locale.h>

char *setlocale(int category, const char *locale);

This function allows the program's idea of its locale to be set. All or parts of the
locale can be set by providing values for category as follows:

LC_ALL
Set entire locale.

LC_COLLATE

Modify behaviour of strcoll and strxfrm.
LC_CTYPE

Modify behaviour of character-handling functions.

The C Book — Localization http://publications.gbdirect.co.uk/c_book/chapter9/loc...

3 of 4 05-03-2007 16:32

LC_MONETARY
Modify monetary formatting information returned by localeconv.

LC_NUMERIC
Modify decimal-point character for formatted I/O and string conversion
routines.

LC_TIME

Modify behaviour of strftime.

The values for locale can be:

"C" Select the minimal environment for C translation

""
Select the implementation-defined ‘native
environment’

implementation
defined

Select other environments

When the program starts, it has an environment as if

setlocale(LC_ALL, "C");

has been executed.

The current string associated with a given category can be queried by passing a null
pointer as the value for locale; if the selection can be performed, the string
associated with the specified category for the new locale is returned. This string is
such that if it is used in a subsequent call to setlocale, along with its associated
category, that part of the program's locale will be restored. If the selection cannot be
performed, a null pointer is returned and the locale is not changed.

9.4.2. The localeconv function

#include <locale.h>

struct lconv *localeconv(void);

The function returns a pointer to a structure of type struct lconv, set according
to the current locale, which may be overwritten by subsequent calls to localeconv
or setlocale. The structure must not be modified in any other way.

For example, if in the current locale monetary values should be represented as

IR£1,234.56 positive format

(IR£1,234.56) negative format

IRP 1,234.56 international format

then the monetary members of lconv would have the values:

int_curr_symbol "IRP "

currency_symbol "IR£"

mon_decimal_point "."

mon_thousands_sep ","

mon_grouping "\3"

postive_sign ""

negative_sign ""

int_frac_digits 2

The C Book — Localization http://publications.gbdirect.co.uk/c_book/chapter9/loc...

4 of 4 05-03-2007 16:32

frac_digits 2

p_cs_precedes 1

p_sep_by_space 0

n_cs_precedes 1

n_sep_by_space 0

p_sign_posn CHAR_MAX

n_sign_posn 0

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/character_handling.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/limits.html]

The C Book — Limits http://publications.gbdirect.co.uk/c_book/chapter9/limi...

1 of 3 05-03-2007 16:32

9.5. Limits

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/limits.html.

Two header files <float.h> and <limits.h> define several implementation
specific limits.

9.5.1. Limits.h

Table 9.1 gives the names declared, the allowable values, and a comment on what
they mean. For example, the description of SHRT_MIN shows that in a given
implementation the value must be less than or equal to −32767: this means that for
maximum portability a program cannot rely on short variables being able to hold
values more negative than −32767. Implementations may choose to support values
which are more negative but must provide support for at least −32767.

Name Allowable value Comment

CHAR_BIT (≥8) bits in a char

CHAR_MAX see note max value of a char

CHAR_MIN see note min value of a char

INT_MAX (≥+32767) max value of an int

INT_MIN (≤−32767) min value of an int

LONG_MAX (≥+2147483647) max value of a long

LONG_MIN (≤−2147483647) min value of a long

MB_LEN_MAX (≥1)
max number of bytes in a multibyte
character

SCHAR_MAX (≥+127) max value of a signed char

SCHAR_MIN (≤−127) min value of a signed char

SHRT_MAX (≥+32767) max value of a short

SHRT_MIN (≤−32767) min value of a short

UCHAR MAX (≥255U) max value of an unsigned char

UINT_MAX (≥65535U) max value of an unsigned int

ULONG_MAX (≥4294967295U) max value of an unsigned long

USHRT_MAX (≥65535U) max value of an unsigned short

Note: if the implementation treats chars as signed, then the values of CHAR_MAX
and CHAR_MIN are the same as the equivalent SCHAR versions. If not, then the
value of CHAR_MIN is zero and the value of CHAR_MAX is equal to the value of
UCHAR_MAX.

Table 9.1. <limits.h>

9.5.2. Float.h

For floating point numbers, the file <float.h> contains a similar set of minimum
values. (It is assumed that where no minimum value is specified, there is either no
minimum, or the value depends on another value.)

The C Book — Limits http://publications.gbdirect.co.uk/c_book/chapter9/limi...

2 of 3 05-03-2007 16:32

Name
Allowable

value
Comment

FLT_RADIX (≥2) the radix of exponent representation

DBL_DIG (≥10) the number of digits of precision in a double

DBL_EPSILON (≤1E−9)
minimum positive number such that 1.0 + x ≠
1.0

DBL_MANT_DIG (—)
the number of base FLT_RADIX digits in the
mantissa part of a double

DBL_MAX (≥1E+37) max value of a double

DBL_MAX_10_EXP (≥+37) max value of exponent (base 10) of a double

DBL_MAX_EXP (—)
max value of exponent (base FLT_RADIX)) of a
double

DBL_MIN (≤1E−37) min value of a double

DBL_MIN_10_EXP (≤37)
minimum value of exponent (base 10) of a
double

DBL_MIN_EXP (—)
min value of exponent part of a double (base
FLT_RADIX)

FLT_DIG (≥6) the number of digits of precision in a float

FLT_EPSILON (≤1E−5)
minimum positive number such that 1.0 + x ≠
1.0

FLT_MANT_DIG (—)
the number of base FLT_RADIX digits in the
mantissa of a float

FLT_MAX (≥1E+37) max value of a float

FLT_MAX_10_EXP (≥+37)
max value (base 10) of exponent part of a
float

FLT_MAX_EXP (—)
max value (base FLT_RADIX) of exponent part
of a float

FLT_MIN (≤1E−37) min value of a float

FLT_MIN_10_EXP (≤−37)
min value (base 10) of exponent part of a
float

FLT_MIN_EXP (—)
min value (base FLT_RADIX) of exponent part
of a float

FLT_ROUNDS (0)

affects rounding of floating point addition:

−1
indeterminate

0
towards zero

1
to nearest

2
towards +infinity

3
towards -infinity

any other value is implementation defined.

LDBL_DIG (≥10)
the number of digits of precision in a long
double

LDBL_EPSILON (≤1E−9)
minimum positive number such that 1.0 + x ≠=
1.0

LDBL_MANT_DIG (—)
the number of base FLT_RADIX digits in the
mantissa part of a long double

The C Book — Limits http://publications.gbdirect.co.uk/c_book/chapter9/limi...

3 of 3 05-03-2007 16:32

Name
Allowable

value
Comment

LDBL_MAX (≥1E+37) max value of a long double

LDBL_MAX_10_EXP (≥+37)
max value of exponent (base 10) of a long
double

LDBL_MAX_EXP (—)
max value of exponent (base FLT_RADIX) of a
long double

LDBL_MIN (≤1E−37) minimum value of a long double

LDBL_MIN_10_EXP (≤−37)
min value of exponent part (base 10) of a long
double

LDBL_MIN_EXP (—)
min value of exponent part of a long double
(base FLT_RADIX)

Table 9.2. <float.h>

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/localization.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/maths_functions.html]

The C Book — Mathematical functions http://publications.gbdirect.co.uk/c_book/chapter9/ma...

1 of 2 05-03-2007 16:31

9.6. Mathematical functions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/maths_functions.html.

If you are writing mathematical programs, involving floating point calculations and
so on, then you will undoubtedly require access to the mathematics library. This set
of functions all take double arguments, and return a double result. The functions
and associated macros are defined in the include file <math.h>.

The macro HUGE_VAL is defined, which expands to a positive double expression,
which is not necessarily representable as a float.

For all the functions, a domain error occurs if an input argument is outside the
domain over which the function is defined. An example might be attempting to take
the square root of a negative number. If this occurs, errno is set to the constant
EDOM, and the function returns an implementation defined value.

If the result of the function cannot be represented as a double value then a range
error occurs. If the magnitude of the result is too large, the functions return
±HUGE_VAL (the sign will be correct) and errno is set to ERANGE. If the result is
too small, 0.0 is returned and the value of errno is implementation defined.

The following list briefly describes each of the functions available:

double acos(double x);
Principal value of the arc cosine of x in the range 0–π radians.
Errors: EDOM if x is not in the range −1–1.

double asin(double x);
Principal value of the arc sine of x in the range -π/2–+π/2 radians.
Errors: EDOM if x is not in the range −1–1.

double atan(double x);
Principal value of the arc tangent of x in the range -π/2–+π/2 radians.

double atan2(double y, double x);
Principal value of the arc tangent of y/x in the range -π–+π radians, using the
signs of both arguments to determine the quadrant of the return value.
Errors: EDOM may occur if both x and y are zero.

double cos(double x);
Cosine of x (x measured in radians).

double sin(double x);
Sine of x (x measured in radians).

double tan(double x);
Tangent of x (x measured in radians). When a range error occurs, the sign of
the resulting HUGE_VAL is not guaranteed to be correct.

double cosh(double x);
Hyperbolic cosine of x.
Errors: ERANGE occurs if the magnitude of x is too large.

double sinh(double x);
Hyperbolic sine of x.
Errors: ERANGE occurs if the magnitude of x is too large.

double tanh(double x);

Hyperbolic tangent of x.
double exp(double x);

Exponential function of x. Errors: ERANGE occurs if the magnitude of x is too

The C Book — Mathematical functions http://publications.gbdirect.co.uk/c_book/chapter9/ma...

2 of 2 05-03-2007 16:31

large.
double frexp(double value, int *exp);

Break a floating point number into a normalized fraction and an integral power
of two. This integer is stored in the object pointed to by exp.

double ldexp(double x, int exp);
Multiply x by 2 to the power exp
Errors: ERANGE may occur.

double log(double x);
Natural logarithm of x.
Errors: EDOM occurs if x is negative. ERANGE may occur if x is zero.

double log10(double x);
Base-ten logarithm of x.
Errors: EDOM occurs if x is negative. ERANGE may occur if x is zero.

double modf(double value, double *iptr);
Break the argument value into integral and fractional parts, each of which has
the same sign as the argument. It stores the integrbal part as a double in the
object pointed to by iptr, and returns the fractional part.

double pow(double x, double y);
Compute x to the power y.
Errors: EDOM occurs if x < 0 and y not integral, or if the result cannot be
represented if x is 0, and y ≤ 0. ERANGE may also occur.

double sqrt(double x);
Compute the square root of x.
Errors: EDOM occurs if x is negative.

double ceil(double x);
Smallest integer not less than x.

double fabs(double x);
Absolute value of x.

double floor(double x);
Largest integer not greater than x.

double fmod(double x, double y);
Floating point remainder of x/y.
Errors: If y is zero, it is implementation defined whether fmod returns zero or a
domain error occurs.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter9/limits.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/nonlocal_jumps.html]

The C Book — Non-local jumps http://publications.gbdirect.co.uk/c_book/chapter9/no...

1 of 2 05-03-2007 16:31

9.7. Non-local jumps

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter9/nonlocal_jumps.html.

Provision is made for you to perform what is, in effect, a goto from one function to another.
It isn't possible to do this by means of a goto and a label, since labels have only function
scope. However, the macro setjmp and function longjmp provide an alternative, known as
a non-local goto, or a non-local jump.

The file <setjmp.h> declares something called a jmp_buf, which is used by the
cooperating macro and function to store the information necessary to make the jump. The
declarations are as follows:

#include <setjmp.h>

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

The setjmp macro is used to initialise the jmp_buf and returns zero on its initial call. The
bizarre thing is that it returns again, later, with a non-zero value, when the corresponding
longjmp call is made! The non-zero value is whatever value was supplied to the call of
longjmp. This is best explained by way of an example:

#include <stdio.h>

#include <stdlib.h>

#include <setjmp.h>

void func(void);

jmp_buf place;

main(){

 int retval;

 /*

 * First call returns 0,

 * a later longjmp will return non-zero.

 */

 if(setjmp(place) != 0){

 printf("Returned using longjmp\n");

 exit(EXIT_SUCCESS);

 }

 /*

 * This call will never return - it

 * 'jumps' back above.

 */

 func();

 printf("What! func returned!\n");

}

void

func(void){

The C Book — Non-local jumps http://publications.gbdirect.co.uk/c_book/chapter9/no...

2 of 2 05-03-2007 16:31

 /*

 * Return to main.

 * Looks like a second return from setjmp,

 * returning 4!

 */

 longjmp(place, 4);

 printf("What! longjmp returned!\n");

}

Example 9.3

The val argument to longjmp is the value seen in the second and subsequent ‘returns’
from setjmp. It should normally be something other than 0; if you attempt to return 0 via
longjmp, it will be changed to 1. It is therefore possible to tell whether the setjmp was
called directly, or whether it was reached by calling longjmp.

If there has been no call to setjmp before calling longjmp, the effect of longjmp is
undefined, almost certainly causing the program to crash. The longjmp function is never
expected to return, in the normal sense, to the instructions immediately following the call. All
accessible objects on ‘return’ from setjmp have the values that they had when longjmp
was called, except for objects of automatic storage class that do not have volatile type; if
they have been changed between the setjmp and longjmp calls, their values are
indeterminate.

The longjmp function executes correctly in the contexts of interrupts, signals and any of
their associated functions. If longjmp is invoked from a function called as a result of a
signal arriving while handling another signal, the behaviour is undefined.

It's a serious error to longjmp to a function which is no longer active (i.e. it has already
returned or another longjump call has transferred to a setjmp occurring earlier in a set of
nested calls).

The Standard insists that, apart from appearing as the only expression in an expression
statement, setjmp may only be used as the entire controlling expression in an if, switch,
do, while, or for statement. A slight extension to that rule is that as long as it is the whole
controlling expression (as above) the setjmp call may be the subject of the ! operator, or
may be directly compared with an integral constant expression using one of the relational or
equality operators. No more complex expressions may be employed. Examples are:

setjmp(place); /* expression statement */

if(setjmp(place)) ... /* whole controlling expression */

if(!setjmp(place)) ... /* whole controlling expression */

if(setjmp(place) < 4) ... /* whole controlling expression */

if(setjmp(place)<;4 && 1!=2) ... /* forbidden */

Previous section [http://publications.gbdirect.co.uk/c_book/chapter9/maths_functions.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/signal_handling.html]

The C Book — Signal handling http://publications.gbdirect.co.uk/c_book/chapter9/sig...

1 of 3 05-03-2007 16:31

9.8. Signal handling

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/signal_handling.html.

Two functions allow for asynchronous event handling to be provided. A signal is a
condition that may be reported during program execution, and can be ignored,
handled specially, or, as is the default, used to terminate the program. One function
sends signals, another is used to determine how a signal will be processed. Many of
the signals may be generated by the underlying hardware or operating system as
well as by means of the signal-sending function raise.

The signals are defined in the include file <signal.h>.

SIGABRT

Abnormal termination, such as instigated by the abort function. (Abort.)
SIGFPE

Erroneous arithmetic operation, such as divide by 0 or overflow. (Floating
point exception.)

SIGILL
An ‘invalid object program’ has been detected. This usually means that there
is an illegal instruction in the program. (Illegal instruction.)

SIGINT
Interactive attention signal; on interactive systems this is usually generated by
typing some ‘break-in’ key at the terminal. (Interrupt.)

SIGSEGV
Invalid storage access; most frequently caused by attempting to store some
value in an object pointed to by a bad pointer. (Segment violation.)

SIGTERM
Termination request made to the program. (Terminate.)

Some implementations may have additional signals available, over and above this
standard set. They will be given names that start SIG, and will have unique values,
apart from the set above.

The function signal allows you to specify the action taken on receipt of a signal.
Associated with each signal condition above, there is a pointer to a function
provided to handle this signal. The signal function changes this pointer, and returns
the original value. Thus the function is defined as

#include <signal.h>

void (*signal (int sig, void (*func)(int)))(int);

That is to say, signal is a function that returns a pointer to another function. This
second function takes a single int argument and returns void. The second
argument to signal is similarly a pointer to a function returning void which takes
an int argument.

Two special values may be used as the func argument (the signal-handling
function), SIG_DFL, the initial, default, signal handler; and SIG_IGN, which is used
to ignore a signal. The implementation sets the state of all signals to one or other of
these values at the start of the program.

If the call to signal succeeds, the previous value of func for the specified signal is

The C Book — Signal handling http://publications.gbdirect.co.uk/c_book/chapter9/sig...

2 of 3 05-03-2007 16:31

returned. Otherwise, SIG_ERR is returned and errno is set.

When a signal event happens which is not being ignored, if the associated func is a
pointer to a function, first the equivalent of signal(sig, SIG_DFL) is executed.
This resets the signal handler to the default action, which is to terminate the
program. If the signal was SIGILL then this resetting is implementation defined.
Implementations may choose to ‘block’ further instances of the signal instead of
doing the resetting.

Next, a call is made to the signal-handling function. If that function returns normally,
then under most circumstances the program will resume at the point where the
event occurred. However, if the value of sig was SIGFPE (a floating point
exception), or any implementation defined computational exception, then the
behaviour is undefined. The most usual thing to do in the handler for SIGFPE is to
call one of the functions abort, exit, or longjmp.

The following program fragment shows the use of signal to perform a tidy exit to a
program on receipt of the interrupt or ‘interactive attention’ signal.

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

FILE *temp_file;

void leave(int sig);

main() {

 (void) signal(SIGINT,leave);

 temp_file = fopen("tmp","w");

 for(;;) {

 /*

 * Do things....

 */

 printf("Ready...\n");

 (void)getchar();

 }

 /* can't get here ... */

 exit(EXIT_SUCCESS);

}

/*

 * on receipt of SIGINT, close tmp file

 * but beware - calling library functions from a

 * signal handler is not guaranteed to work in all

 * implementations.....

 * this is not a strictly conforming program

 */

void

leave(int sig) {

 fprintf(temp_file,"\nInterrupted..\n");

 fclose(temp_file);

 exit(sig);

}

Example 9.4

It is possible for a program to send signals to itself by means of the raise function.
This is defined as follows

The C Book — Signal handling http://publications.gbdirect.co.uk/c_book/chapter9/sig...

3 of 3 05-03-2007 16:31

include <signal.h>

int raise (int sig);

The signal sig is sent to the program.

Raise returns zero if successful, non-zero otherwise. The abort library function is
essentially implementable as follows:

#include <signal.h>

void

abort(void) {

 raise(SIGABRT);

}

If a signal occurs for any reason other than calling abort or raise, the signal-handling
function may only call signal or assign a value to a volatile static object of type
sig_atomic_t. The type sig_atomic_t is declared in <signal.h>. It is the
only type of object that can safely be modified as an atomic entity, even in the
presence of asynchronous interrupts. This is a very onerous restriction imposed by
the Standard, which, for example, invalidates the leave function in the example
program above; although the function would work correctly in some environments, it
does not follow the strict rules of the Standard.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/nonlocal_jumps.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/stdarg.html]

The C Book — Variable numbers of arguments http://publications.gbdirect.co.uk/c_book/chapter9/st...

1 of 3 05-03-2007 16:30

9.9. Variable numbers of arguments

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/stdarg.html.

It is often desirable to implement a function where the number of arguments is not
known, or is not constant, when the function is written. Such a function is printf,
described in Section 9.11
[http://publications.gbdirect.co.uk/c_book/chapter9/formatted_io.html]. The following
example shows the declaration of such a function.

int f(int, ...);

int f(int, ...) {

 .

 .

 .

}

int g() {

 f(1,2,3);

}

Example 9.5

In order to access the arguments within the called function, the functions declared in
the <stdarg.h> header file must be included. This introduces a new type, called a
va_list, and three functions that operate on objects of this type, called
va_start, va_arg, and va_end.

Before any attempt can be made to access a variable argument list, va_start
must be called. It is defined as

#include <stdarg.h>

void vastart(valist ap, parmN);

The va_start macro initializes ap for subsequent use by the functions va_arg
and va_end. The second argument to va_start, parmN is the identifier naming
the rightmost parameter in the variable parameter list in the function definition (the
one just before the , ...). The identifier parmN must not be declared with register
storage class or as a function or array type.

Once initialized, the arguments supplied can be accessed sequentially by means of
the va arg macro. This is peculiar because the type returned is determined by an
argument to the macro. Note that this is impossible to implement as a true function,
only as a macro. It is defined as

#include <stdarg.h>

type va arg(va list ap, type);

Each call to this macro will extract the next argument from the argument list as a
value of the specified type. The va_list argument must be the one initialized by
va_start. If the next argument is not of the specified type, the behaviour is
undefined. Take care here to avoid problems which could be caused by arithmetic

The C Book — Variable numbers of arguments http://publications.gbdirect.co.uk/c_book/chapter9/st...

2 of 3 05-03-2007 16:30

conversions. Use of char or short as the second argument to va_arg is invariably
an error: these types always promote up to one of signed int or unsigned
int, and float converts to double. Note that it is implementation defined
whether objects declared to have the types char, unsigned char, unsigned
short and unsigned bitfields will promote to unsigned int, rather complicating
the use of va_arg. This may be an area where some unexpected subtleties arise;
only time will tell.

The behaviour is also undefined if va_arg is called when there were no further
arguments.

The type argument must be a type name which can be converted into a pointer to
such an object simply by appending a * to it (this is so the macro can work). Simple
types such as char are fine (because char * is a pointer to a character) but array
of char won't work (char [] does not turn into ‘pointer to array of char’ by
appending a *). Fortunately, arrays can easily be processed by remembering that
an array name used as an actual argument to a function call is converted into a
pointer. The correct type for an argument of type ‘array of char’ would be char *.

When all the arguments have been processed, the va_end function should be
called. This will prevent the va_list supplied from being used any further. If va
end is not used, the behaviour is undefined.

The entire argument list can be re-traversed by calling va_start again, after
calling va_end. The va_end function is declared as

#include <stdarg.h>

void va_end(va list ap);

The following example shows the use of va_start, va_arg, and va_end to
implement a function that returns the biggest of its integer arguments.

#include <stdlib.h>

#include <stdarg.h>

#include <stdio.h>

int maxof(int, ...) ;

void f(void);

main(){

 f();

 exit(EXIT SUCCESS);

}

int maxof(int n args, ...){

 register int i;

 int max, a;

 va_list ap;

 va_start(ap, n args);

 max = va_arg(ap, int);

 for(i = 2; i <= n_args; i++) {

 if((a = va_arg(ap, int)) > max)

 max = a;

 }

 va_end(ap);

 return max;

}

The C Book — Variable numbers of arguments http://publications.gbdirect.co.uk/c_book/chapter9/st...

3 of 3 05-03-2007 16:30

void f(void) {

 int i = 5;

 int j[256];

 j[42] = 24;

 printf("%d\n",maxof(3, i, j[42], 0));

}

Example 9.6

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/signal_handling.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/input_and_output.html]

The C Book — Input and output http://publications.gbdirect.co.uk/c_book/chapter9/inp...

1 of 7 05-03-2007 16:30

9.10. Input and output

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/input_and_output.html.

9.10.1. Introduction

One of the reasons that has prevented many programming languages from
becoming widely used for ‘real programming’ is their poor support for I/O, a subject
which has never seemed to excite language designers. C has avoided this problem,
oddly enough, by having no I/O at all! The C language approach has always been to
do I/O using library functions, which ensures that system designers can provide
tailored I/O instead of being forced to change the language itself.

As C has evolved, a library package known as the ‘Standard I/O Library’ or stdio,
has evolved with it and has proved to be both flexible and portable. This package
has now become part of the Standard.

The old stdio package relied heavily on the UNIX model of file access, in particular
the assumption that there is no distinction between unstructured binary files and
files containing readable text. Many operating systems do maintain a distinction
between the two, and to ensure that C programs can be written portably to run on
both types of file model, the stdio package has been modified. There are changes in
this area which affect many existing programs, although strenuous efforts were
taken to limit the amount of damage.

Old C programs should still be able work unmodified in a UNIX environment.

9.10.2. The I/O model

The I/O model does not distinguish between the types of physical devices
supporting the I/O. Each source or sink of data (file) is treated in the same way, and
is viewed as a stream of bytes. Since the smallest object that can be represented in
C is the character, access to a file is permitted at any character boundary. Any
number of characters can be read or written from a movable point, known as the file
position indicator. The characters will be read, or written, in sequence from this
point, and the position indicator moved accordingly. The position indicator is initially
set to the beginning of a file when it is opened, but can also be moved by means of
positioning requests. (Where random access is not possible, the file position
indicator is ignored.) Opening a file in append mode has an implementation defined
effect on the stream's file position indicator.

The overall effect is to provide sequential reads or writes unless the stream was
opened in append mode, or the file position indicator is explicitly moved.

There are two types of file, text files and binary files, which, within a program, are
manipulated as text streams and binary streams once they have been opened for
I/O. The stdio package does not permit operations on the contents of files ‘directly’,
but only by viewing them as streams.

9.10.2.1. Text streams

The Standard specifies what is meant by the term text stream, which essentially
considers a file to contain lines of text. A line is a sequence of zero or more

The C Book — Input and output http://publications.gbdirect.co.uk/c_book/chapter9/inp...

2 of 7 05-03-2007 16:30

characters terminated by a newline character. It is quite possible that the actual
representation of lines in the external environment is different from this and there
may be transformations of the data stream on the way in and out of the program; a
common requirement is to translate the ‘\n’ line-terminator into the sequence
‘\r\n’ on output, and do the reverse on input. Other translations may also be
necessary.

Data read in from a text stream is guaranteed to compare equal to the data that was
earlier written out to the file if the data consists only of complete lines of printable
characters and the control characters horizontal-tab and newline, no newline
character is immediately preceded by space characters and the last character is a
newline.

It is guaranteed that, if the last character written to a text file is a newline, it will read
back as the same.

It is implementation defined whether the last line written to a text file must terminate
with a newline character; this is because on some implementations text files and
binary files are the same.

Some implementations may strip the leading space from lines consisting only of a
space followed by a newline, or strip trailing spaces at the end of a line!

An implementation must support text files with lines containing at least
254 characters, including the terminating newline.

Opening a text stream in update mode may result in a binary stream in some
implementations.

Writing on a text stream may cause some implementations to truncate the file at
that point—any data beyond the last byte of the current write being discarded.

9.10.2.2. Binary streams

A binary stream is a sequence of characters that can be used to record a program's
internal data, such as the contents of structures or arrays in binary form. Data read
in from a binary stream will always compare equal to data written out earlier to the
same stream, under the same implementation. In some circumstances, an
implementation-defined number of NUL characters may be appended to a binary
stream.

The contents of binary files are exceedingly machine specific, and not, in general,
portable.

9.10.2.3. Other streams

Other stream types may exist, but are implementation defined.

9.10.3. The stdio.h header file

To provide support for streams of the various kinds, a number of functions and
macros exist. The <stdio.h> header file contains the various declarations
necessary for the functions, together with the following macro and type declarations:

FILE
The type of an object used to contain stream control information. Users of
stdio never need to know the contents of these objects, but simply manipulate
pointers to them. It is not safe to copy these objects within the program;
sometimes their addresses may be ‘magic’.

fpos_t
A type of object that can be used to record unique values of a stream's file

The C Book — Input and output http://publications.gbdirect.co.uk/c_book/chapter9/inp...

3 of 7 05-03-2007 16:30

position indicator.
_IOFBF _IOLBF _IONBF

Values used to control the buffering of a stream in conjunction with the
setvbuf function.

BUFSIZ

The size of the buffer used by the setbuf function. An integral constant
expression whose value is at least 256.

EOF
A negative integral constant expression, indicating the end-of-file condition on
a stream i.e. that there is no more input.

FILENAME_MAX
The maximum length which a filename can have, if there is a limit, or
otherwise the recommended size of an array intended to hold a file name.

FOPEN_MAX
The minimum number of files that the implementation guarantees may be held
open concurrently; at least eight are guaranteed. Note that three predefined
streams exist and may need to be closed if a program needs to open more
than five files explicitly.

L_tmpnam

The maximum length of the string generated by tmpnam; an integral constant
expression.

SEEK_CUR SEEK_END SEEK_SET

Integral constant expressions used to control the actions of fseek.
TMP_MAX

The minimum number of unique filenames generated by tmpnam; an integral
constant expression with a value of at least 25.

stdin stdout stderr

Predefined objects of type (FILE *) referring to the standard input, output
and error streams respectively. These streams are automatically open when a
program starts execution.

9.10.4. Opening, closing and buffering of streams

9.10.4.1. Opening

A stream is connected to a file by means of the fopen, freopen or tmpfile
functions. These functions will, if successful, return a pointer to a FILE object.

Three streams are available without any special action; they are normally all
connected to the physical device associated with the executing program: usually
your terminal. They are referred to by the names stdin, the standard input,
stdout, the standard output, and stderr, the standard error streams. Normal
keyboard input is from stdin, normal terminal output is to stdout, and error
messages are directed to stderr. The separation of error messages from normal
output messages allows the stdout stream to be connected to something other than
the terminal device, and still to have error messages appear on the screen in front
of you, rather than to be redirected to this file. These files are only fully buffered if
they do not refer to interactive devices.

As mentioned earlier, the file position indicator may or may not be movable,
depending on the underlying device. It is not possible, for example, to move the file
position indicator on stdin if that is connected to a terminal, as it usually is.

All non-temporary files must have a filename, which is a string. The rules for what
constitutes valid filenames are implementation defined. Whether a file can be
simultaneously open multiple times is also implementation defined. Opening a new
file may involve creating the file. Creating an existing file causes its previous
contents to be discarded.

9.10.4.2. Closing

The C Book — Input and output http://publications.gbdirect.co.uk/c_book/chapter9/inp...

4 of 7 05-03-2007 16:30

Files are closed by explicitly calling fclose, exit or by returning from main. Any
buffered data is flushed. If a program stops for some other reason, the status of files
which it had open is undefined.

9.10.4.3. Buffering

There are three types of buffering:

Unbuffered
Minimum internal storage is used by stdio in an attempt to send or receive
data as soon as possible.

Line buffered
Characters are processed on a line-by-line basis. This is commonly used in
interactive environments, and internal buffers are flushed only when full or
when a newline is processed.

Fully buffered
Internal buffers are only flushed when full.

The buffering associated with a stream can always be flushed by using fflush
explicitly. Support for the various types of buffering is implementation defined, and
can be controlled within these limits using setbuf and setvbuf.

9.10.5. Direct file manipulation

A number of functions exist to operate on files directly.

#include <stdio.h>

int remove(const char *filename);

int rename(const char *old, const char *new);

char *tmpnam(char *s);

FILE *tmpfile(void);

remove
Causes a file to be removed. Subsequent attempts to open the file will fail,
unless it is first created again. If the file is already open, the operation of
remove is implementation defined. The return value is zero for success, any
other value for failure.

rename

Changes the name of the file identified by old to new. Subsequent attempts
to open the original name will fail, unless another file is created with the old
name. As with remove, rename returns zero for a successful operation, any
other value indicating a failure.

If a file with the new name exists prior to calling rename, the behaviour is
implementation defined.

If rename fails for any reason, the original file is unaffected.

tmpnam

Generates a string that may be used as a filename and is guaranteed to be
different from any existing filename. It may be called repeatedly, each time
generating a new name. The constant TMP_MAX is used to specify how many
times tmpnam may be called before it can no longer find a unique name.
TMP_MAX will be at least 25. If tmpnam is called more than this number of
times, its behaviour is undefined by the Standard, but many implementations
offer no practical limit.

The C Book — Input and output http://publications.gbdirect.co.uk/c_book/chapter9/inp...

5 of 7 05-03-2007 16:30

If the argument s is set to NULL, then tmpnam uses an internal buffer to build
the name, and returns a pointer to that. Subsequent calls may alter the same
internal buffer. The argument may instead point to an array of at least
L_tmpnam characters, in which case the name will be filled into the supplied
buffer. Such a filename may then be created, and used as a temporary file.
Since the name is generated by the function, it is unlikely to be very useful in
any other context. Temporary files of this nature are not removed, except by
direct calls to the remove function. They are most often used to pass
temporary data between two separate programs.

tmpfile
Creates a temporary binary file, opened for update, and returns a pointer to
the stream of that file. The file will be removed when the stream is closed. If
no file could be opened, tmpfile returns a null pointer.

9.10.6. Opening named files

Named files are opened by a call to the fopen function, whose declaration is this:

#include <stdio.h>

FILE *fopen(const char *pathname, const char *mode);

The pathname argument is the name of the file to open, such as that returned from
tmpnam, or some program-specific filename.

Files can be opened in a variety of modes, such as read mode for reading data,
write mode for writing data, and so on.

Note that if you only want to write data to a file, fopen will create the file if it does
not already exist, or truncate it to zero length (losing its previous contents) if it did
exist.

The Standard list of modes is shown in Table 9.3, although implementations may
permit extra modes by appending extra characters at the end of the modes.

Mode Type of file Read Write Create Truncate

"r" text yes no no no

"rb" binary yes no no no

"r+" text yes yes no no

"r+b" binary yes yes no no

"rb+" binary yes yes no no

"w" text no yes yes yes

"wb" binary no yes yes yes

"w+" text yes yes yes yes

"w+b" binary yes yes yes yes

"wb+" binary yes yes yes yes

"a" text no yes yes no

"ab" binary no yes yes no

"a+" text yes yes yes no

"a+b" binary no yes yes no

"ab+" binary no yes yes no

Table 9.3. File opening modes

Beware that some implementations of binary files may pad the last record with
NULL characters, so opening them with modes ab, ab+ or a+b could position the

The C Book — Input and output http://publications.gbdirect.co.uk/c_book/chapter9/inp...

6 of 7 05-03-2007 16:30

file pointer beyond the last data written.

If a file is opened in append mode, all writes will occur at the end of the file,
regardless of attempts to move the file position indicator with fseek. The initial
position fo the file position indicator will be implementation defined.

Attempts to open a file in read mode, indicated by an 'r' as the first character in the
mode string, will fail if the file does not already exist or can't be read.

Files opened for update (‘+’ as the second or third character of mode) may be both
read and written, but a read may not immediately follow a write, or a write follow a
read, without an intervening call to one (or more) of fflush, fseek, fsetpos or
rewind. The only exception is that a write may immediately follow a read if EOF
was read.

It may also be possible in some implementations to omit the b in the binary modes,
using the same modes for text and binary files.

Streams opened by fopen are fully buffered only if they are not connected to an
interactive device; this ensures that prompts and responses are handled properly.

If fopen fails to open a file, it returns a null pointer; otherwise, it returns a pointer to
the object controlling the stream. The stdin, stdout and stderr objects are not
necessarily modifiable and it may not be possible to use the value returned from
fopen for assignment to one of them. For this reason, freopen is provided.

9.10.7. Freopen

The freopen function is used to take an existing stream pointer and associate it
with another named file:

#include <stdio.h>

FILE *freopen(const char *pathname,

 const char *mode, FILE *stream);

The mode argument is the same as for fopen. The stream is closed first, and any
errors from the close are ignored. On error, NULL is returned, otherwise the new
value for stream is returned.

9.10.8. Closing files

An open file is closed using fclose.

#include <stdio.h>

int fclose(FILE *stream);

Any unwritten data buffered for stream is flushed out and any unread data is
thrown away. If a buffer had been automatically allocated for the stream, it is freed.
The file is then closed.

Zero is returned on success, EOF if any error occurs.

9.10.9. Setbuf, setvbuf

These two functions are used to change the buffering strategy for an open stream:

#include <stdio.h>

The C Book — Input and output http://publications.gbdirect.co.uk/c_book/chapter9/inp...

7 of 7 05-03-2007 16:30

int setvbuf(FILE *stream, char *buf,

 int type, size_t size);

void setbuf(FILE *stream, char *buf);

They must be used before the file is either read from or written to. The type
argument defines how the stream will be buffered (see Table 9.4).

Value Effect

_IONBF Do not buffer I/O

_IOFBF Fully buffer I/O

_IOLBF
Line buffer: flush buffer when full, when newline is written or when a read
is requested.

Table 9.4. Type of buffering

The buf argument can be a null pointer, in which case an array is automatically
allocated to hold the buffered data. Otherwise, the user can provide a buffer, but
should ensure that its lifetime is at least as long as that of the stream: a common
mistake is to use automatic storage allocated inside a compound statement; in
correct usage it is usual to obtain the storage from malloc instead. The size of the
buffer is specified by the size argument.

A call of setbuf is exactly the same as a call of setvbuf with IOFBF for the type
argument, and BUFSIZ for the size argument. If buf is a null pointer, the value
_IONBF is used for type instead.

No value is returned by setbuf, setvbuf returns zero on success, non-zero if
invalid values are provided for type or size, or the request cannot be complied
with.

9.10.10. Fflush

#include <stdio.h>

int fflush(FILE *stream);

If stream refers to a file opened for output or update, any unwritten data is ‘written’
out. Exactly what that means is a function of the host environment, and C cannot
guarantee, for example, that data immediately reaches the surface of a disk which
might be supporting the file. If the stream is associated with a file opened for input
or update, any preceding ungetc operation is forgotten.

The most recent operation on the stream must have been an output operation; if
not, the behaviour is undefined.

A call of fflush with an argument of zero flushes every output or update stream.
Care is taken to avoid those streams that have not had an output as their last
operation, thus avoiding the undefined behaviour mentioned above.

EOF is returned if an error occurs, otherwise zero.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter9/stdarg.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/formatted_io.html]

The C Book — Formatted I/O http://publications.gbdirect.co.uk/c_book/chapter9/fo...

1 of 5 05-03-2007 16:30

9.11. Formatted I/O

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/formatted_io.html.

There are a number of related functions used for formatted I/O, each one
determining the format of the I/O from a format string. For output, the format string
consists of plain text, which is output unchanged, and embedded format
specifications which call for some special processing of one of the remaining
arguments to the function. On input, the plain text must match what is seen in the
input stream; the format specifications again specify what the meaning of remaining
arguments is.

Each format specification is introduced by a % character, followed by the rest of the
specification.

9.11.1. Output: the printf family

For those functions performing output, the format specification takes the following
form, with optional parts enclosed in brackets:

%<flags><field width><precision><length>conversion

The meaning of flags, field width, precision, length, and conversion are given below,
although tersely. For more detail, it is worth looking at what the Standard says.

flags

Zero or more of the following:

-
Left justify the conversion within its field.

+
A signed conversion will always start with a plus or minus sign.

space
If the first character of a signed conversion is not a sign, insert a space.
Overridden by + if present.

#
Forces an alternative form of output. The first digit of an octal conversion
will always be a 0; inserts 0X in front of a non-zero hexadecimal
conversion; forces a decimal point in all floating point conversions even
if one is not necessary; does not remove trailing zeros from g and G
conversions.

0

Pad d, i, o, u, x, X, e, E, f, F and G conversions on the left with zeros
up to the field width. Overidden by the - flag. If a precision is specified
for the d, i, o, u, x or X conversions, the flag is ignored. The behaviour
is undefined for other conversions.

field width
A decimal integer specifying the minimum output field width. This will be
exceeded if necessary. If an asterisk is used here, the next argument is
converted to an integer and used for the value of the field width; if the value is
negative it is treated as a - flag followed by a positive field width. Output that
would be less than the field width is padded with spaces (zeros if the field

The C Book — Formatted I/O http://publications.gbdirect.co.uk/c_book/chapter9/fo...

2 of 5 05-03-2007 16:30

width integer starts with a zero) to fit. The padding is on the left unless the
left-adjustment flag is specified.

precision
This starts with a period ‘.’. It specifies the minimum number of digits for d, i,
o, u, x, or X conversions; the number of digits after the decimal point for e, E,
f conversions; the maximum number of digits for g and G conversions; the
number of characters to be printed from a string for s conversion. The amount
of padding overrides the field width. If an asterisk is used here, the next
argument is converted to an integer and used for the value of the field width. If
the value is negative, it is treated as if it were missing. If only the period is
present, the precision is taken to be zero.

length
h preceding a specifier to print an integral type causes it to be treated as if it
were a short. (Note that the various sorts of short are always promoted to
one of the flavours of int when passed as an argument.) l works like h but
applies to a long integral argument. L is used to indicate that a long
double argument is to be printed, and only applies to the floating-point
specifiers. These are cause undefined behaviour if they are used with the
‘wrong’ type of conversion.

conversion
See Table 9.5.

Specifier Effect
Default
precision

d signed decimal 1

i signed decimal 1

u unsigned decimal 1

o unsigned octal 1

x unsigned hexadecimal (0–f) 1

X unsigned hexadecimal (0–F) 1

Precision specifies minimum number of digits, expanded
with leading zeros if necessary. Printing a value of zero with
zero precision outputs no characters.

f

Print a double with precision digits (rounded) after the
decimal point. To suppress the decimal point use a
precision of explicitly zero. Otherwise, at least one digit
appears in front of the point.

6

e, E

Print a double in exponential format, rounded, with one
digit before the decimal point, precision after it. A precision
of zero suppresses the decimal point. There will be at least
two digits in the exponent, which is printed as 1.23e15 in
e format, or 1.23E15 in E format.

6

g,G

Use style f, or e (E with G) depending on the exponent. If
the exponent is less than −4 or ≥ precision, f is not used.
Trailing zeros are suppressed, a decimal point is only
printed if there is a following digit.

unspecified

c
The int argument is converted to an unsigned char and
the resultant character printed.

s

Print a string up to precision digits long. If precision is not
specified, or is greater than the length of the string, the
string must be NUL terminated.

infinite

p
Display the value of a (void *) pointer in a
system-dependent way.

n
The argument must be a pointer to an integer. The number
of characters output so far by this call will be written into the
integer.

The C Book — Formatted I/O http://publications.gbdirect.co.uk/c_book/chapter9/fo...

3 of 5 05-03-2007 16:30

Specifier Effect
Default
precision

% A % —

Table 9.5. Conversions

The functions that use these formats are described in Table 9.6. All need the
inclusion of <stdio.h>. Their declarations are as shown.

#include <stdio.h>

int fprintf(FILE *stream, const char *format, ...);

int printf(const char *format, ...);

int sprintf(char *s, const char *format, ...);

#include <stdarg.h> /* as well as stdio.h */

int vfprintf(FILE *stream, const char *format, va list arg);

int vprintf(const char *format, va list arg);

int vsprintf(char *s, const char *format, va list arg);

Name Purpose

fprintf
General formatted output as described. Output is written to the file
indicated by stream.

printf Identical to fprintf with a first argument equal to stdout.

sprintf
Identical to fprintf except that the output is not written to a file, but
written into the character array pointed to by s.

vfprintf
Formatted output as for fprintf, but with the variable argument list
replaced by arg which must have been initialized by va_start.
va_end is not called by this function.

vprintf Identical to vfprintf with a first argument equal to stdout.

vsprintf
Formatted output as for sprintf, but with the variable argument list
replaced by arg which must have been initialized by va_start.
va_end is not called by this function.

Table 9.6. Functions performing formatted output

All of the above functions return the number of characters output, or a negative
value on error. The trailing null is not counted by sprintf and vsprintf.

Implementations must permit at least 509 characters to be produced by any single
conversion.

9.11.2. Input: the scanf family

A number of functions exist analogous to the printf family, but for the purposes of
input instead. The most immediate difference between the two families is that the
scanf group needs to be passed pointers to their arguments, so that the values
read can be assigned to the proper destinations. Forgetting to pass a pointer is a
very common error, and one which the compiler cannot detect—the variable
argument list prevents it.

The format string is used to control interpretation of a stream of input data, which
generally contains values to be assigned to the objects pointed to by the remaining
arguments to scanf. The contents of the format string may contain:

white space
This causes the input stream to be read up to the next non-white-space
character.

ordinary character

The C Book — Formatted I/O http://publications.gbdirect.co.uk/c_book/chapter9/fo...

4 of 5 05-03-2007 16:30

Anything except white-space or % characters. The next character in the input
stream must match this character.

conversion specification
This is a % character, followed by an optional * character (which suppresses
the conversion), followed by an optional nonzero decimal integer specifying
the maximum field width, an optional h, l or L to control the length of the
conversion and finally a non-optional conversion specifier. Note that use of h,
l, or L will affect the type of pointer which must be used.

Except for the specifiers c, n and [, a field of input is a sequence of non-space
characters starting at the first non-space character in the input. It terminates at the
first conflicting character or when the input field width is reached.

The result is put into wherever the corresponding argument points, unless the
assignment is suppressed using the * mentioned already. The following conversion
specifiers may be used:

d i o u x

Convert a signed integer, a signed integer in a form acceptable to strtol, an
octal integer, an unsigned integer and a hexadecimal integer respectively.

e f g

Convert a float (not a double).
s

Read a string, and add a null at the end. The string is terminated by
whitespace on input (which is not read as part of the string).

[

Read a string. A list of characters, called the scan set follows the [. A]
delimits the list. Characters are read until (but not including) the first character
which is not in the scan set. If the first character in the list is a circumflex ̂ ,
then the scan set includes any character not in the list. If the initial sequence
is [^] or [], the] is not a delimiter, but part of the list and another] will be
needed to end the list. If there is a minus sign (-) in the list, it must be either
the first or the last character; otherwise the meaning is implementation
defined.

c
Read a single character; white space is significant here. To read the first
non-white space character, use %1s. A field width indicates that an array of
characters is to be read.

p

Read a (void *) pointer previously written out using the %p of one of the
printfs.

%

A % is expected in the input, no assignment is made.
n

Return as an integer the number of characters read by this call so far.

The size specifiers have the effect shown in Table 9.7.

Specifier Modifies Converts

l d i o u x long int

h d i o u x short int

l e f double

L e f long double

Table 9.7. Size specifiers

The functions are described below, with the following declarations:

#include <stdio.h>

The C Book — Formatted I/O http://publications.gbdirect.co.uk/c_book/chapter9/fo...

5 of 5 05-03-2007 16:30

int fscanf(FILE *stream, const char *format, ...);

int sscanf(const char *s, const char *format, ...);

int scanf(const char *format, ...);

Fscanf takes its input from the designated stream, scanf is identical to fscanf
with a first argument of stdin, and sscanf takes its input from the designated
character array.

If an input failure occurs before any conversion, EOF is returned. Otherwise, the
number of successful conversions is returned: this may be zero if no conversions
are performed.

An input failure is caused by reading EOF or reaching the end of the input string (as
appropriate). A conversion failure is caused by a failure to match the proper pattern
for a particular conversion.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/input_and_output.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/character_io.html]

The C Book — Character I/O http://publications.gbdirect.co.uk/c_book/chapter9/ch...

1 of 2 05-03-2007 16:30

9.12. Character I/O

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/character_io.html.

A number of functions provide for character oriented I/O. Their declarations are:

#include <stdio.h>

/* character input */

int fgetc(FILE *stream);

int getc(FILE *stream);

int getchar(void);

int ungetc(int c, FILE *stream);

/* character output */

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

int putchar(int c);

/* string input */

char *fgets(char *s, int n, FILE *stream);

char *gets(char *s);

/* string output */

int fputs(const char *s, FILE *stream);

int puts(const char *s);

Their descriptions are as follows.

9.12.1. Character input

These read an unsigned char from the input stream where specified, or
otherwise stdin. In each case, the next character is obtained from the input
stream. It is treated as an unsigned char and converted to an int, which is the
return value. On End of File, the constant EOF is returned, and the end-of-file
indicator is set for the associated stream. On error, EOF is returned, and the error
indicator is set for the associated stream. Successive calls will obtain characters
sequentially. The functions, if implemented as macros, may evaluate their stream
argument more than once, so do not use side effects here.

There is also the supporting ungetc routine, which is used to push back a
character on to a stream, causing it to become the next character to be read. This is
not an output operation and can never cause the external contents of a file to be
changed. A fflush, fseek, or rewind operation on the stream between the
pushback and the read will cause the pushback to be forgotten. Only one character
of pushback is guaranteed, and attempts to pushback EOF are ignored. In every
case, pushing back a number of characters then reading or discarding them leaves
the file position indicator unchanged. The file position indicator is decremented by
every successful call to ungetc for a binary stream, but unspecified for a text
stream, or a binary stream which is positioned at the beginning of the file.

9.12.2. Character output

The C Book — Character I/O http://publications.gbdirect.co.uk/c_book/chapter9/ch...

2 of 2 05-03-2007 16:30

These are identical in description to the input functions already described, except
performing output. They return the character written, or EOF on error. There is no
equivalent to End of File for an output file.

9.12.3. String output

These write strings to the output file; stream where specified, otherwise stdout.
The terminating null is not written. Non-zero is returned on error, zero otherwise.
Beware: puts appends a newline to the string output; fputs does not!

9.12.4. String input

Fgets reads a string into the array pointed to by s from the stream stream. It
stops on either EOF or the first newline (which it reads), and appends a null
character. At most n−1 characters are read (leaving room for the null).

Gets works similarly for the stream stdin, but discards the newline!

Both return s if successful, or a null pointer otherwise. In each case, if EOF is
encountered before any characters have been read, the array is unchanged and a
null pointer is returned. A read error in the middle of a string leaves the array
contents undefined and a null pointer is returned.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/formatted_io.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/unformatted_io.html]

The C Book — Unformatted I/O http://publications.gbdirect.co.uk/c_book/chapter9/un...

1 of 2 05-03-2007 16:29

9.13. Unformatted I/O

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter9/unformatted_io.html.

This is simple: only two functions provide this facility, one for reading and one for writing:

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nelem, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nelem, FILE *stream);

In each case, the appropriate read or write is performed on the data pointed to by ptr. Up to
nelem elements, of size size, are transferred. Failure to transfer the full number is an error only
when writing; End of File can prevent the full number on input. The number of elements actually
transferred is returned. To distinguish between End of File on input, or an error, use feof or
ferror.

If size or nelem is zero, fread does nothing except to return zero.

An example may help.

#include <stdio.h>

#include <stdlib.h>

struct xx{

 int xx_int;

 float xx_float;

}ar[20];

main(){

 FILE *fp = fopen("testfile", "w");

 if(fwrite((const void *)ar,

 sizeof(ar[0]), 5, fp) != 5){

 fprintf(stderr,"Error writing\n");

 exit(EXIT_FAILURE);

 }

 rewind(fp);

 if(fread((void *)&ar[10],

 sizeof(ar[0]), 5, fp) != 5){

 if(ferror(fp)){

 fprintf(stderr,"Error reading\n");

 exit(EXIT_FAILURE);

 }

 if(feof(fp)){

 fprintf(stderr,"End of File\n");

 exit(EXIT_FAILURE);

 }

The C Book — Unformatted I/O http://publications.gbdirect.co.uk/c_book/chapter9/un...

2 of 2 05-03-2007 16:29

 }

 exit(EXIT_SUCCESS);

}

Example 9.7

Previous section [http://publications.gbdirect.co.uk/c_book/chapter9/character_io.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/random_access_io.html]

The C Book — Random access functions http://publications.gbdirect.co.uk/c_book/chapter9/ra...

1 of 3 05-03-2007 16:29

9.14. Random access functions

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/random_access_io.html.

The file I/O routines all work in the same way; unless the user takes explicit steps to
change the file position indicator, files will be read and written sequentially. A read
followed by a write followed by a read (if the file was opened in a mode to permit
that) will cause the second read to start immediately following the end of the data
just written. (Remember that stdio insists on the user inserting a buffer-flushing
operation between each element of a read-write-read cycle.) To control this, the
Random Access functions allow control over the implied read/write position in the
file. The file position indicator is moved without the need for a read or a write, and
indicates the byte to be the subject of the next operation on the file.

Three types of function exist which allow the file position indicator to be examined or
changed. Their declarations and descriptions follow.

#include <stdio.h>

/* return file position indicator */

long ftell(FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

/* set file position indicator to zero */

void rewind(FILE *stream);

/* set file position indicator */

int fseek(FILE *stream, long offset, int ptrname);

int fsetpos(FILE *stream, const fpos_t *pos);

Ftell returns the current value (measured in characters) of the file position
indicator if stream refers to a binary file. For a text file, a ‘magic’ number is
returned, which may only be used on a subsequent call to fseek to reposition to
the current file position indicator. On failure, -1L is returned and errno is set.

Rewind sets the current file position indicator to the start of the file indicated by
stream. The file's error indicator is reset by a call of rewind. No value is returned.

Fseek allows the file position indicator for stream to be set to an arbitrary value (for
binary files), or for text files, only to a position obtained from ftell, as follows:

In the general case, the file position indicator is set to offset bytes (characters)
from a point in the file determined by the value of ptrname. Offset may be
negative. The values of ptrname may be SEEK_SET, which sets the file
position indicator relative to the beginning of the file, SEEK_CUR, which sets
the file position indicator relative to its current value, and SEEK_END, which
sets the file position indicator relative to the end of the file. The latter is not
necessarily guaranteed to work properly on binary streams.
For text files, offset must either be zero or a value returned from a previous
call to ftell for the same stream, and the value of ptrname must be
SEEK_SET.
Fseek clears the end of file indicator for the given stream and erases the
memory of any ungetc. It works for both input and output.

The C Book — Random access functions http://publications.gbdirect.co.uk/c_book/chapter9/ra...

2 of 3 05-03-2007 16:29

Zero is returned for success, non-zero for a forbidden request.

Note that for ftell and fseek it must be possible to encode the value of the file
position indicator into a long. This may not work for very long files, so the Standard
introduces fgetpos and fsetpos which have been specified in a way that
removes the problem.

Fgetpos stores the current file position indicator for stream in the object pointed to
by pos. The value stored is ‘magic’ and only used to return to the specified position
for the same stream using fsetpos.

Fsetpos works as described above, also clearing the stream's end-of-file indicator
and forgetting the effects of any ungetc operations.

For both functions, on success, zero is returned; on failure, non-zero is returned and
errno is set.

9.14.1. Error handling

The standard I/O functions maintain two indicators with each open stream to show
the end-of-file and error status of the stream. These can be interrogated and set by
the following functions:

#include <stdio.h>

void clearerr(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

void perror(const char *s);

Clearerr clears the error and EOF indicators for the stream.

Feof returns non-zero if the stream's EOF indicator is set, zero otherwise.

Ferror returns non-zero if the stream's error indicator is set, zero otherwise.

Perror prints a single-line error message on the program's standard output,
prefixed by the string pointed to by s, with a colon and a space appended. The error
message is determined by the value of errno and is intended to give some
explanation of the condition causing the error. For example, this program produces
the error message shown:

#include <stdio.h>

#include <stdlib.h>

main(){

 fclose(stdout);

 if(fgetc(stdout) >= 0){

 fprintf(stderr, "What - no error!\n");

 exit(EXIT_FAILURE);

 }

 perror("fgetc");

 exit(EXIT_SUCCESS);

}

/* Result */

The C Book — Random access functions http://publications.gbdirect.co.uk/c_book/chapter9/ra...

3 of 3 05-03-2007 16:29

fgetc: Bad file number

Example 9.8

Well, we didn't say that the message had to be very meaningful!

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/unformatted_io.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/general_utilities.html]

The C Book — General Utilities http://publications.gbdirect.co.uk/c_book/chapter9/ge...

1 of 6 05-03-2007 16:29

9.15. General Utilities

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter9/general_utilities.html.

These all involve the use of the header <stdlib.h>, which declares a number of
types and macros and several functions of general use. The types and macros are as
follows:

size_t
Described at the start of this chapter.

div_t

This is the type of the structure returned by div.
ldiv_t

This is the type of the structure returned by ldiv.
NULL

Again, described at the start of this chapter.
EXIT_FAILURE

EXIT_SUCCESS

These may be used as arguments to exit.
MB_CUR_MAX

The maximum number of bytes in a multibyte character from the extended
character set specified by the current locale.

RAND_MAX

This is the maximum value returned by the rand function.

9.15.1. String conversion functions

Three functions take a string as an argument and convert it to a number of the type
shown below:

#include <stdlib.h>

double atof(const char *nptr);

long atol(const char *nptr);

int atoi(const char *nptr);

For each of the functions, the number is converted and the result returned. None of
them guarantees to set errno (although they may do in some implementations), and
the results of a conversion which overflows or cannot be represented is undefined.

More sophisticated functions are:

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

long strtol(const char *nptr, char **endptr, int base);

unsigned long strtoul(const char *nptr,char **endptr, int base);

All three functions work in a similar way. Leading white space is skipped, then a
subject sequence, resembling an appropriate constant, is found, followed by a
sequence of unrecognized characters. The trailing null at the end of a string is always
unrecognized. The subject sequence can be empty. The subject sequences are

The C Book — General Utilities http://publications.gbdirect.co.uk/c_book/chapter9/ge...

2 of 6 05-03-2007 16:29

determined as follows:

strtod

Optional + or -, followed by a digit sequence containing an optional decimal point
character, followed by an optional exponent. No floating suffix will be recognized.
If there is no decimal point present, it is assumed to follow the digit sequence.

strtol

Optional + or -, followed by a digit sequence. The digits are taken from the
decimal digits or an upper or lower case letter in the range a–z of the English
alphabet; the letters are given the values 10–35 respectively. The base argument
determines which values are permitted, and may be zero, or otherwise 2–36.
Only ‘digits’ with a value less than that of base are recognized. A base of 16
permits the characters 0x or 0X to follow the optional sign. A base of zero
permits the input of characters in the form of a C integer constant. No integer
suffix will be recognized.

strtoul

Identical to strtol but with no sign permitted.

If endptr is non-null, the address of the first unrecognized character is stored in the
object that it points to. If the subject sequence is empty or has the wrong form, this is
the value of nptr.

If a conversion can be performed, the functions convert the number and return its
value, taking into account a leading sign where permitted. Otherwise they return zero.
On overflow or error the action is as follows:

strtod

On overflow, returns ±HUGE_VAL according to the sign of the result; on
underflow, returns zero. In either case, errno is set to ERANGE.

strtol

On overflow, LONG_MAX or LONG_MIN is returned according to the sign of the
result, errno is set to ERANGE.

strtoul

On overflow, ULONG_MAX is returned, errno is set to ERANGE.

If the locale is not the "C" locale, there may be other subject sequences recognised
depending on the implementation.

9.15.2. Random number generation

Provision for pseudo-random number generation is made by the following functions.

#include <stdlib.h>

int rand(void);

void srand(unsigned int seed);

Rand returns a pseudo-random number in the range 0 to RAND_MAX, which has a
value of at least 32767.

Srand allows a given starting point in the sequence to be chosen according to the
value of seed. If srand is not called before rand, the value of the seed is taken to be
1. The same sequence of values will always be returned from rand for a given value
of seed.

The Standard describes an algorithm which may be used to implement rand and
srand. In practice, most implementations will probably use this algorithm.

9.15.3. Memory allocation

The C Book — General Utilities http://publications.gbdirect.co.uk/c_book/chapter9/ge...

3 of 6 05-03-2007 16:29

These functions are used to allocate and free storage. The storage so obtained is only
guaranteed to be large enough to store an object of the specified type and aligned
appropriately so as not to cause addressing exceptions. No further assumptions can
be made.

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

void *free(void *ptr);

All of the memory allocation functions return a pointer to allocated storage of size size
bytes. If there is no free storage, they return a null pointer. The differences between
them are that calloc takes an argument nmemb which specifies the number of elements
in an array, each of whose members is size bytes, and so allocates a larger piece of
store (in general) than malloc. Also, the store allocated by malloc is not initialized,
whereas calloc sets all bits in the storage to zero. This is not necessarily the
equivalent representation of floating-point zero, or the null pointer.

Realloc is used to change the size of the thing pointed to by ptr, which may require
some copying to be done and the old storage freed. The contents of the object pointed
to by ptr is unchanged up to the smaller of the old and the new sizes. If ptr is null, the
behaviour is identical to malloc with the appropriate size.

Free is used to free space previously obtained with one of the allocation routines. It is
permissible to give free a null pointer as the argument, in which case nothing is done.

If an attempt is made to free store which was never allocated, or has already been
freed, the behaviour is undefined. In many environments this causes an addressing
exception which aborts the program, but this is not a reliable indicator.

9.15.4. Communication with the environment

A miscellany of functions is found here.

#include <stdlib.h>

void abort(void);

int atexit(void (*func)(void));

void exit(int status);

char *getenv(const char *name);

int system(const char *string);

abort

Causes abnormal program termination to occur, by raising the SIGABRT signal.
Abnormal termination is only prevented if the signal is being caught, and the
signal handler does not return. Otherwise, output files may be flushed and
temporary files may be removed according to implementation definition, and an
‘unsuccessful termination’ status returned to the host environment. This function
cannot return.

atexit

The argument func becomes a function to be called, without arguments, when
the program terminates. Up to at least 32 such functions may be registered, and
are called on program termination in reverse order of their registration. Zero is
returned for success, non-zero for failure.

exit
Normal program termination occurs when this is called. First, all of the functions

The C Book — General Utilities http://publications.gbdirect.co.uk/c_book/chapter9/ge...

4 of 6 05-03-2007 16:29

registered using atexit are called, but beware—by now, main is considered to
have returned and no objects with automatic storage duration may safely be
used. Then, all the open output streams are flushed, then closed, and all
temporary files created by tmpfile are removed. Finally, the program returns
control to the host environment, returning an implementation-defined form of
successful or unsuccessful termination status depending on whether the
argument to exit was EXITSUCCESS or EXIT FAILURE respectively. For
compatibility with Old C, zero can be used in place of EXITSUCCESS, but other
values have implementation-defined effects. Exit cannot return.

getenv

The implementation-defined environment list is searched to find an item which
corresponds to the string pointed to by name. A pointer to the item is returned—it
points to an array which must not be modified by the program, but may be
overwritten by a subsequent call to getenv. A null pointer is returned if no item
matches.

The purpose and implementation of the environment list depends on the host
environment.

system
An implementation-defined command processor is passed the string string. A null
pointer will cause a return of zero if no command processor exists, non-zero
otherwise. A non-null pointer causes the command to be processed. The effect of
the command and the value returned are implementation defined.

9.15.5. Searching and sorting

Two functions exist in this category: one for searching an already sorted list, the other
for sorting an unsorted list. They are completely general, handling arrays of arbitrary
size with elements of arbitrary size.

To enable them to compare two elements, the user provides a comparison function,
which is called with pointers to two of the elements as its arguments. It returns a value
less than, equal to or greater than zero depending on whether the first pointer points to
an element considered to be less than, equal to or greater than the object pointed to by
the second pointer, respectively.

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

 size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));

void *qsort(const void *base, size_t nmemb,

 size_t size,

 int (*compar)(const void *, const void *));

For both functions, nmemb is the number of elements in the array, size is the size in
bytes of an array element and compar is the function to be called to compare them.
Base is a pointer to the base of the array.

Qsort will sort the array into ascending order.

Bsearch assumes that the array is already sorted and returns a pointer to any
element it finds that compares equal to the object pointed to by key. A null pointer is
returned if no match is found.

9.15.6. Integer arithmetic functions

The C Book — General Utilities http://publications.gbdirect.co.uk/c_book/chapter9/ge...

5 of 6 05-03-2007 16:29

These provide ways of finding the absolute value of an integral argument and the
quotient and remainder of a division, for both int and long types.

#include <stdlib.h>

int abs(int j);

long labs(long j);

div_t div(int numerator, int denominator);

ldiv_t ldiv(long numerator, long denominator);

abs

labs
These return the absolute value of their argument—choose the appropriate one
for your needs. The behaviour is undefined if the value cannot be
represented—this can happen in two's complement systems where the most
negative number has no positive equivalent.

div

ldiv

These divide the numerator by the denominator and return a structure of the
indicated type. In each case the structure will contain a member called quot
which contains the quotient of the division truncated towards zero, and a member
called rem which will contain the remainder. The type of each member is int for
div and long for ldiv. Provided that the result could be represented,
quot*denominator+rem == numerator.

9.15.7. Functions using multibyte characters

The LC_CTYPE category of the current locale affects the behaviour of these functions.
For an encoding that is state-dependent, each function is put in its initial state by a call
in which its character pointer argument, s, is a null pointer. The internal state of the
function is altered as necessary by subsequent calls when s is not a null pointer. If s is
a null pointer, the functions return a non-zero value if encodings are state-dependent,
otherwise zero. If the LC_CTYPE category is changed, the shift state of the functions
will become indeterminate.

The functions are:

#include <stdlib.h>

int mblen(const char *s, size_t n);

int mbtowc(wchar_t *pwc, const char *s, size_t n);

int wctomb(char *s, wchar_t wchar);

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

mblen
Returns the number of bytes that are contained in the multibyte character pointed
to by s, or −1 if the first n bytes do not form a valid multibyte character. If s points
to the null character, zero is returned.

mbtowc
Converts the multibyte character pointed to by s to the corresponding code of
type wchar_t and stores the result in the object pointed to by pwc, unless pwc is
a null pointer. Returns the number of bytes successfully converted, or −1 if the
first n bytes do not form a valid multibye character. No more than n bytes pointed
to by s are examined. The value returned will not be more than n or
MB_CUR_MAX.

wctomb

The C Book — General Utilities http://publications.gbdirect.co.uk/c_book/chapter9/ge...

6 of 6 05-03-2007 16:29

Converts the code whose value is in wchar to a sequence of bytes representing
the corresponding multibyte character, and stores the result in the array pointed
to by s, if s is not a null pointer. Returns the number of bytes that are contained in
the multibyte character, or −1 if the value in wchar does not correspond to a valid
multibyte character. At most, MB_CUR_MAX bytes are processed.

mbstowcs

Converts the sequence of multibyte characters, beginning in the initial shift state,
in the array pointed to by s, into a sequence of corresponding codes which are
then stored in the array pointed to by pwcs. Not more than n values will be
placed in pwcs. Returns −1 if an invalid multibyte character is encountered,
otherwise returns the number of array elements modified, excluding the
terminating null-code.

If the two objects overlap, the behaviour is undefined.

wcstombs

Converts the sequence of codes pointed to by pwcs to a sequence of multibyte
characters, beginning in the initial shift state, which are then stored in the array
pointed to by s. Conversion stops when either a null-code is encountered or n
bytes have been written to s. Returns −1 if a code is encountered which does not
correspond to a valid multibyte character, otherwise the number of bytes written,
excluding the terminating null-code.

If the two objects overlap, the behaviour is undefined.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/random_access_io.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/string_handling.html]

The C Book — String handling http://publications.gbdirect.co.uk/c_book/chapter9/str...

1 of 3 05-03-2007 16:29

9.16. String handling

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/string_handling.html.

Numerous functions exist to handle strings. In C, a string is an array of characters
terminated by a null. In all cases, the functions expect a pointer to the first character
in the string. The header <string.h> declares these functions.

9.16.1. Copying

The functions for this purpose are:

#include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

void *memmove (void *s1, const void *s2, size_t n);

char *strcpy(char *s1, const char *s2);

char *strncpy(char *s1, const char *s2, size_t n);

char *strcat(char *s1, const char *s2);

char *strncat(char *s1, const char *s2, size_t n);

memcpy

This copies n bytes from the place pointed to by s2 to the place pointed to by
s1. If the objects overlap, the result is undefined. The value of s1 is returned.

memmove

Identical to memcpy, but works even for overlapping objects. It may be
marginally slower, though.

strcpy

strncpy

Both of these copy the string pointed to by s2 into the string pointed to by s1,
including the trailing null. Strncpy will copy at most n characters, and pad
with trailing nulls if s2 is shorter than n characters. If the strings overlap, the
behaviour is undefined. They return s1.

strcat

strncat

Both append the string in s2 to s1, overwriting the null at the end of s1. A
final null is always written. At most n characters are copied from s2 by
strncat, which means that for safety the destination string should have room
for its original length (not counting the null) plus n + 1 characters. They
return s1.

9.16.2. String and byte comparison

These comparison functions are used to compare arrays of bytes. This obviously
includes the traditional C strings, which are an array of char (bytes) with a
terminating null. All of these functions work by comparing a byte at a time, and
stopping either when two bytes differ (in which case they return the sign of the
difference between the two bytes), or the arrays are considered to be equal: no
differences were found, and the length of the arrays was equal to the specified
amount, or the null was found at the end of a string comparison.

The C Book — String handling http://publications.gbdirect.co.uk/c_book/chapter9/str...

2 of 3 05-03-2007 16:29

For all except strxfrm, the value returned is less than, equal to or greater than
zero depending on whether the first object was considered to be less than, equal to
or greater than the second.

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

size_t strxfrm(char *to, const char *from,

int strcoll(const char *s1, const char *s2);

memcmp

Compares the first n characters in the objects pointed to by s1 and s2. It is
very dodgy to compare structures in this way, because unions or ‘holes’
caused by alignment padding can contain junk.

strcmp
Compares the two strings. This is one of the most commonly used of the
string-handling functions.

strncmp

As for strcmp, but compares at most n characters.
strxfrm

The string in from is converted (by some magic), and placed wherever to
points. At most maxsize characters (including the trailing null) are written into
the destination. The magic guarantees that two such transformed strings will
give the same comparison with each other for the user's current locale when
using strcmp, as when strcoll is applied to the original two strings.

In all cases, the length of the resulting string (not counting its terminating null)
is returned. If the value is equal to or greater than maxsize, the contents of *to
is undefined. If maxsize is zero, s1 may be a null pointer.

If the two objects overlap, the behaviour is undefined.

strcoll
This function compares the two strings according to the collating sequence
specified by the current locale.

9.16.3. Character and string searching functions

#include <string.h>

void *memchr(const void *s, int c, size_t n);

char *strchr(const char *s, int c);

size_t strcspn(const char *s1, const char *s2);

char *strpbrk(const char *s1, const char *s2);

char *strrchr(const char *s, int c);

size_t strspn(const char *s1, const char *s2);

char *strstr(const char *s1, const char *s2);

char *strtok(const char *s1, const char *s2);

memchr

Returns a pointer to the first occurrence in the initial n characters of *s of the
(unsigned char)c. Returns null if there is no such occurrence.

strchr

Returns a pointer to the first occurrence of (char)c in *s, including the null
in the search. Returns null if there is no such occurrence.

strcspn

The C Book — String handling http://publications.gbdirect.co.uk/c_book/chapter9/str...

3 of 3 05-03-2007 16:29

Returns the length of the initial part of the string s1 which contains no
characters from s2. The terminating null is not considered to be part of s2.

strpbrk

Returns a pointer to the first character in s1 which is any of the characters in
s2, or null if there is none.

strrchr

Returns a pointer to the last occurrence in s1 of (char)c counting the null as
part of s1, or null if there is none.

strspn

Returns the length of the initial part of s1 consisting entirely of characters from
s1.

strstr

Returns a pointer to the first occurrence in s1 of the string s2, or null if there is
none.

strtok

Breaks the string in s1 into ‘tokens’, each delimited by one of the characters
from s2 and returns a pointer to the first token, or null if there is none.
Subsequent calls with (char *)0 as the value of s1 return the next token in
sequence, with the extra fun that s2 (and hence the delimiters) may differ on
each subsequent call. A null pointer is returned if no tokens remain.

9.16.4. Miscellaneous functions

#include <string.h>

void *memset(void *s, int c, size_t n);

char *strerror(int errnum);

size_t strlen(const char *s);

memset

Sets the n bytes pointed to by s to the value of (unsigned char)c. Returns
s.

strlen

Returns the length of the string s not counting the terminating null. This is a
very widely used function.

strerror

Returns a pointer to a string describing the error number errnum. This string
may be changed by subsequent calls to strerror. Useful for finding out
what the values in errno mean.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/general_utilities.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/date_and_time.html]

The C Book — Date and time http://publications.gbdirect.co.uk/c_book/chapter9/da...

1 of 2 05-03-2007 16:28

9.17. Date and time

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter9/date_and_time.html.

These functions deal with either ‘elapsed’ or ‘calendar’ time. They share the <time.h> header, which declares
the functions as necessary and also the following:

CLOCKS_PER_SEC

This is the number of ‘ticks’ per second returned by the clock function.
clock_t

time_t
These are arithmetic types used to represent different forms of time.

struct tm

This structure is used to hold the values representing a calendar time. It contains the following members,
with the meanings as shown.

int tm_sec /* seconds after minute [0-61] (61 allows for 2 leap-seconds)*/

int tm_min /* minutes after hour [0-59] */

int tm_hour /* hours after midnight [0-23] */

int tm_mday /* day of the month [1-31] */

int tm_mon /* month of year [0-11] */

int tm_year /* current year-1900 */

int tm_wday /* days since Sunday [0-6] */

int tm_yday /* days since January 1st [0-365] */

int tm_isdst /* daylight savings indicator */

The tm_isdst member is positive if daylight savings time is in effect, zero if not and negative if that
information is not available.

The time manipulation functions are the following:

#include <time.h>

clock_t clock(void);

double difftime(time_t time1, time_t time2);

time_t mktime(struct tm *timeptr);

time_t time(time_t *timer);

char *asctime(const struct tm *timeptr);

char *ctime(const time_t *timer);

struct tm *gmtime(const time_t *timer);

struct tm *localtime(const time_t *timer);

size_t strftime(char *s, size_t maxsize,

 const char *format,

 const struct tm *timeptr);

The functions asctime, ctime, gmtime, localtime, and strftime all share static data structures, either of
type struct tm or char [], and calls to one of them may overwrite the data stored by a previous call to one of
the others. If this is likely to cause problems, their users should take care to copy any values needed.

clock
Returns the best available approximation to the time used by the current invocation of the program, in
‘ticks’. (clock_t)-1 is returned if no value is available. To find the actual time used by a run of a
program, it is necessary to find the difference between the value at the start of the run and the time of
interest—there is an implementation-defined constant factor which biases the value returned from clock. To
determine the time in seconds, the value returned should be divided by CLOCKS_PER_SEC.

difftime
This returns the difference in seconds between two calendar times.

mktime

This returns the calendar time corresponding to the values in a structure pointed to by timeptr, or
(time_t)-1 if the value cannot be represented.

The C Book — Date and time http://publications.gbdirect.co.uk/c_book/chapter9/da...

2 of 2 05-03-2007 16:28

The tm_wday and tm_yday members of the structure are ignored, the other members are not restricted to
their usual values. On successful conversion, the members of the structure are all set to appropriate values
within their normal ranges. This function is useful to find out what value of a time_t corresponds to a
known date and time.

time

Returns the best approximation to the current calendar time in an unspecified encoding. (time_t)-1 is
returned if the time is not available.

asctime

Converts the time in the structure pointed to by timeptr into a string of the form

Sun Sep 16 01:03:52 1973\n\0

the example being taken from the Standard. The Standard defines the algorithm used, but the important
point to notice is that all the fields within that string are of constant width and relevant to most
English-speaking communities. The string is stored in a static structure which may be overwritten by a
subsequent call to one of the other time-manipulation functions (see above).

ctime

Equivalent to asctime(localtime(timer)). See asctime for the return value.
gmtime

Returns a pointer to a struct tm set to represent the calendar time pointed to by timer. The time is
expressed in terms of Coordinated Universal Time (UTC) (formerly Greenwich Mean Time). A null pointer
is returned if UTC is not available.

localtime

Converts the time pointed to by timer into local time and puts the results into a struct tm, returning a
pointer to that structure.

strftime

Fills the character array pointed to by s with at most maxsize characters. The format string is used to
format the time represented in the structure pointed to timeptr. Characters in the format string (including
the terminating null) are copied unchanged into the array, unless one of the following format directives is
found—then the value specified below is copied into the destination, as appropriate to the locale.

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c date and time representation

%d decimal day of month number 01–31

%H hour 00–23 (24 hour format)

%I hour 01–12 (12 hour format)

%j day of year 001–366

%m month 01–12

%M minute 00–59

%p local equivalent of ‘AM’ or ‘PM’

%S second 00–61

%U week number in year 00–53 (Sunday is first day of week

%w weekday, 0–6 (Sunday is 0)

%W week number in year 00–53 (Monday is first day of week

%x local date representation

%X local time representation

%y year without century prefix 00–99

%Y year with century prefix

%Z timezone name, or no characters if no timezone exists

%% a % character

The total number of characters copied into *s is returned, excluding the null. If there was not room (as
determined by maxsize) for the trailing null, zero is returned.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter9/string_handling.html] | Chapter contents
[http://publications.gbdirect.co.uk/c_book/chapter9/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter9/summary.html]

The C Book — Summary http://publications.gbdirect.co.uk/c_book/chapter9/s...

1 of 1 05-03-2007 16:28

9.18. Summary

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter9/summary.html.

It will almost certainly be the standardization of the run-time library that has the
most effect on the portability of C programs. Prospective users of C really should
read through this chapter carefully and familiarize themselves with its contents. The
lack of a widely implemented, portable library was historically the biggest single
barrier to portability.

If you are writing programs for embedded systems, bad luck! The library is not
defined for stand-alone applications, but in practice we can expect suppliers to
produce a stand-alone library package too. It will probably come without the file
handling, but there is no reason why, say, the string-handling functions should not
work just as well in hosted and unhosted environments.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter9/date_and_time.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter9/]

The C Book — Complete Programs in C http://publications.gbdirect.co.uk/c_book/chapter10/?...

1 of 1 05-03-2007 16:39

Chapter 10

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter10/.

Complete Programs in C

10.1. Putting it all together
[http://publications.gbdirect.co.uk/c_book/chapter10/putting_it_together.html]
10.2. Arguments to main
[http://publications.gbdirect.co.uk/c_book/chapter10/arguments_to_main.html]
10.3. Interpreting program arguments
[http://publications.gbdirect.co.uk/c_book/chapter10/interpreting_program_arguments.html]
10.4. A pattern matching program
[http://publications.gbdirect.co.uk/c_book/chapter10/pattern_matching_example.html]
10.5. A more ambitious example
[http://publications.gbdirect.co.uk/c_book/chapter10/ambitious_example.html]
10.6. Afterword [http://publications.gbdirect.co.uk/c_book/chapter10/afterword.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter9/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/answers/]

The C Book — Putting it all together http://publications.gbdirect.co.uk/c_book/chapter10/pu...

1 of 1 05-03-2007 16:40

10.1. Putting it all together

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter10/putting_it_together.html.

Having considered the language and the libraries defined by the Standard, all that
now remains is to demonstrate what complete programs look like. This chapter
contains some example programs which illustrate how to combine these elements
to build programs.

However, just before these examples are presented there is one more aspect of the
C language to discuss.

Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter10/] | Next
section
[http://publications.gbdirect.co.uk/c_book/chapter10/arguments_to_main.html]

The C Book — Arguments to main http://publications.gbdirect.co.uk/c_book/chapter10/a...

1 of 3 05-03-2007 16:41

10.2. Arguments to main

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter10/arguments_to_main.html.

For those writing programs which will run in a hosted environment, arguments to main
provide a useful opportunity to give parameters to programs. Typically, this facility is used
to direct the way the program goes about its task. It's particularly common to provide file
names to a program through its arguments.

The declaration of main looks like this:

int main(int argc, char *argv[]);

This indicates that main is a function returning an integer. In hosted environments such as
DOS or UNIX, this value or exit status is passed back to the command line interpreter.
Under UNIX, for example, the exit status is used to indicate that a program completed
successfully (a zero value) or some error occurred (a non-zero value). The Standard has
adopted this convention; exit(0) is used to return ‘success’ to its host environment, any
other value is used to indicate failure. If the host environment itself uses a different
numbering convention, exit will do the necessary translation. Since the translation is
implementation-defined, it is now considered better practice to use the values defined in
<stdlib.h>: EXIT_SUCCESS and EXIT_FAILURE.

There are at least two arguments to main: argc and argv. The first of these is a count of
the arguments supplied to the program and the second is an array of pointers to the strings
which are those arguments—its type is (almost) ‘array of pointer to char’. These
arguments are passed to the program by the host system's command line interpreter or job
control language.

The declaration of the argv argument is often a novice programmer's first encounter with
pointers to arrays of pointers and can prove intimidating. However, it is really quite simple
to understand. Since argv is used to refer to an array of strings, its declaration will look
like this:

char *argv[]

Remember too that when it is passed to a function, the name of an array is converted to
the address of its first element. This means that we can also declare argv as char
**argv; the two declarations are equivalent in this context.

Indeed, you will often see the declaration of main expressed in these terms. This
declaration is exactly equivalent to that shown above:

int main(int argc, char **argv);

When a program starts, the arguments to main will have been initialized to meet the
following conditions:

argc is greater than zero.
argv[argc] is a null pointer.
argv[0] through to argv[argc-1] are pointers to strings whose meaning will be
determined by the program.
argv[0] will be a string containing the program's name or a null string if that is not

The C Book — Arguments to main http://publications.gbdirect.co.uk/c_book/chapter10/a...

2 of 3 05-03-2007 16:41

available. Remaining elements of argv represent the arguments supplied to the
program. In cases where there is only support for single-case characters, the
contents of these strings will be supplied to the program in lower-case.

To illustrate these points, here is a simple program which writes the arguments supplied to
main on the program's standard output.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv)

{

 while(argc--)

 printf("%s\n", *argv++);

 exit(EXIT_SUCCESS);

}

Example 10.1

If the program name is show_args and it has arguments abcde, text, and hello when
it is run, the state of the arguments and the value of argv can be illustrated like this:

Figure 10.1. Arguments to a program

Each time that argv is incremented, it is stepped one item further along the array of
arguments. Thus after the first iteration of the loop, argv will point to the pointer which in
turn points to the abcde argument. This is shown in Figure 10.2.

Figure 10.2. Arguments to a program after incrementing argv

On the system where this program was tested, a program is run by typing its name and
then the arguments, separated by spaces. This is what happened (the $ is a prompt):

$ show_args abcde text hello

show_args

abcde

text

hello

The C Book — Arguments to main http://publications.gbdirect.co.uk/c_book/chapter10/a...

3 of 3 05-03-2007 16:41

$

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter10/putting_it_together.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter10/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter10/interpreting_program_arguments.html]

The C Book — Interpreting program arguments http://publications.gbdirect.co.uk/c_book/chapter10/in...

1 of 3 05-03-2007 16:41

10.3. Interpreting program arguments

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter10/interpreting_program_arguments.html.

The loop used to examine the program arguments in the example above is a common C idiom which
you will see in many other programs. An additional common idiom is to use ‘options’ to control the
behaviour of the program (these are also sometimes called switches or flags). Arguments which
start with a ‘-’ are taken to introduce one or more single-letter option indicators, which can be run
together or provided separately:

progname -abxu file1 file2
progname -a -b -x -u file1 file2

The idea is that each of the options selects a particular aspect from the program's repertoire of
features. An extension to that idea is to allow options to take arguments; if the -x option is specified
to take an argument, then this is how it might be used:

progname -x arg file1

so that the arg argument is associated with the option. The options function below automates the
processing of this style of use, with the additional (common but preferably considered obsolescent)
support for the provision of option arguments immediately following the option letter, as in:

progname -xarg file1

In either of the above cases, the options routine returns the character ‘x’ and sets a global pointer,
OptArg, to point to the value arg.

To use this routine, a program must supply a list of valid option letters in the form of a string; when a
letter in this string is followed by a ‘:’ this indicates that the option letter is to be followed by an
argument. When the program is run, it is then simply a question of repeatedly calling the options
routine until no more option letters remain to be found.

It seems to be a fact of life that functions which scan text strings looking for various combinations or
patterns within them end up being hard to read; if it's any consolation they aren't all that easy to write
either. The code that implements the options is definitely one of the breed, although by no means
one of the worst:

/*
* options() parses option letters and option arguments from the argv list.
* Succesive calls return succesive option letters which match one of
* those in the legal list. Option letters may require option arguments
* as indicated by a ':' following the letter in the legal list.
* for example, a legal list of "ab:c" implies that a, b and c are
* all valid options and that b takes an option argument. The option
* argument is passed back to the calling function in the value
* of the global OptArg pointer. The OptIndex gives the next string
* in the argv[] array that has not already been processed by options().
*
* options() returns -1 if there are no more option letters or if
* double SwitchChar is found. Double SwitchChar forces options()
* to finish processing options.
*
* options() returns '?' if an option not in the legal set is

The C Book — Interpreting program arguments http://publications.gbdirect.co.uk/c_book/chapter10/in...

2 of 3 05-03-2007 16:41

* encountered or an option needing an argument is found without an
* argument following it.
*
*/

#include <stdio.h>
#include <string.h>

static const char SwitchChar = '-';
static const char Unknown = '?';

int OptIndex = 1; /* first option should be argv[1] */
char *OptArg = NULL; /* global option argument pointer */

int options(int argc, char *argv[], const char *legal)
{
 static char *posn = ""; /* position in argv[OptIndex] */
 char *legal_index = NULL;
 int letter = 0;

 if(!*posn){
 /* no more args, no SwitchChar or no option letter ? */
 if((OptIndex >= argc) ||
 (*(posn = argv[OptIndex]) != SwitchChar) ||
 !*++posn)
 return -1;
 /* find double SwitchChar ? */
 if(*posn == SwitchChar){
 OptIndex++;
 return -1;
 }
 }
 letter = *posn++;
 if(!(legal_index = strchr(legal, letter))){
 if(!*posn)
 OptIndex++;
 return Unknown;
 }
 if(*++legal_index != ':'){
 /* no option argument */
 OptArg = NULL;
 if(!*posn)
 OptIndex++;
 } else {
 if(*posn)
 /* no space between opt and opt arg */
 OptArg = posn;
 else
 if(argc <= ++OptIndex){
 posn = "";
 return Unknown;
 } else
 OptArg = argv[OptIndex];
 posn = "";
 OptIndex++;
 }
 return letter;
}

The C Book — Interpreting program arguments http://publications.gbdirect.co.uk/c_book/chapter10/in...

3 of 3 05-03-2007 16:41

Example 10.2

Previous section [http://publications.gbdirect.co.uk/c_book/chapter10/arguments_to_main.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter10/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter10/pattern_matching_example.html]

The C Book — A pattern matching program http://publications.gbdirect.co.uk/c_book/chapter10/p...

1 of 5 05-03-2007 16:42

10.4. A pattern matching program

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter10/pattern_matching_example.html.

This section presents a complete program which makes use of option letters as program arguments
to control the way it performs its job.

The program first processes any arguments that resemble options; the first argument which is not an
option is remembered for use as a ‘search string’. Any remaining arguments are used to specify file
names which are to be read as input to the program; if no file names are provided, the program
reads from its standard input instead. If a match for the search string is found in a line of input text,
that whole line is printed on the standard output.

The options function is used to process all option letters supplied to the program. This program
recognises five options: -c, -i, -l, -n, and -v. None of these options is required to be followed by
an option argument. When the program is run with one or more of these options its behaviour is
modified as follows:

-c
the program prints a count of the total number of matching lines it found in the input file(s). No
lines of text are printed.

-i
when searching for a match, the case of letters in both the input lines and string is ignored.

-l
each line of text printed on the output is prefixed with the line number being examined in the
current input file.

-n
each line of text printed on the output is prefixed with the name of the file that contained the
line.

-v
the program prints only lines which do not match the string supplied.

When the program finishes, it returns an exit status to indicate one of the following situations:

EXIT_SUCCESS
at least one match was found.

EXIT_FAILURE
no match was found, or some error occurred.

The program makes extensive use of standard library functions to do all of the hard work. For
example, all of the file handling is performed by calls to stdio functions. Notice too that the real
heart of the program, the string matching, is simply handled by a call to the strstr library function.

Here is the code for the whole program. Of course, to get this to work you would need to compile it
together with the code for the options routine presented above.

/*
* Simple program to print lines from a text file which contain
* the "word" supplied on the command line.
*
*/

#include <stdio.h>
#include <stdlib.h>

The C Book — A pattern matching program http://publications.gbdirect.co.uk/c_book/chapter10/p...

2 of 5 05-03-2007 16:42

#include <string.h>
#include <ctype.h>

/*
* Declarations for the pattern program
*
*/

#define CFLAG 0x001 /* only count the number of matching lines */
#define IFLAG 0x002 /* ignore case of letters */
#define LFLAG 0x004 /* show line numbers */
#define NFLAG 0x008 /* show input file names */
#define VFLAG 0x010 /* show lines which do NOT match */

extern int OptIndex; /* current index into argv[] */
extern char *OptArg; /* global option argument pointer */

/*
* Fetch command line switches from arguments to main()
*/

int options(int, char **, const char *);

/*
* Record the required options ready to control program beaviour
*/

unsigned set_flags(int, char **, const char *);

/*
* Check each line of the input file for a match
*/

int look_in(const char *, const char *, unsigned);

/*
* Print a line from the input file on the standard output
* in the format specified by the command line switches
*/

void print_line(unsigned mask, const char *fname,
 int lnno, const char *text);

static const char
 /* Legal options for pattern */
 *OptString = "cilnv",
 /* message when options or arguments incorrect */
 *errmssg = "usage: pattern [-cilnv] word [filename]\n";

int main(int argc, char *argv[])
{
 unsigned flags = 0;
 int success = 0;
 char *search_string;

 if(argc < 2){
 fprintf(stderr, errmssg);
 exit(EXIT_FAILURE);
 }

The C Book — A pattern matching program http://publications.gbdirect.co.uk/c_book/chapter10/p...

3 of 5 05-03-2007 16:42

 flags = set_flags(argc, argv, OptString);

 if(argv[OptIndex])
 search_string = argv[OptIndex++];
 else {
 fprintf(stderr, errmssg);
 exit(EXIT_FAILURE);
 }

 if(flags & IFLAG){
 /* ignore case by dealing only with lowercase */
 char *p;
 for(p = search_string ; *p ; p++)
 if(isupper(*p))
 *p = tolower(*p);
 }

 if(argv[OptIndex] == NULL){
 /* no file name given, so use stdin */
 success = look_in(NULL, search_string, flags);
 } else while(argv[OptIndex] != NULL)
 success += look_in(argv[OptIndex++],
 search_string, flags);

 if(flags & CFLAG)
 printf("%d\n", success);

 exit(success ? EXIT_SUCCESS : EXIT_FAILURE);
}

unsigned set_flags(int argc, char **argv, const char *opts)
{
 unsigned flags = 0;
 int ch = 0;

 while((ch = options(argc, argv, opts)) != -1){
 switch(ch){
 case 'c':
 flags |= CFLAG;
 break;
 case 'i':
 flags |= IFLAG;
 break;
 case 'l':
 flags |= LFLAG;
 break;
 case 'n':
 flags |= NFLAG;
 break;
 case 'v':
 flags |= VFLAG;
 break;
 case '?':
 fprintf(stderr, errmssg);
 exit(EXIT_FAILURE);
 }
 }
 return flags;

The C Book — A pattern matching program http://publications.gbdirect.co.uk/c_book/chapter10/p...

4 of 5 05-03-2007 16:42

}

int look_in(const char *infile, const char *pat, unsigned flgs)
{
 FILE *in;
 /*
 * line[0] stores the input line as read,
 * line[1] is converted to lower-case if necessary
 */
 char line[2][BUFSIZ];
 int lineno = 0;
 int matches = 0;

 if(infile){
 if((in = fopen(infile, "r")) == NULL){
 perror("pattern");
 return 0;
 }
 } else
 in = stdin;

 while(fgets(line[0], BUFSIZ, in)){
 char *line_to_use = line[0];
 lineno++;
 if(flgs & IFLAG){
 /* ignore case */
 char *p;
 strcpy(line[1], line[0]);
 for(p = line[1] ; *p ; *p++)
 if(isupper(*p))
 *p = tolower(*p);
 line_to_use = line[1];
 }

 if(strstr(line_to_use, pat)){
 matches++;
 if(!(flgs & VFLAG))
 print_line(flgs, infile, lineno, line[0]);
 } else if(flgs & VFLAG)
 print_line(flgs, infile, lineno, line[0]);
 }
 fclose(in);
 return matches;
}

void print_line(unsigned mask, const char *fname,
 int lnno, const char *text)
{
 if(mask & CFLAG)
 return;
 if(mask & NFLAG)
 printf("%s:", *fname ? fname : "stdin");
 if(mask & LFLAG)
 printf(" %d :", lnno);
 printf("%s", text);
}

Example 10.3

The C Book — A pattern matching program http://publications.gbdirect.co.uk/c_book/chapter10/p...

5 of 5 05-03-2007 16:42

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter10/interpreting_program_arguments.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter10/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter10/ambitious_example.html]

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

1 of 11 05-03-2007 16:42

10.5. A more ambitious example

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter10/ambitious_example.html.

Finally here is a set of programs designed to cooperate and manipulate a single data file in a coherent, robust
fashion.

The programs are intended to help keep track of a ladder of players who compete against each other at some game,
squash or chess perhaps.

Each player has a rank from one to n, where n is the number of players who play, one being the highest rank on the
ladder. Players lower down the ladder may challenge players above them and, if the lower ranked player wins, he or
she moves up taking the rank of the player who loses. The loser in such a situation, and any other players between
challenger and loser, are then moved down one rank. If a challenger does not win, the rankings on the ladder remain
unchanged.

To provide some measure of equilibrium in the rankings, a player may challenge any higher ranked player, but only
wins over players ranked three (or less) higher will allow the challenger to move up the rankings. This ensures that
new players added to the bottom of the ladder are forced to play more than one game to reach the top of the ladder!

There are three basic tasks which are required to record all the information needed to keep such a ladder going:

Printing the ladder.
Addition of new players.
Recording of results.

The design to be used here provides a separate program to perform each of these tasks. Having made this decision
it is clear that a number of operations needed by each program will be common to all three. For example, all three
will need to read player records from the data file, at least two will need to write player records into the data file.

This suggests that a good approach would be to design a ‘library’ of functions which manipulate player records and
the data file which may in turn be combined to make up the programs which maintain the ladder.

Before this can be done it will be necessary to define the data structure which represents player records. The
minimum information necessary to record for each player consists of player name and rank. However, to allow for
more interesting statistics to be compiled about the ladder let us chose to also keep a record of games won, games
lost and the time when the last game was played. Clearly this disparate set of information is best collected together
in a structure.

The player structure declaration together with the declarations of the player library functions are combined together
in the player.h header file. The data file is maintained as lines of text, each line corresponding to a record; this
requires input and output conversions to be performed but is a useful technique if the conversions don't cost too
much in performance terms.

/*
*
* Declarations and definitions for functions which manipulate player
* records which form the basis of the ladder
*
*/

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define NAMELEN 12 /* max. for player name length */

#define LENBUF 256 /* max. for input buffer length */

#define CHALLENGE_RANGE 3 /* number of higher ranked players who may
 * be challenged to move up in rank
 */

extern char *OptArg;

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

2 of 11 05-03-2007 16:42

typedef struct {
 char name[NAMELEN+1];
 int rank;
 int wins;
 int losses;
 time_t last_game;
} player;

#define NULLPLAYER (player *)0

extern const char *LadderFile;

extern const char *WrFmt; /* used when writing records */
extern const char *RdFmt; /* used when reading records */

/*
* Declarations for routines used to manipulate the player records
* and the ladder file which are defined in player.c
*
*/

int valid_records(FILE *);
int read_records(FILE *, int, player *);
int write_records(FILE *, player *, int);
player *find_by_name(char *, player *, int);
player *find_by_rank(int, player *, int);
void push_down(player *, int, int, int);
int print_records(player *, int);
void copy_player(player *, player *);
int compare_name(player *, player *);
int compare_rank(player *, player *);
void sort_players(player *, int);

Example 10.4

Here is the code for the player.c file implementing the generic functions which manipulate player records and the
data file. These functions can be combined with more specific routines to make up the three programs required to
maintain the ladder.

Notice that to manipulate the player records, each program is required to read the entire data file into a dynamically
allocated array. Before this array is written back to the data file, it is assumed that the records it contains will have
been sorted into rank order. If the records do not remain sorted, the push_down function will produce some
‘interesting’ results!

/*
* Generic functions to manipulate the ladder data file and
* player records.
*
*/

#include "player.h"

const char *LadderFile = "ladder";

const char *WrFmt = "%s %d %d %d %ld\n";
const char *RdFmt = "%s %d %d %d %ld";

/* note use of string-joining */
const char *HeaderLine =
 "Player Rank Won Lost Last Game\n"
 "===\n";

const char *PrtFmt = "%-12s%4d %4d %4d %s\n";

/* return the number of records in the data file */

int valid_records(FILE *fp)
{
 int i = 0;
 long plrs = 0L;

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

3 of 11 05-03-2007 16:42

 long tmp = ftell(fp);
 char buf[LENBUF];

 fseek(fp, 0L, SEEK_SET);

 for(i = 0; fgets(buf, LENBUF, fp) != NULL ; i++)
 ;

 /* Restore the file pointer to original state */

 fseek(fp, tmp, SEEK_SET);

 return i;
}

/* read num player records from fp into the array them */

int read_records(FILE *fp, int num, player *them)
{
 int i = 0;
 long tmp = ftell(fp);

 if(num == 0)
 return 0;

 fseek(fp, 0L, SEEK_SET);

 for(i = 0 ; i < num ; i++){
 if(fscanf(fp, RdFmt, (them[i]).name,
 &((them[i]).rank),
 &((them[i]).wins),
 &((them[i]).losses),
 &((them[i]).last_game)) != 5)
 break; /* error on fscanf! */
 }

 fseek(fp, tmp, SEEK_SET);
 return i;
}

/* write num player records to the file fp from the array them */

int write_records(FILE *fp, player *them, int num)
{
 int i = 0;

 fseek(fp, 0L, SEEK_SET);

 for(i = 0 ; i < num ; i++){
 if(fprintf(fp, WrFmt, (them[i]).name,
 (them[i]).rank,
 (them[i]).wins,
 (them[i]).losses,
 (them[i]).last_game) < 0)
 break; /* error on fprintf! */
 }

 return i;
}

/*
* return a pointer to the player in array them
* whose name matches name
*/

player *find_by_name(char * name, player *them, int num)
{
 player *pp = them;
 int i = 0;

 for(i = 0; i < num; i++, pp++)

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

4 of 11 05-03-2007 16:42

 if(strcmp(name, pp->name) == 0)
 return pp;

 return NULLPLAYER;
}

/*
* return a pointer to the player in array them
* whose rank matches rank
*/

player *find_by_rank(int rank, player *them, int num)
{
 player *pp = them;
 int i = 0;

 for(i = 0; i < num; i++, pp++)
 if(rank == pp->rank)
 return pp;

 return NULLPLAYER;
}

/*
* reduce by one the ranking of all players in array them
* whose ranks are now between start and end
*/

void push_down(player *them, int number, int start, int end)
{
 int i;
 player *pp;

 for(i = end; i >= start; i--){
 if((pp = find_by_rank(i, them, number)) == NULLPLAYER){
 fprintf(stderr,
 "error: could not find player ranked %d\n", i);
 free(them);
 exit(EXIT_FAILURE);
 } else
 (pp->rank)++;
 }
}

/* pretty print num player records from the array them */

int print_records(player *them, int num)
{
 int i = 0;

 printf(HeaderLine);

 for(i = 0 ; i < num ; i++){
 if(printf(PrtFmt,
 (them[i]).name, (them[i]).rank,
 (them[i]).wins, (them[i]).losses,
 asctime(localtime(&(them[i]).last_game))) < 0)
 break; /* error on printf! */
 }

 return i;
}

/* copy the values from player from to player to */

void copy_player(player *to, player *from)
{
 if((to == NULLPLAYER) || (from == NULLPLAYER))
 return;

 *to = *from;

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

5 of 11 05-03-2007 16:42

 return;
}

/* compare the names of player first and player second */

int compare_name(player *first, player *second)
{
 return strcmp(first->name, second->name);
}

/* compare the ranks of player first and player second */

int compare_rank(player *first, player *second)
{
 return (first->rank - second->rank);
}

/* sort num player records in the array them */

void sort_players(player *them, int num)
{
 qsort(them, num, sizeof(player), compare_rank);
}

Example 10.5

This code, when tested, was compiled into an object file which was then linked (together with an object file
containing the code for the options function) with one of the following three programs to for the ladder maintenance
utilities.

Here is the code for the simplest of those utilities, showlddr which is contained in the file showlddr.c.

This program takes a single option, -f, which you will notice takes an option argument. The purpose of this
argument is to allow you to print a ladder data file with a name other than the default file name, ladder.

The player records in the data file should be stored pre-sorted but, just to be safe, showlddr sorts them before it
prints them out.

/*
* Program to print the current ladder status.
*
*/

#include "player.h"

const char *ValidOpts = "f:";

const char *Usage = "usage: showlddr [-f ladder_file]\n";

char *OtherFile;

int main(int argc, char *argv[])
{
 int number;
 char ch;
 player *them;
 const char *fname;
 FILE *fp;

 if(argc == 3){
 while((ch = options(argc, argv, ValidOpts)) != -1){
 switch(ch){
 case 'f':
 OtherFile = OptArg;
 break;
 case '?':
 fprintf(stderr, Usage);
 break;
 }
 }
 } else if(argc > 1){

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

6 of 11 05-03-2007 16:42

 fprintf(stderr, Usage);
 exit(EXIT_FAILURE);
 }

 fname = (OtherFile == 0)? LadderFile : OtherFile;
 fp = fopen(fname, "r+");

 if(fp == NULL){
 perror("showlddr");
 exit(EXIT_FAILURE);
 }

 number = valid_records (fp);

 them = (player *)malloc((sizeof(player) * number));

 if(them == NULL){
 fprintf(stderr,"showlddr: out of memory\n");
 exit(EXIT_FAILURE);
 }

 if(read_records(fp, number, them) != number){
 fprintf(stderr, "showlddr: error while reading"
 " player records\n");
 free(them);
 fclose(fp);
 exit(EXIT_FAILURE);
 }

 fclose(fp);

 sort_players(them, number);

 if(print_records(them, number) != number){
 fprintf(stderr, "showlddr: error while printing"
 " player records\n");
 free(them);
 exit(EXIT_FAILURE);
 }

 free(them);
 exit(EXIT_SUCCESS);
}

Example 10.6

Of course the showlddr program works only if there is an existing data file containing player records in the correct
format. The program newplyr creates such a file if one does not already exist and then adds a new player record, in
the correct format to that file.

Typically, new players are added at the bottom of the rankings but for the odd occasion where this really may not
make sense, newplyr also allows a player to be inserted into the middle of the rankings.

A player may only appear once on the ladder (unless a pseudonym is used!) and there can only be one player at any
one rank. Thus the program checks for duplicate entries and if the new player is to be inserted into a middling rank,
moves other players already on the ladder out of the way.

As with the showlddr program, newplyr recognises a -f option as a request to add the new player to a file named
by the option argument rather than the default file, ladder. In addition, newplyr requires two options, -n and -r, each
with option arguments to specify both the new player's name and initial ranking respectively.

/*
* Program to add a new player to the ladder.
* You are expected to assign a realistic
* ranking value to the player.
*
*/

#include "player.h"

const char *ValidOpts = "n:r:f:";

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

7 of 11 05-03-2007 16:42

char *OtherFile;

static const char *Usage = "usage: newplyr -r rank -n name [-f file]\n";

/* Forward declaration of function defined in this file */

void record(player *extra);

int main(int argc, char *argv[])
{
 char ch;
 player dummy, *new = &dummy;

 if(argc < 5){
 fprintf(stderr, Usage);
 exit(EXIT_FAILURE);
 }

 while((ch = options(argc, argv, ValidOpts)) != -1){
 switch(ch){
 case 'f':
 OtherFile=OptArg;
 break;
 case 'n':
 strncpy(new->name, OptArg, NAMELEN);
 new->name[NAMELEN] = 0;
 if(strcmp(new->name, OptArg) != 0)
 fprintf(stderr,
 "Warning: name truncated to %s\n", new->name);
 break;
 case 'r':
 if((new->rank = atoi(OptArg)) == 0){
 fprintf(stderr, Usage);
 exit(EXIT_FAILURE);
 }
 break;
 case '?':
 fprintf(stderr, Usage);
 break;
 }
 }

 if((new->rank == 0)){
 fprintf(stderr, "newplyr: bad value for rank\n");
 exit(EXIT_FAILURE);
 }

 if(strlen(new->name) == 0){
 fprintf(stderr,
 "newplyr: needs a valid name for new player\n");
 exit(EXIT_FAILURE);
 }

 new->wins = new->losses = 0;
 time(& new->last_game); /* make now the time of the "last game" */

 record(new);

 exit(EXIT_SUCCESS);
}

void record(player *extra)
{
 int number, new_number, i;
 player *them;
 const char *fname =(OtherFile==0)?LadderFile:OtherFile;
 FILE *fp;

 fp = fopen(fname, "r+");

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

8 of 11 05-03-2007 16:42

 if(fp == NULL){
 if((fp = fopen(fname, "w")) == NULL){
 perror("newplyr");
 exit(EXIT_FAILURE);
 }
 }

 number = valid_records (fp);
 new_number = number + 1;

 if((extra->rank <= 0) || (extra->rank > new_number)){
 fprintf(stderr,
 "newplyr: rank must be between 1 and %d\n",
 new_number);
 exit(EXIT_FAILURE);
 }

 them = (player *)malloc((sizeof(player) * new_number));

 if(them == NULL){
 fprintf(stderr,"newplyr: out of memory\n");
 exit(EXIT_FAILURE);
 }

 if(read_records(fp, number, them) != number){
 fprintf(stderr,
 "newplyr: error while reading player records\n");
 free(them);
 exit(EXIT_FAILURE);
 }

 if(find_by_name(extra->name, them, number) != NULLPLAYER){
 fprintf(stderr,
 "newplyr: %s is already on the ladder\n",
 extra->name);
 free(them);
 exit(EXIT_FAILURE);
 }

 copy_player(&them[number], extra);

 if(extra->rank != new_number)
 push_down(them, number, extra->rank, number);

 sort_players(them, new_number);

 if((fp = freopen(fname, "w+", fp)) == NULL){
 perror("newplyr");
 free(them);
 exit(EXIT_FAILURE);
 }

 if(write_records(fp, them, new_number) != new_number){
 fprintf(stderr,
 "newplyr: error while writing player records\n");
 fclose(fp);
 free(them);
 exit(EXIT_FAILURE);
 }
 fclose(fp);
 free(them);
}

Example 10.7

The only remaining utility required is one for recording the results of games played. The result program performs
this task.

As with the previous two utilities, result will accept a -f option together with a file name to specify an alternative to
the default player record file.

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

9 of 11 05-03-2007 16:42

Unlike the newplyr utility, result interactively prompts the user for the names of the winning and losing players.
The program insists that the names supplied should be those of existing players.

Given a valid pair of names, a check is then made to see if the loser is higher ranked than winner and whether or not
the winner is ranked close enough for the victory to alter the rankings.

If a change in the standings is in order, the victor takes the loser's rank and the loser (as well as any other player on
an intervening rank) is demoted one rank.

Here is the code for the result utility.

/*
* Program to record a result in the ladder
*
*/

#include "player.h"

/* Forward declarations for functions defined in this file */

char *read_name(char *, char *);
void move_winner(player *, player *, player *, int);

const char *ValidOpts = "f:";

const char *Usage = "usage: result [-f file]\n";

char *OtherFile;

int main(int argc, char *argv[])
{
 player *winner, *loser, *them;
 int number;
 FILE *fp;
 const char *fname;
 char buf[LENBUF], ch;

 if(argc == 3){
 while((ch = options(argc, argv, ValidOpts)) != -1){
 switch(ch){
 case 'f':
 OtherFile = OptArg;
 break;
 case '?':
 fprintf(stderr, Usage);
 break;
 }
 }
 } else if(argc > 1){
 fprintf(stderr, Usage);
 exit(EXIT_FAILURE);
 }

 fname = (OtherFile == 0)? LadderFile : OtherFile;
 fp = fopen(fname, "r+");

 if(fp == NULL){
 perror("result");
 exit(EXIT_FAILURE);
 }

 number = valid_records (fp);

 them = (player *)malloc((sizeof(player) * number));

 if(them == NULL){
 fprintf(stderr,"result: out of memory\n");
 exit(EXIT_FAILURE);
 }

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

10 of 11 05-03-2007 16:42

 if(read_records(fp, number, them) != number){
 fprintf(stderr,
 "result: error while reading player records\n");
 fclose(fp);
 free(them);
 exit(EXIT_FAILURE);
 }

 fclose(fp);

 if((winner = find_by_name(read_name(buf, "winner"), them, number))
 == NULLPLAYER){
 fprintf(stderr,"result: no such player %s\n",buf);
 free(them);
 exit(EXIT_FAILURE);
 }

 if((loser = find_by_name(read_name(buf, "loser"), them, number))
 == NULLPLAYER){
 fprintf(stderr,"result: no such player %s\n",buf);
 free(them);
 exit(EXIT_FAILURE);
 }

 winner->wins++;
 loser->losses++;

 winner->last_game = loser->last_game = time(0);

 if(loser->rank < winner->rank)
 if((winner->rank - loser->rank) <= CHALLENGE_RANGE)
 move_winner(winner, loser, them, number);

 if((fp = freopen(fname, "w+", fp)) == NULL){
 perror("result");
 free(them);
 exit(EXIT_FAILURE);
 }

 if(write_records(fp, them, number) != number){
 fprintf(stderr,"result: error while writing player records\n");
 free(them);
 exit(EXIT_FAILURE);
 }
 fclose(fp);
 free(them);
 exit(EXIT_SUCCESS);
}

void move_winner(player *ww, player *ll, player *them, int number)
{
 int loser_rank = ll->rank;

 if((ll->rank - ww->rank) > 3)
 return;

 push_down(them, number, ll->rank, (ww->rank - 1));
 ww->rank = loser_rank;
 sort_players(them, number);
 return;
}

char *read_name(char *buf, char *whom)
{
 for(;;){
 char *cp;
 printf("Enter name of %s : ",whom);
 if(fgets(buf, LENBUF, stdin) == NULL)
 continue;
 /* delete newline */

The C Book — A more ambitious example http://publications.gbdirect.co.uk/c_book/chapter10/a...

11 of 11 05-03-2007 16:42

 cp = &buf[strlen(buf)-1];
 if(*cp == '\n')
 *cp = 0;
 /* at least one char? */
 if(cp != buf)
 return buf;
 }
}

Example 10.8

Previous section [http://publications.gbdirect.co.uk/c_book/chapter10/pattern_matching_example.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter10/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter10/afterword.html]

The C Book — Afterword http://publications.gbdirect.co.uk/c_book/chapter10/af...

1 of 1 05-03-2007 16:42

10.6. Afterword

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter10/afterword.html.

The programs shown in this chapter should help to to get a feel for what
middle-of-the-road C programs look like, using the language and libraries defined in
the Standard.

What do we mean by ‘middle-of-the-road’? Simply this: they have been designed,
implemented, tested and documented in a way appropriate for small, self-contained
programs that have no real need to show high levels of robustness and reliability.
Many programs don't need to meet demanding criteria; to do more to them would
be over-engineering. Clearly, it is entirely dependent on the eventual purpose for
which the program is intended.

There are situations which place very high demands on the software that is in use;
programs to meet these requirements are very carefully engineered and have much
higher amounts of effort put into reviewing, testing and the control of access to the
source code than would be appropriate for simple illustrative example programs. C
is also used in these application areas. The source code of programs that meet
such high requirements tends to look distinctively different; the language is the
same, but the amount of error checking and correction is typically much higher. We
have not tried to illustrate that type of program.

Whichever environment you work in, we hope that this book has helped you in your
understanding of C. Good luck!

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter10/ambitious_example.html] |
Chapter contents [http://publications.gbdirect.co.uk/c_book/chapter10/]

The C Book — Answers to Exercises http://publications.gbdirect.co.uk/c_book/answers/?fo...

1 of 1 05-03-2007 16:54

Answers to Exercises

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/answers/.

Chapter 1 [http://publications.gbdirect.co.uk/c_book/answers/chapter_1.html]
Chapter 2 [http://publications.gbdirect.co.uk/c_book/answers/chapter_2.html]
Chapter 3 [http://publications.gbdirect.co.uk/c_book/answers/chapter_3.html]
Chapter 4 [http://publications.gbdirect.co.uk/c_book/answers/chapter_4.html]
Chapter 5 [http://publications.gbdirect.co.uk/c_book/answers/chapter_5.html]
Chapter 6 [http://publications.gbdirect.co.uk/c_book/answers/chapter_6.html]
Chapter 7 [http://publications.gbdirect.co.uk/c_book/answers/chapter_7.html]

Previous chapter [http://publications.gbdirect.co.uk/c_book/chapter10/]

The C Book — Chapter 1 http://publications.gbdirect.co.uk/c_book/answers/cha...

1 of 4 05-03-2007 16:54

Chapter 1

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/answers/chapter_1.html.

Exercise 1.2
[http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html#exercise-2

#include <stdio.h>

#include <stdlib.h>

main(){

 int this_number, divisor, not_prime;

 int last_prime;

 this_number = 3;

 last_prime = 3;

 printf("1, 3 is a prime pair\n");

 while(this_number < 10000){

 divisor = this_number / 2;

 not_prime = 0;

 while(divisor > 1){

 if(this_number % divisor == 0){

 not_prime = 1;

 divisor = 0;

 }

 else

 divisor = divisor-1;

 }

 if(not_prime == 0){

 if(this_number == last_prime+2)

 printf("%d, %d is a prime pair\n",

 last_prime, this_number);

 last_prime = this_number;

 }

 this_number = this_number + 1;

 }

 exit(EXIT_SUCCESS);

}

Exercise 1.3
[http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html#exercise-3

#include <stdio.h>

#include <stdlib.h>

main(){

 printf("Type in a string: ");

 printf("The value was: %d\n", getnum());

The C Book — Chapter 1 http://publications.gbdirect.co.uk/c_book/answers/cha...

2 of 4 05-03-2007 16:54

 exit(EXIT_SUCCESS);

}

getnum(){

 int c, value;;

 value = 0;

 c = getchar();

 while(c != '\n'){

 value = 10*value + c - '0';

 c = getchar();

 }

 return (value);

}

Exercise 1.4
[http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html#exercise-4

#include <stdio.h>

#include <stdlib.h>

/* array size */

#define NUMBER 10

main(){

 int arr[NUMBER], count, lo, hi;

 count = 0;

 while(count < NUMBER){

 printf("Type in a string: ");

 arr[count] = getnum();

 count = count+1;

 }

 lo = 0;

 while(lo < NUMBER-1){

 hi = lo+1;

 while(hi < NUMBER){

 int tmp;

 if(arr[lo] > arr[hi]){

 tmp = arr[lo];

 arr[lo] = arr[hi];

 arr[hi] = tmp;

 }

 hi = hi + 1;

 }

 lo = lo + 1;

 }

 /* now print them */

 count = 0;

 while(count < NUMBER){

 printf("%d\n", arr[count]);

 count = count+1;

 }

 exit(EXIT_SUCCESS);

}

getnum(){

 int c, value;;

The C Book — Chapter 1 http://publications.gbdirect.co.uk/c_book/answers/cha...

3 of 4 05-03-2007 16:54

 value = 0;

 c = getchar();

 while(c != '\n'){

 value = 10*value + c - '0';

 c = getchar();

 }

 return (value);

}

Exercise 1.5
[http://publications.gbdirect.co.uk/c_book/chapter1/exercises.html#exercise-5

#include <stdio.h>

#include <stdlib.h>

/*

* To print an int in binary, hex, decimal,

* we build an array of characters and print it out

* in order.

* The values are found least significant digit first,

* and printed most significant digit first.

*/

#define NDIG 32 /* assume max no. of digits */

int getnum(void);

main(){

 int val, i, count;

 char chars[NDIG];

 i = getnum();

 /* print in binary */

 val = i;

 count = 0;

 do{

 chars[count] = val % 2;

 val = val / 2;

 count = count + 1;

 }while(val);

 count = count - 1; /* just incremented above */

 while(count >= 0){

 printf("%d", chars[count]);

 count = count - 1;

 }

 printf("\n");

 /* print in decimal */

 val = i;

 count = 0;

 do{

 chars[count] = val % 10;

 val = val / 10;

 count = count + 1;

 }while(val);

 count = count - 1; /* just incremented above */

 while(count >= 0){

The C Book — Chapter 1 http://publications.gbdirect.co.uk/c_book/answers/cha...

4 of 4 05-03-2007 16:54

 printf("%d", chars[count]);

 count = count - 1;

 }

 printf("\n");

 /* print in hex */

 val = i;

 count = 0;

 do{

 chars[count] = val % 16;

 val = val / 16;

 count = count + 1;

 }while(val);

 count = count - 1; /* just incremented above */

 while(count >= 0){

 if(chars[count] < 10)

 printf("%d", chars[count]);

 else{

 /* assume 'A' - 'F' consecutive */

 chars[count] = chars[count]-10+'A';

 printf("%c", chars[count]);

 }

 count = count - 1;

 }

 printf("\n");

 exit(EXIT_SUCCESS);

}

getnum(){

 int c, value;;

 value = 0;

 c = getchar();

 while(c != '\n'){

 value = 10*value + c - '0';

 c = getchar();

 }

 return (value);

}

Chapter contents [http://publications.gbdirect.co.uk/c_book/answers/] | Next section
[http://publications.gbdirect.co.uk/c_book/answers/chapter_2.html]

The C Book — Chapter 2 http://publications.gbdirect.co.uk/c_book/answers/cha...

1 of 3 05-03-2007 16:55

Chapter 2

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/answers/chapter_2.html.

Exercise 2.1
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-1]

Trigraphs are used when the input device used, or the host system's native character set, do not support enough distinct
characters for the full C language.

Exercise 2.2
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-2]

Trigraphs would not be used in a system that has enough distinct characters to allocate a separate one to each of the C language
symbols. For maximum portability, one might see a trigraph representation of a C program being distributed, on the grounds that
most systems which do not use ASCII will be able to read ASCII coded data and translate it into their native codeset. A Standard
C compiler could then compile such a program directly.

Exercise 2.3
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-3]

White space characters are not equivalent to each other inside strings and character constants. Newline is special to the
preprocessor.

Exercise 2.4
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-4]

To continue a long line. Especially in systems that have an upper limit on physical line length.

Exercise 2.5
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-5]

They become joined.

Exercise 2.6
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-6]

Because the */ which apparently terminates the inner comment actually terminates the outer comment.

Exercise 2.7
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-7]

31 characters for internal variables, six for external variables. The six character names must not rely on distinction between upper
and lower case, either.

Exercise 2.8
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-8]

A declaration introduces a name and a type for something. It does not necessarily reserve any storage.

Exercise 2.9
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html#exercise-9]

A definition is a declaration that also reserves storage.

Exercise 2.10 [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html#exercise-10]

It is always the case that the largest range of values can be held in a long double, although it may not actually be any different
from one of the smaller floating point types.

Exercise 2.11 [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html#exercise-11]

The same answer holds true for the type with the greatest precision: long double. C does not permit the language implementor to
use the same number of bits for, say, double and long double, then to allocate more bits for precision in one type and more for
range in the other.

The C Book — Chapter 2 http://publications.gbdirect.co.uk/c_book/answers/cha...

2 of 3 05-03-2007 16:55

Exercise 2.12 [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html#exercise-12]

There can never be problems assigning a shorter floating point type to a longer one.

Exercise 2.13 [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html#exercise-13]

Assigning a longer floating type to a shorter one can result in overflow and undefined behaviour.

Exercise 2.14 [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.html#exercise-14]

Undefined behaviour is completely unpredictable. Anything may happen. Often, nothing seems to happen except that erroneous
arithmetic values are produced.

Exercise 2.15
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html#exercise-15]

Signed int (by the integral promotions).a.

This cannot be predicted without knowing about the implementation. If an int can hold all of the values of an unsigned

char the result will be int, again by the integral promotions. Otherwise, it will have to be unsigned int.

b.

Unsigned int.c.

Long.d.

Unsigned long.e.

Long.f.

Float.g.

Float.h.

Long double.i.

Exercise 2.16 [http://publications.gbdirect.co.uk/c_book/chapter2/constants.html#exercise-16]

i1 % i2a.

i1 % (int)f1b.
If either operand is negative, the sign is implementation defined, otherwise it is positive. This means that, even if both
operands are negative, you can't predict the sign.

c.

Two—unary negate, binary subtract.d.
i1 &= 0xf;e.

i1 |= 0xf;f.

i1 &= ~0xf;g.

i1 = ((i2 >> 4) & 0xf) | ((i2 & 0xf) << 4);h.
The result is unpredictable. You must never use the same variable more than once in an expression if the expression
changes its value.

i.

Exercise 2.17 [http://publications.gbdirect.co.uk/c_book/chapter2/exercises.html#exercise-17]

(c = ((u * f) + 2.6L);

(int = ((float) + long double);

(int = (long double));

(int);

Note: the integral promotion of char to int might be to unsigned int, depending on the implementation.

a.

(u += (((--f) / u) % 3));

(unsigned += ((float / unsigned) % int));

(unsigned += (float % int));

(unsigned += float);

(unsigned);

b.

(i <<= (u * (- (++f))));

(int <<= (unsigned * (- float)));

(int <<= (unsigned * float));

(int <<= float);

(int);

The rules for the shift operators state the right-hand operand is always converted to int. However, this does not affect the
result, whose type is always determined by the type of the left-hand operand. This is doubly so for the current example,
since an assignment operator is being used.

c.

(u = (((i + 3) + 4) + 3.1));

The rules state that the subexpressions involving + can be arbitrarily regrouped, as long as no type changes would be
introduced. The types are:

d.

The C Book — Chapter 2 http://publications.gbdirect.co.uk/c_book/answers/cha...

3 of 3 05-03-2007 16:55

(unsigned = (((int + int) + int) + double))

so the leftmost two additions can be regrouped. Working from the left:

(unsigned = ((int + int) + double));

(unsigned = (int + double));

(unsigned = double);

(unsigned);

(u = (((3.1 + i) + 3) + 4));

See the comments above on regrouping.

(unsigned = (((double + int) + int) + int));

The two rightmost additions can be regrouped.

(unsigned = ((double + int) + int));

(unsigned = (double + int));

(unsigned = double);

(unsigned);

e.

(c = ((i << (- (--f))) & 0xf));

(char = ((int << (- (--float))) & int));

(char = ((int << (- float)) & int));

(char = ((int << float) & int));

(char = (int & int));

(char);

f.

Previous section [http://publications.gbdirect.co.uk/c_book/answers/chapter_1.html] | Chapter contents
[http://publications.gbdirect.co.uk/c_book/answers/] | Next section
[http://publications.gbdirect.co.uk/c_book/answers/chapter_3.html]

The C Book — Chapter 3 http://publications.gbdirect.co.uk/c_book/answers/cha...

1 of 1 05-03-2007 16:56

Chapter 3

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/answers/chapter_3.html.

Exercise 3.1
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html#exercise-1

They all give an int result with a value of 1 for true and 0 for false.

Exercise 3.2
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html#exercise-2

They all give an int result with a value of 1 for true and 0 for false.

Exercise 3.3
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html#exercise-3

They guarantee an order of evaluation: left to right, and stop as soon as the overall result can be
determined.

Exercise 3.4
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html#exercise-4

Break can be used to turn a switch statement into a set of exclusive choices of action.

Exercise 3.5
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html#exercise-5

Continue has no special meaning in a switch statement, but only to an outer do, while or for
statement.

Exercise 3.6
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html#exercise-6

Inside a while statement, the use of continue may cause the update of the loop control variable to
be missed. It is, of course, the responsibility of the programmer to get this right.

Exercise 3.7
[http://publications.gbdirect.co.uk/c_book/chapter3/exercises.html#exercise-7

Because the scope of a label doesn't extend outside the function that it lives in, you can't use goto
to jump from one function to another. Using the longjmp library routine, described in Chapter 9
[http://publications.gbdirect.co.uk/c_book/chapter9/], a form of function-to-function jump is
supported, but not a completely general one.

Previous section [http://publications.gbdirect.co.uk/c_book/answers/chapter_2.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/answers/] | Next section
[http://publications.gbdirect.co.uk/c_book/answers/chapter_4.html]

The C Book — Chapter 4 http://publications.gbdirect.co.uk/c_book/answers/cha...

1 of 4 05-03-2007 16:56

Chapter 4

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/answers/chapter_4.html.

Exercise 4.1
[http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html#exercise-1]

#include <stdio.h>

#include <stdlib.h>

main(){

 int i, abs_val(int);;

 for(i = -10; i <= 10; i++)

 printf("abs of %d is %d\n", i, abs_val(i));

 exit(EXIT_SUCCESS);

}

int

abs_val(int x){

 if(x < 0)

 return(-x);

 return(x);

}

Exercise 4.2
[http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html#exercise-2]

There are two files that form the answer to this exercise. This is the first.

#include <stdio.h>

#include <stdlib.h>

int curr_line(void), curr_col(void);

void output(char);

main(){

 printf("line %d\n", curr_line());

 printf("column %d\n", curr_col());

 output('a');

 printf("column %d\n", curr_col());

 output('\n');

 printf("line %d\n", curr_line());

 printf("column %d\n", curr_col());

 exit(EXIT_SUCCESS);

}

The second file contains the functions and static variables.

The C Book — Chapter 4 http://publications.gbdirect.co.uk/c_book/answers/cha...

2 of 4 05-03-2007 16:56

#include <stdio.h>

int curr_line(void), curr_col(void);

void output(char);

static int lineno=1, colno=1;

int

curr_line(void){

 return(lineno);

}

int

curr_col(void){

 return(colno);

}

void

output(char a){

 putchar(a);

 colno++;

 if(a == '\n'){

 colno = 1;

 lineno++;

 }

}

Exercise 4.3
[http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html#exercise-3]

The recursive function:

#include <stdio.h>

#include <stdlib.h>

void recur(void);

main(){

 recur();

 exit(EXIT_SUCCESS);

}

void

recur(void){

 static ntimes;

 ntimes++;

 if(ntimes < 100)

 recur();

 printf("%d\n", ntimes);

 ntimes--;

}

Exercise 4.4
[http://publications.gbdirect.co.uk/c_book/chapter4/exercises.html#exercise-4]

And finally, the largest of all of the answers.

The C Book — Chapter 4 http://publications.gbdirect.co.uk/c_book/answers/cha...

3 of 4 05-03-2007 16:56

#include <stdio.h>

#include <stdlib.h>

#define PI 3.141592

#define INCREMENT (PI/20)

#define DELTA .0001

double sine(double), cosine(double);

static unsigned int fact(unsigned int n);

static double pow(double x, unsigned int n);

main(){

 double arg = 0;

 for(arg = 0; arg <= PI; arg += INCREMENT){

 printf("value %f\tsine %f\tcosine %f\n", arg, sine(arg), cosine(arg));

 }

 exit(EXIT_SUCCESS);

}

static unsigned int

fact(unsigned int n){

 unsigned int answer;

 answer = 1;

 while(n > 1)

 answer *= n--;

 return(answer);

}

static double

pow(double x, unsigned int n){

 double answer;

 answer = 1;

 while(n){

 answer *= x;

 n--;

 }

 return(answer);

}

double

sine(double x){

 double difference, thisval, lastval;

 unsigned int term;

 int sign;

 sign = -1;

 term = 3;

 thisval = x;

 do{

 lastval = thisval;

 thisval = lastval + pow(x, term)/fact(term) * sign;

 term += 2;

 sign = -sign;

The C Book — Chapter 4 http://publications.gbdirect.co.uk/c_book/answers/cha...

4 of 4 05-03-2007 16:56

 difference = thisval - lastval;

 if(difference < 0)

 difference = -difference;

 }while(difference > DELTA && term < 16);

 return(thisval);

}

double

cosine(double x){

double difference, thisval, lastval;

 unsigned int term;

 int sign;

 sign = -1;

 term = 2;

 thisval = 1;

 do{

 lastval = thisval;

 thisval = lastval + pow(x, term)/fact(term) * sign;

 term += 2;

 sign = -sign;

 difference = thisval - lastval;

 if(difference < 0)

 difference = -difference;

 }while(difference > DELTA && term < 16);

 return(thisval);

}

Previous section [http://publications.gbdirect.co.uk/c_book/answers/chapter_3.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/answers/] | Next section
[http://publications.gbdirect.co.uk/c_book/answers/chapter_5.html]

The C Book — Chapter 5 http://publications.gbdirect.co.uk/c_book/answers/cha...

1 of 2 05-03-2007 16:56

Chapter 5

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/answers/chapter_5.html.

Exercise 5.1
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html#exercise-1

0-9.

Exercise 5.2
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html#exercise-2

Nothing. It is guaranteed to be a valid address and can be used to check a pointer against the end
of the array.

Exercise 5.3
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html#exercise-3

Only when they point into the same array, or to the same object.

Exercise 5.4
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html#exercise-4

It can safely be used to hold the value of a pointer to any sort of object.

Exercise 5.5
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html#exercise-5

int

st_eq(const char *s1, const char * s2){

 while(*s1 && *s2 && (*s1 == *s2)){

 s1++; s2++;

 }

 return(*s1-*s2);

}

a.

const char *

find_c(char c, const char *cp){

 while(*cp && *cp != c)

 cp++;

 if(*cp)

 return(cp);

 return(0);

}

b.

const char *

sub_st(const char *target, const char *sample){

c.

The C Book — Chapter 5 http://publications.gbdirect.co.uk/c_book/answers/cha...

2 of 2 05-03-2007 16:56

 /*

 * Try for a substring starting with

 * each character in sample.

 */

 while(*sample){

 const char *targ_p, *sample_p;

 targ_p = target;

 sample_p = sample;

 /* string compare */

 while(*targ_p && *sample_p && (*targ_p == *sample_p)){

 targ_p++; sample_p++;

 }

 /*

 * If at end of target, have substring!

 */

 if(*targ_p == 0)

 return(sample);

 /* otherwise try next place */

 sample++;

 }

 return(0); /* no match */

}

Exercise 5.6
[http://publications.gbdirect.co.uk/c_book/chapter5/exercises.html#exercise-6

No answer can be given.

Previous section [http://publications.gbdirect.co.uk/c_book/answers/chapter_4.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/answers/] | Next section
[http://publications.gbdirect.co.uk/c_book/answers/chapter_6.html]

The C Book — Chapter 6 http://publications.gbdirect.co.uk/c_book/answers/cha...

1 of 2 05-03-2007 16:57

Chapter 6

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/answers/chapter_6.html.

Exercise 6.1
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-1

struct {

 int a,b;

};

Exercise 6.2
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-2

Without a tag or any variables defined, the structure declaration is of little use. It cannot be referred
to later.

Exercise 6.3
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-3

struct int_struc{

 int a,b;

}x,y;

Exercise 6.4
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-4

struct int_struc z;

Exercise 6.5
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-5

p = &z;

p->a = 0;

Exercise 6.6
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-6

Explicitly, for example

struct x;

or implicitly,

struct x *p;

when no outer declaration exists.

Exercise 6.7
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-7

The C Book — Chapter 6 http://publications.gbdirect.co.uk/c_book/answers/cha...

2 of 2 05-03-2007 16:57

It is not treated as a pointer, but as a short-hand way of initializing the individual array elements.

Exercise 6.8
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-8

Nothing unusual at all, the string is treated as a literal constant of type const char *.

Exercise 6.9
[http://publications.gbdirect.co.uk/c_book/chapter6/exercises.html#exercise-9

Yes. It is easier!

Previous section [http://publications.gbdirect.co.uk/c_book/answers/chapter_5.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/answers/] | Next section
[http://publications.gbdirect.co.uk/c_book/answers/chapter_7.html]

The C Book — Chapter 7 http://publications.gbdirect.co.uk/c_book/answers/cha...

1 of 1 05-03-2007 16:57

Chapter 7

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/answers/chapter_7.html.

Exercise 7.1
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-1

#define MAXLEN 100

Exercise 7.2
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-2

In expressions, there may be precedence problems. A safer definition would be
#define VALUE (100+MAXLEN).

Exercise 7.3
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-3

#define REM(a,b) ((a)%(b))

Exercise 7.4
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-4

#define REM(a,b) ((long)(a)%(long)(b))

Exercise 7.5
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-5

It generally signifies a library header file.

Exercise 7.6
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-6

It generally signifies a private header file.

Exercise 7.7
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-7

By using the conditional compilation directives. Examples are shown in the text.

Exercise 7.8
[http://publications.gbdirect.co.uk/c_book/chapter7/exercises.html#exercise-8

It uses long int in place of int and unsigned long int, in place of unsigned int using the arithmetic
environment provided by the translator, not the target. It must provide at least the ranges
described in <limits.h>.

Previous section [http://publications.gbdirect.co.uk/c_book/answers/chapter_6.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/answers/]

The C Book - Copyright and Disclaimer http://publications.gbdirect.co.uk/c_book/copyright.ht...

1 of 1 05-03-2007 17:01

The C Book — Disclaimer and
Copyright Notice

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/copyright.html.

The first edition of this book was based on a late draft of the ANSI standard for C
and is copyright Mike Banahan. This online version is a reproduction of the second
edition based on the published ANSI standard. The second edition was published in
1991, copyright Mike Banahan, Declan Brady and Mark Doran. By agreement with
Declan Brady and Mark Doran, copyright in this online version and derived works is
copyright Mike Banahan, 2003. The print versions were published by Addison
Wesley [http://www.aw.com/].

This online version is derived from files in Unix nroff format discovered on a floppy
disk just prior to a move of offices by GBdirect Ltd [http://www.gbdirect.co.uk/]. It is
believed that the files were were used by the publishers Addison Wesley in the
preparation of the second print edition and that some amendments or corrections
may have been made in the print version that are not reflected in this online version.
The online version was prepared with the assistance of some Perl scripts written by
Mike Banahan, by Steve King, who cleaned up the output of the Perl scripts and
also by sterling work by Geoff Richards and Aaron Crane who performed magic with
XSLT to produce the HTML documents.

The publication of the online version is for historical interest and readers are warned
that it should be treated as an historical document. There is now a later standard for
the C programming language and this publication cannot be considered current:
whilst for the most part the current and the first standard are very close, some
substantive changes and extensions have occurred since 1991. NO WARRANTY IS
OFFERED AS TO THE COMPLETENESS OR ACCURACY OF THE MATERIAL.

Permission is hereby granted for anyone to do anything that they want with this
material—you may freely reprint it, redistribute it, amend it or do whatever you like
with it. In doing so you must accept that you do so strictly on your own liability and
that you accept any consequences with no liability whatsoever remaining with the
original authors. If you find the material useful and happen to encounter one of the
authors, it is unlikely that they will refuse offers to buy them a drink. You may
therefore like to consider this material ‘drinkware’. (Offer void where prohibited by
law, in which case fawning and flattery may be substituted.)

main/logfile

LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source

images/1.png

Elementary types

Numeric types

main/md-frame-0.mdf

%%==%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel und Elke Schubert
%%
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-0.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

\def\mdversion{v0.6a}
\def\mdframedOpackagename{md-frame-0}
\def\md@frameOdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-3.mdf}[\md@frameOdate@svn$Id: md-frame-0.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedOpackagename]

\let\md@textwidth\textwidth

%%=single=%%
\def\md@frame@background@single{%
 \rlap{\color{\mdf@backgroundcolor}%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 }%
 \rule[-\mdf@innerbottommargin@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 }{\mdfboundingboxheight}%
 }%
}%
%
\def\md@frame@leftandbottomandtopline@single{%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@leftline}%
 {\rule[-\mdf@innerbottommargin@length]%
 {\mdf@middlelinewidth}{\mdfboundingboxheight-2\mdf@middlelinewidth@length}%
 }{}%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifmdf@bottomline%
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 % +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 % +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 % +\mdf@middlelinewidth@length%
 % +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \fi%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifmdf@topline%
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \fi%
 }%
}%

\def\md@frame@rightline@single{%
 \llap{\color{\mdf@middlelinecolor}
 \ifmdf@rightline%
 \rule[-\mdf@innerbottommargin@length]%
 {\mdf@linewidth}%
 {\mdfboundingboxheight-2\mdf@middlelinewidth@length}%
 \fi%
 }%
}%

\def\md@putbox@single{%%%%% Ausgabe der ungesplitteten Gesamtbox
 \ifvoid\@tempboxa
 \else
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@leftandbottomandtopline@single%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@single%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\@tempboxa}%
 \hspace*{\mdf@innerrightmargin@length}%
 \hspace*{\mdf@middlelinewidth@length}%
 \md@frame@rightline@single%
 }%
 \fi
}

%%=first=%%

\def\md@frame@background@first{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@innertopmargin@length%
 +\mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@backgroundcolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@+\mdf@innerleftmargin@length+\mdf@innerrightmargin@length}%
 {\mdfboundingboxheight}%
 }%
}%

\def\md@frame@topandleftline@first{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 1\mdf@innertopmargin@length%
 +1\mdf@middlelinewidth@length%
 +\mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}
 \ifbool{mdf@leftline}%
 {%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
 {\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 }{}%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifmdf@topline
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline}}%
 {\rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {\rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \ifboolexpr{ not (bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \ifboolexpr{ not (bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \fi%
 \ifmdf@rightline
 \ifmdf@topline\else%
 \deflength\@tempskipb{\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +2\mdf@middlelinewidth@length%
 }%
 \hspace*{\@tempskipb}%
 \fi%
 \llap{\color{\mdf@middlelinecolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 }%
 \fi%
 }%
}%

\def\md@putbox@first{%%%% Ausgabe der Teilbox 1
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@topandleftline@first%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@first%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\tw@}%
 }%
}

%%=second=%%

\def\md@frame@background@second{%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 +\mdf@innerbottommargin@length%
 }%
 \rlap{\color{\mdf@backgroundcolor}%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length}%
 {\mdfboundingboxheight}%
 }%
}%

\def\md@frame@lines@second{%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 +\mdf@innerbottommargin@length%
 +\mdf@middlelinewidth@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@leftline}%
 {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
 {\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 }{}%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@bottomline}%
 {%
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline} }%
 {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length+2\mdf@middlelinewidth@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 \ifboolexpr{ not (bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length+\mdf@middlelinewidth@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length+\mdf@middlelinewidth@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 }{}%
 \llap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@rightline}%
 {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
 {\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 \ifbool{mdf@bottomline}{}%
 {\deflength\@tempskipb{\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +2\mdf@middlelinewidth@length%
 }%
 \hspace*{-\@tempskipb}%
 }%
 }{}%
 }%
 }%
}%

\def\md@putbox@second{%%%%% Ausgabe der mittleren Teilbox
 \ifvoid\@tempboxa%
 \else
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@lines@second%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@second%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\@tempboxa}%
 }%
 \fi%
}%

%%=middle=%%

\def\md@frame@background@middle{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@backgroundcolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@+\mdf@innerleftmargin@length+\mdf@innerrightmargin@length}%
 {\mdfboundingboxheight}%
 }%
}%

\def\md@frame@lines@middle{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@leftline}%
 {%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}{\mdfboundingboxheight}%
 }{}%
 \ifbool{mdf@rightline}%
 {%
 \deflength{\mdfpositionx}{\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 }%
 \hspace*{\mdfpositionx}%
 \llap{\color{\mdf@middlelinecolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}{\mdfboundingboxheight}%
 \ifbool{mdf@leftline}{}{}%
 }%
 }{}%
 }%
}%

\def\md@putbox@middle{%%%% Ausgabe der Teilbox 1
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@lines@middle%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@middle%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\tw@}%
 }%
}

main/md-frame-1.mdf

%%==%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel und Elke Schubert
%%
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-1.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

\def\mdversion{v0.6a}
\def\mdframedIpackagename{md-frame-1}
\def\md@frameIdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-1.mdf}[\md@frameIdate@svn$Id: md-frame-1.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedIpackagename]

%%Allgemeine Einstellungen fuer tikz

\def\md@tikz@settings{%
 %wenn das Innere der Doppellinie 0pt breit ist,
 %muss Grenze zwischen innerer und aeusserer Linie
 %einer Farbe zugeordnet werden
 \ifdimequal{\mdf@middlelinewidth@length}{\z@}%
 {\ifdimequal{\mdf@innerlinewidth@length}{\z@}%
 {\ifdimequal{\mdf@outerlinewidth@length}{\z@}%
 {\let\mdf@middlelinecolor\mdf@backgroundcolor}%
 {\let\mdf@middlelinecolor\mdf@outerlinecolor}%
 }%
 {\let\mdf@middlelinecolor\mdf@innerlinecolor}%
 }{}%
 \ifdimequal{\mdf@innerlinewidth@length}{\z@}%
 {\ifdimequal{\mdf@outerlinewidth@length}{\z@}%
 {\ifdimequal{\mdf@middlelinewidth@length}{\z@}%
 {}%
 {\let\mdf@middlelinecolor\mdf@linecolor}%
 }%
 {}%
 }{}%
 \tikzset{mdftext/.style={inner sep=0pt,outer sep=0pt}}%
 \tikzset{mdfcorners/.style={rounded corners=\mdf@roundcorner@length}}%
 \tikzset{mdfbackground/.style={fill=\mdf@backgroundcolor}}%
 \ifdimgreater{\mdf@outerlinewidth@length}{\z@}%
 {\tikzset{mdfborderA/.style={%
 draw=\mdf@outerlinecolor,%
 line width=2\mdf@outerlinewidth@length+\mdf@middlelinewidth@length%
 }%
 }%
 }%
 {\tikzset{mdfborderA/.style={}}}%
 \ifdimgreater{\mdf@innerlinewidth@length}{\z@}%
 {\tikzset{mdfborderI/.style={%
 draw=\mdf@innerlinecolor,%
 line width=2\mdf@innerlinewidth@length+\mdf@middlelinewidth@length%
 }%
 }%
 }%
 {\tikzset{mdfborderI/.style={}}}%
 \tikzset{mdfmiddle/.style={draw=\mdf@middlelinecolor,line width=\mdf@middlelinewidth@length}}%
}%

\def\md@putbox@single{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
 \begin{tikzpicture}
	 \coordinate(O)at(0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2\mdf@innerlinewidth@length+\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{\mdfboxheight+\mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 +2*\mdf@innerlinewidth@length+\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\yp{\mdf@innerbottommargin@length%
 +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \coordinate(P)at(\x,\y);
 \begin{scope}
		 \clip[preaction=mdfborderA]%
 [postaction={mdfbackground,mdfborderI}]%
 [mdfcorners](O)--(O|-P)--(P)--(P|-O)--cycle;
	 \end{scope}
 \path[mdfmiddle,mdfcorners](O)--(O|-P)--(P)--(P|-O)--cycle;
 \node[mdftext,anchor=south west]at(\xp,\yp){\box\@tempboxa};
 \end{tikzpicture}%
 }%
}%

\def\md@putbox@first{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
 \ifdimequal{\pagegoal}{\maxdimen}{\enlargethispage{\baselineskip}}{}%
 \begin{tikzpicture}
	 \coordinate(O) at (0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{-\mdfboxheight-\mdf@innertopmargin@length%
 -1*\mdf@innerlinewidth@length-0.5*\mdf@middlelinewidth@length+0.0cm}
 \pgfmathsetlengthmacro\yp{-\mdf@innertopmargin@length%
 -1*\mdf@innerlinewidth@length-0.5*\mdf@middlelinewidth@length%
 -0.5\mdfboxheight}
 \coordinate(P)at(\x,\y);
 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,%
 \mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length)%
 rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
 \begin{scope}
 \clip[preaction=mdfborderA]%
 [postaction={mdfbackground,mdfborderI}]%
 [mdfcorners](O|-P)--(O)--(P|-O)--(P);
 \end{scope}
 \path[mdfmiddle,mdfcorners,](O|-P)--(O)--(P|-O)--(P);
 \node[mdftext,anchor=west,inner sep=0pt,outer sep=0pt]at(\xp,\yp){\box\tw@};
% \draw[fill] (0,0) circle (.1cm);
% \draw[fill,yellow] (\x,\y) circle (.1cm);
% \draw[fill,orange] (\xp,\yp) circle (.05cm);
 \end{tikzpicture}%
 }%
}%

\def\md@putbox@middle{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@}%
 \setlength{\mdf@ymargin@length}{0.4\baselineskip}%
 \begin{tikzpicture}
	 \coordinate(O)at(0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{\mdfboxheight}
 \pgfmathsetlengthmacro\yp{0cm}
 \coordinate(P)at(\x,\y);
 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,0)%
 rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
 \begin{scope}
 	\path[mdfborderA](O)--(O|-P)(P)--(P|-O);
 \clip[postaction=mdfbackground](O)--(O|-P)--(P)--(P|-O);
 \path[mdfborderI](O)--(O|-P)(P)--(P|-O);
 \end{scope}
 \path[mdfmiddle](O)--(O|-P)(P)--(P|-O);
 \node[mdftext,anchor=south west]at(\xp,\yp){\box\tw@};
 \end{tikzpicture}%
 }
}

\def\md@putbox@second{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa}%
 \begin{tikzpicture}
 \coordinate(O)at(0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{\mdfboxheight%
 +\mdf@innerbottommargin@length%
 +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\yp{\mdf@innerbottommargin@length%
 +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \coordinate(P)at(\x,\y);
 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,%
 -\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length)%
 rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
 \begin{scope}
 \clip[preaction=mdfborderA]%
 [postaction={mdfbackground,mdfborderI}]%
 [mdfcorners](P-|O)--(O)--(O-|P)--(P);
 \end{scope}
 \path[mdfmiddle,mdfcorners](P-|O)--(O)--(O-|P)--(P);
 \node[mdftext,anchor=south west] at (\xp,\yp){\box\@tempboxa};
 \end{tikzpicture}%
 }
}

main/md-frame-3.mdf

%%==%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel

%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-3.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

%%Allgemeine Einstellungen fuer pstricks
%%Hier nur einfacher Rahmen mit Einstellungen

\def\mdversion{v0.6a}
\def\mdframedIIIpackagename{md-frame-3}
\def\md@frameIIIdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-3.mdf}[\md@frameIIIdate@svn$Id: md-frame-3.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedIIIpackagename]

\def\md@ptlength@to@pscode#1{\pst@number{#1} \pst@number\psxunit div}
\let\ptTps\md@ptlength@to@pscode\relax

\def\md@putbox@single{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
 \setlength{\mdfboundingboxheight}{%
 \mdfboxheight%
 +\mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }%
 \ifbool{mdf@topline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@bottomline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \setlength{\mdfboundingboxwidth}{%
 \mdfboxwidth%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \psset{linearc=\mdf@roundcorner@length,cornersize=absolute,}%
 \expandafter\psset\expandafter{\mdf@psset@local}%
 \psset{unit=1truecm}%
 \begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psframe[linewidth=\mdf@middlelinewidth@length,
 linecolor=\mdf@linecolor,
 cornersize=absolute,
 fillstyle=none,]%
 (0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and not (bool {mdf@leftline}) and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and bool {mdf@leftline} and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@bottomline}
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and not (bool {mdf@bottomline})
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not (bool {mdf@bottomline})
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not (bool {mdf@bottomline})
 and bool {mdf@leftline} and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not (bool {mdf@bottomline})
 and not(bool {mdf@leftline}) and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (!0 0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@bottomline}
 and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and not (bool {mdf@bottomline})
 and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}% \psgrid
 \end{pspicture}%
 }%
}

\def\md@putbox@first{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
 \setlength{\mdfboundingboxheight}{%
 +\mdfboxheight%
 +\mdf@innertopmargin@length%
 +\mdf@splitbottomskip@length%
 }%
 \ifbool{mdf@topline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \setlength{\mdfboundingboxwidth}{%
 +\mdf@innerleftmargin@length%
 +\mdfboxwidth
 +\mdf@innerrightmargin@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \psset{linearc=\mdf@roundcorner@length}%
 \expandafter\psset\expandafter{\mdf@psset@local}%
 \psset{unit=1truecm}%
 \ifdimgreater{\mdfboundingboxheight}{\vsize}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\vsize)}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)}
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not(bool {mdf@rightline})
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@rightline}
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \end{pspicture}%
 }%
}

\def\md@putbox@middle{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
 \setlength{\mdfboundingboxheight}{%
 +\mdfboxheight%
 +\mdf@splitbottomskip@length%
 }%
 \setlength{\mdfboundingboxwidth}{%
 +\mdf@innerleftmargin@length%
 +\mdfboxwidth%
 +\mdf@innerrightmargin@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \expandafter\psset\expandafter{\mdf@psset@local}%
 \psset{linearc=\mdf@roundcorner@length}%
 \psset{unit=1truecm}%
 \ifdimgreater{\mdfboundingboxheight}{\vsize}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\vsize)}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)}
 \ifboolexpr{ bool {mdf@rightline} and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ bool {mdf@rightline} and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@rightline}) and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{(
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and bool {mdf@topline} and not(bool {mdf@bottomline})
)
 or
 (
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and not (bool {mdf@topline}) and not(bool {mdf@bottomline})
)
 or
 (
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and not (bool {mdf@topline}) and bool {mdf@bottomline}
)
 or
 (
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and bool {mdf@topline} and bool {mdf@bottomline}
)
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \end{pspicture}%
 }%
}

\def\md@putbox@second{
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
 \setlength{\mdfboundingboxheight}{%
 +\mdfboxheight%
 +\mdf@innerbottommargin@length%
 }%
 \ifbool{mdf@bottomline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \setlength{\mdfboundingboxwidth}{%
 +\mdf@innerleftmargin@length%
 +\mdfboxwidth
 +\mdf@innerrightmargin@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \expandafter\psset\expandafter{\mdf@psset@local}
 \psset{linearc=\mdf@roundcorner@length}%
 \psset{unit=1truecm}%
 \begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)
 \ifboolexpr{ bool {mdf@bottomline} and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and not(bool {mdf@rightline})
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and bool {mdf@rightline}
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@bottomline} and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \end{pspicture}%
 }%
}

\endinput
%eof
%eof
%eof
%eof
%eof

main/utf8plain.def

%%
%% This is file `utf8.def',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% utf8ienc.dtx (with options: `utf8')
%%
%% This is a generated file.
%%
%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the LaTeX base system.
%% --
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% http://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file has the LPPL maintenance status "maintained".
%%
%% This file may only be distributed together with a copy of the LaTeX
%% base system. You may however distribute the LaTeX base system without
%% such generated files.
%%
%% The list of all files belonging to the LaTeX base distribution is
%% given in the file `manifest.txt'. See also `legal.txt' for additional
%% information.
%%
%% The list of derived (unpacked) files belonging to the distribution
%% and covered by LPPL is defined by the unpacking scripts (with
%% extension .ins) which are part of the distribution.
\ProvidesFile{utf8.def}
 [2008/04/05 v1.1m UTF-8 support for inputenc]
\makeatletter
\catcode`\ \saved@space@catcode
\def\UTFviii@two@octets#1#2{\expandafter
 \UTFviii@defined\csname u8:#1\string#2\endcsname}
\def\UTFviii@three@octets#1#2#3{\expandafter
 \UTFviii@defined\csname u8:#1\string#2\string#3\endcsname}
\def\UTFviii@four@octets#1#2#3#4{\expandafter
 \UTFviii@defined\csname u8:#1\string#2\string#3\string#4\endcsname}
\def\UTFviii@defined#1{%
 \ifx#1\relax
 \PackageError{inputenc}{Unicode\space char\space \string#1\space
 not\space set\space up\space
 for\space use\space with\space LaTeX}\@eha
 \else\expandafter
 #1%
 \fi
}
\begingroup
\catcode`\~13
\catcode`\"12
\def\UTFviii@loop{%
 \uccode`\~\count@
 \uppercase\expandafter{\UTFviii@tmp}%
 \advance\count@\@ne
 \ifnum\count@<\@tempcnta
 \expandafter\UTFviii@loop
 \fi}
 \count@"C2
 \@tempcnta"E0
 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@two@octets\string~}}
\UTFviii@loop
 \count@"E0
 \@tempcnta"F0
 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@three@octets\string~}}
\UTFviii@loop
 \count@"F0
 \@tempcnta"F4
 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@four@octets\string~}}
\UTFviii@loop
\endgroup
\@inpenc@test
\ifx\@begindocumenthook\@undefined
 \makeatother
 \endinput \fi
\begingroup
\catcode`\"=12
\catcode`\<=12
\catcode`\.=12
\catcode`\,=12
\catcode`\;=12
\catcode`\!=12
\catcode`\~=13
\gdef\DeclareUnicodeCharacter#1#2{%
 \count@"#1\relax
 \wlog{ \space\space defining Unicode char U+#1 (decimal \the\count@)}%
 \begingroup
 \parse@XML@charref
 \def\UTFviii@two@octets##1##2{\csname u8:##1\string##2\endcsname}%
 \def\UTFviii@three@octets##1##2##3{\csname u8:##1%
 \string##2\string##3\endcsname}%
 \def\UTFviii@four@octets##1##2##3##4{\csname u8:##1%
 \string##2\string##3\string##4\endcsname}%
 \expandafter\expandafter\expandafter
 \expandafter\expandafter\expandafter
 \expandafter
 \gdef\UTFviii@tmp{\IeC{#2}}%
 \endgroup
}
\gdef\parse@XML@charref{%
 \ifnum\count@<"A0\relax
 \PackageError{inputenc}{Cannot\space define\space Unicode\space
 char\space value\space <\space 00A0}\@eha
 \else\ifnum\count@<"800\relax
 \parse@UTFviii@a,%
 \parse@UTFviii@b C\UTFviii@two@octets.,%
 \else\ifnum\count@<"10000\relax
 \parse@UTFviii@a;%
 \parse@UTFviii@a,%
 \parse@UTFviii@b E\UTFviii@three@octets.{,;}%
 \else
 \parse@UTFviii@a;%
 \parse@UTFviii@a,%
 \parse@UTFviii@a!%
 \parse@UTFviii@b F\UTFviii@four@octets.{!,;}%
 \fi
 \fi
 \fi
}
\gdef\parse@UTFviii@a#1{%
 \@tempcnta\count@
 \divide\count@ 64
 \@tempcntb\count@
 \multiply\count@ 64
 \advance\@tempcnta-\count@
 \advance\@tempcnta 128
 \uccode`#1\@tempcnta
 \count@\@tempcntb}
\gdef\parse@UTFviii@b#1#2#3#4{%
 \advance\count@ "#10\relax
 \uccode`#3\count@
 \uppercase{\gdef\UTFviii@tmp{#2#3#4}}}
\endgroup
\@onlypreamble\DeclareUnicodeCharacter
\@onlypreamble\parse@XML@charref
\@onlypreamble\parse@UTFviii@a
\@onlypreamble\parse@UTFviii@b
\begingroup
 \def\cdp@elt#1#2#3#4{%
 \wlog{Now handling font encoding #1 ...}%
 \lowercase{%
 \InputIfFileExists{utf8plain.dfu}}%
 {\wlog{... processing UTF-8 mapping file for font %
 encoding #1}%
 \catcode`\ 9\relax}%
 {\wlog{... no UTF-8 mapping file for font encoding #1}}%
 }
 \cdp@list
\endgroup
\def\DeclareFontEncoding@#1#2#3{%
 \expandafter
 \ifx\csname T@#1\endcsname\relax
 \def\cdp@elt{\noexpand\cdp@elt}%
 \xdef\cdp@list{\cdp@list\cdp@elt{#1}%
 {\default@family}{\default@series}%
 {\default@shape}}%
 \expandafter\let\csname#1-cmd\endcsname\@changed@cmd
 \begingroup
 \wlog{Now handling font encoding #1 ...}%
 \lowercase{%
 \InputIfFileExists{utf8plainenc.dfu}}%
 {\wlog{... processing UTF-8 mapping file for font %
 encoding #1}}%
 {\wlog{... no UTF-8 mapping file for font encoding #1}}%
 \endgroup
 \else
 \@font@info{Redeclaring font encoding #1}%
 \fi
 \global\@namedef{T@#1}{#2}%
 \global\@namedef{M@#1}{\default@M#3}%
 \xdef\LastDeclaredEncoding{#1}%
 }
\DeclareUnicodeCharacter{00A9}{\textcopyright}
\DeclareUnicodeCharacter{00AA}{\textordfeminine}
\DeclareUnicodeCharacter{00AE}{\textregistered}
\DeclareUnicodeCharacter{00BA}{\textordmasculine}
\DeclareUnicodeCharacter{02C6}{\textasciicircum}
\DeclareUnicodeCharacter{02DC}{\textasciitilde}
\DeclareUnicodeCharacter{200C}{\textcompwordmark}
\DeclareUnicodeCharacter{2026}{\textellipsis}
\DeclareUnicodeCharacter{2122}{\texttrademark}
\DeclareUnicodeCharacter{2423}{\textvisiblespace}

\endinput
%%
%% End of file `utf8.def'.

main/main.txt

27.53748pt

�

headers/babel.tex

\usepackage[english]{babel}
\newcommand{\mychapterbabel}{Chapter}
\newcommand{\mypagebabel}{on page}
\newcommand{\myfigurebabel}{Figure}
\newcommand{\mylangbabel}{english}

headers/commands.tex

% Syntax Highlightling

%\DefineShortVerb[commandchars=\\\{\}]{\|}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{\begin{scriptsize}}{\end{scriptsize}}
\newcommand{\KeywordTok}[1]{\textbf{{#1}}}
\newcommand{\DataTypeTok}[1]{\underline{{#1}}}
\newcommand{\DecValTok}[1]{{#1}}
\newcommand{\BaseNTok}[1]{{#1}}
\newcommand{\FloatTok}[1]{{#1}}
\newcommand{\CharTok}[1]{{#1}}
\newcommand{\StringTok}[1]{{#1}}
\newcommand{\CommentTok}[1]{\textit{{#1}}}
\newcommand{\OtherTok}[1]{{#1}}
\newcommand{\AlertTok}[1]{\textbf{{#1}}}
\newcommand{\FunctionTok}[1]{{#1}}
\newcommand{\RegionMarkerTok}[1]{{#1}}
\newcommand{\ErrorTok}[1]{\textbf{{#1}}}
\newcommand{\NormalTok}[1]{{#1}}
\newcommand{\myfigurewithoutcaption}[1]{{\bfseries \myfigurebabel{ }#1}}
\newcommand{\myfigurewithcaption}[2]{{\bfseries \myfigurebabel{ }#1{\quad}}#2}

% Definition der Fussnoten
% ------------------------
%\KOMAoptions{footnotes=multiple}

\DeclareTextSymbol{\textlongs}{TS1}{115}

\deffootnote[2.2em]{2.2em}{0em}{\makebox[2.2em][l]{\thefootnotemark}}

\newcommand{\badchar}[1]
{\textbf{?}}

\newcommand{\myplainurl}[1]
{{\ttfamily \url{#1}}}

\newcommand{\myfnhref}[2]
{{#2} \^{}{\{\ttfamily \url{#1}\}} }

\newcommand{\mymchref}[2]
{}

\newcommand{\mytabhref}[2]
{{#2}\protect\footnote{\ttfamily \url{#1} }}
%{\textsc{#2}}

\newcommand{\myfnlref}[2]
{{#2} \^{}\{\mychapterbabel \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}\}}

\newlength{\fnwidth}
\setlength{\fnwidth}{\linewidth}
\addtolength{\fnwidth}{-10mm}

\newcommand{\myhref}[2]
{{#2}\protect\footnote{ \begin{minipage}{\fnwidth} \ttfamily \url{#1} \end{minipage}}}

\newcommand{\mylref}[2]
{{#2}\protect\footnote{\mychapterbabel {$\text{}$} \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}}}

\newcommand{\myfnsref}[2]
{\text{#2} \^{}\{\text{#1} \}}

\newcommand{\mysref}[2]
{\text{#2}\protect\footnote{#1}}

\newcommand{\TickYes}{\checkmark}

% Kompatibilität, damit myfootnote nichts ins Leere läuft
\newcommand{\myfootnote}[1]
%{\footnote{\quad{}#1}}
{\footnote{#1}}

% Auflistungen
% ------------
% Standardvorschlag für itemize
%\newenvironment{myitemize}{\begin{itemize}}{\end{itemize}}
%\newenvironment{myenumerate}{\begin{enumerate}}{\end{enumerate}}
\newenvironment{myquote}{\begin{itemize}[{}]}{\end{itemize}}
\newenvironment{myblockquote}{\begin{itemize}[{\quad}]}{\end{itemize}}

\newenvironment{mydescription}{

\begin{inparablank}}{\end{inparablank}}
% Alternativen ohne Einrückung
\newenvironment{myitemize}{\begin{compactitem}[\textbullet]}{\end{compactitem}}
\newenvironment{myenumerate}{\begin{compactenum}}{\end{compactenum}}

% einige weitere Festlegungen
% ---------------------------
% \breakslash is used for URLs to allow linebreaking
\newcommand{\mybreakslash}{\discretionary{/}{}{/}}

\newlength{\mylength}
\newlength{\myhight}
\newlength{\myshadingheight}
\newcommand{\myoverline}[1]
{\settowidth{\mylength}{#1} \settoheight{\myhight}{#1}
\makebox[-3pt][l]{#1}
\rule[\myhight+1pt]{\mylength}{0.15mm}}

% Teile von Büchern
\newcommand{\mypart}[1]
%{\part{#1}}
{\addtocontents{toc}{\protect\vspace{7.5mm} \textbf{\Large {#1}}}}

% minitoc vorbereiten, aber standardmäßig unterdrücken
\newcommand{\myminitoc}{}

% Haupttitel
% ----------
%\newcommand{\mymaintitle}[1]
%{\definecolor{shadecolor}{gray}{0.9}\begin{shaded}
%\begin{center}
%\Huge \bfseries
%#1
%\end{center}
%\end{shaded}}

%\newcommand{\mysubtitle}[1]
%{\begin{center}
%\LARGE \bfseries
%#1
%\end{center}}

\newcommand{\mysubtitle}[1]{\subtitle{#1}}
\newcommand{\mymaintitle}[1]{\title{#1}}
\newcommand{\myauthor}[1]{\author{#1}}

% Metadaten
% ---------
\newcommand{\fetchurlcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen Ressource zur Abholung (O)}.}{URL zur Abholung}}

\newcommand{\bookcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen Ressource (O)}.}{Buch (Hauptseite)}}

\newcommand{\functionalgroupcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: DDC-Sachgruppe der Deutschen Nationalbibliografie oder Warengruppen-Systematik des Deutschen Buchhandels (O)}.}{Sachgruppe(n)} }

\newcommand{\futhertopicscaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: weitere Klassifikationen / Thesauri (F)}.}{Weitere Themen}}

\newcommand{\mainauthorscaption}[0]
{Hauptautor(en)}

\newcommand{\projecttexniciancaption}[0]
{Betreuer}

\newcommand{\organizationscaptions}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Beteiligte Organisationen (F)}.}{Organisation(en)}}

\newcommand{\datecaption}[0]
{Erscheinungsdatum}

\newcommand{\issuecaption}[0]
{Ausgabebezeichnung}

\newcommand{\standardcodecaption}[0]
{Standardnummer }

\newcommand{\maintitlecaption}[0]
{Haupttitel}

\newcommand{\publishercaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Verlag / Verlegende Stelle (O)}.}{Verlegende Stelle} }

\newcommand{\publishercitycaption}[0]
{Verlagsort}

\newcommand{\shelfcaption}[0]
{Wikibooks-Regal}

\newcommand{\sizecaption}[0]
{Umfang}

\newcommand{\Alpha}{\mathrm{A}}
\newcommand{\Beta}{\mathrm{B}}
\newcommand{\Epsilon}{\mathrm{E}}
\newcommand{\Zeta}{\mathrm{Z}}
\newcommand{\Eta}{\mathrm{H}}
\newcommand{\Iota}{\mathrm{I}}
\newcommand{\Kappa}{\mathrm{K}}
\newcommand{\Mu}{\mathrm{M}}
\newcommand{\Nu}{\mathrm{N}}
\newcommand{\Rho}{\mathrm{P}}
\newcommand{\Tau}{\mathrm{T}}
\newcommand{\Chi}{\mathrm{X}}

headers/defaultcolors.tex

\definecolor{AliceBlue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{aliceblue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{AntiqueWhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{antiquewhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{Aqua}{rgb}{0.0,1.0,1.0}
\definecolor{aqua}{rgb}{0.0,1.0,1.0}
\definecolor{Aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{Azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{Beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{Bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{Black}{rgb}{0.0,0.0,0.0}
\definecolor{black}{rgb}{0.0,0.0,0.0}
\definecolor{BlanchedAlmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{blanchedalmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{Blue}{rgb}{0.0,0.0,1.0}
%\definecolor{blue}{rgb}{0.0,0.0,1.0}
\definecolor{BlueViolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{blueviolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{Brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{BurlyWood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{burlywood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{CadetBlue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{cadetblue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{Chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{Chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{Coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{CornflowerBlue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{cornflowerblue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{Cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{Crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{Cyan}{rgb}{0.0,1.0,1.0}
%\definecolor{cyan}{rgb}{0.0,1.0,1.0}
\definecolor{DarkBlue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{darkblue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{DarkCyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{darkcyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{DarkGoldenRod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{darkgoldenrod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{DarkGray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{darkgray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{DarkGreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{darkgreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{DarkKhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{darkkhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{DarkMagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{darkmagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{DarkOliveGreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{darkolivegreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{Darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{DarkOrchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{darkorchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{DarkRed}{rgb}{0.545098039216,0.0,0.0}
\definecolor{darkred}{rgb}{0.545098039216,0.0,0.0}
\definecolor{DarkSalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{darksalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{DarkSeaGreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{darkseagreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{DarkSlateBlue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{darkslateblue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{DarkSlateGray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{darkslategray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{DarkTurquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{darkturquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{DarkViolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{darkviolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{DeepPink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{deeppink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{DeepSkyBlue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{deepskyblue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{DimGray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{dimgray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{DodgerBlue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{dodgerblue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{FireBrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{firebrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{FloralWhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{floralwhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{ForestGreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{forestgreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{Fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{Gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{GhostWhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{ghostwhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{Gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{GoldenRod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{goldenrod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{Gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{Green}{rgb}{0.0,0.501960784314,0.0}
%\definecolor{green}{rgb}{0.0,0.501960784314,0.0}
\definecolor{GreenYellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{greenyellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{HoneyDew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{honeydew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{HotPink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{hotpink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{IndianRed}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{indianred}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{Indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{Ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{Khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{Lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{LavenderBlush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{lavenderblush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{LawnGreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{lawngreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{LemonChiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{lemonchiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{LightBlue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{lightblue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{LightCoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{lightcoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{LightCyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{lightcyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{LightGoldenRodYellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{lightgoldenrodyellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{LightGrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{lightgrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{LightGreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{lightgreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{LightPink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{lightpink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{LightSalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{lightsalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{LightSeaGreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{lightseagreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{LightSkyBlue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{lightskyblue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{LightSlateGray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{lightslategray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{LightSteelBlue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{lightsteelblue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{LightYellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{lightyellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{Lime}{rgb}{0.0,1.0,0.0}
\definecolor{lime}{rgb}{0.0,1.0,0.0}
\definecolor{LimeGreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{limegreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{Linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{Magenta}{rgb}{1.0,0.0,1.0}
%\definecolor{magenta}{rgb}{1.0,0.0,1.0}
\definecolor{Maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{MediumAquaMarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{mediumaquamarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{MediumBlue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{mediumblue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{MediumOrchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{mediumorchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{MediumPurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{mediumpurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{MediumSeaGreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{mediumseagreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{MediumSlateBlue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{mediumslateblue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{MediumSpringGreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{mediumspringgreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{MediumTurquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{mediumturquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{MediumVioletRed}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{mediumvioletred}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{MidnightBlue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{midnightblue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{MintCream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{mintcream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{MistyRose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{mistyrose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{Moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{NavajoWhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{navajowhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{Navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{OldLace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{oldlace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{Olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{OliveDrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{olivedrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{Orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{OrangeRed}{rgb}{1.0,0.270588235294,0.0}
\definecolor{orangered}{rgb}{1.0,0.270588235294,0.0}
\definecolor{Orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{PaleGoldenRod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{palegoldenrod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{PaleGreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{palegreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{PaleTurquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{paleturquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{PaleVioletRed}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{palevioletred}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{PapayaWhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{papayawhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{PeachPuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{peachpuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{Peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{Pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{Plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{PowderBlue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{powderblue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{Purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{Red}{rgb}{1.0,0.0,0.0}
%\definecolor{red}{rgb}{1.0,0.0,0.0}
\definecolor{RosyBrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{rosybrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{RoyalBlue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{royalblue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{SaddleBrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{saddlebrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{Salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{SandyBrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{sandybrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{SeaGreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{seagreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{SeaShell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{seashell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{Sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{Silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{SkyBlue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{skyblue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{SlateBlue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{slateblue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{SlateGray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{slategray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{Snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{SpringGreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{springgreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{SteelBlue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{steelblue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{Tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{Teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{Thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{Tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{Turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{Violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{Wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{White}{rgb}{1.0,1.0,1.0}
%\definecolor{white}{rgb}{1.0,1.0,1.0}
\definecolor{WhiteSmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{whitesmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{Yellow}{rgb}{1.0,1.0,0.0}
%\definecolor{yellow}{rgb}{1.0,1.0,0.0}
\definecolor{YellowGreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}
\definecolor{yellowgreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}

\definecolor{shadecolor}{gray}{0.9}
\definecolor{mydarkgreen}{rgb}{0.0,0.5625,0.0}

headers/formattings.tex

% PDF-Links vorbereiten
\hypersetup{%a5paper,
	linkcolor=black, % Für Links in der gleichen Seite
	urlcolor=black, % Für Links auf URLs
	breaklinks=true, % Links dürfen umgebrochen werden
	colorlinks=false,
	citebordercolor=0 0 0, % Farbe für \cite
	filebordercolor=0 0 0,
	linkbordercolor=0 0 0,
	menubordercolor=0 0 0,
	urlbordercolor=0 0 0,
	pdfhighlight=/I,
	pdfborder=0 0 0, % keine Box um die Links!
	bookmarksopen=true,
	bookmarksnumbered=true,
	frenchlinks=false
}

% nicht zu viele Silbentrennungen
\sloppy

% Waisen, Hurenkinder
\clubpenalty = 10000
\widowpenalty = 10000
\displaywidowpenalty = 10000

% verschiedene Einstellungen
\addtolength{\skip\footins}{2ex} % Länge zwischen Fußnotenbereich und Text

headers/hyphenation.tex

\hyphenation{NASA}
\hyphenation{Unter-schenkel-vorder-innen-seite}
\hyphenation{Unter-schenkel-vorder-au\ss en-seite}
\hyphenation{Auge}
\hyphenation{ohne}
\hyphenation{eine}
\hyphenation{come}
\hyphenation{zero}
\hyphenation{also}
\hyphenation{five}
\hyphenation{many}
\hyphenation{copy}
\hyphenation{year}
\hyphenation{same}
\hyphenation{make}
\hyphenation{time}
\hyphenation{made}
\hyphenation{glei-che}
\hyphenation{Zucker-wasser}
\hyphenation{Makro-phagen-stimulation}
\hyphenation{Revo-lution}
\hyphenation{Reich}
\hyphenation{Gebiet}
\hyphenation{ethnische}
\hyphenation{Sow-jet-uni-on}
\hyphenation{NATO}
\hyphenation{Amts-sprache}
\hyphenation{Amts-sprachen}
\hyphenation{Otto}
\hyphenation{Ab-sorptions-ko-effizient}
\hyphenation{Reich}
\hyphenation{Trier}
\hyphenation{Butter-worth}
\hyphenation{Rausch-unter-dr\"uckung}

headers/imageheader.tex

\begin{small}
Auf den folgenden Seiten stehen für alle Bilder die Quellen, Autoren und Lizenzen. Das Verzeichnis wurde erstellt mit Hilfe der \myhref{http://de.wikipedia.org/wiki/MediaWiki}{Wikimedia-Software} und an Layout und Gliederung dieses Buches angepasst.

Zu den Lizenzen gibt es hier weitere Informationen:

\begin{itemize}
\item GNU Free Documentation License (GFDL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/old-licenses/gpl-1.0.txt}

\item GNU General Public License Version 2 (GPL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/gpl-2.0.txt}

\item Creative Commons Attribution ShareAlike 1.0 License (cc-by-sa-1.0). Text dieser Lizenz: \newline{}\url{http://creativecommons.org/licenses/by-sa/1.0/}

\item Creative Commons Attribution ShareAlike 2.0 License (cc-by-sa-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version: \newline{}\url{http://creativecommons.org/licenses/by-sa/2.0/}

\item Creative Commons Attribution ShareAlike 2.5 License (cc-by-sa-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/2.5/}

\item Creative Commons Attribution ShareAlike 3.0 License (cc-by-sa-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/3.0/}

\item Creative Commons Attribution 2.0 License (cc-by-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version:\newline{}\url{http://creativecommons.org/licenses/by/2.0/}

\item Creative Commons Attribution 2.5 License (cc-by-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Creative Commons Attribution 3.0 License (cc-by-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Public Domain (PD): This image is in the public domain. Dieses Bild ist gemeinfrei.

\item ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.

\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\end{itemize}

Den an weiteren Einzelheiten interessierten Leser verweisen wir auf die Onlineversion dieses Buches und die Beschreibungsseiten der Dateien.

\end{small}

\pagebreak

headers/license.tex

\chapter{Zu diesem Buch}
\section{Hinweise zu den Lizenzen}
\label{Lizenzhinweise}

Dieses Werk ist entstanden bei \myhref{http://de.wikibooks.org/wiki/Einf\%C3\%BChrung_in_SQL}{Wikibooks}, einer Online-Bibliothek im Internet mit Lehr-, Sach- und Fachbüchern. Jeder kann und darf diese Bücher frei nutzen und bearbeiten. Alle Inhalte stehen unter den Lizenzen „Creative Commons Attribution/Share-Alike“ (CC-BY-SA 3.0) und GNU-Lizenz für freie Dokumentation (GFDL).

Das Konvertierungsprogramm \myhref{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}{wb2pdf} steht unter GNU General Public License (GPL).

Das Textsatzprogramm \myhref{http://de.wikipedia.org/wiki/LaTeX} {\LaTeX{}} steht unter der LaTeX Project Public License (LPPL).

Hinweise zur Nutzung und für Zitate sind zu finden unter:
\begin{itemize}
\item Originalversion der Lizenz CC-BY-SA 3.0 \newline \url{http://creativecommons.org/licenses/by-sa/3.0}
\item Deutsche Version der Lizenz mit Ergänzungen \newline{} \url{http://creativecommons.org/licenses/by-sa/3.0/deed.de}
\item Originalversion der Lizenz GFDL \newline{} \url{http://www.gnu.org/copyleft/fdl.html}
\item Originalversion der Lizenz GPL \newline{} \url{http://www.gnu.org/licenses/gpl-3.0.html}
\item Version der LaTeX PPL \newline{} \url{http://www.opensource.org/licenses/lppl}
\item Nutzungsbedingungen der Wikimedia Foundation (deutsch) \newline{} \url{http://wikimediafoundation.org/wiki/Nutzungsbedingungen}
\item Zitieren aus Wikibooks \newline{} \url{http://de.wikibooks.org/wiki/Hilfe:Zitieren#Zitieren_aus_Wikibooks}
\end{itemize}

main/main.tex

\RequirePackage{hyphsubst}
\documentclass[fontsize=11pt,paper=A4,BCOR=12mm,DIV=13,open=any,listof=totoc]{scrbook}
\input{../headers/paper}
\input{../headers/packages1}
\input{../headers/babel}
\input{../headers/svg}
\input{../headers/packages2}
\input{../headers/defaultcolors}
\input{../headers/hyphenation}
\input{../headers/commands}
\usepackage{type1ec}
\usepackage{CJKutf8}
\usepackage[overlap, CJK]{ruby}
\usepackage{CJKulem}
\input{../headers/title}
\input{../headers/options}
\input{../headers/formattings}
\input{../headers/unicodes}
\input{../headers/templates}
\input{../headers/templates-dirk}
\input{../headers/templates-chemie}
\usepackage{lmodern}
\begin{document}
\begin{CJK}{UTF8}{megafont}
\usetocstyle{standard}
\raggedbottom
\thispagestyle{empty}
\pagestyle{empty}
%\include{coverfrontpage}

%\cleardoublepage
\pagenumbering{Roman}
\maketitle
\pagestyle{scrheadings}

\setcounter{tocdepth}{\mytocdepth}
\tableofcontents

%\cleardoublepage
\pagenumbering{arabic}

%\include{kap-vorwort}

\label{0}
\chapter{Basic Ada}

\myminitoc
\label{1}

\label{2}

\section{\symbol{34}Hello, world!\symbol{34} programs}
\label{3}
\subsection{\symbol{34}Hello, world!\symbol{34}}
\label{4}

A common example of a language\textquotesingle{}s \myhref{http://en.wikipedia.org/wiki/Syntax_\%28programming_languages\%29}{syntax} is the \myhref{http://en.wikipedia.org/wiki/Hello_world_program}{Hello world program}. Here is a straightforward Ada Implementation:
\\

\TemplateSpaceIndent{ {}\ADAFile{hello_world_1.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\ADAPK{Ada}{Text_IO}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Hello {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Ada.Text_IO.Put_Line(\symbol{34}Hello, {}world!\symbol{34}); \newline{}
 {}\LaTeXBF{end} {}Hello;}

The {\bfseries with} statement adds the package {\ttfamily Ada.Text_IO} to the program.
This package comes with every Ada compiler and
contains all functionality needed for textual Input/Output.
The {\bfseries with} statement makes the declarations of {\ttfamily Ada.Text_IO}
available to procedure {\ttfamily Hello}.
This includes the types declared in {\ttfamily Ada.Text_IO},
the subprograms of {\ttfamily Ada.Text_IO}
and everything else that is declared in {\ttfamily Ada.Text_IO} for public use.
In Ada, packages can be used as toolboxes.
{\ttfamily Text_IO} provides a collection of tools for textual input and output
in one easy-{}to-{}access module. Here is a partial glimpse at package \ADAPK{Ada}{Text_IO}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}\ADAPK{Ada}{Text_IO} {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}File_Type {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{more stuff} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Open\LaTeXIdentityTemplate{(}File {}\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}\LaTeXBF{out} {}File_Type\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Mode {}\LaTeXIdentityTemplate{:} {}File_Mode\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Name {}\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Form {}\LaTeXIdentityTemplate{:} {}String {}\LaTeXIdentityTemplate{:=} {}\symbol{34}\symbol{34}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{more stuff} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put_Line {}\LaTeXIdentityTemplate{(}Item {}\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{more stuff} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Ada\LaTeXIdentityTemplate{.}Text_IO\LaTeXIdentityTemplate{;}}

Next in the program we declare a main procedure. An Ada main procedure does not need to be called \symbol{34}main\symbol{34}.
Any simple name is fine so here it is {\itshape Hello}.
Compilers might allow procedures or functions to be used as main subprograms.
\myfootnote{Main subprograms may even have parameters;
it is implementation-{}defined what kinds of subprograms can be used as main subprograms.
The reference manual explains the details in \AdaRM{10}{2}{LRM 10.2(29)}:
{\mbox{\textquotedblleft}}…, an implementation is required to support all main subprograms that are public parameterless library procedures.{\mbox{$\text{\textquotedblright}$}} {\itshape Library} means not nested
in another subprogram, for example, and other things that needn\textquotesingle{}t concern us now.}

The call on {\ttfamily Ada.Text_IO.Put_Line} writes the text \symbol{34}Hello World\symbol{34}
to the current output file.

A {\bfseries with} clause makes the content of a package {\itshape visible by selection}:
we need to prefix the procedure name {\ttfamily Put_Line} from the {\ttfamily Text_IO}
package with its full package name {\ttfamily Ada.Text_IO}.
If you need procedures from a package more often some form of shortcut is needed. There are two options open:
\subsection{\symbol{34}Hello, world!\symbol{34} with renames}
\label{5}

By renaming a package it is possible to give a shorter alias to any package
name.\myfootnote{\LaTeXBF{renames} can also be used for procedures, functions, variables, array elements. It can not be used for types -{} a type rename can be accomplished with \LaTeXBF{subtype}.}
This reduces the typing involved while still keeping some of the readability.
\\

\TemplateSpaceIndent{ {}\ADAFile{hello_world_2.adb} \newline{}
 {} {} \newline{}
 {}\LaTeXBF{with} {}\ADAPK{Ada}{Text_IO}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Hello {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{package} {}IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}IO.Put_Line(\symbol{34}Hello, {}world!\symbol{34}); \newline{}
 {} {} {} {}IO.New_Line; \newline{}
 {} {} {} {}IO.Put_Line(\symbol{34}I {}am {}an {}Ada {}program {}with {}package {}rename.\symbol{34}); \newline{}
 {}\LaTeXBF{end} {}Hello;}

\subsection{\symbol{34}Hello, world!\symbol{34} with use}
\label{6}

The \LaTeXBF{use} clause makes all the content of a package directly visible. It allows even less typing but removes some of the readability. One suggested \symbol{34}rule of thumb\symbol{34}: \LaTeXBF{use} for the most used package and \LaTeXBF{renames} for all other packages. You might have another rule (for example, always \LaTeXBF{use} \ADAPK{Ada.Text_IO}{}, never \LaTeXBF{use} anything else).
\\

\TemplateSpaceIndent{ {}\ADAFile{hello_world_3.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\ADAPK{Ada}{Text_IO};\LaTeXBF{use} {}Ada.Text_IO; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Hello {}\LaTeXBF{is} \newline{}
 {} {} {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Put_Line(\symbol{34}Hello, {}world!\symbol{34}); \newline{}
 {} {} {} {}New_Line; \newline{}
 {} {} {} {}Put_Line(\symbol{34}I {}am {}an {}Ada {}program {}with {}package {}use.\symbol{34}); \newline{}
 {}\LaTeXBF{end} {}Hello;}

\LaTeXBF{use} can be used for packages and in the form of \LaTeXBF{use} \LaTeXBF{type} for types. \LaTeXBF{use} \LaTeXBF{type} makes only the \mylref{590}{operators} of the given type directly visible but not any other operations on the type.
\section{Compiling the \symbol{34}Hello, world!\symbol{34} program}
\label{7}
For information on how to build the \symbol{34}Hello, world!\symbol{34} program on various compilers, see the \mylref{58}{Building} chapter.
\subsection{FAQ: Why is \symbol{34}Hello, world!\symbol{34} so big?}
\label{8}

Ada beginners frequently ask how it can be that such a simple program as \symbol{34}Hello, world!\symbol{34} results in such a large executable. The reason has nothing to do with Ada but can usually be found in the compiler and linker options used {\mbox{---}} or better, not used.

Standard behavior for Ada compilers {\mbox{---}} or good compilers in general {\mbox{---}} is not to create the best code possible but to be optimized for ease of use. This is done to ensure a system that works \symbol{34}out of the box\symbol{34} and thus does not frighten away potential new users with unneeded complexity.

The GNAT project files, which you can \myhref{https://sourceforge.net/project/showfiles.php?group_id=124904}{ download} alongside the example programs, use better tuned compiler, binder and linker options. If you use those your \symbol{34}Hello, world!\symbol{34} will be a lot smaller:
\\

\TemplateSpaceIndent{ {} {}32K {}./Linux-{}i686-{}Debug/hello_world_1 \newline{}
 {}8.0K {}./Linux-{}i686-{}Release/hello_world_1 \newline{}
 {} {}36K {}./Linux-{}x86_64-{}Debug/hello_world_1 \newline{}
 {} {}12K {}./Linux-{}x86_64-{}Release/hello_world_1 \newline{}
 {}1.1M {}./Windows_NT-{}i686-{}Debug/hello_world_1.exe \newline{}
 {} {}16K {}./Windows_NT-{}i686-{}Release/hello_world_1.exe \newline{}
 {} {}32K {}./VMS-{}AXP-{}Debug/hello_world_1.exe \newline{}
 {} {}12K {}./VMS-{}AXP-{}Release/hello_world_1.exe}

For comparison the sizes for a plain {\bfseries gnat make} compile:
\\

\TemplateSpaceIndent{ {}497K {}hello_world_1 {}(Linux {}i686) \newline{}
 {}500K {}hello_world_1 {}(Linux {}x86_64) \newline{}
 {}1.5M {}hello_world_1.exe {}(Windows_NT {}i686) \newline{}
 {}589K {}hello_world_1.exe {}(VMS {}AXP)}

Worth mentioning is that hello_world (Ada,C,C++) compiled with GNAT/MSVC 7.1/GCC(C) all produces executables with approximately the same size given comparable optimisation and linker methods.
\section{Things to look out for}
\label{9}

It will help to be prepared to spot a number of significant features of Ada that are important for learning its syntax and semantics.
\subsection{Comb Format}
\label{10}

There is a {\itshape comb format} in all the control structures and module structures. See the following examples for the {\itshape comb format}. You don\textquotesingle{}t have to understand what the examples do yet -{} just look for the similarities in layout.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{if} {}{\itshape Boolean expression} {}\LaTeXBF{then} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{elsif} {}{\itshape Boolean expression} {}\LaTeXBF{then} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{else} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{if};}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{while} {}{\itshape Boolean expression} {}\LaTeXBF{loop} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{loop};}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{for} {}{\itshape variable} {}\LaTeXBF{in} {}{\itshape range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{loop};}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{exception} \newline{}
 {} {} {} {}{\itshape handlers} \newline{}
 {}\LaTeXBF{end};}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}P {}({\itshape parameters} {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}{\itshape type}) {}\LaTeXBF{is} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{exception} \newline{}
 {} {} {} {}{\itshape handlers} \newline{}
 {}\LaTeXBF{end} {}P;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}F {}({\itshape parameters} {}: {}\LaTeXBF{in} {}{\itshape type}) {}\LaTeXBF{return} {}{\itshape type} {}\LaTeXBF{is} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}{\itshape statements} \newline{}
 {}\LaTeXBF{exception} \newline{}
 {} {} {} {}{\itshape handlers} \newline{}
 {}\LaTeXBF{end} {}F;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{end} {}P;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{end} {}P;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}{\itshape declarations} \newline{}
 {}\LaTeXBF{procedure} {}P {}({\itshape parameters} {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}{\itshape type});}

Note that semicolons consistently terminate statements and declarations; the empty line (or a semicolon alone) is not a valid statement: the null statement is
\\

\TemplateSpaceIndent{ {}\LaTeXBF{null};}

\subsection{Type and subtype}
\label{11}

There is an important distinction between {\bfseries type} and {\bfseries subtype}: a type is given by a set of values and their operations. A subtype is given by a type, and a {\itshape constraint} that limits the set of values. Values are always of a type. Objects (constants and variables) are of a subtype. This generalizes, clarifies and systematizes a relationship, e.g. between {\itshape Integer} and 1..100, that is handled {\itshape ad hoc} in the semantics of \myhref{http://en.wikipedia.org/wiki/Pascal\%20programming\%20language}{Pascal}.
\subsection{Constrained types and unconstrained types}
\label{12}

There is an important distinction between {\itshape constrained} types and {\itshape unconstrained} types. An unconstrained type has one or more free parameters that affect its size or shape. A constrained type fixes the values of these parameters and so determines its size and shape. Loosely speaking, objects must be of a constrained type, but formal parameters may be of an unconstrained type (they adopt the constraint of any corresponding actual parameter). This solves the problem of array parameters in Pascal (among other things).
\subsection{Dynamic types}
\label{13}

Where values in \myhref{http://en.wikipedia.org/wiki/Pascal\%20programming\%20language}{Pascal} or \myhref{http://en.wikipedia.org/wiki/C\%20programming\%20language}{C} must be static (e.g. the subscript bounds of an array) they may be dynamic in Ada. However, static expressions are required in certain cases where dynamic evaluation would not permit a reasonable implementation (e.g. in setting the number of digits of precision of a floating point type).
\subsection{Separation of concerns}
\label{14}

Ada consistently supports a separation of interface and mechanism. You can see this in the format of a \mylref{280}{package}, which separates its declaration from its body; and in the concept of a private type, whose representation in terms of Ada data structures is inaccessible outside the scope containing its definition.
\section{Where to ask for help}
\label{15}

Most Ada experts lurk on the \myhref{http://en.wikipedia.org/wiki/Newsgroup}{Usenet newsgroups} {\itshape comp.lang.ada} (English) and {\itshape fr.comp.lang.ada} (French); they are accessible either with a \myhref{http://en.wikipedia.org/wiki/News_client}{newsreader} or through one of the many web interfaces. This is the place for all questions related to Ada.

People on these newsgroups are willing to help but will {\itshape not} do students\textquotesingle{} homework for them; they will not post complete answers to assignments. Instead, they will provide guidance for students to find their own answers.

For more online resources, see the \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%23External\%20links}{External links} section in this wikibook\textquotesingle{}s introduction.
\section{Notes}
\label{16}

\chapter{Installing}

\myminitoc
\label{17}

\label{18}

Ada \myhref{http://en.wikipedia.org/wiki/Compiler}{compilers} are available from several vendors, on a variety of host and target platforms. The \myhref{http://www.adaic.com}{ Ada Resource Association} maintains a \myhref{http://www.adaic.com/compilers/comp-tool.html}{ list of available compilers}.

Below is an alphabetical list of available compilers with additional comments.
\section{AdaMagic from SofCheck}
\label{19}

\myhref{http://www.sofcheck.com/}{ SofCheck} produces an Ada{\mbox{$~$}}95 front-{}end that can be plugged into a code generating back-{}end to produce a full compiler. This front-{}end is offered for licensing to compiler vendors.

Based on this front-{}end, SofCheck offers:

\begin{myitemize}
\item{} AdaMagic, an Ada-{}to-{}C translator
\item{} AppletMagic, an \myhref{http://en.wikibooks.org/wiki/Ada_Programming\%2FPlatform\%2FVM\%2FJava}{Ada-{}to-{}Java} bytecode compiler
\end{myitemize}

Commercial; proprietary.
\section{AdaMULTI from Green Hills Software}
\label{20}

Green Hills Software sells development environments for multiple languages and multiple targets (including \myhref{http://en.wikipedia.org/wiki/Digital\%20signal\%20processor}{DSP}s), primarily to embedded software developers.

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, C, C++, Fortran\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} proprietary\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNU/Linux on i386, Microsoft Windows on i386, and Solaris on SPARC\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} INTEGRITY, INTEGRITY-{}178B and velOSity from Green Hills; VxWorks from Wind River; several bare board targets. Safety-{}critical GMART and GSTART run-{}time libraries certified to DO-{}178B level A.\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.ghs.com/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Commercial\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IDE, debugger, TimeMachine, integration with various version control systems, source browsers, other utilities\\ \hline
\end{longtable}

GHS claims to make great efforts to ensure that their compilers produce the most efficient code and often cites the \myhref{http://www.eembc.com}{ EEMBC} benchmark results as evidence, since many of the results published by chip manufacturers use GHS compilers to show their silicon in the best light, although these benchmarks are not Ada specific.

GHS has no publicly announced plans to support the new Ada standard published in 2007 but they do continue to actively market and develop their existing Ada products.
\section{DEC Ada from HP}
\label{21}

DEC Ada is an Ada{\mbox{$~$}}83 compiler for \myhref{http://en.wikipedia.org/wiki/OpenVMS}{OpenVMS}. While “DEC Ada” is probably the name most users know, the compiler is now called “\myhref{http://h71000.www7.hp.com/commercial/ada/ada_index.html}{ HP Ada}”. It had previously been known also by names of \symbol{34}VAX Ada\symbol{34} and \symbol{34}Compaq Ada\symbol{34}.

\begin{myitemize}
\item{} \myhref{http://h71000.www7.hp.com/commercial/ada/ada_avms_ig.pdf}{ Ada for OpenVMS Alpha Installation Guide} (PDF)
\item{} \myhref{http://h71000.www7.hp.com/commercial/ada/ada_vvms_ig.pdf}{ Ada for OpenVMS VAX Installation Guide} (PDF)
\end{myitemize}

\section{GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation}
\label{22}

\myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} is the free GNU Ada compiler, which is part of the \myhref{http://en.wikipedia.org/wiki/GNU_Compiler_Collection}{GNU Compiler Collection}. It is the only Ada compiler that supports all of the optional annexes of the language standard. The original authors formed the company \myhref{http://www.adacore.com}{ AdaCore} to offer professional support, consulting, training and custom development services. It is thus possible to obtain GNAT from many different sources, detailed below.

GNAT is always licensed under the terms of the \myhref{http://en.wikipedia.org/wiki/GNU\%20General\%20Public\%20License}{GNU General Public License}.

However, the run-{}time library uses either the \myhref{http://en.wikipedia.org/wiki/GNU\%20General\%20Public\%20License}{GPL}, or the \myhref{http://en.wikipedia.org/wiki/GNAT\%20Modified\%20General\%20Public\%20License}{GNAT Modified GPL}, depending on where you obtain it.

Several optional add-{}ons are available from various places:

\begin{myitemize}
\item{} ASIS, the \myhref{http://en.wikipedia.org/wiki/Ada\%20Semantic\%20Interface\%20Specification}{Ada Semantic Interface Specification}, is a library that allows Ada programs to examine and manipulate other Ada programs.
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FPOSIX}{FLORIST} is a library that provides a POSIX programming interface to the operating system.
\item{} GDB, the GNU Debugger, with Ada extensions.
\item{} GLADE implements Annex E, the Distributed Systems Annex. With it, one can write distributed programs in Ada, where partitions of the program running on different computers communicate over the network with one another and with shared objects.
\item{} GPS, the GNAT Programming Studio, is a full-{}featured integrated development environment, written in Ada. It allows you to code in Ada, C and C++.
\end{myitemize}

Many Free Software libraries are also available.
\subsection{GNAT GPL Edition}
\label{23}

This is a source and binary release from AdaCore, intended for use by Free
Software developers only. If you want to distribute your binary programs
linked with the GPL run-{}time library,
then you must do so under terms compatible with the GNU General Public License.

As of GNAT GPL Edition 2011:

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada{\mbox{$~$}}2005, Ada{\mbox{$~$}}2012, C, C++\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} pure GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNU/Linux on i386 and x86_64; Microsoft Windows on i386; Microsoft .NET on i386; Mac OS X (Darwin, x86_64); Solaris on SPARC.\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} AVR, hosted on Windows; Java VM, hosted on Windows; Mindstorms NXT, hosted on Windows\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.5.3\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://libre.adacore.com/} (requires free registration)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} None\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GDB, GNATbench (Eclipse plug-{}in), GPS in source and binary form; many more in source-{}only form.\\ \hline
\end{longtable}

\subsection{GNAT Modified GPL releases}
\label{24}

With these releases of GNAT, you can distribute your programs in binary form under licensing terms of your own choosing; you are not bound by the GPL.
\subsubsection{GNAT 3.15p}
\label{25}

This is the last public release of GNAT from AdaCore that uses the \myhref{http://en.wikipedia.org/wiki/GNAT\%20Modified\%20General\%20Public\%20License}{GNAT Modified General Public License}.

GNAT 3.15p has passed the \myhref{http://en.wikipedia.org/wiki/ISO\%2018009}{Ada Conformity Assessment Test Suite} (\myhref{http://en.wiktionary.org/wiki/ACATS}{ACATS}). It was released in October 2002.

The binary distribution from AdaCore also contains an Ada-{}aware version of the GNU Debugger (\myhref{http://en.wikipedia.org/wiki/GDB}{GDB}), and a graphical front-{}end to GDB called the GNU Visual Debugger (GVD).

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, C\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}modified GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNU/Linux on i386 (with glibc 2.1 or later), Microsoft Windows on i386, OS/2 2.0 or later on i386, Solaris 2.5 or later on SPARC\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 2.8.1\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ftp://ftp.cs.kuleuven.ac.be/pub/Ada-{}Belgium/mirrors/gnu-{}ada/3.15p/\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} None\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ASIS, Florist, GLADE, GDB, Gnatwin (on Windows only), GtkAda 1.2, GVD\\ \hline
\end{longtable}

\subsubsection{GNAT Pro}
\label{26}

GNAT Pro is the professional version of GNAT, offered as a subscription package by AdaCore. The package also includes professional consulting, training and maintenance services. AdaCore can provide custom versions of the compiler for native or cross development. For more information, see \myplainurl{http://www.adacore.com/.}

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada 2005, Ada 2012, C, and optionally C++\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}modified GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} many, see \myplainurl{http://www.adacore.com/home/products/gnatpro/supported_platforms/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} many, see \myplainurl{http://www.adacore.com/home/products/gnatpro/supported_platforms/;} even more on request\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.3\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.adacore.com/} by subscription (commercial)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Commercial; customer-{}only bug database\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ASIS, Florist, GDB, GLADE, GPS, GtkAda, XML/Ada, and many more in source and, on request, binary form.\\ \hline
\end{longtable}

\subsubsection{GCC}
\label{27}

GNAT has been part of the \myhref{http://www.fsf.org/}{ Free Software Foundation}\textquotesingle{}s \myhref{http://gcc.gnu.org/}{ GCC} since October 2001. The Free Software Foundation does not distribute binaries, only sources. Its licensing of the run-{}time library for Ada (and other languages) allows the development of proprietary software without necessarily imposing the terms of the \myhref{http://en.wikipedia.org/wiki/GNU\%20General\%20Public\%20License}{GPL}.

Most GNU/Linux distributions and several distributions for other platforms include prebuilt binaries; see below.

For technical reasons, we recommend against using the Ada compilers included in GCC 3.1, 3.2, 3.3 and 4.0. Instead, we recommend using GCC 3.4, 4.1 or later, or one of the releases from \myhref{http://www.adacore.com}{ AdaCore} (3.15p, GPL Edition or Pro).

Since October 2003, AdaCore merge most of their changes from GNAT Pro into GCC during \myhref{http://gcc.gnu.org/develop.html\#stage1}{ Stage 1}; this happens once for each major release. Since GCC 3.4, AdaCore has gradually added support for revised language standards, first Ada 2005 and now Ada 2012.

GCC version 4.4 switched to \myhref{http://www.gnu.org/licenses/gpl.html}{ version 3 of the GNU General Public License} and grants a \myhref{http://www.gnu.org/licenses/gcc-exception.html}{ Runtime Library Exception} similar in spirit to the \myhref{http://en.wikipedia.org/wiki/GNAT\%20Modified\%20General\%20Public\%20License}{GNAT Modified General Public License} used in all previous versions. This Runtime Library Exception applies to run-{}time libraries for all languages, not just Ada.

As of GCC 4.7, released on 2012-{}03-{}22:

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada{\mbox{$~$}}2005, parts of Ada{\mbox{$~$}}2012, C, C++, Fortran 95, Java, Objective-{}C, Objective-{}C++ (and others)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://www.gnu.org/licenses/gpl.html}{ GPL version 3} with \myhref{http://www.gnu.org/licenses/gcc-exception.html}{ Runtime Library Exception}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none (source only)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none (source only)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.7\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://gcc.gnu.org/} in source only form.\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Volunteer; public bug database\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline
\end{longtable}

\subsection{The GNU Ada Project}
\label{28}

The \myhref{http://gnuada.sourceforge.net}{ GNU Ada Project} provides source and binary packages of various GNAT versions for several operating systems, and, importantly, the scripts used to create the packages. This may be helpful if you plan to port the compiler to another platform or create a cross-{}compiler; there are instructions for building your own GNAT compiler for \myhref{http://ada.krischik.com/index.php/Articles/CompileGNAT}{ GNU/Linux} and \myhref{http://forward-in-code.blogspot.com/2011/11/building-gcc-again.html}{ Mac OS X} users.

Both \myhref{http://en.wikipedia.org/wiki/GNU\%20General\%20Public\%20License}{GPL} and
\myhref{http://en.wikipedia.org/wiki/GNAT\%20Modified\%20General\%20Public\%20License}{GMGPL} or \myhref{http://www.gnu.org/licenses/gcc-exception.html}{ GCC Runtime Library Exception} versions of GNAT are available.

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada 2005, C. {\small (Some distributions also support Ada 2012, Fortran 90, Java, Objective C and Objective C++)}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} pure, GNAT-{}modified GPL, or GCC Runtime Library Exception\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Fedora Core 4 and 5, MS-{}DOS, OS/2, Solaris 10, SuSE 10, MacOS X, {\small (more?)}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 2.8.1, 3.4, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 {\small (various binary packages)}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://sourceforge.net/projects/gnuada/files/}{ Sourceforge}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Volunteer; public bug database\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaBrowse, ASIS, Booch Components, Charles, GPS, GtkAda {\small (more?)}\\ \hline
\end{longtable}

\subsection{A\# (A-{}Sharp, a.k.a. Ada for .NET)}
\label{29}

This compiler is historical as it has now been merged into \mylref{23}{GNAT GPL Edition} and \mylref{26}{GNAT Pro}.

A\# is a port of Ada to the \myhref{http://www.microsoft.com/net/}{ .NET Platform}. A\# was originally developed at the Department of Computer Science at the United States Air Force Academy which distribute A\# as a service to the Ada community under the terms of the GNU general public license. A\# integrates well with Microsoft Visual Studio 2005, AdaGIDE and the RAPID open-{}source GUI Design tool. As of 2006-{}06-{}06:

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, C\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} pure GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Microsoft .NET\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 3.4 (GNAT GPL 2006 Edition?)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://sourceforge.net/projects/asharp/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} None (but see GNAT Pro)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none.\\ \hline
\end{longtable}

\subsection{GNAT for AVR microcontrollers}
\label{30}

Rolf Ebert and others provide a version of GNAT configured as a cross-{}compiler to various \myhref{http://en.wikipedia.org/wiki/Atmel_AVR}{AVR microcontrollers}, as well as an experimental Ada run-{}time library suitable for use on the microcontrollers. As of Version 1.1.0 (2010-{}02-{}25):

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada{\mbox{$~$}}2005, C\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}Modified GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Host platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNU/Linux and Microsoft Windows on i386\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Target platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Various AVR 8-{}bit microcontrollers\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.3\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://avr-ada.sourceforge.net/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Volunteer; public bug database\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} partial Ada run time system, AVR peripherals support library\\ \hline
\end{longtable}

\subsection{GNAT for LEON}
\label{31}

The Real-{}Time Research Group of the Technical University of Madrid (UPM, {\itshape Universidad Politécnica de Madrid}) wrote a \myhref{http://en.wikipedia.org/wiki/Ravenscar\%20profile}{Ravenscar}-{}compliant real-{}time kernel for execution on \myhref{http://en.wikipedia.org/wiki/LEON}{LEON processors} and a modified run-{}time library. They also provide a GNAT cross-{}compiler. As of version 2.0.1:

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada{\mbox{$~$}}2005, C\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} pure GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNU/Linux on i686 to LEON2 bare boards\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.1 (GNAT GPL 2007 Edition)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.dit.upm.es/ork/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} OpenRavenscar real-{}time kernel; minimal run-{}time library\\ \hline
\end{longtable}

\subsection{GNAT for Macintosh (Mac OS X)}
\label{32}

\myhref{http://www.macada.org/}{ GNAT for Macintosh} provides both FSF (GMGPL) and AdaCore (GPL) versions of \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} with \myhref{http://en.wikipedia.org/wiki/Xcode}{Xcode} and \myhref{http://en.wikipedia.org/wiki/Carbon\%20\%28API\%29}{Carbon} integration and bindings.

Note that this site was last updated for GCC 4.3 and Mac OS X Leopard (both PowerPC and Intel-{}based). Aside from the work on integration with Apple’s Carbon graphical user interface and with Xcode 3.1 it may be preferable to \mylref{28}{see above}.

There is also support at \myhref{https://trac.macports.org/browser/trunk/dports/lang/gnat-gcc}{ MacPorts}; the last update (at 25 Nov 2011) was for GCC 4.4.2.
\subsection{Prebuilt packages as part of larger distributions}
\label{33}

Many distributions contain prebuilt binaries of GCC or various public releases of GNAT from AdaCore. Quality varies widely between distributions. The list of distributions below is in alphabetical oder. {\itshape (Please keep it that way.)}
\subsubsection{AIDE (for Microsoft Windows)}
\label{34}

\myhref{http://sr.sriviere.info/aide/aide.html}{ AIDE {\mbox{---}} Ada Instant Development Environment} is a complete one-{}click, just-{}works Ada distribution for Windows, consisting of GNAT, comprehensive documentation, tools and libraries. All are precompiled, and source code is also available. The installation procedure is particularly easy. AIDE is intended for beginners and teachers, but can also be used by advanced users.

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, C\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}modified GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Microsoft Windows on i386\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 2.8.1\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.ada-france.org/AIDE/}ftp://ftp.cs.kuleuven.ac.be/pub/Ada-{}Belgium/mirrors/aide/\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ASIS, GDB, GPS, GtkAda (more?)\\ \hline
\end{longtable}

\subsubsection{Blastwave (for Solaris on SPARC and x86)}
\label{35}

\myhref{http://www.blastwave.org}{ Blastwave} has binary packages of GCC 3.4.5 and 4.0.2 with Ada support. The package names are gcc3ada and gcc4ada respectively.

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, parts of Ada{\mbox{$~$}}2005, C, C++, Fortran 95, Java, Objective-{}C, Objective-{}C++\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}modified GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Solaris and OpenSolaris on SPARC\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 3.4.5 and 4.0.2 (both available)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.blastwave.org/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none (?)\\ \hline
\end{longtable}

\subsubsection{OpenCSW (for Solaris on SPARC and x86)}
\label{36}

\myhref{http://www.opencsw.org}{ OpenCSW} has binary packages of GCC 3.4.6 and 4.6.2 with Ada support. The package names are gcc3ada and gcc4ada respectively.

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, parts of Ada{\mbox{$~$}}2005, C, C++, Fortran 95, Java, Objective-{}C, Objective-{}C++\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}modified GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Oracle Solaris and OpenSolaris on SPARC and x86\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 3.4.6 and 4.6.2 (both available)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.opencsw.org/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none (?)\\ \hline
\end{longtable}

\subsubsection{Cygwin (for Microsoft Windows)}
\label{37}

\myhref{http://www.cygwin.com}{ Cygwin}, the Linux-{}like environment for Windows, also contains a version of the \mylref{22}{GNAT} compiler. The \myhref{http://en.wikipedia.org/wiki/Cygwin}{Cygwin} version of \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} is older than the \myhref{http://en.wikipedia.org/wiki/MinGW}{MinGW} version and does not support DLLs and Multi-{}Threading {\small (as of 11.2004)}.
\subsubsection{Debian (GNU/Linux and GNU/kFreeBSD)}
\label{38}

There is a \myhref{http://people.debian.org/~lbrenta/debian-ada-policy.html}{ Debian Policy for Ada} which tries to make Debian the best Ada development {\itshape and deployment} platform. The development platform includes the compiler and many libraries, pre-{}packaged and integrated so as to be easy to use in any program. The deployment platform is the renowned {\itshape \myhref{http://www.debian.org/releases/stable/}{ stable}} distribution, which is suitable for mission-{}critical workloads and enjoys long life cycles, typically 3 to 4 years. Because Debian is a binary distribution, it is possible to deploy non-{}free, binary-{}only programs on it while enjoying all the benefits of a stable platform. Compiler choices are conservative for this reason, and the Policy mandates that all Ada programs and libraries be compiled with the same version of GNAT. This makes it possible to use all libraries in the same program. Debian separates run-{}time libraries from development packages, so that end users do not have to install the development system just to run a program.

The GNU Ada compiler can be installed on a Debian system with this command:
\\

\TemplateSpaceIndent{ {}aptitude {}install {}gnat}

This will also give you a list of related packages, which are likely to be useful for an Ada programmer.

Debian is unique in that it also allows programmers to use some of GNAT\textquotesingle{}s internal components by means of two libraries:
\begin{myitemize}
\item{} libgnatvsn (licensed under GNAT-{}Modified GPL) and
\item{} libgnatprj (the project manager, licensed under pure GPL).
\end{myitemize}

Debian packages make use of these libraries.

In the table below, the information about the future Debian 7.0 {\itshape Wheezy} is accurate as of July 2012 but may change.
\begin{landscape}

\begin{longtable}{|>{\RaggedRight}p{0.13214\linewidth}|>{\RaggedRight}p{0.13214\linewidth}|>{\RaggedRight}p{0.13076\linewidth}|>{\RaggedRight}p{0.12304\linewidth}|>{\RaggedRight}p{0.12304\linewidth}|>{\RaggedRight}p{0.11782\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{$~$}} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.1 {\itshape Sarge} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0 {\itshape Etch} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.0 {\itshape Lenny} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6.0 {\itshape Squeeze} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7.0 {\itshape Wheezy}}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Release date}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} June 2005&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} April 2007&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} February 2009&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} February 2011&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2013?\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, C&\multicolumn{4}{|>{\RaggedRight}p{0.56569\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada 2005, parts of Ada 2012, C, C++, Fortran 95, Java, Objective-{}C, Objective-{}C++}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\multicolumn{3}{|>{\RaggedRight}p{0.42120\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}modified GPL (both ZCX and SJLJ versions starting from 5.0 {\itshape Lenny})}&\multicolumn{2}{|>{\RaggedRight}p{0.25138\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GPL version 3 with Run-{}time library exception}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms: }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.1 {\itshape Sarge} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0 {\itshape Etch} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.0 {\itshape Lenny} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6.0 {\itshape Squeeze} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7.0 {\itshape Wheezy}}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily alpha} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily amd64} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily armel} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} preliminary &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily armhf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily hppa} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily hurd-{}i386} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} preliminary\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily i386} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily ia64} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily kfreebsd-{}amd64} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily kfreebsd-{}i386} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily mips} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily mipsel} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily powerpc} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily ppc64} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily s390} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily sparc} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} yes\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\multicolumn{5}{|>{\RaggedRight}p{0.75285\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end }&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 2.8.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 4.6\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\multicolumn{5}{|>{\RaggedRight}p{0.75285\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.debian.org/}}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\multicolumn{5}{|>{\RaggedRight}p{0.75285\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Volunteer; public bug database; paid support available from third parties; \myhref{http://lists.debian.org/debian-ada}{ public mailing list}}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.1 {\itshape Sarge} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0 {\itshape Etch} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.0 {\itshape Lenny} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6.0 {\itshape Squeeze} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7.0 {\itshape Wheezy}}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} ada-{}reference-{}manual &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1995 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1995 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1995 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2005 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2012\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaBindX &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.7.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaBrowse &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0.3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0.3\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaCGI &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaControl &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6r8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.9r4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.12r3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.12r3\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} APQ (with PostgreSQL) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.2\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaSockets &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.8.4.7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.8.4.7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.8.4.7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.8.8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.8.10\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ahven &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.1\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Alog &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.4.1\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} anet &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.1\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} ASIS &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.15p &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2005 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2007 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2008 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2010\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} AUnit &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.01 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.03 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.03 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.03 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.03\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} AWS &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.5 prerelease &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.10.2\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Charles &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2005-{}02-{}17 &\multicolumn{4}{|>{\RaggedRight}p{0.56569\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} (superseded by Ada.Containers in gnat)}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Florist &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.15p &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2006 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2006 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2009 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2011\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GDB &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6.4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6.8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7.0.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7.4.1\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GLADE &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.15p &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2006 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\multicolumn{2}{|>{\RaggedRight}p{0.25138\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} (see PolyORB)}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GMPAda &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.0.20091124 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.0.20120331\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNADE &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.5.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.6.2\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT Checker &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1999-{}05-{}19 &\multicolumn{4}{|>{\RaggedRight}p{0.56569\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} (superseded by AdaControl)}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GPRBuild &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.3.0w &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2011\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GPS &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.0\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} GtkAda &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.8.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.8.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.14.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.24.0\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Log4Ada &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.2\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Narval &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.10.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} OpenToken &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.0b &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.0b &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.0b &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0b &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.0b\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} PC/SC Ada &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0.7.1\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} PolyORB &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.6 prerelease &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.8 prerelease\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} PLPlot &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.9.0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.9.5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5.9.5\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Templates Parser &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 10.0+20060522 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 11.1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 11.5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 11.6\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} TextTools &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.0.3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.0.3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.0.5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.0.6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} XML/Ada &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4.1\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} XML-{}EZ-{}out &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.06 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.06.1\\ \hline
\end{longtable}

\end{landscape}

The ADT plugin for Eclipse (see section \mylref{44}{ObjectAda from Aonix}) can be used with GNAT as packaged for Debian Etch.
Specify \symbol{34}/usr\symbol{34} as the toolchain path.
\subsubsection{DJGPP (for MS-{}DOS)}
\label{39}

DJGPP has \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} as part of their \myhref{http://en.wikipedia.org/wiki/GCC}{GCC} distribution.

\myhref{http://www.delorie.com/djgpp/}{ DJGPP} is a port of a comprehensive collection of GNU utilities to MS-{}DOS with 32-{}bit extensions, and is actively supported (as of 1.2005). It includes the whole \myhref{http://en.wikipedia.org/wiki/GCC}{GCC} compiler collection, that now includes Ada. See the \myhref{http://www.delorie.com/djgpp/}{ DJGPP} website for installation instructions.

DJGPP programs run also in a DOS command box in Windows, as well as in native MS-{}DOS systems.
\subsubsection{FreeBSD}
\label{40}

\myhref{http://www.freebsd.org}{ FreeBSD}\textquotesingle{}s \myhref{http://www.freebsd.org/ports}{ ports collection} contains
GNAT GPL 2006 Edition (package gnat-{}2006), GNAT 3.15p, GCC 4.1, 4.2 and 4.3 with support for Ada.
The usual way to install a package on FreeBSD is to compile it from source; not all add-{}ons
are compatible with all versions of GNAT provided.

You can also use the Debian packages described above in a jail, thanks to Debian GNU/kFreeBSD.

As of 2008-{}11-{}10:

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, parts of Ada 2005, C\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} both pure and modified GPL available\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FreeBSD on i386 (more?)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 2.8.1, 3.4, 4.1, 4.2, 4.3\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.freebsd.org}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Volunteer; public bug database\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaBindX, AdaCurses, AdaSDL, AdaSockets, AFlex+AYACC, ASIS, AUnit, Booch Components, CBind, Florist, GLADE, GtkAda, SGL, XML/Ada (more?)\\ \hline
\end{longtable}

\subsubsection{Gentoo GNU/Linux}
\label{41}

The GNU Ada compiler can be installed on a Gentoo system using emerge:
\\

\TemplateSpaceIndent{ {} {}emerge {}dev-{}lang/gnat}

In contrast to Debian, Gentoo is primarily a source distribution, so many packages are available only in source form, and require the user to recompile them (using emerge).

Also in contrast to Debian, Gentoo supports several versions of GNAT in parallel on the same system. Be careful, because not all add-{}ons and libraries are available with all versions of GNAT.

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, Ada 2005, C (more?)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} pure or GNAT-{}modified GPL (both available)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Gentoo GNU/Linux on amd64, powerpc and i386\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 3.4, 4.1 (various binary packages)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.gentoo.org/} (see other Gentoo \myhref{http://es.znurt.org/dev-ada}{ dev-{}ada} packages)\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Volunteer; public bug database\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} AdaBindX, AdaBroker, AdaDoc, AdaOpenGL, AdaSockets, ASIS, AUnit, Booch Components, CBind, Charles, Florist, GLADE, GPS, GtkAda, XML/Ada\\ \hline
\end{longtable}

\subsubsection{Mandriva Linux}
\label{42}

The GNU Ada compiler can be installed on a Mandriva system with this command:
\\

\TemplateSpaceIndent{ {}urpmi {}gnat}

\subsubsection{MinGW (for Microsoft Windows)}
\label{43}

\myhref{http://mingw.sourceforge.net}{ MinGW {\mbox{---}} Minimalist GNU for Windows} contains a version of the GNAT compiler.

The current version of MinGW (5.1.6) contains gcc-{}4.5.0. This includes a fully functional GNAT compiler. If the automatic downloader does not work correctly you can download the compiler directly: pick gcc-{}4.5.0-{}1 from MinGW/BaseSystem/GCC/Version4/
\paragraph{old instructions}
{ }\newline\label{44}
The following list should help you with the installation. (I may have forgotten something {\mbox{---}} but this is wiki, just add to the list)

\begin{myenumerate}
\item{} Install {\itshape MinGW-{}3.1.0-{}1.exe}
\begin{myenumerate}
\item{} extract {\itshape binutils-{}2.15.91-{}20040904-{}1.tar.gz}
\item{} extract {\itshape mingw-{}runtime-{}3.5.tar.gz}
\item{} extract {\itshape gcc-{}core-{}3.4.2-{}20040916-{}1.tar.gz}
\item{} extract {\itshape gcc-{}ada-{}3.4.2-{}20040916-{}1.tar.gz}
\item{} extract {\itshape gcc-{}g++-{}3.4.2-{}20040916-{}1.tar.gz (Optional)}
\item{} extract {\itshape gcc-{}g77-{}3.4.2-{}20040916-{}1.tar.gz (Optional)}
\item{} extract {\itshape gcc-{}java-{}3.4.2-{}20040916-{}1.tar.gz (Optional)}
\item{} extract {\itshape gcc-{}objc-{}3.4.2-{}20040916-{}1.tar.gz (Optional)}
\item{} extract {\itshape w32api-{}3.1.tar.gz}
\end{myenumerate}

\item{} Install {\itshape mingw32-{}make-{}3.80.0-{}3.exe (Optional)}
\item{} Install {\itshape gdb-{}5.2.1-{}1.exe (Optional)}
\item{} Install {\itshape MSYS-{}1.0.10.exe (Optional)}
\item{} Install {\itshape msysDTK-{}1.0.1.exe (Optional)}
\begin{myenumerate}
\item{} extract {\itshape msys-{}automake-{}1.8.2.tar.bz2 (Optional)}
\item{} extract {\itshape msys-{}autoconf-{}2.59.tar.bz2 (Optional)}
\item{} extract {\itshape msys-{}libtool-{}1.5.tar.bz2 (Optional)}
\end{myenumerate}

\end{myenumerate}

I have made good experience in using {\itshape D:\textbackslash{}MinGW} as target directory for all installations and extractions.

Also noteworthy is that the Windows version for GNAT from Libre is also based on MinGW.

In gcc-{}3.4.2-{}release_notes.txt from MinGW site reads:
{\itshape please}
check that the files in the /lib/gcc/mingw32/3.4.2/adainclude and adalib
directories are flagged as read-{}only. This attribute is necessary to
prevent them from being deleted when using gnatclean to clean a project.{\itshape }

So be sure to do this.
\subsubsection{SuSE Linux}
\label{45}

All versions of SuSE Linux have a GNAT compiler included. SuSE versions 9.2 and higher also contains ASIS, Florist and GLADE libraries. The following two packages are needed:
\\

\TemplateSpaceIndent{ {}gnat \newline{}
 {}gnat-{}runtime}

For SuSE version 12.1, the compiler is in the package \\

\TemplateSpaceIndent{ {} {}gcc46-{}ada \newline{}
 {} {}libada46}

For 64 bit system you will need the 32 bit compatibility packages as well:
\\

\TemplateSpaceIndent{ {}gnat-{}32bit \newline{}
 {}gnat-{}runtime-{}32bit}

\subsubsection{Ubuntu}
\label{46}

Ubuntu (and derivatives like Kubuntu, Xubuntu...) is a Debian-{}based Linux distribution, thus the \mylref{38}{installation process described above} can be used. Graphical package managers like Synaptic or Adept can also be employed to select the Ada packages.
\section{ICC from Irvine Compiler Corporation}
\label{47}

\myhref{http://www.irvine.com/}{ Irvine Compiler Corporation} provides native and cross compilers for various platforms.\myplainurl{http://www.irvine.com/products.html} The compiler and run-{}time system support development of certified, safety-{}critical software.

Commercial, proprietary. No-{}cost evaluation is possible on request. Royalty-{}free redistribution of the run-{}time system is allowed.
\section{Janus/Ada{\mbox{$~$}}83 and 95 from RR Software}
\label{48}

\myhref{http://www.rrsoftware.com}{ RR Software} offers native compilers for MS-{}DOS, Microsoft Windows and various Unix and Unix-{}like systems, and a library for Windows GUI programming called CLAW. There are academic, personal and professional editions, as well as support options.

Commercial but relatively cheap; proprietary.
\section{MAXAda from Concurrent}
\label{49}

\myhref{http://www.ccur.com/}{ Concurrent} offers \myhref{http://www.ccur.com/products_rt_maxada.aspx}{ MAXAda}, an Ada{\mbox{$~$}}95 compiler for Linux/Xeon and PowerPC platforms, and Ada bindings to POSIX and X/Motif.\myplainurl{http://www.ccur.com/pdf/cpb-sw-maxada.pdf}

Commercial, proprietary.
\section{ObjectAda from Atego (formerly Aonix)}
\label{50}

\myhref{http://www.atego.com/}{ Atego} offers native and cross compilers for various platforms. They come with an IDE, a debugger, a plug-{}in for Eclipse and a \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FPOSIX}{POSIX binding} \myplainurl{http://www.aonix.com/pdf/oa-linux.pdf}.

On Microsoft Windows and GNU/Linux on i386, Aonix offers two pricing models, at the customer\textquotesingle{}s option: either a perpetual license fee with optional support, or just the yearly support fee:
For Linux, that\textquotesingle{}s \${}3000 for a single user or \${}12,000 for a 5-{}user service pack. See the \myhref{http://www.atego.com/pressreleases/pressitem/aonix-shatters-ada-price-barrier-for-linux}{ full press release}.

In addition, they offer \symbol{34}ObjectAda Special Edition\symbol{34}: a no-{}cost evaluation version of ObjectAda that limits the size of programs that can be compiled with it, but is otherwise fully functional, with IDE and debugger. \myhref{http://www.atego.com/support/eval-aonix-objectada/}{ Free registration required}.

A recent contribution by Atego is \myhref{http://www.aonix.com/adt.html}{ ADT} for \myhref{http://www.eclipse.org}{ Eclipse}. The {\itshape Ada Development Tools} add Ada language support to the Eclipse open source development platform. ADT can be used with Aonix compilers, and with GNAT. An open source vendor supported project is outlined for \myhref{http://www.eclipse.org/proposals/adt/}{ ADT at Eclipse}. Codenamed {\itshape Hibachi} and showcased at the Ada Conference UK 2007 and during Ada-{}Europe 2007, the project has now been officially \myhref{http://www.eclipse.org/hibachi/}{ created}.

Commercial, proprietary.
\section{PowerAda from OC Systems}
\label{51}

\myhref{http://www.ocsystems.com/}{ OC Systems} offers Ada compilers and bindings to POSIX and X-{}11:
\begin{myitemize}
\item{} \myhref{http://www.ocsystems.com/prod_powerada.html}{ PowerAda}, an Ada{\mbox{$~$}}95 compiler for Linux and AIX,
\item{} \myhref{http://www.ocsystems.com/prod_legacyada.html}{ LegacyAda/390}, an Ada{\mbox{$~$}}83 compiler for IBM System 370 and 390 mainframes
\end{myitemize}

Commercial, proprietary.
\section{Rational Apex from Atego (formerly IBM Rational\myfootnote{ Atego acquires IBM Rational Apex Ada Developer product family})}
\label{52}

\myhref{http://www-306.ibm.com/software/awdtools/developer/ada/}{ Rational Apex} for native and embedded development.

Commercial, proprietary.
\section{SCORE from DDC-{}I}
\label{53}

\myhref{http://www.ddci.com/}{ DDC-{}I} offers its SCORE cross-{}compilers for embedded development. SCORE stands for Safety-{}Critical, Object-{}oriented, Real-{}time Embedded.

Commercial, proprietary.
\section{XD Ada from SWEP-{}EDS}
\label{54}

\myhref{http://www.swep-eds.com/XD\%20Ada/Xd\%20ada.htm}{ XD Ada} is an Ada{\mbox{$~$}}83 cross-{}compiler for embedded development. Hosts include VAX, Alpha and Integrity Servers running OpenVMS. Targets include Motorola 68000 and MIL-{}STD-{}1750A processors.

Commercial, proprietary.
\section{XGC Ada from XGC Software}
\label{55}

XGC compilers are GCC with custom run-{}time libraries suitable for avionics and space applications. The run-{}time kernels are very small and do not support exception propagation (i.e. you can handle an exception only in the subprogram that raised it).

Commercial but some versions are also offered as free downloads. Free Software.

\begin{longtable}{|>{\RaggedRight}p{0.35967\linewidth}|>{\RaggedRight}p{0.55997\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Languages supported}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada{\mbox{$~$}}83, Ada{\mbox{$~$}}95, C\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License for the run-{}time library}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GNAT-{}Modified GPL\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Native platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cross platforms}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Hosts: sun-{}sparc-{}solaris, pc-{}linux2.*; targets are bare boards with \myhref{http://en.wikipedia.org/wiki/ERC32}{ERC32}, \myhref{http://en.wikipedia.org/wiki/MIL-STD-1750A}{MIL-{}STD-{}1750A}, \myhref{http://en.wikipedia.org/wiki/Motorola_68000}{Motorola 68000} family or \myhref{http://en.wikipedia.org/wiki/IA_32}{Intel 32-{}bit} processors. \myhref{http://en.wikipedia.org/wiki/PowerPC}{PowerPC} and \myhref{http://en.wikipedia.org/wiki/Intel_80186}{Intel 80186} targets on request.\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Compiler back-{}end}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GCC 2.8.1\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Available from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myplainurl{http://www.xgc.com/}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Support}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Commercial\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Add-{}ons included}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ravenscar-{}compliant run-{}time kernels, certified for avionics and space applications; gdb cross-{}debugger; target simulator.\\ \hline
\end{longtable}

\section{References}
\label{56}

\chapter{Building}

\myminitoc
\label{57}

\label{58}

Ada programs are usually easier to build than programs written in other languages like C or C++, which frequently require a makefile. This is because an Ada source file already specifies the dependencies of its source unit. See the \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fwith}{{\bfseries with} keyword} for further details.

Building an Ada program is not defined by the Reference Manual, so this process is absolutely dependent on the compiler. Usually the compiler kit includes a make tool which compiles a main program and all its dependencies, and links an executable file.
\section{Building with various compilers}
\label{59}

\begin{myquote}
\item{} {\itshape This list is incomplete. You can help Wikibooks by \myhref{http://en.wikibooks.org/w/index.php?title=Ada_Programming/Building\&action=edit}{ adding the build information} for other compilers.}
\end{myquote}

\subsection{GNAT}
\label{60}

With \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT}, you can run this command:
\\

\TemplateSpaceIndent{ {}gnat {}make {}{\itshape <{}your_unit_file>{}}}

If the file contains a procedure, gnatmake will generate an executable file with the procedure as main program. Otherwise, e.g. a package, gnatmake will compile the unit and all its dependencies.
\subsubsection{GNAT command line}
\label{61}

gnatmake can be written as one word {\ttfamily gnatmake} or two words {\ttfamily gnat make}. For a full list of gnat commands just type {\ttfamily gnat} without any command options. The output will look something like this:
\\

\TemplateSpaceIndent{ {}GNAT {}3.4.3 {}Copyright {}1996-{}2004 {}Free {}Software {}Foundation, {}Inc. \newline{}
 {} \newline{}
 {}List {}of {}available {}commands \newline{}
 {} \newline{}
 {}GNAT {}BIND {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatbind \newline{}
 {}GNAT {}CHOP {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatchop \newline{}
 {}GNAT {}CLEAN {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatclean \newline{}
 {}GNAT {}COMPILE {} {} {} {} {} {} {} {} {} {} {} {}gnatmake {}-{}c {}-{}f {}-{}u \newline{}
 {}GNAT {}ELIM {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatelim \newline{}
 {}GNAT {}FIND {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatfind \newline{}
 {}GNAT {}KRUNCH {} {} {} {} {} {} {} {} {} {} {} {} {}gnatkr \newline{}
 {}GNAT {}LINK {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatlink \newline{}
 {}GNAT {}LIST {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatls \newline{}
 {}GNAT {}MAKE {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatmake \newline{}
 {}GNAT {}NAME {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatname \newline{}
 {}GNAT {}PREPROCESS {} {} {} {} {} {} {} {} {}gnatprep \newline{}
 {}GNAT {}PRETTY {} {} {} {} {} {} {} {} {} {} {} {} {}gnatpp \newline{}
 {}GNAT {}STUB {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatstub \newline{}
 {}GNAT {}XREF {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}gnatxref \newline{}
 {} \newline{}
 {}Commands {}FIND, {}LIST, {}PRETTY, {}STUB {}and {}XREF {}accept {}project {}file \newline{}
 {}switches {}-{}vPx, {}-{}Pprj {}and {}-{}Xnam=val}

For further help on the option just type the command (one word or two words {\mbox{---}} as you like) without any command options.
\subsubsection{GNAT IDE}
\label{62}

The GNAT toolchain comes with an \myhref{http://en.wikipedia.org/wiki/Integrated\%20development\%20environment}{IDE} called \myhref{http://en.wikipedia.org/wiki/GNAT\%20Programming\%20Studio}{GPS}. You need to download and install it separately. The GPS features a \myhref{http://en.wikipedia.org/wiki/Graphical\%20user\%20interface}{graphical user interface}.

There are also GNAT plugins for \myhref{http://en.wikipedia.org/wiki/Emacs}{Emacs} (\myhref{http://stephe-leake.org/emacs/ada-mode/emacs-ada-mode.html}{ Ada Mode}), \myhref{http://en.wikipedia.org/wiki/KDevelop}{KDevelop} and \myhref{http://en.wikipedia.org/wiki/Vim\%20\%28text\%20editor\%29}{Vim} (\myhref{http://www.vim.org/scripts/script.php?script_id=1609}{ Ada Mode}) available.

Both Emacs and Vim Ada-{}Mode are maintained by \myhref{http://gnuada.sourceforge.net}{ The GNU Ada project}.
\subsubsection{GNAT with Xcode}
\label{63}

Apple\textquotesingle{}s free (gratis) IDE, Xcode, is included with every Macintosh but requires an explicit installation step from DVD-{}ROM or CD-{}ROM. It is also downloadable from \myplainurl{http://developer.apple.com/.} Xcode uses the \myhref{http://en.wikipedia.org/wiki/GNU\%20Compiler\%20Collection}{GNU Compiler Collection} and thus supports Ada, \myhref{http://en.wikipedia.org/wiki/GNU\%20Debugger}{GDB}, etc... and also includes myriad tools for optimizing code which are unique to the Macintosh platform. However, GNAT must be installed separately as it is (as of 2008) not distributed as part of Xcode. Get the binary and/or sources at \myplainurl{http://www.macada.org/,} along with numerous tools and bindings including bindings to Apple\textquotesingle{}s Carbon frameworks which allow the development of complete, \symbol{34}real\symbol{34} Mac programs, all in Ada.
\subsection{Rational APEX}
\label{64}

Rational APEX is a complete development environment comprising a language sensitive editor, compiler, debugger, coverage analyser, configuration management and much more. You normally work with APEX running a GUI.

APEX has been built for the development of big programs. Therefore the basic entity of APEX is a {\itshape subsystem}, a directory with certain traits recognized by APEX. All Ada compilation units have to reside in subsystems.

You can define an {\itshape export set}, i.e. the set of Ada units visible to other subsystems. However for a subsystem A to gain visibility to another subsystem B, A has to {\itshape import} B. After importing, A sees all units in B\textquotesingle{}s export set. (This is much like the with-{}clauses, but here visibility means only potential visibility for Ada: units to be actually visible must be mentioned in a with-{}clause of course; units not in the export set cannot be used in with-{}clauses of Ada units in external subsystems.)

Normally subsystems should be hierarchically ordered, i.e. form a directed graph. But for special uses, subsystems can also mutually import one another.

For configuration management, a subsystem is decomposed in {\itshape views}, subdirectories of the subsystem. Views hold different development versions of the Ada units. So actually it\textquotesingle{}s not subsystems which import other subsystems, rather subsystem views import views of other subsystems. (Of course, the closure of all imports must be consistent {\mbox{---}} it cannot be the case that e.g. subsystem (A, view A1) imports subsystems (B, B1) and (C, C1), whereas (B, B1) imports (C, C2)).

A view can be defined to be the development view. Other views then hold releases at different stages.

Each Ada compilation unit has to reside in a file of its own. When compiling an Ada unit, the compiler follows the with-{}clauses. If a unit is not found within the subsystem holding the compile, the compiler searches the import list (only the direct imports are considered, not the closure).

Units can be taken under version control. In each subsystem, a set of {\itshape histories} can be defined. An Ada unit can be taken under control in a history. If you want to edit it, you first have to check it out {\mbox{---}} it gets a new version number. After the changes, you can check it in again, i.e. make the changes permanent (or you abandon your changes, i.e. go back to the previous version). You normally check out units in the development view only; check-{}outs in release views can be forbidden.

You can select which version shall be the active one; normally it is the one latest checked in. You can even switch histories to get different development paths. e.g. different bodies of the same specification for different targets.
\subsection{ObjectAda}
\label{65}

ObjectAda is a set of tools for editing, compiling, navigating and debugging programs written in Ada. There are various editions of ObjectAda. With some editions you compile programs for the same platform and operating systems on which you run the tools. These are called native. With others, you can produce programs for different operating systems and platforms. One possible platform is the Java virtual machine.

These remarks apply to the native Microsoft Windows edition. You can run the translation tools either from the IDE or from the command line.

Whether you prefer to work from the IDE, or from the command line, a little bookkeeping is required. This is done by creating a project. Each project consists of a number of source files, and a number of settings like search paths for additional Ada libraries and other dependences. Each project also has at least one target. Typically, there is a debug target, and a release target. The names of the targets indicate their purpose. At one time you compile for debugging, typically during development, at other times you compile with different settings, for example when the program is ready for release. Some (all commercial?) editions of ObjectAda permit a Java (VM) target.
\subsection{DEC Ada for VMS}
\label{66}

DEC Ada is an Ada 83 compiler for \myhref{http://en.wikipedia.org/wiki/OpenVMS}{VMS}. While “DEC Ada” is probably the name most users know, the compiler is now called “\myhref{http://h71000.www7.hp.com/commercial/ada/ada_index.html}{ HP Ada}”. It had previously been known also by names of \symbol{34}VAX Ada\symbol{34} and \symbol{34}Compaq Ada\symbol{34}.

DEC Ada uses a true library management system {\mbox{---}} so the first thing you need to do is create and activate a library:
\\

\TemplateSpaceIndent{ {}ACS {}Library {}Create {}{[}MyLibrary{]} \newline{}
 {}ACS {}Set {}Library {}{[}MyLibrary{]}}

When creating a library you already set some constraints like support for Long_Float or the available memory size. So carefully read
\\

\TemplateSpaceIndent{ {}HELP {}ACS {}Library {}Create {}*}

Then next step is to load your Ada sources into the library:
\\

\TemplateSpaceIndent{ {}ACS {}Load {}{[}Source{]}*.ada}

The sources don\textquotesingle{}t need to be perfect at this stage but syntactically correct enough for the compiler to determine the packages declared and analyze the \LaTeXBF{with} statements. Dec Ada allows you to have more than one package in one source file and you have any filename convention you like. The purpose of {\ttfamily ACS Load} is the creation of the dependency tree between the source files.

Next you compile them:
\\

\TemplateSpaceIndent{ {}ACS {}Compile {}*}

Note that compile take the package name and not the filename. The wildcard {\ttfamily *} means {\itshape all packages loaded}. The compiler automatically determines the right order for the compilation so a \myhref{http://en.wikipedia.org/wiki/make\%20\%28software\%29}{make} tool is not strictly needed.

Last but not least you link your file into an
\\

\TemplateSpaceIndent{ {}ACS {}Link {}/Executable={[}Executables{]}Main.exe {}Main}

On large systems you might want to break sources down into several libraries {\mbox{---}} in which case you also need
\\

\TemplateSpaceIndent{ {}ACS {}Merge {}/Keep {}*}

to merge the content of the current library with the library higher up the hierarchy. The larger libraries should then be created with:
\\

\TemplateSpaceIndent{ {}ACS {}Library {}Create {}/Large}

This uses a different directory layout more suitable for large libraries.
\subsubsection{DEC Ada IDE}
\label{67}

Dec Ada comes without an IDE, however the DEC \myhref{http://en.wikipedia.org/wiki/Language-Sensitive_Editor}{LSE} as well as the \myhref{http://www.vim.org/scripts/script.php?script_id=1609}{ Ada Mode} of the \myhref{http://en.wikipedia.org/wiki/Vim\%20\%28text\%20editor\%29}{Vim text editor} support DEC Ada.
\section{Compiling our Demo Source}
\label{68}

Once you have \myhref{https://sourceforge.net/project/showfiles.php?group_id=124904}{ downloaded} our example programs you might wonder how to compile them.

First you need to extract the sources. Use your favorite \myhref{http://en.wikipedia.org/wiki/ZIP\%20\%28file\%20format\%29}{zip tool} to achieve that. On extraction a directory with the same name as the filename is created. Beware: WinZip might also create a directory equaling the filename so Windows users need to be careful using the right option otherwise they end up with {\itshape wikibook-{}ada-{}1_2_0.src\textbackslash{}wikibook-{}ada-{}1_2_0}.

Once you extracted the files you will find all sources in {\itshape wikibook-{}ada-{}1_2_0/Source}. You could compile them right there. For your convenience we also provide ready made project files for the following IDEs (If you find a directory for an IDEs not named it might be in the making and not actually work).
\subsection{GNAT}
\label{69}

You will find multi-{}target GNAT Project files and a multi-{}make Makefile file in {\itshape wikibook-{}ada-{}2_0_0/GNAT}. For i686 Linux and Windows you can compile any demo using:
\\

\TemplateSpaceIndent{ {}gnat {}make {}-{}P {}{\itshape project_file}}

You can also open them inside the GPS with
\\

\TemplateSpaceIndent{ {}gps {}-{}P {}{\itshape project_file}}

For other target platform it is a bit more difficult since you need to tell the project files which target you want to create. The following options can be used:
{\bfseries
\begin{mydescription} style (\symbol{34}Debug\symbol{34}, \symbol{34}Release\symbol{34})
\end{mydescription}
}
\begin{myquote}\item{} you can define if you like a debug or release version so you can compare how the options affect size and speed.
\end{myquote}
{\bfseries
\begin{mydescription} os (\symbol{34}Linux\symbol{34}, \symbol{34}OS2\symbol{34}, \symbol{34}Windows_NT\symbol{34}, \symbol{34}VMS\symbol{34})
\end{mydescription}
}
\begin{myquote}\item{} choose your operating system. Since there is no Ada 2005 available for OS/2 don\textquotesingle{}t expect all examples to compile.
\end{myquote}
{\bfseries
\begin{mydescription} target (\symbol{34}i686\symbol{34}, \symbol{34}x86_64\symbol{34}, \symbol{34}AXP\symbol{34})
\end{mydescription}
}
\begin{myquote}\item{} choose your CPU {\mbox{---}} \symbol{34}\myhref{http://en.wikipedia.org/wiki/x86}{i686}\symbol{34} is any form of 32bit Intel or AMD CPU, \symbol{34}\myhref{http://en.wikipedia.org/wiki/x86-64}{x86_64}\symbol{34} is an 64 bit Intel or AMD CPU and if you have an \symbol{34}\myhref{http://en.wikipedia.org/wiki/DEC\%20Alpha}{AXP}\symbol{34} then you know it.
\end{myquote}

Remember to type all options as they are shown. To compile a debug version on x86-{}64 Linux you type:
\\

\TemplateSpaceIndent{ {}gnat {}make {}-{}P {}{\itshape project_file} {}-{}Xstyle=Debug {}-{}Xos=Linux {}-{}Xtarget=x86_64}

As said in the beginning there is also a {\bfseries makefile} available that will automatically determine the target used. So if you have a GNU make you can save yourself a lot of typing by using:
\\

\TemplateSpaceIndent{ {}make {}{\itshape project}}

or even use
\\

\TemplateSpaceIndent{ {}make {}{\itshape all}}

to make all examples in debug and release in one go.

Each compile is stored inside its own directory which is created in the form of {\itshape wikibook-{}ada-{}2_0_0/GNAT/{\bfseries OS}-{}{\bfseries Target}-{}{\bfseries Style}}. Empty directories are provided inside the archive.
\subsection{Rational APEX}
\label{70}

APEX uses the subsystem and view directory structure, so you will have to create those first and copy the source files into the view. After creating a view using the architecture model of your choice, use the menu option \symbol{34}Compile -{}>{} Maintenance -{}>{} Import Text Files\symbol{34}. In the Import Text Files dialog, add \symbol{34}wikibook-{}ada-{}2_0_0/Source/*.ad?\symbol{34} to select the Ada source files from the directory you originally extracted to. Apex uses the file extensions .1.ada for specs and .2.ada for bodies {\mbox{---}} don\textquotesingle{}t worry, the import text files command will change these automatically.

To link an example, select its main subprogram in the directory viewer and click the link button in the toolbar, or \symbol{34}Compile -{}>{} Link\symbol{34} from the menu. Double-{}click the executable to run it. You can use the shift-{}key modifier to bypass the link or run dialog.
\subsection{ObjectAda}
\label{71}
\subsubsection{ObjectAda command-{}line}
\label{72}

The following describes using the ObjectAda tools for Windows in a console window.

Before you can use the ObjectAda tools from the command line, make sure the {\ttfamily PATH} environment variable lists the directory containing the ObjectAda tools. Something like
\\

\TemplateSpaceIndent{ {}set {}path=\%path\%;P:\textbackslash{}Programs\textbackslash{}Aonix\textbackslash{}ObjectAda\textbackslash{}bin}

A minimal ObjectAda project can have just one source file. like the Hello World program provided in \ADAFile{hello_world_1.adb}

To build an executable from this source file, follow these steps (assuming the current directory is a fresh one and contains the above mentioned source file):

\begin{myitemize}
\item{} Register your source files:
\end{myitemize}

\\

\TemplateSpaceIndent{ {}X:\textbackslash{}some\textbackslash{}directory>{} {}adareg {}hello_world_1.adb}

This makes your sources known to the ObjectAda tools. Have a look at the file UNIT.MAP created by adareg in the current directory if you like seeing what is happening under the hood.

\begin{myitemize}
\item{} Compile the source file:
\end{myitemize}

\\

\TemplateSpaceIndent{ {}X:\textbackslash{}some\textbackslash{}directory>{} {}adacomp {}hello_world_1.adb \newline{}
 {}Front {}end {}of {}hello_world_1.adb {}succeeded {}with {}no {}errors.}

\begin{myitemize}
\item{} Build the executable program:
\end{myitemize}

\\

\TemplateSpaceIndent{ {}X:\textbackslash{}some\textbackslash{}directory>{} {}adabuild {}hello_world_1 \newline{}
 {}ObjectAda {}Professional {}Edition {}Version {}7.2.2: {}adabuild \newline{}
 {} {} {} {}Copyright {}(c) {}1997-{}2002 {}Aonix. {} {}All {}rights {}reserved. \newline{}
 {}Linking... \newline{}
 {}Link {}of {}hello {}completed {}successfully}

Notice that you specify the name of the main unit as argument to {\ttfamily adabuild}, not the name of the source file. In this case, it is {\itshape Hello_World_1} as in
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Hello_World_1 {}\LaTeXBF{is}}

More information about the tools can be found in the user guide {\itshape Using the command line interface}, installed with the ObjectAda tools.
\section{External links}
\label{73}
\begin{myitemize}
\item{} GNAT Online Documentation:
\begin{myitemize}
\item{} \myhref{http://gcc.gnu.org/onlinedocs/gcc-4.0.1/gnat_ugn_unw/}{ GNAT User\textquotesingle{}s Guide}
\end{myitemize}

\item{} DEC Ada:
\begin{myitemize}
\item{} \myhref{http://h71000.www7.hp.com/commercial/ada/ada_dap.pdf}{ Developing Ada Products on OpenVMS} (PDF)
\item{} \myhref{http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf}{ DEC Ada {\mbox{---}} Language Reference Manual} (PDF)
\item{} \myhref{http://h71000.www7.hp.com/commercial/ada/ada_rtr.pdf}{ DEC Ada {\mbox{---}} Run-{}Time Reference} (PDF)
\end{myitemize}

\end{myitemize}

\chapter{Control Statements}

\myminitoc
\label{74}

\label{75}

\label{76}\section{Conditionals}
\label{77}

Conditional clauses are blocks of code that will only execute if a particular expression (the condition) is \myhref{http://en.wikipedia.org/wiki/Truth\%20function}{true}.
\subsection{{\itshape if}-{}{\itshape else}}
\label{78}

The {\itshape if}-{}{\itshape else} statement is the simplest of the conditional statements. They are also called branches, as when the program arrives at an {\itshape if} statement during its execution, control will \symbol{34}branch\symbol{34} off into one of two or more \symbol{34}directions\symbol{34}. An {\itshape if}-{}{\itshape else} statement is generally in the following form:

\\

\TemplateSpaceIndent{ {}\LaTeXBF{if} {}{\itshape condition} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}{\itshape statement}; \newline{}
 {}\LaTeXBF{else} \newline{}
 {} {} {} {} {}{\itshape other statement}; \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{if};}

\label{79}
If the original condition is met, then all the code within the first statement is executed. The optional else section specifies an alternative statement that will be executed if the condition is false. Exact syntax will vary between programming languages, but the majority of programming languages (especially \myhref{http://en.wikibooks.org/wiki/Computer\%20Programming\%2FProcedural\%20programming}{procedural} and \myhref{http://en.wikibooks.org/wiki/Computer\%20Programming\%2FStructured\%20programming}{structured} languages) will have some form of if-{}else conditional statement built-{}in. The if-{}else statement can usually be extended to the following form:

\\

\TemplateSpaceIndent{ {}\LaTeXBF{if} {}{\itshape condition} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}{\itshape statement}; \newline{}
 {}\LaTeXBF{elsif} {}{\itshape condition} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}{\itshape other statement}; \newline{}
 {}\LaTeXBF{elsif} {}{\itshape condition} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}{\itshape other statement}; \newline{}
 {}... \newline{}
 {}\LaTeXBF{else} \newline{}
 {} {} {} {} {}{\itshape another statement}; \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{if}; {}}

\label{80}
Only one statement in the entire block will be executed. This statement will be the first one with a condition which evaluates to be true. The concept of an if-{}else-{}if structure is easier to understand with the aid of an example:

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{use} {} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}... \newline{}
 {}\LaTeXBF{type} {}Degrees {}\LaTeXBF{is} {}\LaTeXBF{new} {}Float {}\LaTeXBF{range} {}-{}273.15 {}.. {}Float\textquotesingle{}Last; \newline{}
 {}... \newline{}
 {}Temperature {}: {}Degrees; \newline{}
 {}... \newline{}
 {}\LaTeXBF{if} {}Temperature {}>{}= {}40.0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}Put_Line {}(\symbol{34}Wow!\symbol{34}); \newline{}
 {} {} {} {} {}Put_Line {}(\symbol{34}It\textquotesingle{}s {}extremely {}hot\symbol{34}); \newline{}
 {}\LaTeXBF{elsif} {}Temperature {}>{}= {}30.0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}Put_Line {}(\symbol{34}It\textquotesingle{}s {}hot\symbol{34}); \newline{}
 {}\LaTeXBF{elsif} {}Temperature {}>{}= {}20.0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}Put_Line {}(\symbol{34}It\textquotesingle{}s {}warm\symbol{34}); \newline{}
 {}\LaTeXBF{elsif} {}Temperature {}>{}= {}10.0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}Put_Line {}(\symbol{34}It\textquotesingle{}s {}cool\symbol{34}); \newline{}
 {}\LaTeXBF{elsif} {}Temperature {}>{}= {}0.0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {}Put_Line {}(\symbol{34}It\textquotesingle{}s {}cold\symbol{34}); \newline{}
 {}\LaTeXBF{else} \newline{}
 {} {} {} {} {}Put_Line {}(\symbol{34}It\textquotesingle{}s {}freezing\symbol{34}); \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{if}; {}}

\label{81}\subsection{Optimizing hints}
\label{82}

When this program executes, the computer will check all conditions in order until one of them matches its concept of truth. As soon as this occurs, the program will execute the statement immediately following the condition and continue on, without checking any other condition for truth. For this reason, when you are trying to \myhref{http://en.wikipedia.org/wiki/Optimization_\%2528computer_science\%2529}{optimize} a program, it is a good idea to sort your if-{}else conditions in descending \myhref{http://en.wikibooks.org/wiki/Probability\%2FIntroduction}{probability}. This will ensure that in the most common scenarios, the computer has to do less work, as it will most likely only have to check one or two \symbol{34}branches\symbol{34} before it finds the statement which it should execute. However, when writing programs for the first time, try not to think about this too much lest you find yourself undertaking \myhref{http://en.wikipedia.org/wiki/Premature_optimization\%23When_to_optimize}{premature optimization}.

Having said all that, you should be aware that an \myhref{http://en.wikipedia.org/wiki/Optimizing_compiler}{optimizing compiler} might rearrange your {\itshape if statement} at will when the statement in question is free from \myhref{http://en.wikipedia.org/wiki/Side-effect_\%28computer_science\%29}{side effects}. Among other techniques optimizing compilers might even apply \myhref{http://en.wikipedia.org/wiki/Jump_table}{jump tables} and \myhref{http://en.wikipedia.org/wiki/Binary_search}{binary searches}.

In Ada, conditional statements with more than one conditional do not use short-{}circuit evaluation by default. In order to mimic C/C++\textquotesingle{}s short-{}circuit evaluation, use {\ttfamily \LaTeXBF{and} \LaTeXBF{then}} or {\ttfamily \LaTeXBF{or} \LaTeXBF{else}} between the conditions.

\label{83}\subsection{{\itshape case}}
\label{84}

Often it is necessary to compare one specific variable against several constant expressions. For this kind of conditional expression the {\itshape case} statement exists. For example:

\\

\TemplateSpaceIndent{ {}\LaTeXBF{case} {}X {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{when} {}1 {}\LaTeXIdentityTemplate{=>{}} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Walk_The_Dog; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{when} {}5 {}\LaTeXIdentityTemplate{=>{}} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Launch_Nuke; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{when} {}8 {}| {}10 {}\LaTeXIdentityTemplate{=>{}} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Sell_All_Stock; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{when} {}\LaTeXBF{others} {}\LaTeXIdentityTemplate{=>{}} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Self_Destruct; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{case};}

The subtype of X must be a discrete type, i.e. an enumeration or integer type.

In Ada, one advantage of the case statement is that the compiler will check the coverage of the choices, that is, all the values of the subtype of variable X must be present or a default branch \LaTeXBF{when} \LaTeXBF{others} must specify what to do in the remaining cases.

\label{85}\section{Unconditionals}
\label{86}

Unconditionals let you change the flow of your program without a condition. You should be careful when using unconditionals. Often they make programs difficult to understand. Read \mylref{86}{Isn\textquotesingle{}t goto evil?} for more information.
\subsection{{\itshape return}}
\label{87}

End a function and return to the calling procedure or function.

For procedures:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{return};}

For functions:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{return} {}Value;}

\label{88}\subsection{{\itshape goto}}
\label{89}

{\itshape Goto} transfers control to the statement after the label.

\\

\TemplateSpaceIndent{ {} {} {} {}\LaTeXBF{goto} {}Label; \newline{}
 {} \newline{}
 {} {} {} {}Dont_Do_Something; \newline{}
 {} \newline{}
 {}\LaTeXIdentityTemplate{<{}<{}}Label\LaTeXIdentityTemplate{>{}>{}} \newline{}
 {} {} {} {}...}

\label{90}\subsubsection{Isn\textquotesingle{}t {\itshape goto} evil?}
\label{91}

One often hears that {\itshape goto} is {\bfseries evil} and one should avoid using {\itshape goto}. But it is often overlooked that any return which is not the last statement inside a procedure or function is also an unconditional statement {\mbox{---}} a {\itshape goto} in disguise. There is an important difference though: a return is a forward only use of {\itshape goto}. Exceptions are also a type of goto statement; worse, they need not specify where they are going to!

Therefore if you have functions and procedures with more than one {\itshape return} statement you can just as well use {\itshape goto}. When it comes down to readability the following two samples are almost the same:

\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Use_Return {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Do_Something; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}Test {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return}; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} \newline{}
 {} {} {} {}Do_Something_Else; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{return}; \newline{}
 {}\LaTeXBF{end} {}Use_Return;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Use_Goto {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Do_Something\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}Test {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{goto} {}Exit_Use_Goto\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}Do_Something_Else\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXIdentityTemplate{<{}<{}}Exit_Use_Goto\LaTeXIdentityTemplate{>{}>{}} \newline{}
 {} {} {} {}\LaTeXBF{return}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}Use_Goto\LaTeXIdentityTemplate{;}}

\label{92}
Because the use of a {\itshape goto} needs the declaration of a label, the {\itshape goto} is in fact twice as readable than the use of {\itshape return}. So if readability is your concern and not a strict \symbol{34}don\textquotesingle{}t use {\itshape goto}\symbol{34} programming rule then you should rather use {\itshape goto} than multiple {\itshape return}s. Best, of course, is the structured approach where neither {\itshape goto} nor multiple {\itshape returns} are needed:

\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Use_If {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Do_Something; \newline{}
 {} {} {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}\LaTeXBF{not} {}Test {}\LaTeXBF{then} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Do_Something_Else; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{return}; \newline{}
 {}\LaTeXBF{end} {}Use_If;}

\label{93}\section{Loops}
\label{94}

Loops allow you to have a set of statements repeated over and over again.
\subsection{Endless Loop}
\label{95}

The endless loop is a loop which never ends and the statements inside are repeated forever. Never is meant as a relative term here {\mbox{---}} if the computer is switched off then even endless loops will end very abruptly.

\\

\TemplateSpaceIndent{ {}{\itshape Endless_Loop} {}: \newline{}
 {} {} {} {}\LaTeXBF{loop} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Do_Something; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}{\itshape Endless_Loop};}

The loop name (in this case, \symbol{34}Endless_Loop\symbol{34}) is an optional feature of Ada. Naming loops is nice for readability but not strictly needed. Loop names are
useful though if the program should jump out of an inner loop, see below.

\label{96}\subsection{Loop with condition at the beginning}
\label{97}

This loop has a condition at the beginning. The statements are repeated as long as the condition is met. If the condition is not met at the very beginning then the statements inside the loop are never executed.

\\

\TemplateSpaceIndent{ {}{\itshape While_Loop} {}: \newline{}
 {} {} {} {}\LaTeXBF{while} {}X {}<{}= {}5 {}\LaTeXBF{loop} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}X {}:= {}Calculate_Something; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}{\itshape While_Loop};}

\label{98}\subsection{Loop with condition at the end}
\label{99}

This loop has a condition at the end and the statements are repeated until the condition is met. Since the check is at the end the statements are at least executed once.

\\

\TemplateSpaceIndent{ {}{\itshape Until_Loop} {}: \newline{}
 {} {} {} {}\LaTeXBF{loop} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}X {}:= {}Calculate_Something; \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{exit} {}Until_Loop {}\LaTeXBF{when} {}X {}>{} {}5; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}{\itshape Until_Loop};}

\label{100}\subsection{Loop with condition in the middle}
\label{101}

Sometimes you need to first make a calculation and exit the loop when a certain criterion is met. However when the criterion is not met there is something else to be done. Hence you need a loop where the exit condition is in the middle.

\\

\TemplateSpaceIndent{ {}{\itshape Exit_Loop} {}: \newline{}
 {} {} {} {}\LaTeXBF{loop} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}X {}:= {}Calculate_Something; \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{exit} {}Exit_Loop {}\LaTeXBF{when} {}X {}>{} {}5; \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Do_Something {}(X); \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {} {}{\itshape Exit_Loop};}

In Ada the {\bfseries exit} condition can be combined with any other loop statement as well. You can also have more than one {\bfseries exit} statement. You can also exit a named outer loop if you have several loops inside each other.

\label{102}\subsection{{\itshape for} loop}
\label{103}

Quite often one needs a loop where a specific variable is counted from a given start value up or down to a specific end value. You could use the \mylref{103}{while} loop here {\mbox{---}} but since this is a very common loop there is an easier syntax available.

\\

\TemplateSpaceIndent{ {}{\itshape For_Loop} {}: \newline{}
 {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}Integer {}\LaTeXBF{range} {}1 {}.. {}10 {}\LaTeXBF{loop} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Do_Something {}(I) \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}{\itshape For_Loop};}

You don\textquotesingle{}t have to declare both type and range as seen in the example. If you leave out the type then the compiler will determine the type by context and leave out the range then the loop will iterate over every valid value for the type given.

As always with Ada: when \symbol{34}determine by context\symbol{34} gives two or more possible options then an error will be displayed and then you have to name the type to be used. Ada will only do \symbol{34}guess-{}works\symbol{34} when it is safe to do so.

\label{104}\subsubsection{{\itshape for} loop on arrays}
\label{105}

Another very common situation is the need for a loop which iterates over every element of an array. The following sample code shows you how to achieve this:

\\

\TemplateSpaceIndent{ {}{\itshape Array_Loop} {}: \newline{}
 {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}X\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}X {}(I) {}:= {}Get_Next_Element; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}{\itshape Array_Loop};}

With X being an array. Note: This syntax is mostly used on arrays {\mbox{---}} hence the name {\mbox{---}} but will also work with other types when a full iteration is needed.

Unlike other loop counters, the loop counter i, in the for loop statement the value cannot be changed. The following is illegal.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{..\ensuremath{\text{ }}}\DecValTok{10}\ensuremath{\text{ }}\KeywordTok{loop}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}:=\ensuremath{\text{ }}i\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{;}\newline
\KeywordTok{end\ensuremath{\text{ }}loop}\NormalTok{;}\newline
\end{Highlighting}
\end{Shaded}

Also the declaration of the loop counter ceases after the body of the loop.
\subsubsection{Working Demo}
\label{106}

The following Demo shows how to iterate over every element of an integer type.
\\

\TemplateSpaceIndent{ {}\ADAFile{range_1.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Range_1 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Range_Type {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}5 {}.. {}10; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}I_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {} {}\LaTeXIdentityTemplate{Ada} {}(Range_Type); \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{for} {}A {}\LaTeXBF{in} {}Range_Type {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}I_IO.Put {}(Item {} {}=>{} {}A, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {}3, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{if} {}A {}<{} {}Range_Type\textquotesingle{}Last {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}T_IO.Put {}(\symbol{34},\symbol{34}); \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {} {}T_IO.New_Line; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {}\LaTeXBF{end} {}Range_1;}

\section{See also}
\label{107}
\subsection{Wikibook}
\label{108} 	
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{109}

\begin{myitemize}
\item{} \AdaRM{5}{3}{If Statements}
\item{} \AdaRM{5}{4}{Case Statements}
\item{} \AdaRM{5}{5}{Loop Statements}
\item{} \AdaRM{5}{6}{Block Statements}
\item{} \AdaRM{5}{7}{Exit Statements}
\item{} \AdaRM{5}{8}{Goto Statements}
\item{} \AdaRM{6}{5}{Return Statements}
\end{myitemize}

\chapter{Type System}

\myminitoc
\label{110}

\label{111}

Ada\textquotesingle{}s type system allows the programmer to construct powerful abstractions that represent the real world, and to provide valuable information to the compiler, so that the compiler can find many logic or design errors before they become bugs. It is at the heart of the language, and good Ada programmers learn to use it to great advantage. Four principles govern the type system:

\begin{myitemize}
\item{} {\bfseries Strong typing}: types are incompatible with one another, so it is not possible to mix apples and oranges. There are, however, ways to convert between types.
\item{} {\bfseries Static typing}: type checked while compiling, this allows type errors to be found earlier.
\item{} {\bfseries Abstraction}: types represent the real world or the problem at hand; not how the computer represents the data internally. There are ways to specify exactly how a type must be represented at the bit level, but we will defer that discussion to another chapter.
\item{} {\bfseries Name equivalence}, as opposed to {\itshape structural equivalence} used in most other languages. Two types are compatible if and only if they have the same name; {\itshape not} if they just happen to have the same size or bit representation. You can thus declare two integer types with the same ranges that are totally incompatible, or two record types with exactly the same components, but which are incompatible.
\end{myitemize}

Types are incompatible with one another. However, each type can have any number of {\itshape subtypes}, which are compatible with one another, and with their base type.
\section{Predefined types}
\label{112}

There are several predefined types, but most programmers prefer to define their own, application-{}specific types. Nevertheless, these predefined types are very useful as interfaces between libraries developed independently. The predefined library, obviously, uses these types too.

These types are predefined in the \LaTeXIdentityTemplate{Standard} package:{\bfseries
\begin{mydescription} Integer
\end{mydescription}
}
\begin{myquote}\item{} This type covers at least the range {$-2^{15}+1$} .. {$+2^{15}-1$} (RM \AdaRMThree{3}{5}{4}{(21)}). The Standard also defines Natural and Positive subtypes of this type.
\end{myquote}

\LaTeXNullTemplate{}{\bfseries
\begin{mydescription} Float
\end{mydescription}
}
\begin{myquote}\item{} There is only a very weak implementation requirement on this type (RM \AdaRMThree{3}{5}{7}{(14)}); most of the time you would define your own floating-{}point types, and specify your precision and range requirements.
\end{myquote}
{\bfseries
\begin{mydescription} Duration
\end{mydescription}
}
\begin{myquote}\item{} A \mylref{173}{fixed point type} used for timing. It represents a period of time in seconds (RM \AdaRM{A}{1}{(43)}).
\end{myquote}
{\bfseries
\begin{mydescription} Character
\end{mydescription}
}
\begin{myquote}\item{} A special form of \mylref{157}{Enumerations}. There are three predefined kinds of character types: 8-{}bit characters (called Character), 16-{}bit characters (called Wide_Character), and 32-{}bit characters (Wide_Wide_Character). Character has been present since the first version of the language (\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%2083}{Ada 83}), Wide_Character was added in \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%2095}{Ada 95}, while the type Wide_Wide_Character is available with \mylref{406}{Ada 2005}.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{259}{String}
\end{mydescription}
}
\begin{myquote}\item{} Three indefinite \mylref{183}{array types}, of Character, Wide_Character, and Wide_Wide_Character respectively. The standard library contains packages for handling strings in three variants: fixed length (\LaTeXIdentityTemplate{Ada}), with varying length below a certain upper bound (\LaTeXIdentityTemplate{Ada}), and unbounded length (\LaTeXIdentityTemplate{Ada}). Each of these packages has a Wide_ and a Wide_Wide_ variant.
\end{myquote}
{\bfseries
\begin{mydescription} Boolean
\end{mydescription}
}
\begin{myquote}\item{} A Boolean in Ada is an \mylref{157}{Enumeration} of False and True with special semantics.
\end{myquote}

Packages \LaTeXIdentityTemplate{System} and \LaTeXIdentityTemplate{System} predefine some types which are primarily useful for low-{}level programming and interfacing to hardware.
{\bfseries
\begin{mydescription} System.Address
\end{mydescription}
}
\begin{myquote}\item{} An address in memory.
\end{myquote}
{\bfseries
\begin{mydescription} System.Storage_Elements.Storage_Offset
\end{mydescription}
}
\begin{myquote}\item{} An offset, which can be added to an address to obtain a new address. You can also subtract one address from another to get the offset between them. Together, Address, Storage_Offset and their associated subprograms provide for address arithmetic.
\end{myquote}
{\bfseries
\begin{mydescription} System.Storage_Elements.Storage_Count
\end{mydescription}
}
\begin{myquote}\item{} A subtype of Storage_Offset which cannot be negative, and represents the memory size of a data structure (similar to C\textquotesingle{}s {\ttfamily size_t}).
\end{myquote}
{\bfseries
\begin{mydescription} System.Storage_Elements.Storage_Element
\end{mydescription}
}
\begin{myquote}\item{} In most computers, this is a byte. Formally, it is the smallest unit of memory that has an address.
\end{myquote}
{\bfseries
\begin{mydescription} System.Storage_Elements.Storage_Array
\end{mydescription}
}
\begin{myquote}\item{} An array of Storage_Elements without any meaning, useful when doing raw memory access.
\end{myquote}

\section{The Type Hierarchy}
\label{113}

Types are organized hierarchically. A type inherits properties from types above it in the hierarchy. For example, all scalar types (integer, enumeration, modular, fixed-{}point and floating-{}point types) have \mylref{590}{operators} \symbol{34}\LaTeXTT{<{}}\symbol{34}, \symbol{34}\LaTeXTT{>{}}\symbol{34} and arithmetic operators defined for them, and all discrete types can serve as array indexes.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/1.png}
\end{center}
\raggedright{}\myfigurewithcaption{1}{Ada type hierarchy}
\end{minipage}\vspace{0.75cm}

Here is a broad overview of each category of types; please follow the links for detailed explanations. Inside parenthesis there are equivalences in C and Pascal for readers familiar with those languages.
{\bfseries
\begin{mydescription} \mylref{145}{Signed Integers} {\small }({\bfseries int}, {\bfseries INTEGER}){\small }
\end{mydescription}
}
\begin{myquote}\item{} Signed Integers are defined via the \mylref{145}{range} of values needed.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{151}{Unsigned Integers} {\small }({\bfseries unsigned}, {\bfseries CARDINAL}){\small }
\end{mydescription}
}
\begin{myquote}\item{} Unsigned Integers are called \mylref{151}{Modular Types}. Apart from being unsigned they also have wrap-{}around functionality.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{157}{Enumerations} {\small }({\bfseries enum}, {\bfseries char}, {\bfseries bool}, {\bfseries BOOLEAN}){\small }
\end{mydescription}
}
\begin{myquote}\item{} Ada \mylref{157}{Enumeration} types are a separate type family.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{167}{Floating point} {\small }({\bfseries float}, {\bfseries double}, {\bfseries REAL}){\small }
\end{mydescription}
}
\begin{myquote}\item{} Floating point types are defined by the \mylref{167}{digits} needed, the relative error bound.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{173}{Ordinary and Decimal Fixed Point} {\small }({\bfseries DECIMAL}){\small }
\end{mydescription}
}
\begin{myquote}\item{} Fixed point types are defined by their \mylref{173}{delta}, the absolute error bound.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{183}{Arrays} {\small }({\bfseries {[} {]}}, {\bfseries ARRAY {[} {]} OF}, {\bfseries STRING}){\small }
\end{mydescription}
}
\begin{myquote}\item{} Arrays with both compile-{}time and run-{}time determined size are supported.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{201}{Record} {\small }({\bfseries struct}, {\bfseries class}, {\bfseries RECORD OF}){\small }
\end{mydescription}
}
\begin{myquote}\item{} A {\bfseries record} is a \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes\%23List\%20of\%20types}{composite type} that groups one or more fields.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{220}{Access} {\small }({\bfseries *}, {\bfseries \^{}}, {\bfseries POINTER TO}){\small }
\end{mydescription}
}
\begin{myquote}\item{} Ada\textquotesingle{}s \mylref{220}{Access} types may be more than just a simple memory address.
\end{myquote}
{\bfseries
\begin{mydescription} \mylref{345}{Task \& Protected} {\small }(no equivalence in C or Pascal){\small }
\end{mydescription}
}
\begin{myquote}\item{} Task and Protected types allow the control of concurrency
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Finterface}{Interfaces} {\small }(no equivalence in C or Pascal){\small }
\end{mydescription}
}
\begin{myquote}\item{} New in Ada 2005, these types are similar to the Java interfaces.
\end{myquote}

\subsection{Classification of Types}
\label{114}

The types of this hierarchy can be classified as follows.

{\bfseries Specific vs. Class-{}wide}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}... {} {}-{}-{} {}specific \newline{}
 {} {} {}T\textquotesingle{}Class {} {} {} {} {} {}-{}-{} {}class-{}wide}

Operations of specific types are {\itshape non-{}dispatching}, those on class-{}wide types are {\itshape dispatching}.

New types can be declared by {\itshape deriving} from specific types; primitive operations are {\itshape inherited} by derivation. You cannot derive from class-{}wide types.

{\bfseries Constrained vs. Unconstrained}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}I {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}constrained \newline{}
 {}\LaTeXBF{type} {}AC {}\LaTeXBF{is} {}\LaTeXBF{array} {}(1 {}.. {}10) {}\LaTeXBF{of} {}... {} {}-{}-{} {}constrained}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}AU {}\LaTeXBF{is} {}\LaTeXBF{array} {}(I {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}... {} {} {} {} {} {} {} {} {} {}-{}-{} {}unconstrained \newline{}
 {}\LaTeXBF{type} {}R {}(X: {}Discriminant {}{[}:= {}Default{]}) {}\LaTeXBF{is} {}... {} {}-{}-{} {}unconstrained}

By giving a {\itshape constraint} to an unconstrained subtype, a subtype or object becomes constrained:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}RC {}\LaTeXBF{is} {}R {}(Value); {} {}-{}-{} {}constrained {}subtype {}of {}R \newline{}
 {}OC: {}R {}(Value); {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}constrained {}object {}of {}anonymous \newline{}
 {}constrained {}subtype {}of {}R \newline{}
 {}OU: {}R; {}-{}-{} {}unconstrained {}object}

Declaring an unconstrained object is only possible if a default value is given in the type declaration above. The language does not specify how such objects are allocated. GNAT allocates the maximum size, so that size changes that might occur with discriminant changes present no problem. Another possibility is implicit dynamic allocation on the heap and deallocation followed be a re-{}allocation when the size changes.

{\bfseries Definite vs. Indefinite}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}I {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; {}-{}-{} {}definite \newline{}
 {}\LaTeXBF{type} {}RD {}(X: {}Discriminant {}:= {}Default) {}\LaTeXBF{is} {}... {} {}-{}-{} {}definite}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}T {}(<{}>{}) {}\LaTeXBF{is} {}... {}-{}-{} {}indefinite \newline{}
 {}\LaTeXBF{type} {}AU {}\LaTeXBF{is} {}\LaTeXBF{array} {}(I {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}... {} {}-{}-{} {}indefinite \newline{}
 {}\LaTeXBF{type} {}RI {}(X: {}Discriminant) {}\LaTeXBF{is} {}... {} {} {} {} {} {}-{}-{} {}indefinite}

Definite subtypes allow the declaration of objects without initial value, since objects of definite subtypes have constraints that are known at creation-{}time. Object declarations of indefinite subtypes need an initial value to supply a constraint; they are then constrained by the constraint delivered by the initial value.
\\

\TemplateSpaceIndent{ {}OT: {}T {} {}:= {}Expr; {}-{}-{} {}some {}initial {}expression \newline{}
 {}(object, {}function {}call, {}etc.) \newline{}
 {}OA: {}AU {}:= {}(3 {}=>{} {}10, {}5 {}=>{} {}2, {}4 {}=>{} {}4); {} {}-{}-{} {}index {}range {}is {}now {}3 {}.. {}5 \newline{}
 {}OR: {}RI {}:= {}Expr; {}-{}-{} {}again {}some {}initial \newline{}
 {}expression {}as {}above}

{\bfseries Unconstrained vs. Indefinite}

Note that unconstrained subtypes are not necessarily indefinite as can be seen above with RD: it is a definite unconstrained subtype.
\section{Concurrency Types}
\label{115}

The Ada language uses types for one more purpose in addition to classifying data
+ operations. The type system integrates concurrency (threading, parallelism).
Programmers will use types for expressing the concurrent
threads of control of their programs.

The core pieces of this part of the type system, the {\bfseries task} types and
the {\bfseries protected} types are explained in greater depth in
\mylref{345}{a section on tasking}.
\section{Limited Types}
\label{116}

Limiting a type means disallowing assignment.
The {\mbox{\textquotedblleft}}concurrency types{\mbox{$\text{\textquotedblright}$}} described above are always limited.
Programmers can define their own types to be limited, too, like this:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}\LaTeXBF{limited} {}{\mbox{\ldots}};}

(The ellipsis stands for \LaTeXBF{private}, or for a \LaTeXBF{record} definition,
see the corresponding subsection on this page.)
A limited type also doesn\textquotesingle{}t have
an equality operator unless the programmer defines one.

You can learn more in the \mylref{250}{limited types} chapter.
\section{Defining new types and subtypes}
\label{117}

You can define a new type with the following syntax:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}T {}\LaTeXBF{is}...}

followed by the description of the type, as explained in detail in each category of type.

Formally, the above declaration creates a type and its first {\itshape subtype} named {\ttfamily T}. The type itself, correctly called the \symbol{34}type of T\symbol{34}, is anonymous; the RM refers to it as {\ttfamily {\itshape T}} (in italics), but often speaks sloppily about the type T. But this is an academic consideration; for most purposes, it is sufficient to think of {\ttfamily T} as a type.
For scalar types, there is also a base type called {\ttfamily T\textquotesingle{}Base}, which encompasses all values of T.

For signed integer types, the type of T comprises the (complete) set of mathematical integers. The base type is a certain hardware type, symmetric around zero (except for possibly one extra negative value), encompassing all values of T.

As explained above, all types are incompatible; thus:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Integer_1 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {}\LaTeXBF{type} {}Integer_2 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {}A {}: {}Integer_1 {}:= {}8; \newline{}
 {}B {}: {}Integer_2 {}:= {}A; {}\ADACOM{illegal!}}

is illegal, because {\ttfamily Integer_1} and {\ttfamily Integer_2} are different and incompatible types. It is this feature which allows the compiler to detect logic errors at compile time, such as adding a file descriptor to a number of bytes, or a length to a weight. The fact that the two types have the same range does not make them compatible: this is {\itshape name equivalence} in action, as opposed to structural equivalence. (Below, we will see how you can convert between incompatible types; there are strict rules for this.)
\subsection{Creating subtypes}
\label{118}

You can also create new subtypes of a given type, which will be compatible with each other, like this:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Integer_1 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {}\LaTeXBF{subtype} {}Integer_2 {}\LaTeXBF{is} {}Integer_1 {} {} {} {} {} {}\LaTeXBF{range} {}7 {}.. {}11; {} {}\ADACOM{bad} \newline{}
 {}\LaTeXBF{subtype} {}Integer_3 {}\LaTeXBF{is} {}Integer_1\textquotesingle{}Base {}\LaTeXBF{range} {}7 {}.. {}11; {} {}\ADACOM{OK} \newline{}
 {}A {}: {}Integer_1 {}:= {}8; \newline{}
 {}B {}: {}Integer_3 {}:= {}A; {}\ADACOM{OK}}

The declaration of {\ttfamily Integer_2} is bad because the constraint {\ttfamily 7 .. 11} is not compatible with {\ttfamily Integer_1}; it raises {\ttfamily Contraint_Error} at subtype elaboration time.

{\ttfamily Integer_1} and {\ttfamily Integer_3} are compatible because they are both subtypes of the same type, namely {\ttfamily Integer_1\textquotesingle{}Base}.

It is not necessary that the subtype ranges overlap, or be included in one another. The compiler inserts a run-{}time range check when you assign A to B; if the value of A, at that point, happens to be outside the range of {\ttfamily Integer_3}, the program raises {\ttfamily Constraint_Error}.

There are a few predefined subtypes which are very useful:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}Natural {} {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}0 {}.. {}Integer\textquotesingle{}Last; \newline{}
 {}\LaTeXBF{subtype} {}Positive {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}1 {}.. {}Integer\textquotesingle{}Last;}

\subsection{Derived types}
\label{119}

A derived type is a new, full-{}blown type created from an existing one. Like any other type, it is incompatible with its parent; however, it inherits the primitive operations defined for the parent type.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Integer_1 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {}\LaTeXBF{type} {}Integer_2 {}\LaTeXBF{is} {}\LaTeXBF{new} {}Integer_1 {}\LaTeXBF{range} {}2 {}.. {}8; \newline{}
 {}A {}: {}Integer_1 {}:= {}8; \newline{}
 {}B {}: {}Integer_2 {}:= {}A; {}\ADACOM{illegal!}}

Here both types are discrete; it is mandatory that the range of the derived type be included in the range of its parent. Contrast this with subtypes. The reason is that the derived type inherits the primitive operations defined for its parent, and these operations assume the range of the parent type. Here is an illustration of this feature:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Derived_Types {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Pak {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Integer_1 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{procedure} {}P {}(I: {}\LaTeXBF{in} {}Integer_1); {}\ADACOM{primitive operation, assumes 1 .. 10} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Integer_2 {}\LaTeXBF{is} {}\LaTeXBF{new} {}Integer_1 {}\LaTeXBF{range} {}8 {}.. {}10; {}\ADACOM{must not break P\textquotesingle{}s assumption} \newline{}
 {} {} {} {} {} {} {}\ADACOM{procedure P (I: in Integer_2); inherited P implicitly defined here} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Pak; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}\LaTeXBF{body} {}Pak {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\ADACOM{omitted} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Pak; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{use} {}Pak; \newline{}
 {} {} {} {}A: {}Integer_1 {}:= {}4; \newline{}
 {} {} {} {}B: {}Integer_2 {}:= {}9; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {} {}P {}(B); {}\ADACOM{OK, call the inherited operation} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Derived_Types;}

When we call {\ttfamily P (B)}, the parameter B is converted to {\ttfamily Integer_1}; this conversion of course passes since the set of acceptable values for the derived type (here, 8 .. 10) must be included in that of the parent type (1 .. 10). Then P is called with the converted parameter.

Consider however a variant of the example above:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Derived_Types {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{package} {}Pak {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{type} {}Integer_1 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {} {} {} {} {}\LaTeXBF{procedure} {}P {}(I: {}\LaTeXBF{in} {}Integer_1; {}J: {}\LaTeXBF{out} {}Integer_1); \newline{}
 {} {} {} {} {}\LaTeXBF{type} {}Integer_2 {}\LaTeXBF{is} {}\LaTeXBF{new} {}Integer_1 {}\LaTeXBF{range} {}8 {}.. {}10; \newline{}
 {} {} {}\LaTeXBF{end} {}Pak; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{package} {}\LaTeXBF{body} {}Pak {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{procedure} {}P {}(I: {}\LaTeXBF{in} {}Integer_1; {}J: {}\LaTeXBF{out} {}Integer_1) {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}J {}:= {}I {}-{} {}1; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}P; \newline{}
 {} {} {}\LaTeXBF{end} {}Pak; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{use} {}Pak; \newline{}
 {} \newline{}
 {} {} {}A: {}Integer_1 {}:= {}4; {} {}X: {}Integer_1; \newline{}
 {} {} {}B: {}Integer_2 {}:= {}8; {} {}Y: {}Integer_2; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {}P {}(A, {}X); \newline{}
 {} {} {}P {}(B, {}Y); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Derived_Types;}

When {\ttfamily P (B, Y)} is called, both parameters are converted to {\ttfamily Integer_1}. Thus the range check on J (7) in the body of P will pass. However on return parameter Y is converted back to {\ttfamily Integer_2} and the range check on Y will of course fail.

With the above in mind, you will see why in the following program Constraint_Error will be called at run time.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Derived_Types {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{package} {}Pak {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{type} {}Integer_1 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {} {} {} {} {}\LaTeXBF{procedure} {}P {}(I: {}\LaTeXBF{in} {}Integer_1; {}J: {}\LaTeXBF{out} {}Integer_1); \newline{}
 {} {} {} {} {}\LaTeXBF{type} {}Integer_2 {}\LaTeXBF{is} {}\LaTeXBF{new} {}Integer_1\textquotesingle{}Base {}\LaTeXBF{range} {}8 {}.. {}12; \newline{}
 {} {} {}\LaTeXBF{end} {}Pak; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{package} {}\LaTeXBF{body} {}Pak {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{procedure} {}P {}(I: {}\LaTeXBF{in} {}Integer_1; {}J: {}\LaTeXBF{out} {}Integer_1) {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}J {}:= {}I {}-{} {}1; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}P; \newline{}
 {} {} {}\LaTeXBF{end} {}Pak; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{use} {}Pak; \newline{}
 {} \newline{}
 {} {} {}B: {}Integer_2 {}:= {}11; {} {}Y: {}Integer_2; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {}P {}(B, {}Y); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Derived_Types;}

\section{Subtype categories}
\label{120}

Ada supports various categories of subtypes which have different abilities. Here is an overview in alphabetical order.
\subsection{Anonymous subtype}
\label{121}

A subtype which does not have a name assigned to it. Such a subtype is created with a variable declaration:
\\

\TemplateSpaceIndent{ {}X {}: {}String {}(1 {}.. {}10) {}:= {}(\LaTeXBF{others} {}=>{} {}\textquotesingle{} {}\textquotesingle{});}

Here, (1 .. 10) is the constraint. This variable declaration is equivalent to:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}Anonymous_String_Type {}\LaTeXBF{is} {}String {}(1 {}.. {}10); \newline{}
 {} \newline{}
 {}X {}: {}Anonymous_String_Type {}:= {}(\LaTeXBF{others} {}=>{} {}\textquotesingle{} {}\textquotesingle{});}

\subsection{Base type}
\label{122}

In Ada, all types are \mylref{142}{anonymous} and only subtypes may be \mylref{126}{named}.
For scalar types, there is a special subtype of the anonymous type, called the {\itshape base type}, which is nameable with the \textquotesingle{}\LaTeXIT{Base} attribute.
The base type comprises all values of the {\itshape first subtype}. Some examples:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Int {}\LaTeXBF{is} {}\LaTeXBF{range} {}0 {}.. {}100;}

The base type {\ttfamily Int\textquotesingle{}Base} is a hardware type selected by the compiler that comprises the values of {\ttfamily Int}. Thus it may have the range -{}27 .. 27-{}1 or -{}215 .. 215-{}1 or any other such type.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Enum {} {}\LaTeXBF{is} {}(A, {}B, {}C, {}D); \newline{}
 {} {}\LaTeXBF{type} {}Short {}\LaTeXBF{is} {}\LaTeXBF{new} {}Enum {}\LaTeXBF{range} {}A {}.. {}C;}

{\ttfamily Enum\textquotesingle{}Base} is the same as {\ttfamily Enum}, but {\ttfamily Short\textquotesingle{}Base} also holds the literal {\ttfamily D}.
\subsection{Constrained subtype}
\label{123}

A subtype of an \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23indefinite_subtype}{indefinite subtype} that adds constraints. The following example defines a 10 character string sub-{}type.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{subtype} {}String_10 {}\LaTeXBF{is} {}String {}(1 {}.. {}10);}

You cannot partially constrain an unconstrained subtype:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}My_Array {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Integer {}\LaTeXBF{range} {}<{}>{}, {}Integer {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Some_Type; \newline{}
 {} \newline{}
 {} {}-{}-{} {}\LaTeXBF{subtype} {}Constr {}\LaTeXBF{is} {}My_Array {}(1 {}.. {}10, {}Integer {}\LaTeXBF{range} {}<{}>{}); {} {}illegal \newline{}
 {} \newline{}
 {} {}\LaTeXBF{subtype} {}Constr {}\LaTeXBF{is} {}My_Array {}(1 {}.. {}10, {}-{}100 {}.. {}200);}

Constraints for all indices must be given, the result is necessarily a \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23definite_subtype}{definite subtype}.
\subsection{Definite subtype}
\label{124}

A \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23definite_subtype}{definite subtype} is a subtype whose size is known at compile-{}time. All subtypes which are not \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23indefinite_subtype}{indefinite subtypes} are, by definition, \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23definite_subtype}{definite subtypes}.

Objects of definite subtypes may be declared without additional constraints.
\subsection{Indefinite subtype}
\label{125}

An {\bfseries indefinite subtype} is a subtype whose size is not known at compile-{}time but is dynamically calculated at run-{}time. An indefinite subtype does not by itself provide enough information to create an object; an additional constraint or explicit initialization expression is necessary in order to calculate the actual size and therefore create the object.
\\

\TemplateSpaceIndent{ {}X {}: {}String {}:= {}\symbol{34}This {}is {}a {}string\symbol{34};}

X is an object of the indefinite (sub)type String. Its constraint is derived implicitly from its initial value. X may change its value, but not its bounds.

It should be noted that it is not necessary to initialize the object from a literal. You can also use a function. For example:
\\

\TemplateSpaceIndent{ {}X {}: {}String {}:= {}Ada.Command_Line.Argument {}(1);}

This statement reads the first command-{}line argument and assigns it to X.
\subsection{Named subtype}
\label{126}

A subtype which has a name assigned to it. “First subtypes” are created with the keyword \LaTeXBF{type} (remember that types are always anonymous, the name in a type declaration is the name of the first subtype), others with the keyword \LaTeXBF{subtype}. For example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Count_To_Ten {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10;}

Count_to_Ten is the first subtype of a suitable integer base type.
However, if you would like to use this as an index constraint on String, the following declaration is illegal:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}Ten_Characters {}\LaTeXBF{is} {}String {}(Count_to_Ten);}

This is because String has Positive as index, which is a subtype of Integer (these declarations are taken from package Standard):
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}Positive {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}1 {}.. {}Integer\textquotesingle{}Last; \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}String {}\LaTeXBF{is} {}(Positive {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Character;}

So you have to use the following declarations:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}Count_To_Ten {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {}\LaTeXBF{subtype} {}Ten_Characters {}\LaTeXBF{is} {}String {}(Count_to_Ten);}

Now Ten_Characters is the name of that subtype of String which is constrained to Count_To_Ten.
You see that posing constraints on types versus subtypes has very different effects.
\subsection{Unconstrained subtype}
\label{127}

A subtype of an indefinite subtype that does not add a constraint only introduces a new name for the original subtype.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{subtype} {}My_String {}\LaTeXBF{is} {}String;}

{\ttfamily My_String} and {\ttfamily String} are interchangeable.

\section{Qualified expressions}
\label{128}

In most cases, the compiler is able to infer the type of an expression; for example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Enum {}\LaTeXBF{is} {}(A, {}B, {}C); \newline{}
 {}E {}: {}Enum {}:= {}A;}

Here the compiler knows that {\ttfamily A} is a value of the type Enum. But consider:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Bad {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Enum_1 {}\LaTeXBF{is} {}(A, {}B, {}C); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}P {}(E {}: {}\LaTeXBF{in} {}Enum_1) {}\LaTeXBF{is}... {}\ADACOM{omitted} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Enum_2 {}\LaTeXBF{is} {}(A, {}X, {}Y, {}Z); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}P {}(E {}: {}\LaTeXBF{in} {}Enum_2) {}\LaTeXBF{is}... {}\ADACOM{omitted} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}P {}(A); {}\ADACOM{illegal: ambiguous} \newline{}
 {}\LaTeXBF{end} {}Bad;}

The compiler cannot choose between the two versions of P; both would be equally valid. To remove the ambiguity, you use a {\itshape qualified expression}:
\\

\TemplateSpaceIndent{ {} {} {} {}P {}(Enum_1\textquotesingle{}(A)); {}\ADACOM{OK}}

As seen in the following example, this syntax is often used when creating new objects. If you try to compile the example, it will fail with a compilation error since the compiler will determine that 256 is not in range of Byte.
\\

\TemplateSpaceIndent{ {}\ADAFile{convert_evaluate_as.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Convert_Evaluate_As {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Byte {} {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{mod} {}2**8; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Byte_Ptr {}\LaTeXBF{is} {}\LaTeXBF{access} {}Byte; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}M_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Byte); \newline{}
 {} \newline{}
 {} {} {} {}A {}: {}\LaTeXBF{constant} {}Byte_Ptr {}:= {}\LaTeXBF{new} {}Byte\textquotesingle{}(256); \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}A {}= {}\symbol{34}); \newline{}
 {} {} {} {}M_IO.Put {}(Item {} {}=>{} {}A.all, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {} {}5, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {}\LaTeXBF{end} {}Convert_Evaluate_As;}

\section{Type conversions}
\label{129}

Data do not always come in the format you need them. You must, then, face the task of converting them. As a true multi-{}purpose language with a special emphasis on \symbol{34}mission critical\symbol{34}, \symbol{34}system programming\symbol{34} and \symbol{34}safety\symbol{34}, Ada has several conversion techniques. The most difficult part is choosing the right one, so the following list is sorted in order of utility. You should try the first one first; the last technique is a last resort, to be used if all others fail. There are also a few related techniques that you might choose instead of actually converting the data.

Since the most important aspect is not the result of a successful conversion, but how the system will react to an invalid conversion, all examples also demonstrate {\bfseries faulty} conversions.
\subsection{Explicit type conversion}
\label{130}

An explicit type conversion looks much like a function call; it does not use the {\itshape tick} (apostrophe, \textquotesingle{}) like the qualified expression does.
\\

\TemplateSpaceIndent{ {}Type_Name {}({\itshape Expression})}

The compiler first checks that the conversion is legal, and if it is, it inserts a run-{}time check at the point of the conversion; hence the name {\itshape checked conversion}. If the conversion fails, the program raises Constraint_Error. Most compilers are very smart and optimise away the constraint checks; so, you need not worry about any performance penalty. Some compilers can also warn that a constraint check will always fail (and optimise the check with an unconditional raise).

Explicit type conversions are legal:
\begin{myitemize}
\item{} between any two numeric types
\item{} between any two subtypes of the same type
\item{} between any two types derived from the same type (note special rules for tagged types)
\item{} between array types under certain conditions (see RM 4.6(24.2/2..24.7/2))
\item{} and {\itshape nowhere else}
\end{myitemize}

(The rules become more complex with class-{}wide and anonymous access types.)
\\

\TemplateSpaceIndent{ {}I: {}Integer {}:= {}Integer {}(10); {} {}\ADACOM{Unnecessary explicit type conversion} \newline{}
 {}J: {}Integer {}:= {}10; {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{Implicit conversion from universal integer} \newline{}
 {}K: {}Integer {}:= {}Integer\textquotesingle{}(10); {} {}\ADACOM{Use the value 10 of type Integer: qualified expression} \newline{}
 {}\ADACOM{(qualification not necessary here).}}

This example illustrates explicit type conversions:
\\

\TemplateSpaceIndent{ {}\ADAFile{convert_checked.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Convert_Checked {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Short {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}128 {}.. {}+127; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Byte {} {}\LaTeXBF{is} {}\LaTeXBF{mod} {}256; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}I_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Short); \newline{}
 {} {} {} {}\LaTeXBF{package} {}M_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Byte); \newline{}
 {} \newline{}
 {} {} {} {}A {}: {}Short {}:= {}-{}1; \newline{}
 {} {} {} {}B {}: {}Byte; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}B {}:= {}Byte {}(A); {} {}-{}-{} {}range {}check {}will {}lead {}to {}Constraint_Error \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}A {}= {}\symbol{34}); \newline{}
 {} {} {} {}I_IO.Put {}(Item {} {}=>{} {} {}A, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {} {}5, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}, {}B {}= {}\symbol{34}); \newline{}
 {} {} {} {}M_IO.Put {}(Item {} {}=>{} {} {}B, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {} {}5, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {}\LaTeXBF{end} {}Convert_Checked;}

Explicit conversions are possible between any two numeric types: integers, fixed-{}point and floating-{}point types. If one of the types involved is a fixed-{}point or floating-{}point type, the compiler not only checks for the range constraints (thus the code above will raise Constraint_Error), but also performs any loss of precision necessary.

Example 1: the loss of precision causes the procedure to only ever print \symbol{34}0\symbol{34} or \symbol{34}1\symbol{34}, since {\ttfamily P / 100} is an integer and is always zero or one.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Text_IO; \newline{}
 {}\LaTeXBF{procedure} {}Naive_Explicit_Conversion {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Proportion {}\LaTeXBF{is} {}\LaTeXBF{digits} {}4 {}\LaTeXBF{range} {}0.0 {}.. {}1.0; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Percentage {}\LaTeXBF{is} {}\LaTeXBF{range} {}0 {}.. {}100; \newline{}
 {} {} {} {}\LaTeXBF{function} {}To_Proportion {}(P {}: {}\LaTeXBF{in} {}Percentage) {}\LaTeXBF{return} {}Proportion {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}Proportion {}(P {}/ {}100); \newline{}
 {} {} {} {}\LaTeXBF{end} {}To_Proportion; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Ada.Text_IO.Put_Line {}(Proportion\textquotesingle{}Image {}(To_Proportion {}(27))); \newline{}
 {}\LaTeXBF{end} {}Naive_Explicit_Conversion;}

Example 2: we use an intermediate floating-{}point type to guarantee the precision.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Text_IO; \newline{}
 {}\LaTeXBF{procedure} {}Explicit_Conversion {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Proportion {}\LaTeXBF{is} {}\LaTeXBF{digits} {}4 {}\LaTeXBF{range} {}0.0 {}.. {}1.0; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Percentage {}\LaTeXBF{is} {}\LaTeXBF{range} {}0 {}.. {}100; \newline{}
 {} {} {} {}\LaTeXBF{function} {}To_Proportion {}(P {}: {}\LaTeXBF{in} {}Percentage) {}\LaTeXBF{return} {}Proportion {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Prop {}\LaTeXBF{is} {}\LaTeXBF{digits} {}4 {}\LaTeXBF{range} {}0.0 {}.. {}100.0; \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}Proportion {}(Prop {}(P) {}/ {}100.0); \newline{}
 {} {} {} {}\LaTeXBF{end} {}To_Proportion; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Ada.Text_IO.Put_Line {}(Proportion\textquotesingle{}Image {}(To_Proportion {}(27))); \newline{}
 {}\LaTeXBF{end} {}Explicit_Conversion;}

You might ask why you should convert between two subtypes of the same type. An example will illustrate this.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}String_10 {}\LaTeXBF{is} {}String {}(1 {}.. {}10); \newline{}
 {}X: {}String {}:= {}\symbol{34}A {}line {}long {}enough {}to {}make {}the {}example {}valid\symbol{34}; \newline{}
 {}Slice: {}\LaTeXBF{constant} {}String {}:= {}String_10 {}(X {}(11 {}.. {}20));}

Here, {\ttfamily Slice} has bounds 1 and 10, whereas {\ttfamily X (11 .. 20)} has bounds 11 and 20.
\subsection{Change of Representation}
\label{131}

Type conversions can be used for packing and unpacking of records or arrays.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Unpacked {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {}\ADACOM{any components} \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Packed {}\LaTeXBF{is} {}\LaTeXBF{new} {}Unpacked; \newline{}
 {}\LaTeXBF{for} {} {}Packed {}\LaTeXBF{use} {}\LaTeXBF{record} \newline{}
 {} {} {}\ADACOM{component clauses for some or for all components} \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{record};}

\\

\TemplateSpaceIndent{ {}P: {}Packed; \newline{}
 {}U: {}Unpacked; \newline{}
 {} \newline{}
 {}P {}:= {}Packed {}(U); {} {}\ADACOM{packs U} \newline{}
 {}U {}:= {}Unpacked {}(P); {} {}\ADACOM{unpacks P}}

\subsection{Checked conversion for non-{}numeric types}
\label{132}

The examples above all revolved around conversions between numeric types; it is possible to convert between any two numeric types in this way. But what happens between non-{}numeric types, e.g. between array types or record types? The answer is two-{}fold:

\begin{myitemize}
\item{} you can convert explicitly between a type and types derived from it, or between types derived from the same type,
\item{} and that\textquotesingle{}s all. No other conversions are possible.
\end{myitemize}

Why would you want to derive a record type from another record type? Because of representation clauses. Here we enter the realm of low-{}level systems programming, which is not for the faint of heart, nor is it useful for desktop applications. So hold on tight, and let\textquotesingle{}s dive in.

Suppose you have a record type which uses the default, efficient representation. Now you want to write this record to a device, which uses a special record format. This special representation is more compact (uses fewer bits), but is grossly inefficient. You want to have a layered programming interface: the upper layer, intended for applications, uses the efficient representation. The lower layer is a device driver that accesses the hardware directly and uses the inefficient representation.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Device_Driver {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Size_Type {}\LaTeXBF{is} {}\LaTeXBF{range} {}0 {}.. {}64; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Register {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {}A, {}B {}: {}Boolean; \newline{}
 {} {} {} {} {} {} {}Size {}: {}Size_Type; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Read {}(R {}: {}\LaTeXBF{out} {}Register); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Write {}(R {}: {}\LaTeXBF{in} {}Register); \newline{}
 {}\LaTeXBF{end} {}Device_Driver;}

The compiler chooses a default, efficient representation for {\ttfamily Register}. For example, on a 32-{}bit machine, it would probably use three 32-{}bit words, one for A, one for B and one for Size. This efficient representation is good for applications, but at one point we want to convert the entire record to just 8 bits, because that\textquotesingle{}s what our hardware requires.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}\LaTeXBF{body} {}Device_Driver {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Hardware_Register {}\LaTeXBF{is} {}\LaTeXBF{new} {}Register; {}\ADACOM{Derived type.} \newline{}
 {} {} {} {}\LaTeXBF{for} {}Hardware_Register {}\LaTeXBF{use} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {}A {}\LaTeXBF{at} {}0 {}\LaTeXBF{range} {}0 {}.. {}0; \newline{}
 {} {} {} {} {} {} {}B {}\LaTeXBF{at} {}0 {}\LaTeXBF{range} {}1 {}.. {}1; \newline{}
 {} {} {} {} {} {} {}Size {}\LaTeXBF{at} {}0 {}\LaTeXBF{range} {}2 {}.. {}7; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get {}\LaTeXBF{return} {}Hardware_Register; {}\ADACOM{Body omitted} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}(H {}: {}\LaTeXBF{in} {}Hardware_Register); {}\ADACOM{Body omitted} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Read {}(R {}: {}\LaTeXBF{out} {}Register) {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}H {}: {}Hardware_Register {}:= {}Get; \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}R {}:= {}Register {}(H); {}\ADACOM{Explicit conversion.} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Read; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Write {}(R {}: {}\LaTeXBF{in} {}Register) {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}Put {}(Hardware_Register {}(R)); {}\ADACOM{Explicit conversion.} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Write; \newline{}
 {}\LaTeXBF{end} {}Device_Driver;}

In the above example, the package body declares a derived type with the inefficient, but compact representation, and converts to and from it.

This illustrates that {\bfseries type conversions can result in a change of representation}.
\subsection{View conversion, in object-{}oriented programming}
\label{133}

Within \mylref{365}{object-{}oriented programming} you have to distinguish between specific types and class-{}wide types.

With specific types, only conversions to ancestors are possible and, of course, are checked. During the conversion, you do not \symbol{34}drop\symbol{34} any components that are present in the derived type and not in the parent type; these components are still present, you just don\textquotesingle{}t see them anymore. This is called a {\itshape view conversion}.

There are no conversions to derived types {\small (where would you get the further components from?)}; {\itshape extension aggregates} have to be used instead.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Parent_Type {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {}\LaTeXBF{type} {}Child_Type {} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Parent_Type {}\LaTeXBF{with} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}Child_Instance {} {}: {}Child_Type; \newline{}
 {} \newline{}
 {}\ADACOM{View conversion from the child type to the parent type:} \newline{}
 {}Parent_View {}: {}Parent_Type {}:= {}Parent_Type {}(Child_Instance);}

Since, in object-{}oriented programming, an object of child type {\itshape is an} object of the parent type, no run-{}time check is necessary.

With class-{}wide types, conversions to ancestor and child types are possible and are checked as well. These conversions are also view conversions, no data is created or lost.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}P {}(Parent_View {}: {}Parent_Type\textquotesingle{}Class) {}\LaTeXBF{is} \newline{}
 {} {} {} {}\ADACOM{View conversion to the child type:} \newline{}
 {} {} {} {}One {}: {}Child_Type {}:= {}Child_Type {}(Parent_View); \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{View conversion to the class-{}wide child type:} \newline{}
 {} {} {} {}Two {}: {}Child_Type\textquotesingle{}Class {}:= {}Child_Type\textquotesingle{}Class {}(Parent_View);}

This view conversion involves a run-{}time check to see if {\ttfamily Parent_View} is indeed a view of an object of type {\ttfamily Child_Type}. In the second case, the run-{}time check accepts objects of type {\ttfamily Child_Type} but also any type derived from {\ttfamily Child_Type}.
\subsubsection{View renaming}
\label{134}

A renaming declaration does not create any new object and performs no conversion; it only gives a new name to something that already exists. Performance is optimal since the renaming is completely done at compile time. We mention it here because it is a common idiom in \mylref{365}{object oriented programming} to rename the result of a view conversion.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Parent_Type {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{record} \newline{}
 {} {} {} {}<{}components>{}; \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {}\LaTeXBF{type} {}Child_Type {}\LaTeXBF{is} {}\LaTeXBF{new} {}Parent_Type {}\LaTeXBF{with} {}\LaTeXBF{record} \newline{}
 {} {} {} {}<{}further {}components>{}; \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}Child_Instance {}: {}Child_Type; \newline{}
 {}Parent_View {} {} {} {}: {}Parent_Type\textquotesingle{}\LaTeXIT{Class} {}\LaTeXBF{renames} {}Parent_Type\textquotesingle{}\LaTeXIT{Class} {}(Child_Instance);}

Now, {\ttfamily Parent_View} is not a new object, but another name for {\ttfamily Child_Instance} viewed as the parent, i.e. only the parent components are visible, the further child components are hidden.
\subsection{Address conversion}
\label{135}

Ada\textquotesingle{}s \mylref{220}{access type} is not just a memory location (a thin pointer). Depending on implementation and the \mylref{220}{access type} used, the \mylref{220}{access} might keep additional information (a fat pointer). For example GNAT keeps two memory addresses for each \mylref{220}{access} to an indefinite object {\mbox{---}} one for the data and one for the constraint informations {\small (\LaTeXIT{Size}, \LaTeXIT{First}, \LaTeXIT{Last}{\itshape)}}{\itshape .}

If you want to convert an access to a simple memory location you can use the package \LaTeXIdentityTemplate{System}.
Note however that an address and a fat pointer cannot be converted reversibly into one another.

The address of an array object is the address of its first component. Thus the bounds get lost in such a conversion.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}My_Array {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Positive {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Something; \newline{}
 {}A: {}My_Array {}(50 {}.. {}100); \newline{}
 {} \newline{}
 {} {} {} {} {} {}A\textquotesingle{}\LaTeXIT{Address} {}= {}A(A\textquotesingle{}\LaTeXIT{First})\textquotesingle{}\LaTeXIT{Address}}

\subsection{Unchecked conversion}
\label{136}

One of the great criticisms of Pascal was \symbol{34}there is no escape\symbol{34}. The reason was that sometimes you have to convert the incompatible. For this purpose, Ada has the generic function {\itshape Unchecked_Conversion}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Source {}(<{}>{}) {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Target {}(<{}>{}) {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{function} {}\LaTeXIdentityTemplate{Ada} {}(S {}: {}Source) {}\LaTeXBF{return} {}Target;}

{\itshape Unchecked_Conversion} will bit-{}copy the source data and reinterprete them under the target type without any checks. It is {\bfseries your} chore to make sure that the requirements on unchecked conversion as stated in RM \AdaRM{13}{9}{} are fulfilled; if not, the result is implementation dependent and may even lead to abnormal data. Use the \textquotesingle{}Valid attribute after the conversion to check the validity of the data in problematic cases.

A function call to (an instance of) {\itshape Unchecked_Conversion} will copy the source to the destination. The compiler may also do a conversion {\itshape in place} (every instance has the convention {\itshape Intrinsic}).

To use {\itshape Unchecked_Conversion} you need to instantiate the generic.

In the example below, you can see how this is done. When run, the example will output \symbol{34}A = -{}1, B = 255\symbol{34}. No error will be reported, but is this the result you expect?
\\

\TemplateSpaceIndent{ {}\ADAFile{convert_unchecked.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Convert_Unchecked {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Short {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}128 {}.. {}+127; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Byte {} {}\LaTeXBF{is} {}\LaTeXBF{mod} {}256; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}I_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Short); \newline{}
 {} {} {} {}\LaTeXBF{package} {}M_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Byte); \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Convert {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Source {}=>{} {}Short, \newline{}
 {}Target {}=>{} \newline{}
 {}Byte); \newline{}
 {} \newline{}
 {} {} {} {}A {}: {}\LaTeXBF{constant} {}Short {}:= {}-{}1; \newline{}
 {} {} {} {}B {}: {}Byte; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {} {}B {}:= {}Convert {}(A); \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}A {}= {}\symbol{34}); \newline{}
 {} {} {} {}I_IO.Put {}(Item {} {}=>{} {} {}A, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {} {}5, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}, {}B {}= {}\symbol{34}); \newline{}
 {} {} {} {}M_IO.Put {}(Item {} {}=>{} {} {}B, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {} {}5, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Convert_Unchecked;}

There is of course a range check in the assignment {\ttfamily B := Convert (A);}. Thus if B were defined as {\ttfamily B: Byte \LaTeXBF{range} 0 .. 10;}, Constraint_Error would be raised.
\subsection{Overlays}
\label{137}

If the copying of the result of {\itshape Unchecked_Conversion} is too much waste in terms of performance, then you can try overlays, i.e. address mappings. By using overlays, both objects share the same memory location. If you assign a value to one, the other changes as well. The syntax is:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{for} {}Target\textquotesingle{}\LaTeXIT{Address} {}\LaTeXBF{use} {}{\itshape expression}; \newline{}
 {}\AdaPragma{Import} {}(Ada, {}Target);}

where {\itshape expression} defines the address of the source object.

While overlays might look more elegant than Unchecked_Conversion, you should be aware that they are even more dangerous and have even greater potential for doing something very wrong. For example if {\ttfamily Source\textquotesingle{}\LaTeXIT{Size} <{} Target\textquotesingle{}\LaTeXIT{Size}} and you assign a value to Target, you might inadvertently write into memory allocated to a different object.

You have to take care also of implicit initializations of objects of the target type, since they would overwrite the actual value of the source object. The Import pragma with convention Ada can be used to prevent this, since it avoids the implicit initialization, RM \AdaRM{B}{1}{}.

The example below does the same as the example from \symbol{34}Unchecked Conversion\symbol{34}.
\\

\TemplateSpaceIndent{ {}\ADAFile{convert_address_mapping.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Convert_Address_Mapping {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Short {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}128 {}.. {}+127; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Byte {} {}\LaTeXBF{is} {}\LaTeXBF{mod} {}256; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}I_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Short); \newline{}
 {} {} {} {}\LaTeXBF{package} {}M_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} {}(Byte); \newline{}
 {} \newline{}
 {} {} {} {}A {}: {}\LaTeXBF{aliased} {}Short; \newline{}
 {} {} {} {}B {}: {}\LaTeXBF{aliased} {}Byte; \newline{}
 {} {} {} \newline{}
 {} {} {} {}\LaTeXBF{for} {}B\textquotesingle{}\LaTeXIT{Address} {}\LaTeXBF{use} {}A\textquotesingle{}\LaTeXIT{Address}; \newline{}
 {} {} {}\AdaPragma{Import} {}(Ada, {}B); \newline{}
 {} {} {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}A {}:= {}-{}1; \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}A {}= {}\symbol{34}); \newline{}
 {} {} {} {}I_IO.Put {}(Item {} {}=>{} {} {}A, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {} {}5, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}, {}B {}= {}\symbol{34}); \newline{}
 {} {} {} {}M_IO.Put {}(Item {} {}=>{} {} {}B, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Width {}=>{} {} {}5, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {}\LaTeXBF{end} {}Convert_Address_Mapping;}

\subsection{Export / Import}
\label{138}

Just for the record: There is still another method using the \AdaPragma{Export} and \AdaPragma{Import} pragmas. However, since this method completely undermines Ada\textquotesingle{}s visibility and type concepts even more than overlays, it has no place here in this language introduction and is left to experts.
\section{Elaborated Discussion of Types for Signed Integer Types}
\label{139}

As explained before, a type declaration
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10;}

declares an anonymous type {\ttfamily {\itshape T}} and its first subtype {\ttfamily T} (please note the italicization). {\ttfamily {\itshape T}} encompasses the complete set of mathematical integers. Static expressions and named numbers make use of this fact.

All numeric integer literals are of type {\ttfamily Universal_Integer}. They are converted to the appropriate specific type where needed. {\ttfamily Universal_Integer} itself has no operators.

Some examples with static named numbers:
\\

\TemplateSpaceIndent{ {} {}S1: {}\LaTeXBF{constant} {}:= {}Integer\textquotesingle{}\LaTeXIT{Last} {}+ {}Integer\textquotesingle{}\LaTeXIT{Last}; {} {} {} {} {} {} {}\ADACOM{\symbol{34}+\symbol{34} of Integer} \newline{}
 {} {}S2: {}\LaTeXBF{constant} {}:= {}Long_Integer\textquotesingle{}\LaTeXIT{Last} {}+ {}1; {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{\symbol{34}+\symbol{34} of Long_Integer} \newline{}
 {} {}S3: {}\LaTeXBF{constant} {}:= {}S1 {}+ {}S2; {}\ADACOM{\symbol{34}+\symbol{34} of root_integer} \newline{}
 {} {}S4: {}\LaTeXBF{constant} {}:= {}Integer\textquotesingle{}\LaTeXIT{Last} {}+ {}Long_Integer\textquotesingle{}\LaTeXIT{Last}; {} {}\ADACOM{illegal}}

Static expressions are evaluated at compile-{}time on the appropriate types with no overflow checks, i.e. mathematically exact (only limited by computer store). The result is then implicitly converted to {\ttfamily Universal_Integer}.

The literal 1 in {\ttfamily S2} is of type {\ttfamily Universal_Integer} and implicitly converted to {\ttfamily Long_Integer}.

{\ttfamily S3} implicitly converts the summands to {\ttfamily root_integer}, performs the calculation and converts back to {\ttfamily Universal_Integer}.

{\ttfamily S4} is illegal because it mixes two different types. You can however write this as
\\

\TemplateSpaceIndent{ {} {}S5: {}\LaTeXBF{constant} {}:= {}Integer\textquotesingle{}Pos {}(Integer\textquotesingle{}\LaTeXIT{Last}) {}+ {}Long_Integer\textquotesingle{}Pos \newline{}
 {}(Long_Integer\textquotesingle{}\LaTeXIT{Last}); {} {}\ADACOM{\symbol{34}+\symbol{34} of root_integer}}

where the Pos attributes convert the values to {\ttfamily Universal_Integer}, which are then further implicitly converted to {\ttfamily root_integer}, added and the result converted back to {\ttfamily Universal_Integer}.

{\ttfamily root_integer} is the anonymous greatest integer type representable by the hardware. It has the range {\ttfamily System.Min_Integer .. System.Max_Integer}. All integer types are rooted at {\ttfamily root_integer}, i.e. derived from it. {\ttfamily Universal_Integer} can be viewed as {\ttfamily root_integer\textquotesingle{}Class}.

During run-{}time, computations of course are performed with range checks and overflow checks on the appropriate subtype. Intermediate results may however exceed the range limits. Thus with {\ttfamily I, J, K} of the subtype {\ttfamily T} above, the following code will return the correct result:
\\

\TemplateSpaceIndent{ {}I {}:= {}10; \newline{}
 {}J {}:= {} {}8; \newline{}
 {}K {}:= {}(I {}+ {}J) {}-{} {}12; \newline{}
 {}\ADACOM{I := I + J; -{}-{} range check would fail, leading to Constraint_Error}}

Real literals are of type {\ttfamily Universal_Real}, and similar rules as the ones above apply accordingly.
\section{Relations between types}
\label{140}

Types can be made from other types. Array types, for example, are made from two types, one for the arrays\textquotesingle{} index and one for the arrays\textquotesingle{} components. An array, then, expresses an association, namely that between one value of the index type and a value of the component type.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Color {}\LaTeXBF{is} {}(Red, {}Green, {}Blue); \newline{}
 {} {}\LaTeXBF{type} {}Intensity {}\LaTeXBF{is} {}\LaTeXBF{range} {}0 {}.. {}255; \newline{}
 {} {} \newline{}
 {} {}\LaTeXBF{type} {}Colored_Point {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Color) {}\LaTeXBF{of} {}Intensity;}

The type {\ttfamily Color} is the index type and the type {\ttfamily Intensity} is the component type of the array type {\ttfamily Colored_Point}. See \mylref{183}{array}.
\section{See also}
\label{141}
\subsection{Wikibook}
\label{142}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{143}

\begin{myitemize}
\item{} \AdaRMThree{3}{2}{1}{Type Declarations}
\item{} \AdaRM{3}{3}{Objects and Named Numbers}
\item{} \AdaRM{3}{7}{Discriminants}
\item{} \AdaRM{3}{10}{Access Types}
\item{} \AdaRM{4}{9}{Static Expressions and Static Subtypes}
\item{} \AdaRM{13}{9}{Unchecked Type Conversions}
\item{} \AdaRM{13}{3}{Operational and Representation Attributes}
\item{} \ADARMAONE{K}{(informative) Language-{}Defined Attributes}
\end{myitemize}

\chapter{Integer types}

\myminitoc
\label{144}

\label{145}

A \LaTeXBF{range} is a signed integer value which ranges from a \LaTeXIT{First} to a last \LaTeXIT{Last}. It is defined as
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{range} {}First {}.. {}Last}

When a value is assigned to an object with such a range constraint, the value is checked for validity and Constraint_Error \mylref{314}{exception} is raised when the value is not within \LaTeXIT{First} to \LaTeXIT{Last}.

When declaring a range type, the corresponding mathematical operators are implicitly declared by the language at the same place.

The compiler is free to choose a suitable underlaying hardware type for this user defined type.
\section{Working demo}
\label{146}

The following Demo defines a new range from -{}5 to 10 and then prints the whole range out.
\\

\TemplateSpaceIndent{ {}\ADAFile{range_1.adb} \newline{}
 {} {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Range_1 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Range_Type {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}5 {}.. {}10; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {} {} {} {}\LaTeXBF{package} {}I_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Text_IO.Integer_IO {}(Range_Type); \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{for} {}A {}\LaTeXBF{in} {}Range_Type {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}I_IO.Put {}(\newline{}
 {} {} {} {} {} {} {} {} {} {}Item {} {}=>{} {}A, \newline{}
 {} {} {} {} {} {} {} {} {} {}Width {}=>{} {}3, \newline{}
 {} {} {} {} {} {} {} {} {} {}Base {} {}=>{} {}10); \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{if} {}A {}<{} {}Range_Type\textquotesingle{}\LaTeXIT{Last} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}T_IO.Put {}(\symbol{34},\symbol{34}); \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {} {}T_IO.New_Line; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {}\LaTeXBF{end} {}Range_1;}

\section{See also}
\label{147}
\subsection{Wikibook}
\label{148}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Frange}{Ada Programming/Keywords/range}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{149}

\begin{myitemize}
\item{} \AdaRM{4}{4}{Expressions}
\item{} \AdaRMThree{3}{5}{4}{Integer Types}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FTipos\%2FEnteros}{es:Programación en Ada/Tipos/Enteros}\chapter{Unsigned integer types}

\myminitoc
\label{150}

\label{151}

\section{Description}
\label{152}
Unsigned integers in Ada have a value range from 0 to some positive number (not necessarily 1 subtracted from some power of 2). They are defined using the \LaTeXBF{mod} keyword because they implement a wrap-{}around arithmetic.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{mod} {}Modulus}

where \textquotesingle{}\LaTeXIT{First} is 0 and \textquotesingle{}\LaTeXIT{Last} is Modulus -{} 1.

Wrap-{}around arithmetic means that \textquotesingle{}Last + 1 = 0 = \textquotesingle{}First, and \textquotesingle{}First -{} 1 = \textquotesingle{}Last. Additionally to the normal arithmetic operators, bitwise \LaTeXBF{and}, \LaTeXBF{or} and \LaTeXBF{xor} are defined for the type.

The predefined package \LaTeXIdentityTemplate{Interfaces} (RM \AdaRM{B}{2}{}) presents unsigned integers based on powers of 2
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Unsigned_{\itshape n} {}\LaTeXBF{is} {}\LaTeXBF{mod} {}2**{\itshape n};}

for which also shift and rotate operations are defined. The values of {\itshape n} depend on compiler and target architecture.

You can use \LaTeXBF{range} to sub-{}range a modular type:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Byte {}\LaTeXBF{is} {}\LaTeXBF{mod} {}256; \newline{}
 {}\LaTeXBF{subtype} {}Half_Byte {}\LaTeXBF{is} {}Byte {}\LaTeXBF{range} {}0 {}.. {}127;}

But beware: the Modulus of Half_Byte is still 256! Arithmetic with such a type is interesting to say the least.
\section{See also}
\label{153}
\subsection{Wikibook}
\label{154}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fmod}{Ada Programming/Keywords/mod}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{155}

\begin{myitemize}
\item{} \AdaRM{4}{4}{Expressions}
\item{} \AdaRMThree{3}{5}{4}{Integer Types}
\end{myitemize}

\chapter{Enumerations}

\myminitoc
\label{156}

\label{157}

An {\bfseries enumeration} type is defined as a list of possible values:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Primary_Color {}\LaTeXBF{is} {}(Red, {}Green, {}Blue);}

Like for numeric types, where e.g. 1 is an integer literal, Red, Green and Blue are called the literals of this type. There are no other values assignable to objects of this type.
\section{Operators and attributes}
\label{158}

Apart from equality (\symbol{34}=\symbol{34}), the only operators on enumeration types are the ordering \mylref{590}{operators}: \symbol{34}<{}\symbol{34}, \symbol{34}<{}=\symbol{34}, \symbol{34}=\symbol{34}, \symbol{34}/=\symbol{34}, \symbol{34}>{}=\symbol{34}, \symbol{34}>{}\symbol{34}, where the order relation is given implicitly by the sequence of literals: Each literal has a position, starting with 0 for the first, incremented by one for each successor. This position can be queried via the \textquotesingle{}Pos \mylref{610}{attribute}; the inverse is \textquotesingle{}Val, which returns the corresponding literal. In our example:
\\

\TemplateSpaceIndent{ {}Primary_Color\textquotesingle{}\LaTeXIT{Pos} {}(Red) {}= {}0 \newline{}
 {}Primary_Color\textquotesingle{}\LaTeXIT{Val} {}(0) {} {} {}= {}Red}

There are two other important attributes: \LaTeXIT{Image} and \LaTeXIT{Value} (don\textquotesingle{}t confuse \LaTeXIT{Val} with \LaTeXIT{Value}). \LaTeXIT{Image} returns the string representation of the value (in capital letters), \LaTeXIT{Value} is the inverse:
\\

\TemplateSpaceIndent{ {}Primary_Color\textquotesingle{}\LaTeXIT{Image} {}({}Red {}) {}= {}\symbol{34}RED\symbol{34} \newline{}
 {}Primary_Color\textquotesingle{}\LaTeXIT{Value} {}(\symbol{34}Red\symbol{34}) {}= {} {}Red}

These attributes are important for simple \mylref{303}{IO} (there are more elaborate IO facilities in \LaTeXIdentityTemplate{Ada} for enumeration types). Note that, since Ada is case-{}insensitive, the string given to \textquotesingle{}Value can be in any case.
\section{Enumeration literals}
\label{159}
Literals are overloadable, i.e. you can have another type with the same literals.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Traffic_Light {}\LaTeXBF{is} {}(Red, {}Yellow, {}Green);}

Overload resolution within the context of use of a literal normally resolves which Red is meant. Only if you have an unresolvable overloading conflict, you can qualify with special syntax which Red is meant:
\\

\TemplateSpaceIndent{ {}Primary_Color\textquotesingle{}(Red)}

Like many other declarative items, enumeration literals can be renamed. In fact, such a literal is a actually \mylref{270}{function}, so it has to be renamed as such:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Red {}\LaTeXBF{return} {}P.Primary_Color {}\LaTeXBF{renames} {}P.Red;}

Here, Primary_Color is assumed to be defined in package P, which is visible at the place of the renaming declaration. Renaming makes Red directly visible without necessity to resort the use-{}clause.

Note that redeclaration as a function does not affect the staticness of the literal.
\subsection{Characters as enumeration literals}
\label{160}
Rather unique to Ada is the use of character literals as enumeration literals:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}ABC {}\LaTeXBF{is} {}(\textquotesingle{}A\textquotesingle{}, {}\textquotesingle{}B\textquotesingle{}, {}\textquotesingle{}C\textquotesingle{});}

This literal \textquotesingle{}A\textquotesingle{} has {\bfseries nothing} in common with the literal \textquotesingle{}A\textquotesingle{} of the predefined type Character (or Wide_Character).

Every type that has at least one character literal is a character type. For every character type, string literals and the concatenation \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%26}{operator \symbol{34}\&\symbol{34}} are also implicitly defined.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}My_Character {}\LaTeXBF{is} {}(No_Character, {}\textquotesingle{}a\textquotesingle{}, {}Literal, {}\textquotesingle{}z\textquotesingle{}); \newline{}
 {}\LaTeXBF{type} {}My_String {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Positive {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}My_Character; \newline{}
 {} \newline{}
 {}S: {}My_String {}:= {}\symbol{34}aa\symbol{34} {}\& {}Literal {}\& {}\symbol{34}za\symbol{34} {}\& {}\textquotesingle{}z\textquotesingle{}; \newline{}
 {}T: {}My_String {}:= {}(\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}a\textquotesingle{}, {}Literal, {}\textquotesingle{}z\textquotesingle{}, {}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}z\textquotesingle{});}

In this example, S and T have the same value.

Ada\textquotesingle{}s Character type is defined that way. See \mylref{668}{Ada Programming/Libraries/Standard}.
\subsection{Booleans as enumeration literals}
\label{161}

Also Booleans are defined as enumeration types:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Boolean {}\LaTeXBF{is} {}(False, {}True);}

There is special semantics implied with this declaration in that objects and expressions of this type can be used as conditions. Note that the literals False and True are not Ada keywords.

Thus it is not sufficient to declare a type with these literals and then hope objects of this type can be used like so:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}My_Boolean {}\LaTeXBF{is} {}(False, {}True); \newline{}
 {} {}Condition: {}My_Boolean; \newline{}
 {} \newline{}
 {} {}\LaTeXBF{if} {}Condition {}\LaTeXBF{then} {} {}-{}-{} {}wrong, {}won\textquotesingle{}t {}compile}

If you need your own Booleans (perhaps with special size requirements), you have to derive from the predefined Boolean:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}My_Boolean {}\LaTeXBF{is} {}\LaTeXBF{new} {}Boolean; \newline{}
 {} {}Condition: {}My_Boolean; \newline{}
 {} \newline{}
 {} {}\LaTeXBF{if} {}Condition {}\LaTeXBF{then} {} {}-{}-{} {}OK}

\section{Enumeration subtypes}
\label{162}

You can use {\ttfamily \LaTeXBF{range}} to subtype an enumeration type:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{subtype} {}Capital_Letter {}\LaTeXBF{is} {}Character {}\LaTeXBF{range} {}\textquotesingle{}A\textquotesingle{} {}.. {}\textquotesingle{}Z\textquotesingle{};}

\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Day_Of_Week {}\LaTeXBF{is} {}(Sunday, {}Monday, {}Tuesday, {}Wednesday, {}Thursday, \newline{}
 {}Friday, {}Saturday); \newline{}
 {} {} \newline{}
 {} {}\LaTeXBF{subtype} {}Working_Day {}\LaTeXBF{is} {}Day_Of_Week {}\LaTeXBF{range} {}Monday {}.. {}Friday;}

\section{See also}
\label{163}
\subsection{Wikibook}
\label{164}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\item{} \mylref{668}{Ada Programming/Libraries/Standard}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{165}

\begin{myitemize}
\item{} \AdaRMThree{3}{5}{1}{Enumeration Types}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FTipos\%2FEnumeraciones}{es:Programación en Ada/Tipos/Enumeraciones}\chapter{Floating point types}

\myminitoc
\label{166}

\label{167}

\section{Description}
\label{168}
\myhref{http://en.wikipedia.org/wiki/Floating\%20point}{w:Floating point}

To define a floating point type, you only have to say how many {\bfseries \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fdigits}{digits}} are needed, i.e. you define the relative precision:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{digits} {}Num_Digits}

If you like, you can declare the minimum range needed as well:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{digits} {}Num_Digits {}{\bfseries \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Frange}{range}} {}Low {}.. {}High}

This facility is a great benefit of Ada over (most) other programming languages. In other languages, you just choose between \symbol{34}float\symbol{34} and \symbol{34}long float\symbol{34}, and what most people do is:
\begin{myitemize}
\item{} choose float if they don\textquotesingle{}t care about accuracy
\item{} otherwise, choose long float, because it is the best you can get
\end{myitemize}

In either case, you don\textquotesingle{}t know what accuracy you get.

In Ada, you specify the accuracy you need, and the compiler will choose an appropriate floating point type with {\itshape at least} the accuracy you asked for. This way, your requirement is guaranteed. Moreover, if the computer has more than two floating point types available, the compiler can make use of all of them.
\section{See also}
\label{169}
\subsection{Wikibook}
\label{170}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\item{} \mylref{145}{Ada Programming/Types/range}
\item{} \mylref{173}{Ada Programming/Types/delta}
\item{} \mylref{151}{Ada Programming/Types/mod}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fdigits}{Ada Programming/Keywords/digits}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{171}

\begin{myitemize}
\item{} \AdaRMThree{3}{5}{7}{Floating Point Types}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FTipos\%2FComa\%20flotante}{es:Programación en Ada/Tipos/Coma flotante}\chapter{Fixed point types}

\myminitoc
\label{172}

\label{173}

\section{Description}
\label{174}
\myhref{http://en.wikipedia.org/wiki/Fixed-point\%20arithmetic}{w:Fixed-{}point arithmetic}
A fixed point type defines a set of values that are evenly spaced with a given absolute precision. In contrast, floating point values are all spaced according to a relative precision.

The absolute precision is given as the delta of the type. There are two kinds of fixed point types, ordinary and decimal.

For {\bfseries Ordinary Fixed Point} types, the delta gives a hint to the compiler how to choose the small value if it is not specified: It can be {\itshape any integer power of two} not greater than delta. You may specify the small via an attribute clause to be {\itshape any value} not greater than delta. (If the compiler cannot conform to this small value, it has to reject the declaration.)

For {\bfseries Decimal Fixed Point} types, the small is defined to be the delta, which in turn must be an integer power of ten. (Thus you cannot specify the small by an attribute clause.)

For example, if you define a decimal fixed point type with a delta of 0.1, you will be able to accurately store the values 0.1, 1.0, 2.2, 5.7, etc. You will not be able to accurately store the value 0.01. Instead, the value will be rounded down to 0.0.

If the compiler accepts your fixed point type definition, it guarantees that values represented by that type will have at least the degree of accuracy specified (or better). If the compiler cannot support the type definition (e.g. due to limited hardware) then a compile-{}time error will result.
\section{Ordinary Fixed Point}
\label{175}

For an ordinary fixed point, you just define the delta and a range:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{delta} {}{\itshape Delta} {}\LaTeXBF{range} {}{\itshape Low} {}.. {}{\itshape High}}

The delta can be any real value {\mbox{---}} for example you may define a circle with one arcsecond resolution with:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{delta} {}1 {}/ {}(60 {}* {}60) {}\LaTeXBF{range} {}0.0 {}.. {}360.0}

{[}There is one rather strange rule about fixed point types: Because of the way they are internally represented, the range might only go up to {\ttfamily \textquotesingle{}Last -{} Delta}. This is a bit like a circle {\mbox{---}} the 0° and 360° mark is also the same.{]}

It should be noted that in the example above the smallest possible value used is not {$\frac{1}{60^2} = \frac{1}{3600}$}. The compiler will choose a smaller value which, by default, is an integer power of 2 not greater than the delta. In our example this could be {$2^{-12} = \frac{1}{4096}$}. In most cases this should render better performance but sacrifices precision for it.

If this is not what you wish and precision is indeed more important, you can choose your own small value via the attribute clause \textquotesingle{}\LaTeXIT{Small}.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Angle {}\LaTeXBF{is} {}\LaTeXBF{delta} {}Pi/2.0**31 {}\LaTeXBF{range} {}-{}Pi {}.. {}Pi; \newline{}
 {}\LaTeXBF{for} {}Angle\textquotesingle{}Small {}\LaTeXBF{use} {}Pi/2.0**31;}

As internal representation, you will get a 32 bit signed integer type.
\section{Decimal Fixed Point}
\label{176}

You define a decimal fixed point by defining the delta and the number of digits needed:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{delta} {}{\itshape Delta} {}\LaTeXBF{digits} {}{\itshape Num_Digits}}

Delta must be a positive or negative integer power of 10 {\mbox{---}} otherwise the declaration is illegal.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{delta} {}10.0**(+2) {}\LaTeXBF{digits} {}12 \newline{}
 {}\LaTeXBF{delta} {}10.0**(-{}2) {}\LaTeXBF{digits} {}12}

If you like, you can also define the range needed:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{delta} {}Delta_Value {}\LaTeXBF{digits} {}Num_Digits {}\LaTeXBF{range} {}Low {}.. {}High}

\section{Differences between Ordinary and Decimal Fixed Point Types}
\label{177}

There is an alternative way of declaring a \symbol{34}decimal\symbol{34} fixed point: You declare an ordinary fixed point and use an integer power of 10 as \textquotesingle{}\LaTeXIT{Small}. The following two declarations are equivalent with respect to the internal representation:
\\

\TemplateSpaceIndent{ {}-{}-{} {}decimal {}fixed {}point \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Duration {}\LaTeXBF{is} {}\LaTeXBF{delta} {}10.0**(-{}9) {}\LaTeXBF{digits} {}9;}

\\

\TemplateSpaceIndent{ {}-{}-{} {}ordinary {}fixed {}point \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Duration {}\LaTeXBF{is} {}\LaTeXBF{delta} {}10.0**(-{}9) {}\LaTeXBF{range} {}-{}1.0 {}.. {}1.0; \newline{}
 {}\LaTeXBF{for} {}Duration\textquotesingle{}\LaTeXIT{Small} {}\LaTeXBF{use} {}10.0**(-{}9);}

You might wonder what the difference then is between these two declarations. The answer is:

{\itshape None with respect to precision, addition, subtraction, multiplication with integer values.}

The following is an incomplete list of differences between ordinary and decimal fixed point types.

\begin{myitemize}
\item{} Decimal fixed point types are intended to reflect typical {\bfseries COBOL} declarations with a given number of digits.
\end{myitemize}

\begin{myitemize}
\item{} Truncation is required for decimal, not for ordinary, fixed point in multiplication and division (RM \AdaNiveFiveRMThree{4}{5}{5}{(21)}) and type conversions. Operations on decimal fixed point are fully specified, which is not true for ordinary fixed point.
\end{myitemize}

\begin{myitemize}
\item{} The following attributes are only defined for decimal fixed point: T\textquotesingle{}Digits (RM \AdaNiveFiveRMThree{3}{5}{10}{(10)}) corresponds to the number of decimal digits that are representable; T\textquotesingle{}Scale (RM \AdaNiveFiveRMThree{3}{5}{10}{(11)}, taken from {\bfseries COBOL}) indicates the position of the point relative to the rightmost significant digits; T\textquotesingle{}Round (RM \AdaNiveFiveRMThree{3}{5}{10}{(12)}) can be used to specify rounding on conversion.
\end{myitemize}

\begin{myitemize}
\item{} Package Decimal (RM \AdaRMNineFive{F}{2}{}), which of course applies only to decimal fixed point, defines the decimal Divide generic procedure. If annex F is supported (GNAT does), at least 18 digits must be supported (there is no such rule for fixed point).
\end{myitemize}

\begin{myitemize}
\item{} Decimal_IO (RM \AdaNiveFiveRMThree{A}{10}{1}{(73)}) has semantics different from Fixed_IO (RM \AdaNiveFiveRMThree{A}{10}{1}{(68)}).
\end{myitemize}

\begin{myitemize}
\item{} Static expressions must be a multiple of the Small for decimal fixed point.
\end{myitemize}

{\bfseries Conclusion:}
For normal numeric use, an ordinary fixed point (probably with \textquotesingle{}Small defined) should be defined. Only if you are interested in COBOL like use, i.e. well defined deterministic decimal semantics (especially for financial computations, but that might apply to cases other than money) should you take decimal fixed point.
\section{See also}
\label{178}
\subsection{Wikibook}
\label{179}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\item{} \mylref{145}{Ada Programming/Types/range}
\item{} \mylref{167}{Ada Programming/Types/digits}
\item{} \mylref{151}{Ada Programming/Types/mod}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fdelta}{Ada Programming/Keywords/delta}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Small}{Ada Programming/Attributes/\textquotesingle{}Small}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{180}

\begin{myitemize}
\item{} \AdaNiveFiveRMThree{3}{5}{9}{Fixed Point Types}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{181}

\begin{myitemize}
\item{} \AdaRMThree{3}{5}{9}{Fixed Point Types}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FTipos\%2FComa\%20fija}{es:Programación en Ada/Tipos/Coma fija}\chapter{Arrays}

\myminitoc
\label{182}

\label{183}

An \myhref{http://en.wikipedia.org/wiki/array}{array} is a collection of elements which can be accessed by one or more index values. In Ada any definite type is allowed as element and any discrete type, i.e. \mylref{145}{Range}, \mylref{151}{Modular} or \mylref{157}{Enumeration}, can be used as an index.
\section{Declaring arrays}
\label{184}

Ada\textquotesingle{}s arrays are quite powerful and so there are quite a few syntax variations, which are presented below.
\subsection{Basic syntax}
\label{185}

The basic form of an Ada array is:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{array} {}(Index_Range) {}\LaTeXBF{of} {}Element_Type}

where Index_Range is a range of values within a discrete index type, and Element_Type is a definite subtype. The array consists of one element of \symbol{34}Element_Type\symbol{34} for each possible value in the given range. If you for example want to count how often a specific letter appears inside a text, you could use:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Character_Counter {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Character) {}\LaTeXBF{of} {}Natural;}

As a general advice, do not use Integer as the index range, since most of the time negative indices do not make sense. It is also a good style when using numeric indices, to define them starting in 1 instead of 0, since it is more intuitive for humans and avoids \myhref{http://en.wikipedia.org/wiki/off-by-one\%20error}{off-{}by-{}one error}s.
\subsection{With known subrange}
\label{186}

Often you don\textquotesingle{}t need an array of all possible values of the index type. In this case you can \LaTeXBF{subtype} your index type to the actually needed range.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}Index_Sub_Type {}\LaTeXBF{is} {}Index_Type {}\LaTeXBF{range} {}First {}.. {}Last \newline{}
 {} \newline{}
 {}\LaTeXBF{array} {}(Index_Sub_Type) {}\LaTeXBF{of} {}Element_Type}

Since this may involve a lot of typing and you may also run out of useful names for new \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes}{subtypes}, the array declaration allows for a shortcut:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{array} {}(Index_Type {}\LaTeXBF{range} {}First {}.. {}Last) {}\LaTeXBF{of} {}Element_Type}

Since {\ttfamily First} and {\ttfamily Last} are expressions of {\ttfamily Index_Type}, a simpler form of the above is:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{array} {}(First {}.. {}Last) {}\LaTeXBF{of} {}Element_Type}

Note that if {\ttfamily First} and {\ttfamily Last} are numeric literals, this implies the index type {\ttfamily Integer}.

If in the example above the character counter should only count upper case characters and discard all other characters, you can use the following array type:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Character_Counter {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Character {}\LaTeXBF{range} {}\textquotesingle{}A\textquotesingle{} {}.. {}\textquotesingle{}Z\textquotesingle{}) {}\LaTeXBF{of} {}Natural;}

\subsection{With unknown subrange}
\label{187}

Sometimes the range actually needed is not known until runtime or you need objects of different lengths. In some languages you would resort to pointers to element types. Not with Ada. Here we have the box \textquotesingle{}<{}>{}\textquotesingle{}, which allows us to declare indefinite arrays:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{array} {}(Index_Type {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Element_Type;}

When you declare objects of such a type, the bounds must of course be given and the object is constrained to them.

The predefined type \mylref{259}{String} is such a type. It is defined as
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}String {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Positive {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Character;}

You define objects of such an unconstrained type in several ways (the extrapolation to other arrays than String should be obvious):
\\

\TemplateSpaceIndent{ {} {}Text {}: {}String {}(10 {}.. {}20); \newline{}
 {} {}Input: {}String {}:= {}Read_from_some_file;}

(These declarations additionally define anonymous subtypes of String.) In the first example, the range of indices is explicitly given. In the second example, the range is implicitly defined from the initial expression, which here could be via a function reading data from some file.
Both objects are constrained to their ranges, i.e. they cannot grow nor shrink.
\subsection{With aliased elements}
\label{188}

If you come from \myhref{http://en.wikibooks.org/wiki/Programming\%3AC}{C}/\myhref{http://en.wikibooks.org/wiki/Programming\%3AC_plus_plus}{C++}, you are probably used to the fact that every element of an array has an address. The \myhref{http://en.wikibooks.org/wiki/Programming\%3AC}{C}/\myhref{http://en.wikibooks.org/wiki/Programming\%3AC_plus_plus}{C++} standards actually demand that.

In Ada, this is not true. Consider the following array:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Day_Of_Month {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}31; \newline{}
 {} {}\LaTeXBF{type} {}Day_Has_Appointment {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Day_Of_Month) {}\LaTeXBF{of} {}Boolean; \newline{}
 {} {}\AdaPragma{Pack} {}(Day_Has_Appointment); {}}

Since we have packed the array, the compiler will use as little storage as possible. And in most cases this will mean that 8 boolean values will fit into one byte.

So Ada knows about arrays where more than one element shares one address. So what if you need to address each single element. Just not using {\bfseries \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fpragma}{pragma}} {\itshape \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPack}{Pack}} is not enough. If the \myhref{http://en.wikipedia.org/wiki/CPU}{CPU} has very fast bit access, the compiler might pack the array without being told. You need to tell the compiler that you need to address each element via an access.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Day_Of_Month {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}31; \newline{}
 {} {}\LaTeXBF{type} {}Day_Has_Appointment {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Day_Of_Month) {}\LaTeXBF{of} {}\LaTeXBF{aliased} {}Boolean;}

\subsection{Arrays with more than one dimension}
\label{189}

Arrays can have more than one index. Consider the following 2-{}dimensional array:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Character_Display {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{array} {}\LaTeXIdentityTemplate{(}Positive {}\LaTeXBF{range} {}\LaTeXIdentityTemplate{<{}>{}}\LaTeXIdentityTemplate{,} {}Positive {}\LaTeXBF{range} {}\LaTeXIdentityTemplate{<{}>{}}\LaTeXIdentityTemplate{)} {}\LaTeXBF{of} {}Character\LaTeXIdentityTemplate{;}}

This type permits declaring rectangular arrays of characters.
Example:
\\

\TemplateSpaceIndent{ {} {} {}Magic_Square\LaTeXIdentityTemplate{:} {}\LaTeXBF{constant} {}Character_Display {}\LaTeXIdentityTemplate{:=} \newline{}
 {} {} {} {} {} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}S\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}P\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}N\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}P\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}S\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;}}

Or, stating some index values explicitly,
\\

\TemplateSpaceIndent{ {} {} {}Magic_Square\LaTeXIdentityTemplate{:} {}\LaTeXBF{constant} {}Character_Display\LaTeXIdentityTemplate{(}1 {}\LaTeXIdentityTemplate{..} {}5\LaTeXIdentityTemplate{,} {}1 {}\LaTeXIdentityTemplate{..} {}5\LaTeXIdentityTemplate{)} {}\LaTeXIdentityTemplate{:=} \newline{}
 {} {} {} {} {} {}\LaTeXIdentityTemplate{(}1 {}\LaTeXIdentityTemplate{=>{}} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}S\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}2 {}\LaTeXIdentityTemplate{=>{}} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}P\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}3 {}\LaTeXIdentityTemplate{=>{}} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}N\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}4 {}\LaTeXIdentityTemplate{=>{}} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}P\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}E\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}5 {}\LaTeXIdentityTemplate{=>{}} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}S\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;}}

The index values of the second dimension, those indexing the characters in each row,
are in 1 \LaTeXIdentityTemplate{..} 5 here. By choosing a different second range, we could
change these to be in 11 \LaTeXIdentityTemplate{..} 15:
\\

\TemplateSpaceIndent{ {} {} {}Magic_Square\LaTeXIdentityTemplate{:} {}\LaTeXBF{constant} {}Character_Display\LaTeXIdentityTemplate{(}1 {}\LaTeXIdentityTemplate{..} {}5\LaTeXIdentityTemplate{,} {}11 {}\LaTeXIdentityTemplate{..} {}15\LaTeXIdentityTemplate{)} {}\LaTeXIdentityTemplate{:=} \newline{}
 {} {} {} {} {} {}\LaTeXIdentityTemplate{(}1 {}\LaTeXIdentityTemplate{=>{}} {}\LaTeXIdentityTemplate{(}\LaTeXIdentityTemplate{\textquotesingle{}}S\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}T\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}O\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{,} {}\LaTeXIdentityTemplate{\textquotesingle{}}R\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {}...}

By adding more dimensions to an array type, we could have squares, cubes (or « bricks »), etc., of homogenous data items.

Finally, an array of characters is a string (see \mylref{259}{Ada Programming/Strings}). Therefore, {\ttfamily Magic_Square} may simply be declared like this:
\\

\TemplateSpaceIndent{ {} {} {}Magic_Square\LaTeXIdentityTemplate{:} {}\LaTeXBF{constant} {}Character_Display {}\LaTeXIdentityTemplate{:=} \newline{}
 {} {} {} {} {} {}\LaTeXIdentityTemplate{(}\symbol{34}SATOR\symbol{34}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\symbol{34}AREPO\symbol{34}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\symbol{34}TENET\symbol{34}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\symbol{34}OPERA\symbol{34}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}\symbol{34}ROTAS\symbol{34}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;}}

\section{Using arrays}
\label{190}
\subsection{Assignment}
\label{191}

When accessing elements, the index is specified in parentheses. It is also possible to access slices in this way:
\\

\TemplateSpaceIndent{ {}Vector_A {}(1 {}.. {}3) {}:= {}Vector_B {}(3 {}.. {}5);}

Note that the index range slides in this example: After the assignment, Vector_A (1) = Vector_B (3) and similarly for the other indices.

Also note that the ranges overlap, nevertheless Vector_A (3) /= Vector_B (3); a compiler delivering such a result would be severely broken.
\subsection{Concatenate}
\label{192}

The operator \symbol{34}\&\symbol{34} can be used to concatenate arrays:
\\

\TemplateSpaceIndent{ {}Name {}:= {}First_Name {}\& {}\textquotesingle{} {}\textquotesingle{} {}\& {}Last_Name;}

In both cases, if the resulting array does not fit in the destination array, Constraint_Error is raised.

If you try to access an existing element by indexing outside the array bounds, Constraint_Error is raised (unless checks are suppressed).
\subsection{Array Attributes}
\label{193}

There are four Attributes which are important for arrays: \textquotesingle{}\LaTeXIT{First}, \textquotesingle{}\LaTeXIT{Last}, \textquotesingle{}\LaTeXIT{Length} and \textquotesingle{}\LaTeXIT{Range}. Lets look at them with an example. Say we have the following three strings:
\\

\TemplateSpaceIndent{ {}Hello_World {} {}: {}\LaTeXBF{constant} {}String {}:= {}\symbol{34}Hello {}World!\symbol{34}; \newline{}
 {}World {} {} {} {} {} {} {} {}: {}\LaTeXBF{constant} {}String {}:= {}Hello_World {}(7 {}.. {}11); \newline{}
 {}Empty_String {}: {}\LaTeXBF{constant} {}String {}:= {}\symbol{34}\symbol{34};}

Then the four attributes will have the following values:

\begin{longtable}{|>{\RaggedRight}p{0.23714\linewidth}|>{\RaggedRight}p{0.12723\linewidth}|>{\RaggedRight}p{0.12079\linewidth}|>{\RaggedRight}p{0.16186\linewidth}|>{\RaggedRight}p{0.15208\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Array }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \textquotesingle{}\LaTeXIT{First} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \textquotesingle{}\LaTeXIT{Last} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \textquotesingle{}\LaTeXIT{Length} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \textquotesingle{}\LaTeXIT{Range}}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Hello_World &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 .. 12\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}World &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 11 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 .. 11\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Empty_String &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 .. 0\\ \hline
\end{longtable}

The example was chosen to show a few common beginner\textquotesingle{}s mistakes:

\begin{myenumerate}
\item{} The assumption that strings begin with the index value 1 is wrong.
\item{} The assumption (which follows from the first one) that X\textquotesingle{}Length = X\textquotesingle{}Last is wrong.
\item{} And last the assumption that X\textquotesingle{}Last >{}= X\textquotesingle{}First; this is not true for empty strings.
\end{myenumerate}

The attribute \textquotesingle{}\LaTeXIT{Range} is a little special as it does not return a discrete value but an abstract description of the array. One might wonder what it is good for. The most common use is in the \mylref{75}{for loop on arrays} but \textquotesingle{}\LaTeXIT{Range} can also be used in declaring a name for the index subtype:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{subtype} {}Hello_World_Index {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}Hello_World\textquotesingle{}Range;}

The \LaTeXIT{Range} attribute can be convenient when programming
index checks:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{if} {}K {}\LaTeXBF{in} {}World\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Range} {}\LaTeXBF{then} \newline{}
 {} {} {} {}\LaTeXBF{return} {}World\LaTeXIdentityTemplate{(}K\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{else} \newline{}
 {} {} {} {}\LaTeXBF{return} {}Substitute\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{if}\LaTeXIdentityTemplate{;}}

\subsection{Empty or Null Arrays}
\label{194}

As you have seen in the section above, Ada allows for empty arrays. And {\mbox{---}} of course {\mbox{---}} you can have empty arrays of all sorts, not just String:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Some_Array {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Positive {}range {}<{}>{}) {}\LaTeXBF{of} {}Boolean; \newline{}
 {} \newline{}
 {}Empty_Some_Array {}: {}\LaTeXBF{constant} {}Some_Array {}(1 {}.. {}0) {}:= {}(\LaTeXBF{others} {}=>{} {}False);}

Note: If you give an initial expression to an empty array (which is a must for a constant), the expression in the aggregate will of course not be evaluated since there are no elements actually stored.
\section{See also}
\label{195}
\subsection{Wikibook}
\label{196}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Data\%20Structures}{Data Structures}
\item{} \myhref{http://en.wikibooks.org/wiki/Data\%20Structures\%2FArrays}{Data Structures/Arrays}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{197}

\begin{myitemize}
\item{} \AdaRMNineFive{3}{6}{Array Types}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{198}

\begin{myitemize}
\item{} \AdaRM{3}{6}{Array Types}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{199}

\begin{myitemize}
\item{} \AdaSGThree{10}{5}{7}{Packed Boolean Array Shifts}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FTipos\%2FArrays}{es:Programación en Ada/Tipos/Arrays}\chapter{Records}

\myminitoc
\label{200}

\label{201}

A {\bfseries record} is a \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FTypes\%23List\%20of\%20types}{composite type} that groups one or more fields. A field can be of any type, even a record.
\section{Basic record}
\label{202}
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Basic_Record {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {}A {}: {}Integer; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record};}

\section{Null record}
\label{203}

The null record is when a type without data is needed. There are two ways to declare a null record:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Null_Record {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{null}; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; {}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Null_Record {}\LaTeXBF{is} {}\LaTeXBF{null} {}\LaTeXBF{record};}

For the compiler they are the same. However, programmers often use the first variant if the type is not finished yet to show that they are planning to expand the type later, or they usually use the second if the (tagged) record is a base class in object oriented programming.
\section{Record Values}
\label{204}

Values of a record type can be specified using a record aggregate, giving a list of named components thus
\\

\TemplateSpaceIndent{ {} {} {}A_Basic_Record {} {} {} {} {} {} {}\LaTeXIdentityTemplate{:} {}Basic_Record {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{:=} {}Basic_Record\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{(}A {}\LaTeXIdentityTemplate{=>{}} \newline{}
 {}42\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}Another_Basic_Record {}\LaTeXIdentityTemplate{:} {}Basic_Record {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{:=} {}\LaTeXIdentityTemplate{(}A {}\LaTeXIdentityTemplate{=>{}} {}42\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}Nix {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{:} {}\LaTeXBF{constant} {}Null_Record {}\LaTeXIdentityTemplate{:=} {}\LaTeXIdentityTemplate{(}\LaTeXBF{null} {}\LaTeXBF{record}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;}}

Given a somewhat larger record type,
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Car {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {}Identity {} {} {} {} {} {} {}\LaTeXIdentityTemplate{:} {}Long_Long_Integer\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}Number_Wheels {} {}\LaTeXIdentityTemplate{:} {}Positive {}\LaTeXBF{range} {}1 {}\LaTeXIdentityTemplate{..} {}10\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}Paint {} {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{:} {}Color\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}Horse_Power_kW {}\LaTeXIdentityTemplate{:} {}Float {}\LaTeXBF{range} {}0\LaTeXIdentityTemplate{.}0 {}\LaTeXIdentityTemplate{..} {}2_000\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}Consumption {} {} {} {}\LaTeXIdentityTemplate{:} {}Float {}\LaTeXBF{range} {}0\LaTeXIdentityTemplate{.}0 {}\LaTeXIdentityTemplate{..} {}100\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;}}

a value {\itshape may} be specified using {\itshape positional} notation, that is, specifying a value for each record component in declaration order
\\

\TemplateSpaceIndent{ {} {} {}BMW {}\LaTeXIdentityTemplate{:} {}Car {}\LaTeXIdentityTemplate{:=} {}\LaTeXIdentityTemplate{(}2007_752_83992434\LaTeXIdentityTemplate{,} {}5\LaTeXIdentityTemplate{,} {}Blue\LaTeXIdentityTemplate{,} {}190\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{,} {}10\LaTeXIdentityTemplate{.}1\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;}}

However, naming the components of a {\ttfamily Car} aggregate offers a number of advantages.
\begin{myenumerate}
\item{} Easy identification of which value is used for which component. (After all, named components are the raison d\textquotesingle{}être of records.)
\item{} Reordering the components is allowed—you only have to remember the component names, not their position.
\item{} Improved compiler diagnostic messages.
\end{myenumerate}

Reordering components is possible because component names will inform the compiler (and the human reader!) of the intended value associations.
Improved compiler messages are also in consequence of this additional information passed to the compiler.
While an omitted component will always be reported due to Ada\textquotesingle{}s \myhref{http://www.adacore.com/2007/05/14/gem-1/}{ coverage rules},
messages can be much more specific when there are named associations.
Considering the {\ttfamily Car} type from above, suppose a
programmer by mistake specifies only one of the two floating point values for {\ttfamily BMW} in positional notation.
The compiler, in search of another component value,
will then not be able to decide whether the specified value is intended for {\ttfamily Horse_Power_kW}
or for {\ttfamily Consumption}.
If the programmer instead uses named association, say
Horse_Power_kW \LaTeXIdentityTemplate{=>{}} 190\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{,}
it will be clear which other component is missing.
\\

\TemplateSpaceIndent{ {} {} {}BMW {}\LaTeXIdentityTemplate{:} {}Car {}\LaTeXIdentityTemplate{:=} \newline{}
 {} {} {} {} {}\LaTeXIdentityTemplate{(}Identity {} {} {} {} {} {} {}\LaTeXIdentityTemplate{=>{}} {}2007_752_83992434\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {}Number_Wheels {} {}\LaTeXIdentityTemplate{=>{}} {}5\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {}Horse_Power_kW {}\LaTeXIdentityTemplate{=>{}} {}190\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {}Consumption {} {} {} {}\LaTeXIdentityTemplate{=>{}} {}10\LaTeXIdentityTemplate{.}1\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {}Paint {} {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{=>{}} {}Blue\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;}}

In order to access a component of a record instance, use the dot delimiter (\LaTeXIdentityTemplate{.}), as in {\ttfamily BMW\LaTeXIdentityTemplate{.}Number_Wheels}.
\section{Discriminated record}
\label{205}
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Discriminated_Record {}(Size {}: {}Natural) {}\LaTeXBF{is} {} \newline{}
 {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {}A {}: {}String {}(1 {}.. {}Size); \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record};}

\section{Variant record}
\label{206}

The variant record is a special type of discriminated record where the presence of some components depend on the value of the discriminant.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Traffic_Light {}\LaTeXBF{is} {}(Red, {}Yellow, {}Green); \newline{}
 {} \newline{}
 {} {}\LaTeXBF{type} {}Variant_Record {}(Option {}: {}Traffic_Light) {}\LaTeXBF{is} {} \newline{}
 {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {}\ADACOM{common components} \newline{}
 {} {} {} {} {} {} {} {} \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{case} {}Option {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Red {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for red} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Yellow {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for yellow} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Green {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for green} \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{case}; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record};}

\subsection{Mutable and immutable variant records}
\label{207}

You can declare variant record types such that its discriminant, and thus its variant structure, can be changed during the lifetime of the variable. Such a record is said to be {\itshape mutable}. When \symbol{34}mutating\symbol{34} a record, you must assign {\bfseries all} components of the variant structure which you are mutating at once, replacing the record with a complete variant structure. Although a variant record declaration may allow objects of its type to be mutable, there are certain restrictions on whether the objects will be mutable. Reasons restricting an object from being mutable include:

\begin{myitemize}
\item{} the object is declared with a discriminant (see Immutable_Traffic_Light below)
\item{} the object is aliased (either by use of \LaTeXBF{aliased} in the object declaration, or by allocation on the heap using \LaTeXBF{new})
\end{myitemize}

\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Traffic_Light {}\LaTeXBF{is} {}(Red, {}Yellow, {}Green); \newline{}
 {} \newline{}
 {} {}\LaTeXBF{type} {}Mutable_Variant_Record {}(Option {}: {}Traffic_Light {}:= {}Red) {}\LaTeXBF{is} {} {} {} {} {} {}\ADACOM{the discriminant must have a default value} \newline{}
 {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {}\ADACOM{common components} \newline{}
 {} {} {} {} {} {} {} {}Location {}: {}Natural; \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{case} {}Option {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Red {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for red} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Flashing {}: {}Boolean {}:= {}True; \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Yellow {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for yellow} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Timeout {} {} {} {}: {}Duration {}:= {}0.0; \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Green {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for green} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Whatever {}: {}Positive {}:= {}1; \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{case}; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {}... \newline{}
 {}Mutable_Traffic_Light {} {} {}: {}Mutable_Variant_Record; {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} \newline{}
 {}\ADACOM{not declaring a discriminant makes this record mutable} \newline{}
 {} \newline{}
 {}\ADACOM{it has the default discriminant/variant} \newline{}
 {} \newline{}
 {}\ADACOM{structure and values} \newline{}
 {} \newline{}
 {}Immutable_Traffic_Light {}: {}Mutable_Variant_Record {}(Option {}=>{} {}Yellow); \newline{}
 {}\ADACOM{this record is immutable, the discriminant cannot be changed} \newline{}
 {} \newline{}
 {}\ADACOM{even though the type declaration allows for mutable objects} \newline{}
 {} \newline{}
 {}\ADACOM{with different discriminant values} \newline{}
 {}... \newline{}
 {}Mutable_Traffic_Light {} {} {}:= {}(Option {}=>{} {}Yellow, {} \newline{}
 {}\ADACOM{mutation requires assignment of all components} \newline{}
 {}Location {}=>{} {}54, {} \newline{}
 {}\ADACOM{for the given variant structure} \newline{}
 {}Timeout {}=>{} {}2.3); \newline{}
 {}... \newline{}
 {}\ADACOM{restrictions on objects, causing them to be immutable} \newline{}
 {}\LaTeXBF{type} {}Traffic_Light_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}Mutable_Variant_Record; \newline{}
 {}Any_Traffic_Light {} {} {} {} {} {} {}: {}Traffic_Light_Access {}:= \newline{}
 {}\LaTeXBF{new} {}Mutable_Variant_Record; \newline{}
 {}Aliased_Traffic_Light {} {} {}: {}\LaTeXBF{aliased} {}Mutable_Variant_Record;}

Conversely, you can declare record types so that the discriminant along with the structure of the variant record may not be changed. To make a record type declaration {\itshape immutable}, the discriminant must {\bfseries not} have a default value.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Traffic_Light {}\LaTeXBF{is} {}(Red, {}Yellow, {}Green); \newline{}
 {} \newline{}
 {} {}\LaTeXBF{type} {}Immutable_Variant_Record {}(Option {}: {}Traffic_Light) {}\LaTeXBF{is} {}\ADACOM{no default value makes the record type immutable} \newline{}
 {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {}\ADACOM{common components} \newline{}
 {} {} {} {} {} {} {} {}Location {}: {}Natural {}:= {}0; \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{case} {}Option {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Red {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for red} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Flashing {}: {}Boolean {}:= {}True; \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Yellow {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for yellow} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Timeout {} {} {} {}: {}Duration; \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Green {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for green} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Whatever {}: {}Positive {}:= {}1; \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{case}; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {}... \newline{}
 {}Default_Traffic_Light {} {} {}: {}Immutable_Variant_Record; {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} \newline{}
 {} {} {}\ADACOM{ILLEGAL!} \newline{}
 {}Immutable_Traffic_Light {}: {}Immutable_Variant_Record {}(Option {}=>{} \newline{}
 {}Yellow); {}\ADACOM{this record is immutable, since the type declaration is immutable}}

\section{Union}
\label{208}

\AdaTwentyZeroFive{}
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Traffic_Light {}\LaTeXBF{is} {}(Red, {}Yellow, {}Green); \newline{}
 {} \newline{}
 {} {}\LaTeXBF{type} {}Union {}(Option {}: {}Traffic_Light {}:= {}Traffic_Light\textquotesingle{}First) {}\LaTeXBF{is} {} \newline{}
 {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {}\ADACOM{common components} \newline{}
 {} {} {} {} {} {} {} {} \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{case} {}Option {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Red {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for red} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Yellow {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for yellow} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Green {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{components for green} \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{case}; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {}\AdaPragma{Unchecked_Union} {}(Union); \newline{}
 {} {}\AdaPragma{Convention} {}(C, {}Union); {} {} {} {}\ADACOM{optional}}

The difference to a variant record is such that {\itshape Option} is not actually stored inside the record and never checked for correctness -{} it\textquotesingle{}s just a dummy.

This kind of record is usually used for interfacing with C but can be used for other purposes as well (then without {\ttfamily \AdaPragma{Convention} (C, Union);}).
\section{Tagged record}
\label{209}

The tagged record is one part of what in other languages is called a class. It is the basic foundation of \mylref{365}{object orientated programming in Ada}. The other two parts a class in Ada needs is a \mylref{400}{package} and \mylref{368}{primitive operations}.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Person {}\LaTeXBF{is} {}\LaTeXBF{tagged} {} \newline{}
 {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {}Name {} {} {}: {}String {}(1 {}.. {}10); \newline{}
 {} {} {} {} {} {} {}Gender {}: {}Gender_Type; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record};}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Programmer {}\LaTeXBF{is} {}\LaTeXBF{new} {}Person {}\LaTeXBF{with} \newline{}
 {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {}Skilled_In {}: {}Language_List; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record};}

Ada 2005 only:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Programmer {}\LaTeXBF{is} {}\LaTeXBF{new} {}Person {} \newline{}
 {}\LaTeXBF{and} {}Printable {} \newline{}
 {}\LaTeXBF{with} {} \newline{}
 {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {}Skilled_In {}: {}Language_List; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record};}

\section{Abstract tagged record}
\label{210}

An abstract type has at least an abstract primitive operation, i.e. one of its operations is not defined and then its derivative types has to provide an implementation.
\section{With aliased elements}
\label{211}

If you come from \myhref{http://en.wikibooks.org/wiki/C\%20Programming}{C}/\myhref{http://en.wikibooks.org/wiki/C\%2B\%2B\%20Programming}{C++}, you are probably used to the fact that every element of a record -{} which is not part of a bitset -{} has an address. In Ada, this is not true because records, just like arrays, can be packed. And just like arrays you can use \LaTeXBF{aliased} to ensure that an element can be accessed via an access type.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Basic_Record {}\LaTeXBF{is} {} \newline{}
 {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {}A {}: {}\LaTeXBF{aliased} {}Integer; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record} {};}

Please note: each element needs its own \LaTeXBF{aliased}.
\section{Limited Records}
\label{212}

In addition to being variant, tagged, and abstract,
records may also be limited (no assignment, and no predefined
equality operation for \mylref{250}{Limited Types}).
In object oriented programming, when tagged objects are
handled by references instead of copying them, this blends
well with making objects limited.
\section{See also}
\label{213}
\subsection{Wikibook}
\label{214}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Frecord}{Ada Programming/Keywords/record}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fnull}{Ada Programming/Keywords/null}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fabstract}{Ada Programming/Keywords/abstract}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fcase}{Ada Programming/Keywords/case}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fwhen}{Ada Programming/Keywords/when}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnchecked_Union}{Ada Programming/Pragmas/Unchecked_Union}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{215}
\subsubsection{Ada 95}
\label{216}

\begin{myitemize}
\item{} \AdaRMNineFive{3}{8}{Record Types}
\end{myitemize}

\subsubsection{Ada 2005}
\label{217}

\begin{myitemize}
\item{} \AdaRM{3}{8}{Record Types}
\item{} \AdaRMAThree{B}{3}{3}{Pragma Unchecked_Union}
\end{myitemize}

\subsubsection{Ada Issues}
\label{218}

\begin{myitemize}
\item{} \ADANFAI{216}{Unchecked unions {\mbox{---}} variant records with no run-{}time discriminant}
\end{myitemize}

\chapter{Access types}

\myminitoc
\label{219}

\label{220}

\section{What\textquotesingle{}s an Access Type?}
\label{221}

Access types in Ada are what other languages call pointers. They point to objects located at certain addresses. So normally one can think of access types as simple addresses (there are exceptions from this simplified view). Ada instead of saying {\itshape points to} talks of {\itshape granting access to} or {\itshape designating} an object.

Objects of access types are implicitly initialized with \LaTeXBF{null}, i.e. they point to nothing when not explicitly initialized.

Access types should be used rarely in Ada. In a lot of circumstances where pointers are used in other languages, there are other ways without pointers. If you need dynamic data structures, first check whether you can use the Ada Container library. Especially for indefinite record or array components, the Ada 2012 package Indefinite_Holders (RM A.18.18) can be used instead of pointers.

There are four kinds of access types in Ada: Pool access types -{} General access types -{} Anonymous access types -{} Access to subprogram types.
\section{Pool access}
\label{222}

A {\itshape pool access type} handles accesses to objects which were created on some specific heap (or storage pool as it is called in Ada). A pointer of these types cannot point to a stack or library level (static) object or an object in a different storage pool. Therefore, conversion between pool access types is illegal. (Unchecked_Conversion may be used, but note that deallocation via an access object with a storage pool different from the one it was allocated with is erroneous.)
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Person {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {}First_Name {}: {}String {}(1..30); \newline{}
 {} {} {}Last_Name {} {}: {}String {}(1..20); \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Person_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}Person;}

A size clause may be used to limit the corresponding (implementation defined anonymous) storage pool. A size clause of 0 disables calls of an allocator.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{for} {}Person_Access\textquotesingle{}\LaTeXBF{Size} {}\LaTeXBF{use} {}0;}

The storage pool is implementation defined if not specified. Ada supports user defined storage pools, so you can define the storage pool with
\\

\TemplateSpaceIndent{ {}\LaTeXBF{for} {}Person_Access\textquotesingle{}\LaTeXIT{Storage_Pool} {}\LaTeXBF{use} {}Pool_Name;}

Objects in a storage pool are created with the keyword \LaTeXBF{new}:
\\

\TemplateSpaceIndent{ {}Father: {}Person_Access {}:= {}\LaTeXBF{new} {}Person; {} \newline{}
 {} {} {} {} {} {} {} {}-{}-{} {}uninitialized \newline{}
 {}Mother: {}Person_Access {}:= {}\LaTeXBF{new} {}Person\textquotesingle{}(Mothers_First_Name, \newline{}
 {}Mothers_Last_Name); {} {}-{}-{} {}initialized}

You access the object in the storage pool by appending {\ttfamily .\LaTeXBF{all}}. {\ttfamily Mother.\LaTeXBF{all}} is the complete record; components are denoted as usual with the dot notation: {\ttfamily Mother.\LaTeXBF{all}.First_Name}. When accessing components, {\itshape implicit dereferencing} (i.e. omitting \LaTeXBF{all}) can serve as a convenient shorthand:
\\

\TemplateSpaceIndent{ {}Mother.\LaTeXBF{all} {}:= {}(Last_Name {}=>{} {}Father.Last_Name, {}First_Name {}=>{} \newline{}
 {}Mother.First_Name); {} {}-{}-{} {}marriage}

Implicit dereferencing also applies to arrays:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Vector {}\LaTeXBF{is} {}\LaTeXBF{array} {}(1 {}.. {}3) {}\LaTeXBF{of} {}Complex; \newline{}
 {} {} {}\LaTeXBF{type} {}Vector_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}Vector; \newline{}
 {} \newline{}
 {} {} {}VA: {}Vector_Access {}:= {}\LaTeXBF{new} {}Vector; \newline{}
 {} {} {}VB: {}\LaTeXBF{array} {}(1 {}.. {}3) {}\LaTeXBF{of} {}Vector_Access {}:= {}(\LaTeXBF{others} {}=>{} {}\LaTeXBF{new} {}Vector); \newline{}
 {} \newline{}
 {} {} {}C1: {}Complex {}:= {}VA {}(3); {} {} {} {}-{}-{} {}a {}shorter {}equivalent {}for {}VA {} {} {}.\LaTeXBF{all} {}(3) \newline{}
 {} {} {}C2: {}Complex {}:= {}VB {}(3)(1); {}-{}-{} {}a {}shorter {}equivalent {}for {}VB(3).\LaTeXBF{all} {}(1)}

Be careful to discriminate between deep and shallow copies when copying with access objects:
\\

\TemplateSpaceIndent{ {}Obj1.\LaTeXBF{all} {}:= {}Obj2.\LaTeXBF{all}; {} {}-{}-{} {}Deep {}copy: {}Obj1 {}still {}refers {}to {}an {}object \newline{}
 {}-{}-{} {}different {}from {}Obj2, {}but {}it {}has {}the {}same \newline{}
 {}content \newline{}
 {}Obj1 {}:= {}Obj2; {} {} {} {} {} {} {} {} {} {}-{}-{} {}Shallow {}copy: {}Obj1 {}now {}refers {}to {}the {}same \newline{}
 {}object {}as {}Obj2}

\subsection{Deleting objects from a storage pool}
\label{223}

Although the Ada standard mentions a garbage collector, which would automatically remove all unneeded objects that have been created on the heap (when no storage pool has been defined), only Ada compilers targeting a virtual machine like Java or .NET actually have garbage collectors. \sout{There is also a {\ttfamily \LaTeXBF{pragma} Controlled}, which, when applied to such an access type, prevents automatic garbage collection of objects created with it.} Note that {\ttfamily \LaTeXBF{pragma} Controlled} will be dropped from Ada 2012, see RM 2012 13.11.3.

Therefore in order to delete an object from the heap, you need the generic unit \LaTeXIdentityTemplate{Ada}. Apply utmost care to not create dangling pointers when deallocating objects as is shown in the example below. (And note that deallocating objects with a different access type than the one with which they were created is erroneous when the corresponding storage pools are different.)
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Deallocation_Sample {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Vector {} {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Integer {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Float; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Vector_Ref {}\LaTeXBF{is} {}\LaTeXBF{access} {}Vector; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Free_Vector {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada} \newline{}
 {} {} {} {} {} {} {}(Object {}=>{} {}Vector, {}Name {}=>{} {}Vector_Ref); \newline{}
 {} {} {} \newline{}
 {} {} {} {}VA, {}VB: {}Vector_Ref; \newline{}
 {} {} {} {}V {} {} {} {} {}: {}Vector; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {} {}VA {} {} {} {} {}:= {}\LaTeXBF{new} {}Vector {}(1 {}.. {}10); \newline{}
 {} {} {} {}VB {} {} {} {} {}:= {}VA; {} {}-{}-{} {}points {}to {}the {}same {}location {}as {}VA \newline{}
 {} \newline{}
 {} {} {} {}VA.\LaTeXBF{all} {}:= {}(\LaTeXBF{others} {}=>{} {}0.0); \newline{}
 {} \newline{}
 {} {} {} {}-{}-{} {} {}... {}Do {}whatever {}you {}need {}to {}do {}with {}the {}vector \newline{}
 {} \newline{}
 {} {} {} {}Free_Vector {}(VA); {}-{}-{} {}The {}memory {}is {}deallocated {}and {}VA {}is {}now {}null \newline{}
 {} \newline{}
 {} {} {} {}V {}:= {}VB.all; {} {}-{}-{} {}VB {}is {}not {}null, {}access {}to {}a {}dangling {}pointer {}is \newline{}
 {}erroneous \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Deallocation_Sample;}

It is exactly because of this problem with dangling pointers that the deallocation operation is called {\bfseries unchecked}. It is the chore of the programmer to take care that this does not happen.

Since Ada allows for user defined storage pools, you could also try a \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FAdaCL\%23Garbage_Collector}{garbage collector library}.
\subsection{Constructing Reference Counting Pointers}
\label{224}

You can find some implementations of reference counting pointers, called {\itshape Safe} or {\itshape Smart Pointers}, on the net. Using such a type prevents caring about deallocation, since this will automatically be done when there are no more pointers to an object. But be careful -{} most of those implementations do not prevent deliberate deallocation, thus undermining the alledged safety attained with their use.

A nice tutorial how to construct such a type can be found in a series of Gems on the AdaCore web site.

\myhref{http://www.adacore.com/2011/01/17/gem-97-reference-counting-in-ada-part-1/}{ Gem \#97: Reference Counting in Ada – Part 1} This little gem constructs a simple reference counted pointer that does not prevent deallocation, i.e. is inherently unsafe.

\myhref{http://www.adacore.com/2011/06/06/gem-107-preventing-deallocation-for-reference-counted-types/}{ Gem \#107: Preventing Deallocation for Reference-{}counted Types} This further gem describes how to arrive at a pointer type whose safety cannot be compromised (tasking issues aside). The cost of this improved safety is awkward syntax.

\myhref{http://www.adacore.com/adaanswers/gems/gem-123-implicit-dereferencing-in-ada-2012/}{ Gem \#123: Implicit Dereferencing in Ada 2012} This gem shows how to simplify the syntax with the new Ada 2012 generation. (Admittedly, this gem is a bit unrelated to reference counting since the new language feature can be applied to any kind of container.)
\section{General access}
\label{225}

{\itshape General access types} grant access to objects created on any storage pool, on the stack or at library level (static). They come in two versions, granting either read-{}write access or read-{}only access. Conversions between general access types are allowed, but subject to certain access level checks.

Dereferencing is like for pool access types. Objects (other than pool objects) to be referenced have to be declared \LaTeXBF{aliased}, and references to them are created with the attribute {\ttfamily \textquotesingle{}Access}. Access level restrictions prevent accesses to objects from outliving the accessed object, which would make the program erroneous. The attribute {\ttfamily \textquotesingle{}Unchecked_Access} omits the corresponding checks.
\subsection{Access to Variable}
\label{226}

When the keyword \LaTeXBF{all} is used in their definition, they grant read-{}write access.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Day_Of_Month {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}31; {} {} {} {} {} {} {} {} {} {} {} {} \newline{}
 {}\LaTeXBF{type} {}Day_Of_Month_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{all} {}Day_Of_Month;}

\subsection{Access to Constant}
\label{227}

General access types granting read-{}only access to the referenced object use the keyword \LaTeXBF{constant} in their definition. The referenced object may be a constant or a variable.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Day_Of_Month {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}31; {} {} {} {} {} {} {} {} {} {} {} {} \newline{}
 {}\LaTeXBF{type} {}Day_Of_Month_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Day_Of_Month;}

\subsection{Some examples}
\label{228}
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}General_Pointer {} {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{all} {} {} {} {} {} {}Integer; \newline{}
 {} {}\LaTeXBF{type} {}Constant_Pointer {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Integer; \newline{}
 {} \newline{}
 {} {}I1: {}\LaTeXBF{aliased} {}\LaTeXBF{constant} {}Integer {}:= {}10; \newline{}
 {} {}I2: {}\LaTeXBF{aliased} {}Integer; \newline{}
 {} \newline{}
 {} {}P1: {}General_Pointer {} {}:= {}I1\textquotesingle{}\LaTeXIT{Access}; {} {}-{}-{} {}illegal \newline{}
 {} {}P2: {}Constant_Pointer {}:= {}I1\textquotesingle{}\LaTeXIT{Access}; {} {}-{}-{} {}OK, {}read {}only \newline{}
 {} {}P3: {}General_Pointer {} {}:= {}I2\textquotesingle{}\LaTeXIT{Access}; {} {}-{}-{} {}OK, {}read {}and {}write \newline{}
 {} {}P4: {}Constant_Pointer {}:= {}I2\textquotesingle{}\LaTeXIT{Access}; {} {}-{}-{} {}OK, {}read {}only \newline{}
 {} \newline{}
 {} {}P5: {}\LaTeXBF{constant} {}General_Pointer {}:= {}I2\textquotesingle{}Access; {} {}-{}-{} {}read {}and {}write {}only {}to {}I2}

\section{Anonymous access}
\label{229}

Also {\itshape Anonymous access types} come in two versions like general access types, granting either read-{}write access or read-{}only access depending on whether the keyword \LaTeXBF{constant} appears.

An anonymous access can be used as a parameter to a subprogram or as a discriminant. Here are some examples:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Modify {}(Some_Day: {}\LaTeXBF{access} {} {} {} {} {} {} {} {} {} {}Day_Of_Month); \newline{}
 {}\LaTeXBF{procedure} {}Test {} {} {}(Some_Day: {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Day_Of_Month); {} {}-{}-{} {}Ada {}2005 {}only}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{task} {}\LaTeXBF{type} {}Thread {}(Execute_For_Day: {}\LaTeXBF{access} {}Day_Of_Month) {}\LaTeXBF{is} \newline{}
 {} {} {} {}... \newline{}
 {}\LaTeXBF{end} {}Thread;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Day_Data {}(Store_For_Day: {}\LaTeXBF{access} {}Day_Of_Month) {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {} {}-{}-{} {} {}components \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{record};}

Before using an anonymous access, you should consider a named access type or, even better, consider if the \symbol{34}\LaTeXBF{out}\symbol{34} or \symbol{34}\LaTeXBF{in} \LaTeXBF{out}\symbol{34} modifier is not more appropriate.

\AdaTwentyZeroFive{}

In Ada 2005, anonymous accesses are allowed in more circumstances:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {}M {} {} {}: {}Integer; \newline{}
 {} {} {}Next: {}\LaTeXBF{access} {}Object; \newline{}
 {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}X: {}\LaTeXBF{access} {}Integer; \newline{}
 {} \newline{}
 {}\LaTeXBF{function} {}F {}\LaTeXBF{return} {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Float;}
\section{Implicit Dereference}
\label{230}
Ada 2012 will simplify accesses to objects via pointers with new syntax.

Imagine you have a container holding some kind of elements.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Container {} {} {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{type} {}Element_Ptr {}\LaTeXBF{is} {}\LaTeXBF{access} {}Element; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Put {}(X: {}Element; {}Into: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Container);}

Now how do you access elements stored in the container. Of course you can retrieve them by
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Get {}(From: {}Container) {}\LaTeXBF{return} {}Element;}

This will however copy the element, which is unfortunate if the element is big. You get direct access with
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Get {}(From: {}Container) {}\LaTeXBF{return} {}Element_Ptr;}

Now pointers are dangerous since you might easily create dangling pointers like so:
\\

\TemplateSpaceIndent{ {}P: {}Element_Ptr {}:= {}Get {}(Cont); \newline{}
 {}P.\LaTeXBF{all} {}:= {}E; \newline{}
 {}Free {}(P); \newline{}
 {}... {}Get {}(Cont) {}-{}-{} {}this {}is {}now {}a {}dangling {}pointer}

Use of an accessor object instead of an access type can prevent inadvertant deallocation (this is still Ada 2005):
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Accessor {}(Data: {}\LaTeXBF{not} {}\LaTeXBF{null} {}\LaTeXBF{access} {}Element) {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; {} {}-{}-{} {}read/write {}access \newline{}
 {}\LaTeXBF{function} {}Get {}(From: {}Container) {}\LaTeXBF{return} {}Accessor;}

(For the null exclusion \LaTeXBF{not} \LaTeXBF{null} in the declaration of the discriminant, see below). Access via such an accessor is safe: The discriminant can only be used for dereferencing, it cannot be copied to an object of type Element_Ptr because its accessibility level is deeper. In the form above, the accessor provides read and write access. If the keyword \LaTeXBF{constant} is added, only read access is possible.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Accessor {}(Data: {}\LaTeXBF{not} {}\LaTeXBF{null} {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Element) {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; {} {}-{}-{} {}only {}read {}access}

Access to the container object now looks like so:
\\

\TemplateSpaceIndent{ {}Get {}(Cont).\LaTeXBF{all} {} {} {} {} {} {}:= {}E; {} {}-{}-{} {}via {}access {}type: {}dangerous \newline{}
 {}Get {}(Cont).Data.\LaTeXBF{all} {}:= {}E; {} {}-{}-{} {}via {}accessor: {}safe, {}but {}ugly}

Here the new Ada 2012 feature of {\itshape aspects} comes along handy; for the case at hand, the aspect {\itshape Implicit_Dereference} is the one we need:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Accessor {}(Data: {}\LaTeXBF{not} {}\LaTeXBF{null} {}\LaTeXBF{access} {}Element) {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private} \newline{}
 {} {} {} {}\LaTeXBF{with} {}Implicit_Dereference {}=>{} {}Data;}

Now rather than writing the long and ugly function call of above, we can just omit the discriminant and its dereference like so:
\\

\TemplateSpaceIndent{ {}Get {}(Cont).Data.\LaTeXBF{all} {}:= {}E; {} {}-{}-{} {}Ada {}2005 {}via {}accessor: {}safe, {}but {}ugly \newline{}
 {}Get {}(Cont) {} {} {} {} {} {} {} {} {} {}:= {}E; {} {}-{}-{} {}Ada {}2012 {}implicit {}dereference}

Note that the call {\ttfamily Get (Cont)} is overloaded — it can denote the accessor object or the element, the compiler will select the correct interpretation depending on context.
\section{Null exclusions}
\label{231}

\AdaTwentyZeroFive{}

All access subtypes can be modified with \LaTeXBF{not} \LaTeXBF{null}, objects of such a subtype can then never have the value null, so initializations are compulsory.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {} {} {} {}Day_Of_Month_Access {} {} {} {} {} {} {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{access} {} {} {}Day_Of_Month; \newline{}
 {}\LaTeXBF{subtype} {}Day_Of_Month_Not_Null_Access {}\LaTeXBF{is} {}\LaTeXBF{not} {}\LaTeXBF{null} {}Day_Of_Month_Access;}

The language also allows to declare {\itshape the first subtype} directly with a null exclusion:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Day_Of_Month_Access {}\LaTeXBF{is} {}\LaTeXBF{not} {}\LaTeXBF{null} {}\LaTeXBF{access} {}Day_Of_Month;}

However, in nearly all cases this is not a good idea because it renders objects of this type nearly unusable (for example, you are unable to free the allocated memory). Not null accesses are intended for access {\itshape subtypes}, object {\itshape declarations}, and subprogram {\itshape parameters}.\myplainurl{http://groups.google.com/group/comp.lang.ada/msg/13a41ced7af75192}
\section{Access to Subprogram}
\label{232}

An access to subprogram allows to call a \mylref{268}{subprogram} without knowing its name nor its declaration location. One of the uses of this kind of access is the well known callbacks.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Callback_Procedure {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{procedure} {}(Id {} {}: {}Integer; \newline{}
 {}Text: {}String); \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Callback_Function {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{function} {}(The_Alarm: {}Alarm) {}\LaTeXBF{return} {}Natural;}

For getting an access to a subprogram, the attribute \LaTeXIT{Access} is applied to a subprogram name with the proper parameter and result profile.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Process_Event {}(Id {} {}: {}Integer; \newline{}
 {}Text: {}String); \newline{}
 {} \newline{}
 {}My_Callback: {}Callback_Procedure {}:= {}Process_Event\textquotesingle{}\LaTeXIT{Access};}

\subsection{Anonymous access to Subprogram}
\label{233}

\AdaTwentyZeroFive{}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Test {}(Call_Back: {}\LaTeXBF{access} {}\LaTeXBF{procedure} {}(Id: {}Integer; {}Text: {}String));}

There is now no limit on the number of keyword in a sequence:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}F {}\LaTeXBF{return} {}\LaTeXBF{access} {}\LaTeXBF{function} {}\LaTeXBF{return} {}\LaTeXBF{access} {}\LaTeXBF{function} {}\LaTeXBF{return} {}\LaTeXBF{access} {}Some_Type;}

This is a function that returns the access to a function that in turn returns an access to a function returning an access to some type.
\section{Access FAQ}
\label{234}

A few \symbol{34}Frequently Asked Question\symbol{34} and \symbol{34}Frequently Encountered Problems\symbol{34} (mostly from \myhref{http://en.wikibooks.org/wiki/Programming\%3AC}{C} users) regarding Ada\textquotesingle{}s access types.
\subsection{Access vs. access all}
\label{235}

An \LaTeXBF{access} \LaTeXBF{all} can do anything a simple \LaTeXBF{access} can do. So one might ask: \symbol{34}Why use simple \LaTeXBF{access} at all?\symbol{34} -{} And indeed some programmers never use simple \LaTeXBF{access}.

Unchecked_Deallocation is always dangerous if misused. It is just as easy to deallocate a pool-{}specific object twice, and just as dangerous as deallocating a stack object. The advantage of \symbol{34}access all\symbol{34} is that you may not need to use Unchecked_Deallocation at all.

Moral: if you have (or may have) a valid reason to store an \textquotesingle{}Access or \textquotesingle{}Unchecked_Access into an access object, then use \symbol{34}access all\symbol{34} and don\textquotesingle{}t worry about it. If not, the mantra of \symbol{34}least privilege\symbol{34} suggests that the \symbol{34}all\symbol{34} should be left out (don\textquotesingle{}t enable capabilities that you are not going to use).

The following (perhaps disastrous) example will try to deallocate a stack object:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Day_Of_Month {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}31; {} {} {} {} {} {} {} {} {} {} {} {} \newline{}
 {} {} {}\LaTeXBF{type} {}Day_Of_Month_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{all} {}Day_Of_Month; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Free {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Unchecked_Deallocation \newline{}
 {} {} {} {} {} {} {}(Object {}=>{} {}Day_Of_Month \newline{}
 {} {} {} {} {} {} {} {}Name {} {} {}=>{} {}Day_Of_Month_Access); \newline{}
 {} \newline{}
 {} {} {}A {} {}: {}\LaTeXBF{aliased} {}Day_Of_Month; \newline{}
 {} {} {}Ptr: {}Day_Of_Month_Access {}:= {}A\textquotesingle{}\LaTeXIT{Access}; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {} {}Free(Ptr); \newline{}
 {} \newline{}
 {}\LaTeXBF{end};}

With a simple \LaTeXBF{access} you know at least that you won\textquotesingle{}t try to deallocate a stack object.
\subsection{Access vs. System.Address}
\label{236}

An access can be something different from a mere memory address, it may be something more. For example, an \symbol{34}access to String\symbol{34} often needs some way of storing the string size as well. If you need a simple address and are not concerned about strong typing, use the System.Address type.
\subsection{C compatible pointer}
\label{237}

The correct way to create a C compatible access is to use \AdaPragma{Convention}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Day_Of_Month {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}31; \newline{}
 {}\LaTeXBF{for} {} {}Day_Of_Month\textquotesingle{}\LaTeXIT{Size} {}\LaTeXBF{use} {}Interfaces.C.int\textquotesingle{}\LaTeXIT{Size}; \newline{}
 {} \newline{}
 {}\AdaPragma{Convention} {}(Convention {}=>{} {}C, \newline{}
 {}Entity {} {} {} {} {}=>{} {}Day_Of_Month); \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Day_Of_Month_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}Day_Of_Month; \newline{}
 {} \newline{}
 {}\AdaPragma{Convention} {}(Convention {}=>{} {}C, \newline{}
 {}Entity {} {} {} {} {}=>{} {}Day_Of_Month_Access);}

\AdaPragma{Convention} should be used on any type you want to use in C. The compiler will warn you if the type cannot be made C compatible.

You may also consider the following -{} shorter -{} alternative when declaring Day_Of_Month:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Day_Of_Month {}\LaTeXBF{is} {}\LaTeXBF{new} {}Interfaces.C.int {}\LaTeXBF{range} {}1 {}.. {}31;}

Before you use access types in C, you should consider using the normal \symbol{34}in\symbol{34}, \symbol{34}out\symbol{34} and \symbol{34}in out\symbol{34} modifiers. \AdaPragma{Export} and \AdaPragma{Import} know how parameters are usually passed in C and will use a pointer to pass a parameter automatically where C would have used them as well. Of course the RM contains precise rules on when to use a pointer for \symbol{34}in\symbol{34}, \symbol{34}out\symbol{34}, and \symbol{34}in out\symbol{34} -{} see \symbol{34}\AdaRM{B}{3}{Interfacing with C}\symbol{34}.
\subsection{Where is void*?}
\label{238}

While actually a problem for \symbol{34}interfacing with C\symbol{34}, here are some possible solutions:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Test {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{subtype} {}Pvoid {}\LaTeXBF{is} {}System.Address; \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}the {}declaration {}in {}C {}looks {}like {}this: \newline{}
 {} {} {}-{}-{} {}int {}C_fun(int {}*) \newline{}
 {} {} {}\LaTeXBF{function} {}C_fun {}(pv: {}Pvoid) {}\LaTeXBF{return} {}Integer; \newline{}
 {} {} {}\AdaPragma{Import} {}(Convention {} {} {} {}=>{} {}C, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Entity {} {} {} {} {} {} {} {}=>{} {}C_fun, {} {} {} {} {}-{}-{} {}any {}Ada {}name \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}External_Name {}=>{} {}\symbol{34}C_fun\symbol{34}); {} {}-{}-{} {}the {}C {}name \newline{}
 {} \newline{}
 {} {} {}Pointer: {}Pvoid; \newline{}
 {} \newline{}
 {} {} {}Input_Parameter: {}\LaTeXBF{aliased} {}Integer {}:= {}32; \newline{}
 {} {} {}Return_Value {} {} {}: {}Integer; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {}Pointer {} {} {} {} {} {}:= {}Input_Parameter\textquotesingle{}\LaTeXIT{Address}; \newline{}
 {} {} {}Return_Value {}:= {}C_fun {}(Pointer); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Test;}

Less portable but perhaps more usable {\small (for 32 bit CPUs)}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}void {}\LaTeXBF{is} {}\LaTeXBF{mod} {}2 {}** {}32; \newline{}
 {}\LaTeXBF{for} {}void\textquotesingle{}\LaTeXIT{Size} {}\LaTeXBF{use} {}32;}

With GNAT you can get 32/64 bit portability by using:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}void {}\LaTeXBF{is} {}\LaTeXBF{mod} {}System.Memory_Size; \newline{}
 {}\LaTeXBF{for} {}void\textquotesingle{}\LaTeXIT{Size} {}\LaTeXBF{use} {}System.Word_Size;}

Closer to the true nature of void -{} pointing to an element of zero size is a pointer to a null record. This also has the advantage of having a representation for {\ttfamily void} and {\ttfamily void*}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Void {}\LaTeXBF{is} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {}\AdaPragma{Convention} {}(C, {}Void); \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Void_Ptr {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{all} {}Void; \newline{}
 {}\AdaPragma{Convention} {}(C, {}Void_Ptr);}

\section{Thin and Fat Access Types}
\label{239}

The difference between an access type and an address will be detailed in the following. The term {\itshape pointer} is used because this is usual terminology.

There is a predefined unit {\ttfamily System.Address_to_Access_Conversion} converting back and forth between access values and addresses. Use these conversions with care, as is explained below.
\subsection{Thin Pointers}
\label{240}

Thin pointers grant access to constrained subtypes.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Int {} {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}100 {}.. {}+500; \newline{}
 {}\LaTeXBF{type} {}Acc_Int {}\LaTeXBF{is} {}\LaTeXBF{access} {}Int; \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Arr {} {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{array} {}(1 {}.. {}80) {}\LaTeXBF{of} {}Character; \newline{}
 {}\LaTeXBF{type} {}Acc_Arr {}\LaTeXBF{is} {}\LaTeXBF{access} {}Arr;}

Objects of subtypes like these have a static size, so a simple address suffices to access them. In the case of arrays, this is generally the address of the first element.

For pointers of this kind, use of {\ttfamily System.Address_to_Access_Conversion} is safe.
\subsection{Fat Pointers}
\label{241}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Unc {} {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Integer {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Character; \newline{}
 {}\LaTeXBF{type} {}Acc_Unc {}\LaTeXBF{is} {}\LaTeXBF{access} {}Unc;}

Objects of subtype {\ttfamily Unc} need a constraint, i.e. a start and a stop index, thus pointers to them need also to include those. So a simple address like the one of the first component is not sufficient. Note that A\textquotesingle{}Address is the same as A(A\textquotesingle{}First)\textquotesingle{}Address for any array object.

For pointers of this kind, {\ttfamily System.Address_to_Access_Conversion} will probably not work satisfactorily.
\subsection{Example}
\label{242}
\\

\TemplateSpaceIndent{ {}CO: {}\LaTeXBF{aliased} {}Unc {}(-{}1 {}.. {}+1) {}:= {}(-{}1 {}.. {}+1 {}=>{} {}\textquotesingle{} {}\textquotesingle{}); \newline{}
 {}UO: {}\LaTeXBF{aliased} {}Unc {} {} {} {} {} {} {} {} {} {} {} {}:= {}(-{}1 {}.. {}+1 {}=>{} {}\textquotesingle{} {}\textquotesingle{});}

Here, CO is a {\itshape nominally constrained} object, a pointer to it need not store the constraint, i.e. a thin pointer suffices. In contrast, UO is an object of a {\itshape nominally unconstrained} subtype, its {\itshape actual subtype} is constrained by the initial value.
\\

\TemplateSpaceIndent{ {}A: {}Acc_Unc {} {} {} {} {} {} {} {} {} {} {} {}:= {}CO\textquotesingle{}Access; {} {}-{}-{} {}illegal \newline{}
 {}B: {}Acc_Unc {} {} {} {} {} {} {} {} {} {} {} {}:= {}UO\textquotesingle{}Access; {} {}-{}-{} {}OK \newline{}
 {}C: {}Acc_Unc {}(CO\textquotesingle{}Range) {}:= {}CO\textquotesingle{}Access; {} {}-{}-{} {}also {}illegal}

The relevant paragraphs in the RM are difficult to understand. In short words:

An access type\textquotesingle{}s target type is called the {\itshape designated subtype}, in our example {\ttfamily Unc}. RM 3.10.2(27.1/2) requires that {\ttfamily Unc_Acc}\textquotesingle{}s designated subtype statically match the {\itshape nominal subtype} of the object.

Now the nominal subtype of {\ttfamily CO} is the constrained anonymous subtype {\ttfamily Unc (-{}1 .. +1)}, the nominal subtype of {\ttfamily UO} is the unconstrained subtype {\ttfamily Unc}. In the illegal cases, the designated and nominal subtypes do not statically match.
\section{See also}
\label{243}
\subsection{Wikibook}
\label{244}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes}{Ada Programming/Types}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{245}
\subsubsection{Ada 95}
\label{246}

\begin{myitemize}
\item{} \AdaRMNineFive{4}{8}{Allocators}
\item{} \AdaRMNineFive{13}{11}{Storage Management}
\item{} \AdaNiveFiveRMThree{13}{11}{2}{Unchecked Storage Deallocation}
\item{} \AdaRMNineFive{3}{7}{Discriminants}
\item{} \AdaRMNineFive{3}{10}{Access Types}
\item{} \AdaRMNineFive{6}{1}{Subprogram Declarations}
\item{} \AdaRMNineFive{B}{3}{Interfacing with C}
\end{myitemize}

\subsubsection{Ada 2005}
\label{247}

\begin{myitemize}
\item{} \AdaRM{4}{8}{Allocators}
\item{} \AdaRM{13}{11}{Storage Management}
\item{} \AdaRMThree{13}{11}{2}{Unchecked Storage Deallocation}
\item{} \AdaRM{3}{7}{Discriminants}
\item{} \AdaRM{3}{10}{Access Types}
\item{} \AdaRM{6}{1}{Subprogram Declarations}
\item{} \AdaRM{B}{3}{Interfacing with C}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{248}

\begin{myitemize}
\item{} \AdaSGThree{5}{4}{5}{Dynamic Data}
\item{} \AdaSGThree{5}{9}{2}{Unchecked Deallocation}
\end{myitemize}

\chapter{Limited types}

\myminitoc
\label{249}

\label{250}

\section{Limited Types}
\label{251}

When a type is declared \LaTeXBF{limited} this means that objects of
the type cannot be assigned values of the same type.
An Object {\ttfamily b} of limited type {\ttfamily LT} cannot be copied into an object
{\ttfamily a} of same type {\ttfamily LT}.

Additionally, there is no predefined equality operation
for objects of a limited type.

The desired effects of declaring a type limited
include prevention of shallow copying. Also, the (unique)
identity of an object is retained:
once declared, a name of a variable of type {\ttfamily LT} will
continue to refer to the same object.

The following example will use a rather simplifying type {\ttfamily Boat}.
\\

\TemplateSpaceIndent{ {} {} {} {} {} {}\LaTeXBF{type} {}Boat {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{function} {}Choose \newline{}
 {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Load {} {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {}Speed {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{)} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {} {}Boat\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Set_Sail {}\LaTeXIdentityTemplate{(}The_Boat {}\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}\LaTeXBF{out} {}Boat\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;}}

When we declare a variable to be of type {\ttfamily Boat}, its name will denote
one boat from then on. Boats will not be copied into one another.

The full view of a boat might be implemented as a record such as
\\

\TemplateSpaceIndent{ {} {} {} {} {} {}\LaTeXBF{type} {}Boat {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {}Max_Sail_Area {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {}Max_Freight {} {} {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {}Sail_Area {} {} {} {} {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {}Freight {} {} {} {} {} {} {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;}}

The {\ttfamily Choose} function returns a {\ttfamily Boat} object depending on the parameters
{\ttfamily Load} and {\ttfamily Speed}.
If we now declare a variable of type Boat we will be better off Choosing an initial Boat
(or else we might be dropping into uninitialized waters!). But when we
do so, the initialization looks suspiciously like assignment which is not available with limited types:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{procedure} {}Travel {}\LaTeXIdentityTemplate{(}People {}\LaTeXIdentityTemplate{:} {}Positive\LaTeXIdentityTemplate{;} {}Average_Speed {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {} {} {}Henrietta {}\LaTeXIdentityTemplate{:} {}Boat {}\LaTeXIdentityTemplate{:=} {} {} {}\ADACOM{assignment?} \newline{}
 {} {} {} {} {} {} {} {} {}Choose \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Load {} {}\LaTeXIdentityTemplate{=>{}} {}People {}\LaTeXIdentityTemplate{*} {}Average_Weight {}\LaTeXIdentityTemplate{*} {}1\LaTeXIdentityTemplate{.}5\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Speed {}\LaTeXIdentityTemplate{=>{}} {}Average_Speed {}\LaTeXIdentityTemplate{*} {}1\LaTeXIdentityTemplate{.}5\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}Set_Sail {}\LaTeXIdentityTemplate{(}Henrietta\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{end} {}Travel\LaTeXIdentityTemplate{;}}

Fortunately, current Ada distinguishes initialization from copying. Objects of a limited
type may be initialized by an initialization expression on the right of the delimiter
\LaTeXIdentityTemplate{:=}.

(Just to prevent confusion: The Ada Reference Manual discriminates between {\itshape assignment} and {\itshape assignment statement}, where assignment is part of the assignment statement. An initialisation is of course an assignment which, for limited types, is done {\itshape in place}. An assignment statement involves copying, which is forbidden for limited types.)

Related to this feature are \myhref{http://www.adacore.com/2007/05/14/gem-1/}{ aggregates of limited types} and
“constructor functions” for limited types.
Internally, the implementation of the {\ttfamily Choose} function will return
a limited record. However, since the return type {\ttfamily Boat} is limited,
there must be no copying anywhere. Will this work?
A first attempt might be to declare a {\ttfamily result} variable local
to {\ttfamily Choose}, manipulate {\ttfamily result}, and return it.
The {\ttfamily result} object needs to be “transported” into the calling environment.
But {\ttfamily result} is a variable local to {\ttfamily Choose}.
When {\ttfamily Choose} returns, {\ttfamily result} will no longer be in scope.
Therefore it looks like {\ttfamily result} must be copied but this is not permitted
for limited types. There are two solutions provided by the language:
extended return statements (see \AdaRM{6}{5}{Return Statements})
and aggregates of limited types. The following body of {\ttfamily Choose}
returns an aggregate of limited type {\ttfamily Boat}, after finding the
initial values for its components.
\\

\TemplateSpaceIndent{ {} {} {} {} {} {}\LaTeXBF{function} {}Choose \newline{}
 {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Load {} {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {}Speed {}\LaTeXIdentityTemplate{:} {}Sailors_Units\LaTeXIdentityTemplate{)} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {} {}Boat \newline{}
 {} {} {} {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {}Capacity {}\LaTeXIdentityTemplate{:} {}\LaTeXBF{constant} {}Sailors_Units {}\LaTeXIdentityTemplate{:=} {}Capacity_Needed {}\LaTeXIdentityTemplate{(}Load\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}Boat\LaTeXIdentityTemplate{\textquotesingle{}} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Max_Freight {} {} {}\LaTeXIdentityTemplate{=>{}} {}Capacity\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Max_Sail_Area {}\LaTeXIdentityTemplate{=>{}} {}Sail_Needed {}\LaTeXIdentityTemplate{(}Capacity\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Freight {} {} {} {} {} {} {}\LaTeXIdentityTemplate{=>{}} {}Load\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Sail_Area {} {} {} {} {}\LaTeXIdentityTemplate{=>{}} {}0\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Choose\LaTeXIdentityTemplate{;}}

The object that is returned is at the same time the object that is to have
the returned value. The function therefore initializes {\ttfamily Henrietta}
{\itshape in place}.

In parallel to the predefined type \LaTeXIdentityTemplate{Ada}{\ttfamily .Controlled},
Ada provides the type {\ttfamily Limited_Controlled} in the same package.
It is a limited version of the former.
\section{Initialising Limited Types}
\label{252}

A few methods to initialise such types are presented.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Limited_Private_Samples {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Uninitialised {} {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; \newline{}
 {} {} {}\LaTeXBF{type} {}Preinitialised {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Dynamic_Initialisation {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; \newline{}
 {} {} {}\LaTeXBF{function} {}Constructor {}(X: {}Integer) {} {}\ADACOM{any kind of parameters} \newline{}
 {} {} {} {} {}\LaTeXBF{return} {}Dynamic_Initialisation; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Needs_Constructor {}(<{}>{}) {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; \newline{}
 {} {} {}\LaTeXBF{function} {}Constructor {}(X: {}Integer) {} {}\ADACOM{any kind of parameters} \newline{}
 {} {} {} {} {}\LaTeXBF{return} {}Needs_Constructor; \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Uninitialised {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {}I: {}Integer; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Preinitialised {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {}I: {}Integer {}:= {}0; {} {}\ADACOM{can also be a function call} \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Void {}\LaTeXBF{is} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} {} {}\LaTeXBF{function} {}Constructor {}(Object: {}\LaTeXBF{access} {}Dynamic_Initialisation) {}\LaTeXBF{return} {}Void; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Dynamic_Initialisation {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {}Hook: {}Void {}:= {}Constructor {}(Dynamic_Initialisation\textquotesingle{}\LaTeXBF{Access}); \newline{}
 {} {} {} {} {}Bla {}: {}Integer; {} {}\ADACOM{any needed components} \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Needs_Constructor {}\LaTeXBF{is} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {}I: {}Integer; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Limited_Private_Samples;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}\LaTeXBF{body} {}Limited_Private_Samples {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{function} {}Constructor {}(Object: {}\LaTeXBF{access} {}Dynamic_Initialisation) {}\LaTeXBF{return} {}Void {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}Object.Bla {}:= {}5; {} {}\ADACOM{may be any value only known at run time} \newline{}
 {} {} {} {} {}\LaTeXBF{return} {}(\LaTeXBF{null} {}\LaTeXBF{record}); \newline{}
 {} {} {}\LaTeXBF{end} {}Constructor; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{function} {}Constructor {}(X: {}Integer) {}\LaTeXBF{return} {}Dynamic_Initialisation {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}\LaTeXBF{return} {}(Hook {}=>{} {}(\LaTeXBF{null} {}\LaTeXBF{record}), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Bla {} {}=>{} {}42); \newline{}
 {} {} {}\LaTeXBF{end} {}Constructor; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{function} {}Constructor {}(X: {}Integer) {}\LaTeXBF{return} {}Needs_Constructor {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}\LaTeXBF{return} {}(I {}=>{} {}42); \newline{}
 {} {} {}\LaTeXBF{end} {}Constructor; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Limited_Private_Samples;}

\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{with} {}Limited_Private_Samples\LaTeXIdentityTemplate{;} \newline{}
 {} {}\LaTeXBF{use} {} {}Limited_Private_Samples\LaTeXIdentityTemplate{;} \newline{}
 {} {} \newline{}
 {} {}\LaTeXBF{procedure} {}Try {}\LaTeXBF{is} \newline{}
 {} {} \newline{}
 {} {} {} {}U\LaTeXIdentityTemplate{:} {}Uninitialised\LaTeXIdentityTemplate{;} {} {} {}\ADACOM{very bad} \newline{}
 {} {} {} {}P\LaTeXIdentityTemplate{:} {}Preinitialised\LaTeXIdentityTemplate{;} {} {}\ADACOM{has initial value (good)} \newline{}
 {} {} {} \newline{}
 {} {} {} {}D1\LaTeXIdentityTemplate{:} {}Dynamic_Initialisation\LaTeXIdentityTemplate{;} {} {}\ADACOM{has initial value (good)} \newline{}
 {} {} {} {}D2\LaTeXIdentityTemplate{:} {}Dynamic_Initialisation {}\LaTeXIdentityTemplate{:=} {}Constructor {}\LaTeXIdentityTemplate{(}0\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} {} {}\ADACOM{Ada 2005 initialisation} \newline{}
 {} {} {} {}D3\LaTeXIdentityTemplate{:} {}Dynamic_Initialisation {}\LaTeXBF{renames} {}Constructor {}\LaTeXIdentityTemplate{(}0\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} {} {}\ADACOM{already Ada 95} \newline{}
 {} {} \newline{}
 {} {} {} {}\ADACOM{I: Needs_Constructor; -{}-{} Illegal without initialisation} \newline{}
 {} {} {} {}N\LaTeXIdentityTemplate{:} {}Needs_Constructor {}\LaTeXIdentityTemplate{:=} {}Constructor {}\LaTeXIdentityTemplate{(}0\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} {} {}\ADACOM{Ada 2005 initialisation} \newline{}
 {} {} \newline{}
 {} {}\LaTeXBF{begin} \newline{}
 {} {} \newline{}
 {} {} {} {}\LaTeXBF{null}\LaTeXIdentityTemplate{;} \newline{}
 {} {} \newline{}
 {} {}\LaTeXBF{end} {}Try\LaTeXIdentityTemplate{;} \newline{}
 {}}

Note that D3 is a constant, whereas all others are variables.

Also note that the initial value that is defined for the component of Preinitialised is evaluated at the time of object creation, i.e. if an expression is used instead of the literal, the value can be run-{}time dependent.
\\

\TemplateSpaceIndent{ {}X, {}Y: {}Preinitialised;}

In this declaration of two objects, the initial expression will be evaluated twice and can deliver different values, because it is equivalent to the sequence\myfootnote{
\AdaRMCiteFive{3}{3}{1}{Object Declarations}{7}{}{Any declaration {[}...{]} with more than one {\ttfamily defining_identifier} is equivalent to a series of declarations each containing one {\ttfamily defining_identifier} from the list, {[}...{]} in the same order as the list.}
}:
\\

\TemplateSpaceIndent{ {}X: {}Preinitialised; \newline{}
 {}Y: {}Preinitialised;}

So X is initialised before Y.
\section{See also}
\label{253}
\subsection{Ada 95 Reference Manual}
\label{254}

\begin{myitemize}
\item{} \AdaRMNineFive{7}{5}{Limited Types}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{255}

\begin{myitemize}
\item{} \AdaRM{7}{5}{Limited Types}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{256}

\begin{myitemize}
\item{} \AdaSGThree{5}{3}{3}{Private Types}
\item{} \AdaSGThree{8}{3}{3}{Formal Private and Limited Private Types}
\end{myitemize}

\section{References}
\label{257}

\chapter{Strings}

\myminitoc
\label{258}

\label{259}

Ada supports three different types of strings. Each string type is designed to solve a different problem.

In addition, every string type is implemented for each available Characters type {\small (Character, Wide_Character, Wide_Wide_Character)} giving a complement of nine combinations.
\section{Fixed-{}length string handling}
\label{260}

Fixed-{}Length Strings are \mylref{183}{arrays} of Character, and consequently of a fixed length. Since a fixed length string is an \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23indefinite\%20subtype}{indefinite subtype} the length does not need to be known at compile time {\mbox{---}} the length may well be calculated at run time. In the following example the length is calculated from command-{}line argument 1:
\\

\TemplateSpaceIndent{ {}X {}: {}String {}:= {}Ada.Command_Line.Argument {}(1);}

However once the length has been calculated and the strings have been created the length stays constant. Try the following program which shows a typical mistake:
\\

\TemplateSpaceIndent{ {}\ADAFile{show_commandline_1.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Show_Commandline_1 {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}CL {} {} {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {} {} {} {}X {}: {}String {}:= {}CL.Argument {}(1); \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}1 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(X); \newline{}
 {} \newline{}
 {} {} {} {}X {}:= {}CL.Argument {}(2); \newline{}
 {} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}2 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(X); \newline{}
 {}\LaTeXBF{end} {}Show_Commandline_1;}

The program will only work when the 1st and 2nd parameter have the same length. This is even true when the 2nd parameter is shorter. There is neither an automatic padding of shorter strings nor an automatic truncation of longer strings.

Having said that, the package \LaTeXIdentityTemplate{Ada} contains a set of procedures and functions for Fixed-{}Length String Handling which allows padding of shorter strings and truncation of longer strings.

Try the following example to see how it works:
\\

\TemplateSpaceIndent{ {}\ADAFile{show_commandline_2.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Show_Commandline_2 {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}CL {} {} {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}S {} {} {} {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {} {}\LaTeXBF{package} {}SF {} {} {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {} {} {} {}X {}: {}String {}:= {}CL.Argument {}(1); \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}1 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(X); \newline{}
 {} \newline{}
 {} {} {}SF.Move {}(\newline{}
 {} {} {} {} {} {}Source {} {}=>{} {}CL.Argument {}(2), \newline{}
 {} {} {} {} {} {}Target {} {}=>{} {}X, \newline{}
 {} {} {} {} {} {}Drop {} {} {} {}=>{} {}S.Right, \newline{}
 {} {} {} {} {} {}Justify {}=>{} {}S.Left, \newline{}
 {} {} {} {} {} {}Pad {} {} {} {} {}=>{} {}S.Space); \newline{}
 {} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}2 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(X); \newline{}
 {}\LaTeXBF{end} {}Show_Commandline_2;}

\section{Bounded-{}length string handling}
\label{261}

Bounded-{}Length Strings can be used when the maximum length of a string is known and/or restricted. This is often the case in database applications where only a limited number of characters can be stored.

Like Fixed-{}Length Strings the maximum length does not need to be known at compile time {\mbox{---}} it can also be calculated at runtime {\mbox{---}} as the example below shows:
\\

\TemplateSpaceIndent{ {}\ADAFile{show_commandline_3.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Show_Commandline_3 {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {} {} {} {}\LaTeXBF{package} {}CL {} {} {}\LaTeXBF{renames} {}Ada.Command_Line; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Max_Length {}(\newline{}
 {} {} {} {} {} {} {}Value_1 {}: {}Integer; \newline{}
 {} {} {} {} {} {} {}Value_2 {}: {}Integer) \newline{}
 {} {} {} {}\LaTeXBF{return} \newline{}
 {} {} {} {} {} {} {}Integer \newline{}
 {} {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}Retval {}: {}Integer; \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{if} {}Value_1 {}>{} {}Value_2 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}Retval {}:= {}Value_1; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {} {}Retval {}:= {}Value_2; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}Retval; \newline{}
 {} {} {} {}\LaTeXBF{end} {}Max_Length; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{pragma} {}Inline {}(Max_Length); \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}SB \newline{}
 {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Strings.Bounded.Generic_Bounded_Length {}(\newline{}
 {} {} {} {} {} {} {} {}Max {}=>{} {}Max_Length {}(\newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Value_1 {}=>{} {}CL.Argument {}(1)\textquotesingle{}Length, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Value_2 {}=>{} {}CL.Argument {}(2)\textquotesingle{}Length)); \newline{}
 {} \newline{}
 {} {} {} {}X {}: {} {}SB.Bounded_String \newline{}
 {} {} {} {} {} {}:= {}SB.To_Bounded_String {}(CL.Argument {}(1)); \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}1 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(SB.To_String {}(X)); \newline{}
 {} \newline{}
 {} {} {} {}X {}:= {}SB.To_Bounded_String {}(CL.Argument {}(2)); \newline{}
 {} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}2 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(SB.To_String {}(X)); \newline{}
 {}\LaTeXBF{end} {}Show_Commandline_3;}

You should know that Bounded-{}Length Strings have some distinct disadvantages. Most noticeable is that each Bounded-{}Length String is a different type which makes converting them rather cumbersome. Also a Bounded-{}Length String type always allocates memory for the maximum permitted string length for the type. The memory allocation for a Bounded-{}Length String is equal to the maximum number of string \symbol{34}characters\symbol{34} plus an implementation dependent number containing the string length (each character can require allocation of more than one byte per character, depending on the underlying character type of the string, and the length number is 4 bytes long for the Windows GNAT Ada compiler v3.15p, for example).
\section{Unbounded-{}length string handling}
\label{262}

Last but not least there is the Unbounded-{}Length String. In fact: If you are not doing embedded or database programming this will be the string type you are going to use most often as it gives you the maximum amount of flexibility.

As the name suggest the Unbounded-{}Length String can hold strings of almost any length {\mbox{---}} limited only to the value of Integer\textquotesingle{}Last or your available heap memory. This is because Unbounded_String type is implemented using dynamic memory allocation behind the scenes, providing lower efficiency but maximum flexibility.
\\

\TemplateSpaceIndent{ {}\ADAFile{show_commandline_4.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Show_Commandline_4 {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {} {} {} {}\LaTeXBF{package} {}CL {} {} {}\LaTeXBF{renames} {}Ada.Command_Line; \newline{}
 {} {} {} {}\LaTeXBF{package} {}SU {} {} {}\LaTeXBF{renames} {}Ada.Strings.Unbounded; \newline{}
 {} \newline{}
 {} {} {} {}X {}: {} {}SU.Unbounded_String {} \newline{}
 {} {} {} {} {} {}:= {}SU.To_Unbounded_String {}(CL.Argument {}(1)); \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}1 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(SU.To_String {}(X)); \newline{}
 {} \newline{}
 {} {} {} {}X {}:= {}SU.To_Unbounded_String {}(CL.Argument {}(2)); \newline{}
 {} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Argument {}2 {}= {}\symbol{34}); \newline{}
 {} {} {} {}T_IO.Put_Line {}(SU.To_String {}(X)); \newline{}
 {}\LaTeXBF{end} {}Show_Commandline_4;}

As you can see the Unbounded-{}Length String example is also the shortest {\small (discarding the first example, which is buggy)} {\mbox{---}} this makes using Unbounded-{}Length Strings very appealing.
\section{See also}
\label{263}
\subsection{Wikibook}
\label{264}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{265}

\begin{myitemize}
\item{} \AdaRMNineFive{2}{6}{String Literals}
\item{} \AdaNiveFiveRMThree{3}{6}{3}{String Types}
\item{} \AdaNiveFiveRMThree{A}{4}{3}{Fixed-{}Length String Handling}
\item{} \AdaNiveFiveRMThree{A}{4}{4}{Bounded-{}Length String Handling}
\item{} \AdaNiveFiveRMThree{A}{4}{5}{Unbounded-{}Length String Handling}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{266}

\begin{myitemize}
\item{} \AdaRM{2}{6}{String Literals}
\item{} \AdaRMThree{3}{6}{3}{String Types}
\item{} \AdaRMThree{A}{4}{3}{Fixed-{}Length String Handling}
\item{} \AdaRMThree{A}{4}{4}{Bounded-{}Length String Handling}
\item{} \AdaRMThree{A}{4}{5}{Unbounded-{}Length String Handling}
\end{myitemize}

\chapter{Subprograms}

\myminitoc
\label{267}

\label{268}

In Ada the subprograms are classified into two categories: \mylref{269}{procedures} and \mylref{270}{functions}. A procedures call is a statement and does not return any value, whereas a function returns a value and must therefore be a part of an expression.

Subprogram parameters may have three modes.
{\bfseries
\begin{mydescription} \LaTeXBF{in}
\end{mydescription}
}
\begin{myquote}\item{} The actual parameter value goes into the call and is not changed there. The formal parameter is a constant and allows only reading. This is the default when no mode is given. The actual parameter is an expression.
\end{myquote}
{\bfseries
\begin{mydescription} \LaTeXBF{in} \LaTeXBF{out}
\end{mydescription}
}
\begin{myquote}\item{} The actual parameter goes into the call and may be redefined. The formal parameter is a variable and can be read and written.
\end{myquote}
{\bfseries
\begin{mydescription} \LaTeXBF{out}
\end{mydescription}
}
\begin{myquote}\item{} The actual parameter\textquotesingle{}s value before the call is irrelevant, it will get a value in the call. The formal parameter can be read and written. (In Ada 83 \LaTeXBF{out} parameters were write-{}only.)
\end{myquote}

A parameter of any mode may also be explicitly \LaTeXBF{aliased}.
{\bfseries
\begin{mydescription} \LaTeXBF{access}
\end{mydescription}
}
\begin{myquote}\item{} The formal parameter is an access (a pointer) to some variable. (This is not a parameter mode from the reference manual point of view.)
\end{myquote}

Note that parameter modes do not specify the parameter passing method. Their purpose is to document the data flow.

The parameter passing method depends on the type of the parameter. A rule of thumb is that parameters fitting into a register are passed by copy, others are passed by reference. For certain types, there are special rules, for others the parameter passing mode is left to the compiler (which you can assume to do what is most sensible). Tagged types are always passed by reference.

Explicitly \LaTeXBF{aliased} parameters and \LaTeXBF{access} parameters specify pass by reference.

Unlike in the C class of programming languages, Ada subprogram calls cannot have empty parameters parentheses {\ttfamily \LaTeXIdentityTemplate{(} \LaTeXIdentityTemplate{)}} when there are no parameters.
\section{Procedures}
\label{269}

A procedure call in Ada constitutes a statement by itself.

For example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}A_Test {}\LaTeXIdentityTemplate{(}A, {}B: {}\LaTeXBF{in} {}Integer; {}C: {}\LaTeXBF{out} {}Integer\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}C {}:= {}A {}+ {}B; \newline{}
 {}\LaTeXBF{end} {}A_Test;}

When the procedure is called with the statement\\

\TemplateSpaceIndent{ {}A_Test {}(5 {}+ {}P, {}48, {}Q);}

the expressions 5 + P and 48 are evaluated (expressions are only allowed for in parameters), and then assigned to the formal parameters A and B, which behave like constants. Then, the value A + B is assigned to formal variable C, whose value will be assigned to the actual parameter Q when the procedure finishes.

C, being an \LaTeXBF{out} parameter, is an uninitialized variable before the first assignment. (Therefore in Ada 83, there existed the restriction that \LaTeXBF{out} parameters are write-{}only. If you wanted to read the value written, you had to declare a local variable, do all calculations with it, and finally assign it to C before return. This was awkward and error prone so the restriction was removed in Ada 95.)

Within a procedure, the return statement can be used without arguments to exit the procedure and return the control to the caller.

For example, to solve an equation of the kind {$ax^2 + bx + c = 0$}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{use} {} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Quadratic_Equation \newline{}
 {} {} {} {}\LaTeXIdentityTemplate{(}A, {}B, {}C {}: {} {} {} {} {}Float; {} {} {}\ADACOM{By default it is \symbol{34}in\symbol{34}.} \newline{}
 {} {} {} {} {}R1, {}R2 {} {}: {}\LaTeXBF{out} {}Float; \newline{}
 {} {} {} {} {}Valid {} {} {}: {}\LaTeXBF{out} {}Boolean\LaTeXIdentityTemplate{)} \newline{}
 {}\LaTeXBF{is} \newline{}
 {} {} {} {}Z {}: {}Float; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Z {}:= {}B**2 {}-{} {}4.0 {}* {}A {}* {}C; \newline{}
 {} {} {} {}\LaTeXBF{if} {}Z {}<{} {}0.0 {}\LaTeXBF{or} {}A {}= {}0.0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {}Valid {}:= {}False; {} {}\ADACOM{Being out parameter, it should be modified at least once.} \newline{}
 {} {} {} {} {} {} {}R1 {} {} {} {}:= {}0.0; \newline{}
 {} {} {} {} {} {} {}R2 {} {} {} {}:= {}0.0; \newline{}
 {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {}Valid {}:= {}True; \newline{}
 {} {} {} {} {} {} {}R1 {} {} {} {}:= {}(-{}B {}+ {}Sqrt {}(Z)) {}/ {}(2.0 {}* {}A); \newline{}
 {} {} {} {} {} {} {}R2 {} {} {} {}:= {}(-{}B {}-{} {}Sqrt {}(Z)) {}/ {}(2.0 {}* {}A); \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {}\LaTeXBF{end} {}Quadratic_Equation;}

The function SQRT calculates the square root of non-{}negative values. If the roots are real, they are given back in R1 and R2, but if they are complex or the equation degenerates (A = 0), the execution of the procedure finishes after assigning to the Valid variable the False value, so that it is controlled after the call to the procedure. Notice that the \LaTeXBF{out} parameters should be modified at least once, and that if a mode is not specified, it is implied \LaTeXBF{in}.
\section{Functions}
\label{270}

A function is a subprogram that can be invoked as part of an expression. Until Ada 2005, functions can only take \LaTeXBF{in} (the default) or \LaTeXBF{access} parameters; the latter can be used as a work-{}around for the restriction that functions may not have \LaTeXBF{out} parameters. Ada 2012 has removed this restriction.

Here is an example of a function body:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Minimum {}(A, {}B: {}Integer) {}\LaTeXBF{return} {}Integer {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{if} {}A {}<{}= {}B {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}A; \newline{}
 {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}B; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {}\LaTeXBF{end} {}Minimum;}

Or in Ada2012:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Minimum {}(A, {}B: {}Integer) {}\LaTeXBF{return} {}Integer {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{return} {}(\LaTeXBF{if} {}A {}<{}= {}B {}\LaTeXBF{then} {}A {}\LaTeXBF{else} {}B); \newline{}
 {}\LaTeXBF{end} {}Minimum;}

or even shorter as an {\itshape expression function}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Minimum {}(A, {}B: {}Integer) {}\LaTeXBF{return} {}Integer {}\LaTeXBF{is} {}(\LaTeXBF{if} {}A {}<{}= {}B {}\LaTeXBF{then} {}A {}\LaTeXBF{else} {}B);}

The formal parameters with mode \LaTeXBF{in} behave as local constants whose values are provided by the corresponding actual parameters. The statement \LaTeXBF{return} is used to indicate the value returned by the function call and to give back the control to the expression that called the function. The expression of the \LaTeXBF{return} statement may be of arbitrary complexity and must be of the same type declared in the specification. If an incompatible type is used, the compiler gives an error. If the restrictions of a subtype are not fulfilled, e.g. a range, it raises a Constraint_Error exception.

The body of the function can contain several \LaTeXBF{return} statements and the execution of any of them will finish the function, returning control to the caller. If the flow of control within the function branches in several ways, it is necessary to make sure that each one of them is finished with a \LaTeXBF{return}
statement. If at run time the end of a function is reached without encountering a \LaTeXBF{return} statement, the exception Program_Error is raised. Therefore, the body of a function must have at least one such \LaTeXBF{return}
statement.

Every call to a function produces a new copy of any object declared within it. When the function finalizes, its objects disappear. Therefore, it is possible to call the function recursively. For example, consider this implementation of the factorial function:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Factorial {}(N {}: {}Positive) {}\LaTeXBF{return} {}Positive {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{if} {}N {}= {}1 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}1; \newline{}
 {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}(N {}* {}Factorial {}(N {}-{} {}1)); \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {}\LaTeXBF{end} {}Factorial;}

When evaluating the expression {\ttfamily Factorial (4);} the function
will be called with parameter 4 and within the function it will
try to evaluate the expression {\ttfamily Factorial (3)}, calling itself as a function, but in this case parameter N would be 3 (each call copies the parameters) and so on until N = 1 is evaluated which will finalize the recursion and then the expression will begin to be completed in the reverse order.

A formal parameter of a function can be of any type, including vectors or
records. Nevertheless, it cannot be an anonymous type, that is, its
type must be declared before, for example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Float_Vector {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Positive {}\LaTeXBF{range} {}<{}>{}) {}\LaTeXBF{of} {}Float; \newline{}
 {} \newline{}
 {}\LaTeXBF{function} {}Add_Components {}(V: {}Float_Vector) {}\LaTeXBF{return} {}Float {}\LaTeXBF{is} \newline{}
 {} {} {} {}Result {}: {}Float {}:= {}0.0; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}V\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}Result {}:= {}Result {}+ {}V(I); \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {}\LaTeXBF{return} {}Result; \newline{}
 {}\LaTeXBF{end} {}Add_Components;}

In this example, the function can be used on a vector of arbitrary dimension.
Therefore, there are no static bounds in the parameters passed to the
functions. For example, it is possible to be used in the following
way:
\\

\TemplateSpaceIndent{ {}V4 {} {}: {}Float_Vector {}(1 {}.. {}4) {}:= {}(1.2, {}3.4, {}5.6, {}7.8); \newline{}
 {}Sum {}: {}Float; \newline{}
 {} \newline{}
 {}Sum {}:= {}Add_Components {}(V4);}

In the same way, a function can also return a type whose bounds are not known a priori. For example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Invert_Components {}(V {}: {}Float_Vector) {}\LaTeXBF{return} {}Float_Vector {}\LaTeXBF{is} \newline{}
 {} {} {} {}Result {}: {}Float_Vector(V\textquotesingle{}\LaTeXIT{Range}); {} {} {}\ADACOM{Fix the bounds of the vector to be returned.} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}V\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}Result(I) {}:= {}V {}(V\textquotesingle{}\LaTeXIT{First} {}+ {}V\textquotesingle{}\LaTeXIT{Last} {}-{} {}I); \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {}\LaTeXBF{return} {}Result; \newline{}
 {}\LaTeXBF{end} {}Invert_Components; {}}

The variable Result has the same bounds as V, so the returned vector will always have the same dimension as the one passed as parameter.

A value returned by a function can be used without assigning it to a variable, it can be referenced as an expression. For example, {\ttfamily Invert_Components (V4) (1)}, where the first element of the vector returned by the function would be obtained (in this case, the last element of V4, i.e. 7.8).
\section{Named parameters}
\label{271}

In subprogram calls, named parameter notation (i.e. the name of the formal
parameter followed of the symbol \LaTeXIdentityTemplate{=>{}} and then the actual parameter) allows the rearrangement of the parameters in the call. For example:
\\

\TemplateSpaceIndent{ {}Quadratic_Equation {}(Valid {}=>{} {}OK, {}A {}=>{} {}1.0, {}B {}=>{} {}2.0, {}C {}=>{} {}3.0, {}R1 {}=>{} \newline{}
 {}P, {}R2 {}=>{} {}Q); \newline{}
 {}F {}:= {}Factorial {}(N {}=>{} {}(3 {}+ {}I));}

This is especially useful to make clear which parameter is which.
\\

\TemplateSpaceIndent{ {}Phi {}:= {}Arctan {}(A, {}B); \newline{}
 {}Phi {}:= {}Arctan {}(Y {}=>{} {}A, {}X {}=>{} {}B);}

The first call (from Ada.Numerics.Elementary_Functions) is not very clear. One might easily confuse the parameters. The second call makes the meaning clear without any ambiguity.

Another use is for calls with numeric literals:
\\

\TemplateSpaceIndent{ {}Ada.Float_Text_IO.Put_Line {}(X, {}3, {}2, {}0); {} {}-{}-{} {}? \newline{}
 {}Ada.Float_Text_IO.Put_Line {}(X, {}Fore {}=>{} {}3, {}Aft {}=>{} {}2, {}Exp {}=>{} {}0); {} {}-{}-{} \newline{}
 {}OK}

\section{Default parameters}
\label{272}

On the other hand, formal parameters may have default values. They can, therefore, be omitted in the subprogram call. For example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}By_Default_Example {}(A, {}B: {}\LaTeXBF{in} {}Integer {}:= {}0);}

can be called in these ways:
\\

\TemplateSpaceIndent{ {}By_Default_Example {}(5, {}7); {} {} {} {} {} {}\ADACOM{A = 5, B = 7} \newline{}
 {}By_Default_Example {}(5); {} {} {} {} {} {} {} {} {}\ADACOM{A = 5, B = 0} \newline{}
 {}By_Default_Example; {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{A = 0, B = 0} \newline{}
 {}By_Default_Example {}(B {}=>{} {}3); {} {} {} {}\ADACOM{A = 0, B = 3} \newline{}
 {}By_Default_Example {}(1, {}B {}=>{} {}2); {}\ADACOM{A = 1, B = 2}}

In the first statement, a \symbol{34}regular call\symbol{34} is used (with positional association); the second also uses positional association but omits the second parameter to use the default; in the third statement, all parameters are by default; the fourth statement uses named association to omit the first parameter; finally, the fifth statement uses mixed association, here the positional parameters have to precede the named ones.

Note that the default expression is evaluated once for each formal parameter that has no actual parameter. Thus, if in the above example a function would be used as defaults for A and B, the function would be evaluated once in case 2 and 4; twice in case 3, so A and B could have different values; in the others cases, it would not be evaluated.
\section{Renaming}
\label{273}

Subprograms may be renamed. The parameter and result profile for a renaming-{}as-{}declaration must be mode conformant.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Solve \newline{}
 {} {} {}(A, {}B, {}C: {}\LaTeXBF{in} {} {}Float; \newline{}
 {} {} {} {}R1, {}R2 {}: {}\LaTeXBF{out} {}Float; \newline{}
 {} {} {} {}Valid {} {}: {}\LaTeXBF{out} {}Boolean) {}\LaTeXBF{renames} {}Quadratic_Equation;}

This may be especially comfortable for tagged types.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Some_Package {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}Message_Type {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Print {}(Message: {}\LaTeXBF{in} {}Message_Type); \newline{}
 {}\LaTeXBF{end} {}Some_Package; {}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Some_Package; \newline{}
 {}\LaTeXBF{procedure} {}Main {}\LaTeXBF{is} \newline{}
 {} {} {}Message: {}Some_Package.Message_Type; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Print {}\LaTeXBF{renames} {}Message.Print; {} {}\ADACOM{this has convention intrinsic, see RM 6.3.1(10.1/2)} \newline{}
 {} {} {}\sout{Method_Ref: \LaTeXBF{access} \LaTeXBF{procedure} := Print\textquotesingle{}\LaTeXBF{Access};} {} {}\ADACOM{thus taking \textquotesingle{}Access should be illegal; GNAT GPL 2012 allows this} \newline{}
 {}\LaTeXBF{begin} {} {}\ADACOM{All these calls are equivalent:} \newline{}
 {} {} {}Some_Package.Print {}(Message); {} {}\ADACOM{traditional call without use clause} \newline{}
 {} {} {}Message.Print; {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{Ada 2005 method.object call -{} note: no use clause necessary} \newline{}
 {} {} {}Print; {}\ADACOM{Message.Print is a parameterless procedure and can be renamed as such} \newline{}
 {} {} {}\sout{Method_Ref.\LaTeXBF{all};} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{GNAT GPL 2012 allows illegal call via an access to the renamed procedure Print} \newline{}
 {}\ADACOM{This has been corrected in the current version (as of Nov 22, 2012)} \newline{}
 {}\LaTeXBF{end} {}Main;}

But note that {\ttfamily Message.Print\textquotesingle{}\LaTeXBF{Access};} is illegal, you have to use a renaming declaration as above.

Since only mode conformance is required (and not full conformance as between specification and body), parameter names and default values may be changed with renamings:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure}P {}(X: {}\LaTeXBF{in}Integer {}:= {} {}0); \newline{}
 {}\LaTeXBF{procedure}R {}(A: {}\LaTeXBF{in}Integer {}:= {}-{}1) {}\LaTeXBF{renames}P;}

\section{See also}
\label{274}
\subsection{Wikibook}
\label{275}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{590}{Ada Programming/Operators}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{276}

\begin{myitemize}
\item{} \ADARMONE{6}{Subprograms}
\item{} \AdaRM{4}{4}{Expressions}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{277}

\begin{myitemize}
\item{} \ADARMONE{6}{Subprograms}
\item{} \AdaRM{4}{4}{Expressions}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{278}

\begin{myitemize}
\item{} \AdaSGThree{4}{1}{3}{Subprograms}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FSubprogramas}{es:Programación en Ada/Subprogramas}\chapter{Packages}

\myminitoc
\label{279}

\label{280}

Ada encourages the division of code into separate modules called {\itshape packages}. Each package can contain any combination of items.

Some of the benefits of using packages are:
\begin{myitemize}
\item{} package contents are placed in a separate namespace, preventing naming collisions,
\item{} implementation details of the package can be hidden from the programmer (information hiding),
\item{} object orientation requires defining a type and its primitive subprograms within a package, and
\item{} packages can be separately compiled.
\end{myitemize}

Some of the more common package usages are:
\begin{myitemize}
\item{} a group of related subprograms along with their shared data, with the data not visible outside the package,
\item{} one or more data types along with subprograms for manipulating those data types, and
\item{} a generic package that can be instantiated under varying conditions.
\end{myitemize}

The following is a quote from the current Ada Reference Manual \AdaRM{7}{}{Packages. RM 7(1)}

\LaTeXZeroBoxTemplate{Packages are program units that allow the specification of groups of logically related entities. Typically, a package contains the declaration of a type (often a private type or private extension) along with the declaration of primitive subprograms of the type, which can be called from outside the package, while their inner workings remain hidden from outside users.}
\section{Separate compilation}
\label{281}

It is very common for package declarations and package bodies to be coded into separate files and separately compiled. Doing so places the package at the {\itshape library level} where it will be accessible to all other code via the {\bfseries with} statement{\mbox{---}}if a more restricted scope is desired, simply declare the package (and package body, if needed) within the appropriate scope. The package body can itself be divided into multiple files by specifying that one or more subprogram implementations are {\bfseries separate}.

One of the biggest advantages of Ada over most other programming languages is its well defined system of modularization and separate compilation. Even though Ada allows separate compilation, it maintains the strong type checking among the various compilations by enforcing rules of compilation order and compatibility checking. Ada uses separate compilation (like \myhref{http://en.wikipedia.org/wiki/Modula-2}{Modula-{}2}, \myhref{http://en.wikipedia.org/wiki/Java_programming_language}{Java} and \myhref{http://en.wikipedia.org/wiki/C\%20Sharp\%20programming\%20language}{C\#}), and not independent compilation (as \myhref{http://en.wikipedia.org/wiki/C\%20programming\%20language}{C}/\myhref{http://en.wikipedia.org/wiki/C\%2B\%2B}{C++} does), in which the various parts are compiled with no knowledge of the other compilation units with which they will be combined.

A note to C/C++ users: Yes, you can use the preprocessor to emulate separate compilation {\mbox{---}} but it is only an emulation and the smallest mistake leads to very hard to find bugs. It is telling that all C/C++ successor languages including \myhref{http://en.wikipedia.org/wiki/D_programming_language}{D} have turned away from the independent compilation and the use of the preprocessor.

So it\textquotesingle{}s good to know that Ada has had separate compilation ever since Ada-{}83 and is probably the most sophisticated implementation around.
\section{Parts of a package}
\label{282}

\LaTeXNullTemplate{}

A package generally consists of two parts, the specification and the body. A package specification can be further divided in two logical parts, the visible part and the private part. Only the visible part of the specification is mandatory. The private part of the specification is optional, and a package specification might not have a package body{\mbox{---}}the package body only exists to complete any {\itshape incomplete} items in the specification. Subprogram declarations are the most common {\itshape incomplete} items. There must not be a package body if there is no incomplete declarations and there has to be a package body if there is incomplete declarations in the specification.

To understand the value of the three-{}way division, consider the case of a package that has already been released and is in use. A change to the visible part of the specification will require that the programmers of all using software verify that the change does not affect the using code. A change to the private part of the declaration will require that all using code be recompiled but no review is normally needed. Some changes to the private part can change the meaning of the client code however. An example is changing a private record type into a private access type. This change can be done with changes in the private part, but change the semantic meaning of assignment in the clients code. A change to the package body will only require that the file containing the package body be recompiled, because {\itshape nothing} outside of the package body can ever access anything within the package body (beyond the declarations in the specification part).

A common usage of the three parts is to declare the existence of a record type and some subprograms that operate on that type in the visible part, define the actual structure of the record type in the private part, and provide the code to implement the subprograms in the package body.
\subsection{The package specification {\mbox{---}} the visible part}
\label{283}

The visible part of a package specification describes all the subprogram specifications, variables, types, constants etc. that are visible to anyone who wishes to use the package.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Public_Only_Package {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Range_10 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}10; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Public_Only_Package;}

\subsection{The private part}
\label{284}

The private part of a package serves two purposes:
\begin{myitemize}
\item{} To complete the deferred definition of private types and constants.
\item{} To export entities only visible to the children of the package
\end{myitemize}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Package_With_Private {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Private_Type {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Private_Type {}\LaTeXBF{is} {}\LaTeXBF{array} {}(1 {}.. {}10) {}\LaTeXBF{of} {}Integer; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Package_With_Private;}

\subsection{The package body}
\label{285}

The package body defines the implementation of the package. All the subprograms defined in the specification have to be implemented in the body. New subprograms, types and objects can be defined in the body that are not visible to the users of the package.\\

\TemplateSpaceIndent{ {} \newline{}
 {}\LaTeXBF{package} {}Package_With_Body {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Basic_Record {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Set_A {}(This {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Basic_Record; \newline{}
 {}An_A {}: {}\LaTeXBF{in} {} {} {} {} {}Integer); \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get_A {}(This {}: {}Basic_Record) {}\LaTeXBF{return} {}Integer; \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Basic_Record {}\LaTeXBF{is} {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} {} \newline{}
 {} {} {} {} {} {} {} {} {} {}A {}: {}Integer; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record} {}; \newline{}
 {} \newline{}
 {} {} {} {}\AdaPragma{Pure_Function} {} {}(Get_A); \newline{}
 {} {} {} {}\AdaPragma{Inline} {}(Get_A); \newline{}
 {} {} {} {}\AdaPragma{Inline} {}(Set_A); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Package_With_Body;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}\LaTeXBF{body} {}Package_With_Body {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Set_A {}(This {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Basic_Record; \newline{}
 {}An_A {}: {}\LaTeXBF{in} {} {} {} {} {}Integer) \newline{}
 {} {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}This.A {}:= {}An_A; \newline{}
 {} {} {} {}\LaTeXBF{end} {}Set_A; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get_A {}(This {}: {}Basic_Record) {}\LaTeXBF{return} {}Integer {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}This.A; \newline{}
 {} {} {} {}\LaTeXBF{end} {}Get_A; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Package_With_Body;}

{\bfseries
\begin{mydescription} \AdaPragma{Pure_Function}
\end{mydescription}
}
\begin{myquote}\item{} Only available when using \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT}.
\end{myquote}

\subsection{Two Flavors of Package}
\label{286}

The packages above each define a type together with operations of the type.
When the type\textquotesingle{}s composition is placed in the private part of a
package, the package then exports what is known to be
an \myhref{http://en.wikipedia.org/wiki/Abstract_data_type}{Abstract Data Type} or ADT for short.
Objects of the type are then constructed by calling one of the subprograms
associated with the respective type.

A different kind of package is the Abstract State Machine.
A package will be modeling a single item of the problem domain, such as the
motor of a car. If a program controls one car, there is typically
just one motor, or {\itshape the} motor. The public part of the package specification
only declares the operations of the module (of the motor, say), but no type.
All data of the module are hidden in the body of the package
where they act as state variables to be queried, or
manipulated by the subprograms of the package.
The initialization part sets the state variables to their initial values.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Package_With_Body {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Set_A {}\LaTeXIdentityTemplate{(}An_A {}\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}Integer\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get_A {}\LaTeXBF{return} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{pragma} {}Pure_Function {}\LaTeXIdentityTemplate{(}Get_A\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Package_With_Body\LaTeXIdentityTemplate{;}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}\LaTeXBF{body} {}Package_With_Body {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}The_A\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Set_A {}\LaTeXIdentityTemplate{(}An_A {}\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}Integer\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}The_A {}\LaTeXIdentityTemplate{:=} {}An_A\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Set_A\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get_A {}\LaTeXBF{return} {}Integer {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}The_A\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Get_A\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {} {}The_A {}\LaTeXIdentityTemplate{:=} {}0\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Package_With_Body\LaTeXIdentityTemplate{;}}

(A note on construction:
The package initialization part after \LaTeXBF{begin} corresponds to a construction subprogram
of an ADT package.
However, as a state machine {\itshape is} an “object” already, “construction” is
happening during package initialization.
(Here it sets the state variable {\ttfamily The_A} to its initial value.)
An ASM package can be viewed as a \myhref{http://en.wikipedia.org/wiki/Singleton_pattern}{singleton}.)
\section{Using packages}
\label{287}

\LaTeXNullTemplate{}

To utilize a package it\textquotesingle{}s needed to name it in a {\bfseries with} clause, whereas to have direct visibility of that package it\textquotesingle{}s needed to name it in a {\bfseries use} clause.

For C++ programmers, Ada\textquotesingle{}s {\bfseries with} clause is analogous to the C++ preprocessor\textquotesingle{}s {\bfseries \#include} and Ada\textquotesingle{}s {\bfseries use} is similar to the {\bfseries using namespace} statement in C++. In particular, {\bfseries use} leads to the same namespace pollution problems as {\bfseries using namespace} and thus should be used sparingly. Renaming can shorten long compound names to a manageable length, while the {\bfseries use type} clause makes a type\textquotesingle{}s operators visible. These features reduce the need for plain {\bfseries use}.
\subsection{Standard with}
\label{288}

The standard with clause provides visibility for the public part of a unit to the following defined unit. The imported package can be used in any part of the defined unit, including the body when the clause is used in the specification.
\subsection{Private with}
\label{289}

\AdaTwentyZeroFive{}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{private} {}\LaTeXBF{with} {}Ada.Strings.Unbounded; {} \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Private_With {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{The package Ada.String.Unbounded is not visible at this point} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Basic_Record {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Set_A {}(This {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Basic_Record; \newline{}
 {}An_A {}: {}\LaTeXBF{in} {} {} {} {} {}String); \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get_A {}(This {}: {}Basic_Record) {}\LaTeXBF{return} {}String; \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\ADACOM{The visibility of package Ada.String.Unbounded starts here} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Unbounded {}\LaTeXBF{renames} {}Ada.Strings.Unbounded; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Basic_Record {}\LaTeXBF{is} {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} {} \newline{}
 {} {} {} {} {} {} {} {} {} {}A {}: {}Unbounded.Unbounded_String; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\AdaPragma{Pure_Function} {} {}(Get_A); \newline{}
 {} {} {} {}\AdaPragma{Inline} {}(Get_A); \newline{}
 {} {} {} {}\AdaPragma{Inline} {}(Set_A); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Private_With;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}\LaTeXBF{body} {}Private_With {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{The private withed package is visible in the body too} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Set_A {}(This {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Basic_Record; \newline{}
 {}An_A {}: {}\LaTeXBF{in} {} {} {} {} {}String) \newline{}
 {} {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}This.A {}:= {}Unbounded.To_Unbounded_String {}(An_A); \newline{}
 {} {} {} {}\LaTeXBF{end} {}Set_A; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get_A {}(This {}: {}Basic_Record) {}\LaTeXBF{return} {}String {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}Unbounded.To_String {}(This.A); \newline{}
 {} {} {} {}\LaTeXBF{end} {}Get_A; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Private_With;}

\subsection{Limited with}
\label{290}

\AdaTwentyZeroFive{}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{limited} {}\LaTeXBF{with} {}Departments; \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Employees {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Employee {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Assign_Employee \newline{}
 {} {} {} {} {} {}(E {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Employee; \newline{}
 {} {} {} {} {} {} {}D {}: {}\LaTeXBF{access} {}Departments.Department\textquotesingle{}\LaTeXIT{Class}); \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Dept_Ptr {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{all} {}Departments.Department\textquotesingle{}\LaTeXIT{Class}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Current_Department(E {}: {}\LaTeXBF{in} {}Employee) {}\LaTeXBF{return} {}Dept_Ptr; \newline{}
 {} {} {} {}... \newline{}
 {}\LaTeXBF{end} {}Employees;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{limited} {}\LaTeXBF{with} {}Employees; \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Departments {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Department {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Choose_Manager \newline{}
 {} {} {} {} {} {}(Dept {} {} {} {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Department; \newline{}
 {} {} {} {} {} {} {}Manager {}: {}\LaTeXBF{access} {}Employees.Employee\textquotesingle{}\LaTeXIT{Class}); \newline{}
 {} {} {} {}... \newline{}
 {}\LaTeXBF{end} {}Departments;}

\subsection{Making operators visible}
\label{291}

Suppose you have a package Universe that defines some numeric type T.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Universe\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{procedure} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}V\LaTeXIdentityTemplate{:} {}Universe\LaTeXIdentityTemplate{.}T {}\LaTeXIdentityTemplate{:=} {}10\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}V {}\LaTeXIdentityTemplate{:=} {}V {}\LaTeXIdentityTemplate{*} {}42\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} {} {}\ADACOM{illegal} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

This program fragment is illegal since the operators implicitly defined in Universe are not directly visible.

You have four choices to make the program legal.

Use a use_package_clause. This makes {\bfseries all declarations} in Universe directly visible (provided they are not hidden because of other homographs).
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Universe\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{use} {} {}Universe\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{procedure} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}V\LaTeXIdentityTemplate{:} {}Universe\LaTeXIdentityTemplate{.}T {}\LaTeXIdentityTemplate{:=} {}10\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}V {}\LaTeXIdentityTemplate{:=} {}V {}\LaTeXIdentityTemplate{*} {}42\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

Use renaming. This is error prone since if you rename many operators, cut and paste errors are probable.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Universe\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{procedure} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{function} {}\symbol{34}*\symbol{34} {}\LaTeXIdentityTemplate{(}Left\LaTeXIdentityTemplate{,} {}Right\LaTeXIdentityTemplate{:} {}Universe\LaTeXIdentityTemplate{.}T\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Universe\LaTeXIdentityTemplate{.}T {}\LaTeXBF{renames} {}Universe\LaTeXIdentityTemplate{.}\symbol{34}*\symbol{34}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{function} {}\symbol{34}/\symbol{34} {}\LaTeXIdentityTemplate{(}Left\LaTeXIdentityTemplate{,} {}Right\LaTeXIdentityTemplate{:} {}Universe\LaTeXIdentityTemplate{.}T\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Universe\LaTeXIdentityTemplate{.}T {}\LaTeXBF{renames} {}Universe\LaTeXIdentityTemplate{.}\symbol{34}*\symbol{34}\LaTeXIdentityTemplate{;} {} {}\ADACOM{oops} \newline{}
 {} {} {}V\LaTeXIdentityTemplate{:} {}Universe\LaTeXIdentityTemplate{.}T {}\LaTeXIdentityTemplate{:=} {}10\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}V {}\LaTeXIdentityTemplate{:=} {}V {}\LaTeXIdentityTemplate{*} {}42\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

Use qualification. This is extremely ugly and unreadable.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Universe\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{procedure} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}V\LaTeXIdentityTemplate{:} {}Universe\LaTeXIdentityTemplate{.}T {}\LaTeXIdentityTemplate{:=} {}10\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}V {}\LaTeXIdentityTemplate{:=} {}Universe\LaTeXIdentityTemplate{.}\symbol{34}*\symbol{34} {}\LaTeXIdentityTemplate{(}V\LaTeXIdentityTemplate{,} {}42\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

Use the use_type_clause. This makes only the {\bfseries operators} in Universe directly visible.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Universe\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{procedure} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}V\LaTeXIdentityTemplate{:} {}Universe\LaTeXIdentityTemplate{.}T {}\LaTeXIdentityTemplate{:=} {}10\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{use} {}\LaTeXBF{type} {}Universe\LaTeXIdentityTemplate{.}T\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}V {}\LaTeXIdentityTemplate{:=} {}V {}\LaTeXIdentityTemplate{*} {}42\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

There is a special beauty in the use_type_clause. Suppose you have a set of packages like so:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Universe\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{package} {}Pack {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{subtype} {}T {}\LaTeXBF{is} {}Universe\LaTeXIdentityTemplate{.}T\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}Pack\LaTeXIdentityTemplate{;}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Pack\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{procedure} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}V\LaTeXIdentityTemplate{:} {}Pack\LaTeXIdentityTemplate{.}T {}\LaTeXIdentityTemplate{:=} {}10\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}V {}\LaTeXIdentityTemplate{:=} {}V {}\LaTeXIdentityTemplate{*} {}42\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} {} {}\ADACOM{illegal} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

Now you\textquotesingle{}ve got into trouble. Since Universe is not made visible, you cannot use a use_package_clause for Universe to make the operator directly visible, nor can you use qualification for the same reason. Also a use_package_clause for Pack does not help, since the operator is not defined in Pack.
The effect of the above construct means that the operator is not nameable, i.e. it cannot be renamed in a renaming statement.

Of course you can add Universe to the context clause, but this may be impossible due to some other reasons (e.g. coding standards); also adding the operators to Pack may be forbidden or not feasible. So what to do?

The solution is simple. Use the use_type_clause for Pack.T and all is well!
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Pack\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{procedure} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}V\LaTeXIdentityTemplate{:} {}Pack\LaTeXIdentityTemplate{.}T {}\LaTeXIdentityTemplate{:=} {}10\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{use} {}\LaTeXBF{type} {}Pack\LaTeXIdentityTemplate{.}T\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}V {}\LaTeXIdentityTemplate{:=} {}V {}\LaTeXIdentityTemplate{*} {}42\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

\section{Package organisation}
\label{292}

\LaTeXNullTemplate{}
\subsection{Nested packages}
\label{293}

A nested package is a package declared inside a package.
Like a normal package, it has a public part and a private part.
From outside, items declared in a nested package N
will have visibility as usual; the
programmer may refer to these items using a full dotted name like
{\ttfamily P.N.X}. (But not {\ttfamily P.M.Y}.)
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {} {}D\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{a nested package:} \newline{}
 {} {} {} {}\LaTeXBF{package} {}N {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}X\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{private} \newline{}
 {} {} {} {} {} {} {}Foo\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}N\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}E\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\ADACOM{another nested package:} \newline{}
 {} {} {} {}\LaTeXBF{package} {}M {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}Y\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{private} \newline{}
 {} {} {} {} {} {} {}Bar\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}M\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}P\LaTeXIdentityTemplate{;}}

Inside a package, declarations become visible as they are introduced, in textual order.
That is, a nested package N that is declared {\itshape after} some other declaration D can refer to this declaration D.
A declaration E following N can refer to items of N\myfootnote{For example,
{\ttfamily E: Integer := D + N.X;}}.
But neither can “look ahead” and refer to any declaration that
goes after them.
For example, spec {\ttfamily N} above cannot refer to {\ttfamily M} in any way.

In the following example, a type is derived in both of the two nested packages {\ttfamily Disks}
and {\ttfamily Books}.
Notice that the full declaration of parent type {\ttfamily Item} appears before the two
nested packages.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} {}\LaTeXBF{use} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Shelf {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{pragma} {}Elaborate_Body\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{things to put on the shelf} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}ID {}\LaTeXBF{is} {}\LaTeXBF{range} {}1_000 {}\LaTeXIdentityTemplate{..} {}9_999\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Item {}\LaTeXIdentityTemplate{(}Identifier {}\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{abstract} {}\LaTeXBF{tagged} {}\LaTeXBF{limited} {}\LaTeXBF{null} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Item_Ref {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Item\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{class}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Next_ID {}\LaTeXBF{return} {}ID\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{a fresh ID for an Item to Put on the shelf} \newline{}
 {} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Disks {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Music {}\LaTeXBF{is} {}\LaTeXIdentityTemplate{(} \newline{}
 {} {} {} {} {} {} {} {} {} {}Jazz\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Rock\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Raga\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Classic\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Pop\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Soul\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Disk {}\LaTeXIdentityTemplate{(}Style {}\LaTeXIdentityTemplate{:} {}Music\LaTeXIdentityTemplate{;} {}Identifier {}\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Item {}\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{)} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Artist {}\LaTeXIdentityTemplate{:} {}Unbounded_String\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Title {} {}\LaTeXIdentityTemplate{:} {}Unbounded_String\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Disks\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Books {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Literature {}\LaTeXBF{is} {}\LaTeXIdentityTemplate{(} \newline{}
 {} {} {} {} {} {} {} {} {} {}Play\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Novel\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Poem\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Story\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Text\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {} {} {} {}Art\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Book {}\LaTeXIdentityTemplate{(}Kind {}\LaTeXIdentityTemplate{:} {}Literature\LaTeXIdentityTemplate{;} {}Identifier {}\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Item \newline{}
 {}\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{)} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Authors {}\LaTeXIdentityTemplate{:} {}Unbounded_String\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Title {} {} {}\LaTeXIdentityTemplate{:} {}Unbounded_String\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Year {} {} {} {}\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Books\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{shelf manipulation} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}\LaTeXIdentityTemplate{(}it\LaTeXIdentityTemplate{:} {}Item_Ref\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get {}\LaTeXIdentityTemplate{(}identifier {}\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Item_Ref\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Search {}\LaTeXIdentityTemplate{(}title {}\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}ID\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{keeping private things private} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Boxes {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Treasure\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{private} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{type} {}Treasure\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Item\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{)} {}\LaTeXBF{with} {}\LaTeXBF{null} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Boxes\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Shelf\LaTeXIdentityTemplate{;}}

A package may also be nested inside a subprogram. In fact, packages can be declared
in any declarative part, including those of a block.
\subsection{Child packages}
\label{294}

Ada allows one to extend the functionality of a unit (package) with so-{}called children (child packages).
With certain exceptions, all the functionality of the parent is available to a child.
This means that all public and private declarations of the parent package are visible to
all child packages.

The above example, reworked as a hierarchy of packages, looks like this. Notice that
the package \LaTeXIdentityTemplate{Ada} is not needed by the top
level package {\ttfamily Shelf}, hence its with clause doesn\textquotesingle{}t appear here. (We have added a
match function for searching a shelf, though):

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Shelf {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{pragma} {}Elaborate_Body\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}ID {}\LaTeXBF{is} {}\LaTeXBF{range} {}1_000 {}\LaTeXIdentityTemplate{..} {}9_999\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Item {}\LaTeXIdentityTemplate{(}Identifier {}\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{abstract} {}\LaTeXBF{tagged} {}\LaTeXBF{limited} {}\LaTeXBF{null} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Item_Ref {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Item\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Class}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Next_ID {}\LaTeXBF{return} {}ID\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{a fresh ID for an Item to Put on the shelf} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}match {}\LaTeXIdentityTemplate{(}it {}\LaTeXIdentityTemplate{:} {}Item\LaTeXIdentityTemplate{;} {}Text {}\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Boolean {}\LaTeXBF{is} {}\LaTeXBF{abstract}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{see whether It has bibliographic information matching Text} \newline{}
 {} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{shelf manipulation} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}\LaTeXIdentityTemplate{(}it\LaTeXIdentityTemplate{:} {}Item_Ref\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Get {}\LaTeXIdentityTemplate{(}identifier {}\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Item_Ref\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Search {}\LaTeXIdentityTemplate{(}title {}\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}ID\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Shelf\LaTeXIdentityTemplate{;}}

The name of a child package consists of the parent unit\textquotesingle{}s name followed by the
child package\textquotesingle{}s identifier, separated by a period (dot) `\LaTeXIdentityTemplate{.}\textquotesingle{}.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} {}\LaTeXBF{use} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Shelf\LaTeXIdentityTemplate{.}Books {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Literature {}\LaTeXBF{is} {}\LaTeXIdentityTemplate{(} \newline{}
 {} {} {} {} {} {} {}Play\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}Novel\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}Poem\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}Story\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}Text\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}Art\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Book {}\LaTeXIdentityTemplate{(}Kind {}\LaTeXIdentityTemplate{:} {}Literature\LaTeXIdentityTemplate{;} {}Identifier {}\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Item {}\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{)} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Authors {}\LaTeXIdentityTemplate{:} {}Unbounded_String\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}Title {} {} {}\LaTeXIdentityTemplate{:} {}Unbounded_String\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}Year {} {} {} {}\LaTeXIdentityTemplate{:} {}Integer\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}match\LaTeXIdentityTemplate{(}it\LaTeXIdentityTemplate{:} {}Book\LaTeXIdentityTemplate{;} {}text\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Boolean\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Shelf\LaTeXIdentityTemplate{.}Books\LaTeXIdentityTemplate{;}}

{\ttfamily Book} has two components of type {\ttfamily Unbounded_String},
so \LaTeXIdentityTemplate{Ada} appears in a with clause of the child package.
This is unlike the nested packages case which requires that all
units needed by any one of the nested packages be listed in the context clause of the enclosing package
(see \AdaRMThree{10}{1}{2}{Context Clauses -{} With Clauses}).
Child packages thus give better control over package dependences. With clauses are more local.

The new child package {\ttfamily Shelf.Disks} looks similar. The {\ttfamily Boxes} package which was
a nested package in the private part of the original {\ttfamily Shelf} package is moved to a private
child package:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{private} {}\LaTeXBF{package} {}Shelf\LaTeXIdentityTemplate{.}Boxes {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{type} {}Treasure\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {} {}\LaTeXBF{type} {}Treasure\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{:} {}ID\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Item\LaTeXIdentityTemplate{(}Identifier\LaTeXIdentityTemplate{)} {}\LaTeXBF{with} {}\LaTeXBF{null} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {}\LaTeXBF{function} {}match\LaTeXIdentityTemplate{(}it\LaTeXIdentityTemplate{:} {}Treasure\LaTeXIdentityTemplate{;} {}text\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Boolean\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}Shelf\LaTeXIdentityTemplate{.}Boxes\LaTeXIdentityTemplate{;}}

The privacy of the package means that it can only be used by equally private client
units. These clients include private siblings and also the bodies of siblings
(as bodies are never public).

Child packages may be listed in context clauses just like normal packages.
A \LaTeXBF{with} of a child also \textquotesingle{}withs\textquotesingle{} the parent.
\subsection{Subunits}
\label{295}

A subunit is just a feature to move a body into a place of its own when otherwise the enclosing body will become too large. It can also be used for limiting the scope of context clauses.

The subunits allow to physically divide a package into different compilation units without breaking the logical unity of the package. Usually each separated subunit goes to a different file allowing separate compilation of each subunit and independent version control history for each one.
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{package} {}\LaTeXBF{body} {}Pack {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Proc {}\LaTeXBF{is} {}\LaTeXBF{separate}\LaTeXIdentityTemplate{;} \newline{}
 {} {}\LaTeXBF{end} {}Pack\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {}\LaTeXBF{with} {}Some_Unit\LaTeXIdentityTemplate{;} \newline{}
 {} {}\LaTeXBF{separate} {}\LaTeXIdentityTemplate{(}Pack\LaTeXIdentityTemplate{)} \newline{}
 {} {}\LaTeXBF{procedure} {}Proc {}\LaTeXBF{is} \newline{}
 {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {}... \newline{}
 {} {}\LaTeXBF{end} {}Proc\LaTeXIdentityTemplate{;}}

\section{Notes}
\label{296}

\section{See also}
\label{297}
\subsection{Wikibook}
\label{298}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Wikipedia}
\label{299}

\begin{myitemize}
\item{} \myhref{http://en.wikipedia.org/wiki/Module\%20\%28programming\%29}{Module}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{300}

\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-7.html}{ Annex 7: Packages}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{301}

\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-7.html}{ Annex 7: Packages}
\end{myitemize}

\chapter{Input Output}

\myminitoc
\label{302}

\label{303}

\section{Overview}
\label{304}

The standard Ada libraries provide several Input/Output facilities, each one adapted to specific needs. Namely, the language defines the following dedicated packages:
\begin{myitemize}
\item{} Text_IO
\item{} Sequential_IO
\item{} Direct_IO
\item{} Stream_IO
\end{myitemize}

The programmer must choose the adequate package depending on the application needs. For example, the following properties of the data handled by the application should be considered:
\begin{myitemize}
\item{} {\bfseries Data contents}: plain text, or binary data?
\item{} {\bfseries Accessing the data}: random access, or sequential access?
\item{} {\bfseries Medium}: data file, console, network/data-{}bus?
\item{} {\bfseries Data structure}: homogeneous file (sequence of the same data field), heterogeneous file (different data fields)?
\item{} {\bfseries Data format}: adherence to an existing data format, or the application can freely choose a new one?
\end{myitemize}

For example, Stream_IO is very powerful and can handle complex data structures but can be heavier than other packages; Sequential_IO is lean and easy to use but cannot be used by applications requiring random data access; Text_IO can handle just textual data, but it is enough for handling the command-{}line console.

The following table gives some advices for choosing the more adequate one:

\begin{longtable}{|>{\RaggedRight}p{0.19891\linewidth}|>{\RaggedRight}p{0.17129\linewidth}|>{\RaggedRight}p{0.23458\linewidth}|>{\RaggedRight}p{0.23451\linewidth}|} \hline
\multicolumn{4}{|>{\RaggedRight}p{0.95982\linewidth}|}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Simple heuristics for choosing an I/O package}}}\\ \hline \multirow{2}{\linewidth}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data access}}&\multirow{2}{\linewidth}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Plain text}}&\multicolumn{2}{|>{\RaggedRight}p{0.48958\linewidth}|}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Binary data}}\\ \cline{3-3}\cline{4-4} \multicolumn{1}{|c|}{}&\multicolumn{1}{|c|}{}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Homogeneous }&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Heterogeneous\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Sequential}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Text_IO &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Sequential_IO &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Stream_IO\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Random}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Text_IO &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Direct_IO &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Stream_IO\\ \hline
\end{longtable}

So the most important lesson to learn is choosing the right one. This chapter will describe more in detail these standard packages, explaining how to use them effectively. Besides these Ada-{}defined packages for general I/O operations each Ada compiler usually has other implementation-{}defined Input-{}Output facilities, and there are also other \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%23Other\%20Language\%20Libraries}{external libraries for specialized I/O needs} like XML processing or interfacing with databases.
\section{Text I/O}
\label{305}

\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO}{Text I/O} is probably the most used Input/Output package. All data inside the file are represented by human readable text. Text I/O provides support for line and page layout but the standard is free form text.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{use} {} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{use} {} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {} {} \newline{}
 {}\LaTeXBF{procedure} {}Main {}\LaTeXBF{is} \newline{}
 {} {} {}Str {} {}\LaTeXIdentityTemplate{:} {}String {}\LaTeXIdentityTemplate{(}1\LaTeXIdentityTemplate{..}5\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}Last {}\LaTeXIdentityTemplate{:} {}Natural\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Ada\LaTeXIdentityTemplate{.}Text_IO\LaTeXIdentityTemplate{.}Get_Line {}\LaTeXIdentityTemplate{(}Str\LaTeXIdentityTemplate{,} {}Last\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}Ada\LaTeXIdentityTemplate{.}Text_IO\LaTeXIdentityTemplate{.}Put_Line {}\LaTeXIdentityTemplate{(}Str {}\LaTeXIdentityTemplate{(}1\LaTeXIdentityTemplate{..}Last\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end}\LaTeXIdentityTemplate{;}}

It also contains several generic packages for converting numeric and enumeration types to character strings, or for handling Bounded and Unbounded strings, allowing the programmer to read and write different data types in the same file easily (there are ready-{}to-{}use instantiations of these generic packages for the Integer, Float, and Complex types). Finally, the same family of Ada.Text_IO packages (including the several children and instantiation packages) for the type Wide_Character and Wide_Wide_Character.

It is worth noting that the family of Text_IO packages provide some automatic text processing. For example, the Get_Line ignores white spaces at the beginning of a line (Get_Immediate does not present this behavior), or adding a newline character when closing the file. This is thus adequate for applications handling simple textual data, but users requiring direct management of text (e.g. raw access to the character encoding) must consider other packages like Sequential_IO.
\section{Direct I/O}
\label{306}

Direct I/O is used for random access files which contain only elements of one specific type. With Direct_IO you can position the file pointer to any element of that type {\small (random access)}, however you can\textquotesingle{}t freely choose the element type, the element type needs to be a \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23definite_subtype}{definite subtype}.
\section{Sequential I/O}
\label{307}

Direct I/O is used for random access files which contain only elements of one specific type. With Sequential_IO it is the other way round: you can choose between \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23definite_subtype}{definite} and \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23Ada\%20Programming\%2FSubtypes\%23indefinite_subtype}{indefinite} element types but you have to read and write the elements one after the other.
\section{Stream I/O}
\label{308}

Stream I/O is the most powerful input/output package which Ada provides. Stream I/O allows you to mix objects from different element types in one sequential file. In order to read/write from/to a stream each type provides a \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Read}{\textquotesingle{}Read} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Write}{\textquotesingle{}Write} attribute as well as an \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Input}{\textquotesingle{}Input} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Output}{\textquotesingle{}Output} attribute. These attributes are automatically generated for each type you declare.

The \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Read}{\textquotesingle{}Read} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Write}{\textquotesingle{}Write} attributes treat the elements as raw data. They are suitable for low level input/output as well as interfacing with other programming languages.

The \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Input}{\textquotesingle{}Input} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Output}{\textquotesingle{}Output} attribute add additional control informations to the file, like for example the \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27First}{\textquotesingle{}First} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Last}{\textquotesingle{}Last} attributes from an array.

In object orientated programming you can also use the \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Class}{\textquotesingle{}Class}\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Input}{\textquotesingle{}Input} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Class}{\textquotesingle{}Class}\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Output}{\textquotesingle{}Output} attributes -{} they will store and recover the actual object type as well.

Stream I/O is also the most flexible input/output package. All I/O attributes can be replaced with user defined functions or procedures using representation clauses and you can provide your own Stream I/O types using flexible object oriented techniques.
\section{See also}
\label{309}
\subsection{Wikibook}
\label{310}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Direct_IO}{Ada Programming/Libraries/Ada.Direct_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Sequential_IO}{Ada Programming/Libraries/Ada.Sequential_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Streams}{Ada Programming/Libraries/Ada.Streams}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Streams.Stream_IO}{Ada Programming/Libraries/Ada.Streams.Stream_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Text_Streams}{Ada Programming/Libraries/Ada.Text_IO.Text_Streams}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO}{Ada Programming/Libraries/Ada.Text_IO}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Enumeration_IO}{Ada Programming/Libraries/Ada.Text_IO.Enumeration_IO} (nested package)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Integer_IO}{Ada Programming/Libraries/Ada.Text_IO.Integer_IO} (nested package)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Modular_IO}{Ada Programming/Libraries/Ada.Text_IO.Modular_IO} (nested package)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Float_IO}{Ada Programming/Libraries/Ada.Text_IO.Float_IO} (nested package)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Fixed_IO}{Ada Programming/Libraries/Ada.Text_IO.Fixed_IO} (nested package)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Decimal_IO}{Ada Programming/Libraries/Ada.Text_IO.Decimal_IO} (nested package)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Bounded_IO}{Ada Programming/Libraries/Ada.Text_IO.Bounded_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Unbounded_IO}{Ada Programming/Libraries/Ada.Text_IO.Unbounded_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Complex_IO}{Ada Programming/Libraries/Ada.Text_IO.Complex_IO} (specialized needs annex)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Editing}{Ada Programming/Libraries/Ada.Text_IO.Editing} (specialized needs annex)
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Integer_Text_IO}{Ada Programming/Libraries/Ada.Integer_Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Float_Text_IO}{Ada Programming/Libraries/Ada.Float_Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Complex_Text_IO}{Ada Programming/Libraries/Ada.Complex_Text_IO} (specialized needs annex)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Storage_IO}{Ada Programming/Libraries/Ada.Storage_IO} (not a general-{}purpose I/O package)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.IO_Exceptions}{Ada Programming/Libraries/Ada.IO_Exceptions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Command_Line}{Ada Programming/Libraries/Ada.Command_Line}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Directories}{Ada Programming/Libraries/Ada.Directories}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Environment_Variables}{Ada Programming/Libraries/Ada.Environment_Variables}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.IO}{Ada Programming/Libraries/GNAT.IO} (implementation defined)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.IO_Aux}{Ada Programming/Libraries/GNAT.IO_Aux} (implementation defined)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Calendar.Time_IO}{Ada Programming/Libraries/GNAT.Calendar.Time_IO} (implementation defined)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FSystem.IO}{Ada Programming/Libraries/System.IO} (implementation defined)
\item{} \mylref{660}{Ada Programming/Libraries}
\begin{myitemize}
\item{} \mylref{719}{Ada Programming/Libraries/GUI}
\item{} \mylref{732}{Ada Programming/Libraries/Web}
\item{} \mylref{730}{Ada Programming/Libraries/Database}
\end{myitemize}

\item{} \mylref{742}{Ada Programming/Platform}
\item{} \mylref{748}{Ada Programming/Platform/Linux}
\item{} \mylref{754}{Ada Programming/Platform/Windows}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{311}

\begin{myitemize}
\item{} \AdaRM{A}{6}{Input-{}Output}
\item{} \AdaRM{A}{7}{External Files and File Objects}
\item{} \AdaRM{A}{8}{Sequential and Direct Files}
\item{} \AdaRM{A}{10}{Text Input-{}Output}
\item{} \AdaRM{A}{11}{Wide Text Input-{}Output and Wide Wide Text Input-{}Output}
\item{} \AdaRM{A}{12}{Stream Input-{}Output}
\item{} \AdaRM{A}{13}{Exceptions in Input-{}Output}
\item{} \AdaRM{A}{14}{File Sharing}
\end{myitemize}

\subsection{Ada 95 Quality and Style Guide}
\label{312}

\begin{myitemize}
\item{} \AdaSGTwo{7}{7}{Input/Output}
\begin{myitemize}
\item{} \AdaSGThree{7}{7}{1}{Name and Form Parameters}
\item{} \AdaSGThree{7}{7}{2}{File Closing}
\item{} \AdaSGThree{7}{7}{3}{Input/Output on Access Types}
\item{} \AdaSGThree{7}{7}{4}{Package Ada.Streams.Stream_IO}
\item{} \AdaSGThree{7}{7}{5}{Current Error Files}
\end{myitemize}

\end{myitemize}

\chapter{Exceptions}

\myminitoc
\label{313}

\label{314}

\section{Robustness}
\label{315}

{\itshape Robustness} is the ability of a system or system component to behave “reasonably” when it detects an anomaly, e.g.:
\begin{myitemize}
\item{} It receives invalid inputs.
\item{} Another system component (hardware or software) malfunctions.
\end{myitemize}

Take as example a telephone exchange control program. What should the control program do when a line fails? It is unacceptable simply to halt — all calls will then fail. Better would be to abandon the current call (only), record that the line is out of service, and continue. Better still would be to try to reuse the line — the fault might be transient. Robustness is desirable in all systems, but it is essential in systems on which human safety or welfare depends, e.g., hospital patient monitoring, aircraft fly-{}by-{}wire, nuclear power station control, etc.
\section{Modules, preconditions and postconditions}
\label{316}

A module may be specified in terms of its preconditions and postconditions. A {\itshape precondition} is a condition that the module’s inputs are supposed to satisfy. A {\itshape postcondition} is a condition that the module’s outputs are required to satisfy, provided that the precondition is satisfied.
What should a module do if its precondition is not satisfied?
\begin{myitemize}
\item{} Halt? Even with diagnostic information, this is generally unacceptable.
\item{} Use a global result code? The result code can be set to indicate an anomaly. Subsequently it may be tested by a module that can effect error recovery. Problem: this induces tight coupling among the modules concerned.
\item{} Each module has its own result code? This is a parameter (or function result) that may be set to indicate an anomaly, and is tested by calling modules. Problems: (1) setting and testing result codes tends to swamp the normal-{}case logic and (2) the result codes are normally ignored.
\item{} Exception handling — Ada’s solution. A module detecting an anomaly raises an exception. The same, or another, module may handle that exception.
\end{myitemize}

The exception mechanism permits clean, modular handling of anomalous situations:
\begin{myitemize}
\item{} A unit (e.g., block or subprogram body) may raise an exception, to signal that an anomaly has been detected. The computation that raised the exception is abandoned (and can never be resumed, although it can be restarted).
\item{} A unit may propagate an exception that has been raised by itself (or propagated out of another unit it has called).
\item{} A unit may alternatively handle such an exception, allowing programmer-{}defined recovery from an anomalous situation. Exception handlers are segregated from normal-{}case code.
\end{myitemize}

\section{Predefined exceptions}
\label{317}

The predefined exceptions are those defined in package \LaTeXIdentityTemplate{Standard}. Every language-{}defined run-{}time error causes a predefined exception to be raised. Some examples are:

\begin{myitemize}
\item{} {\ttfamily Constraint_Error}, raised when a subtype’s constraint is not satisfied
\item{} {\ttfamily Program_Error}, when a protected operation is called inside a protected object, e.g.
\item{} {\ttfamily Storage_Error}, raised by running out of storage
\item{} {\ttfamily Tasking_Error}, when a task cannot be activated because the operating system has not enough resources, e.g.
\end{myitemize}

Ex.1
\\

\TemplateSpaceIndent{ {} {} {}Name {}: {}String {}(1 {}.. {}10); \newline{}
 {} {} {}... \newline{}
 {} {} {}Name {}:= {}\symbol{34}Hamlet\symbol{34}; {}\ADACOM{Raises Constraint_Error,} \newline{}
 {}\ADACOM{because the \symbol{34}Hamlet\symbol{34} has bounds (1 .. 6).}}

Ex.2
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {}P {}:= {}\LaTeXBF{new} {}Int_Node\textquotesingle{}(0, {}P); \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; {}\ADACOM{Soon raises Storage_Error,} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{because of the extreme memory leak.}}

Ex.3 Compare the following approaches:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{procedure} {}Compute_Sqrt {}(X {} {} {} {}: {}\LaTeXBF{in} {} {}Float; \newline{}
 {}Sqrt {}: {}\LaTeXBF{out} {}Float; \newline{}
 {}OK {} {} {}: {}\LaTeXBF{out} {}Boolean) \newline{}
 {} {} {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{if} {}X {}>{}= {}0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}OK {}:= {}True; \newline{}
 {} {} {} {} {} {} {} {} {}\ADACOM{{\itshape compute} √X} \newline{}
 {} {} {} {} {} {} {} {} {}... \newline{}
 {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {}OK {}:= {}False; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {}\LaTeXBF{end} {}Compute_Sqrt; \newline{}
 {} {} {} \newline{}
 {} {} {}... \newline{}
 {} {} {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Triangle {}(A, {}B, {}C {} {} {} {} {} {} {} {} {}: {}\LaTeXBF{in} {} {}Float; \newline{}
 {}Area, {}Perimeter {}: {}\LaTeXBF{out} {}Float; \newline{}
 {}Exists {} {} {} {} {} {} {} {} {} {}: {}\LaTeXBF{out} {}Boolean) \newline{}
 {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}S {} {}: {}Float {}:= {}0.5 {}* {}(A {}+ {}B {}+ {}C); \newline{}
 {} {} {} {} {} {}OK {}: {}Boolean; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}Compute_Sqrt {}(S {}* {}(S-{}A) {}* {}(S-{}B) {}* {}(S-{}C), {}Area, {}OK); \newline{}
 {} {} {} {} {} {}Perimeter {}:= {}2.0 {}* {}S; \newline{}
 {} {} {} {} {} {}Exists {} {} {} {}:= {}OK; \newline{}
 {} {} {}\LaTeXBF{end} {}Triangle;}

A negative argument to Compute_Sqrt causes OK to be set to False. Triangle uses it to determine its own status parameter value, and so on up the calling tree, {\itshape ad nauseam}.

{\itshape versus}
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{function} {}Sqrt {}(X {}: {}Float) {}\LaTeXBF{return} {}Float {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{if} {}X {}<{} {}0.0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{raise} {}Constraint_Error; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {}\ADACOM{{\itshape compute} √X} \newline{}
 {} {} {} {} {} {}... \newline{}
 {} {} {}\LaTeXBF{end} {}Sqrt; \newline{}
 {} {} {} \newline{}
 {} {} {}... \newline{}
 {} {} {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Triangle {}(A, {}B, {}C {} {} {} {} {} {} {} {} {}: {}\LaTeXBF{in} {} {}Float; \newline{}
 {}Area, {}Perimeter {}: {}\LaTeXBF{out} {}Float) \newline{}
 {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}S {} {}: {}Float {}:= {}0.5 {}* {}(A {}+ {}B {}+ {}C); \newline{}
 {} {} {} {} {} {}OK {}: {}Boolean; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}Area {} {} {} {} {} {}:= {}Sqrt {}(S {}* {}(S-{}A) {}* {}(S-{}B) {}* {}(S-{}C)); \newline{}
 {} {} {} {} {} {}Perimeter {}:= {}2.0 {}* {}S; \newline{}
 {} {} {}\LaTeXBF{end} {}Triangle;}

A negative argument to Sqrt causes Constraint_Error to be explicitly raised inside Sqrt, and propagated out. Triangle simply propagates the exception (by not handling it).

Alternatively, we can catch the error by using the type system:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{subtype} {}Pos_Float {}\LaTeXBF{is} {}Float {}\LaTeXBF{range} {}0.0 {}.. {}Float\textquotesingle{}\LaTeXIT{Last}; \newline{}
 {} {} {} \newline{}
 {} {} {}\LaTeXBF{function} {}Sqrt {}(X {}: {}Pos_Float) {}\LaTeXBF{return} {}Pos_Float {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\ADACOM{{\itshape compute} √X} \newline{}
 {} {} {} {} {} {}... \newline{}
 {} {} {}\LaTeXBF{end} {}Sqrt;}

A negative argument to Sqrt now raises Constraint_Error at the point of call. Sqrt is never even entered.
\section{Input-{}output exceptions}
\label{318}

Some examples of exceptions raised by subprograms of the {\bfseries predefined package} \LaTeXIdentityTemplate{Ada.Text_IO} are:
\begin{myitemize}
\item{} {\ttfamily End_Error}, raised by Get, Skip_Line, etc., if end-{}of-{}file already reached.
\item{} {\ttfamily Data_Error}, raised by Get in Integer_IO, etc., if the input is not a literal of the expected type.
\item{} {\ttfamily Mode_Error}, raised by trying to read from an output file, or write to an input file, etc.
\item{} {\ttfamily Layout_Error}, raised by specifying an invalid data format in a text I/O operation
\end{myitemize}

Ex. 1\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{declare} \newline{}
 {} {} {} {} {} {}A {}: {}Matrix {}(1 {}.. {}M, {}1 {}.. {}N); \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}1 {}.. {}M {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{for} {}J {}\LaTeXBF{in} {}1 {}.. {}N {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Get {}(A(I,J)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{exception} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Data_Error {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Put {}(\symbol{34}Ill-{}formed {}matrix {}element\symbol{34}); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}A(I,J) {}:= {}0.0; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end}; \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {}\LaTeXBF{exception} \newline{}
 {} {} {} {} {} {}\LaTeXBF{when} {}End_Error {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {}Put {}(\symbol{34}Matrix {}element(s) {}missing\symbol{34}); \newline{}
 {} {} {}\LaTeXBF{end};}

\section{Exception declarations}
\label{319}

Exceptions are declared rather like objects, but they are not objects. For example, recursive re-{}entry to a scope where an exception is declared does {\itshape not} create a new exception of the same name; instead the exception declared in the outer invocation is reused.

Ex.1
\\

\TemplateSpaceIndent{ {} {} {}Line_Failed {}: {}\LaTeXBF{exception};}

Ex.2
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{package} {}Directory_Enquiries {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Insert {}(New_Name {} {} {}: {}\LaTeXBF{in} {}Name; \newline{}
 {}New_Number {}: {}\LaTeXBF{in} {}Number); \newline{}
 {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Lookup {}(Given_Name {} {}: {}\LaTeXBF{in} {} {}Name; \newline{}
 {}Corr_Number {}: {}\LaTeXBF{out} {}Number); \newline{}
 {} \newline{}
 {} {} {} {} {} {}Name_Duplicated {}: {}\LaTeXBF{exception}; \newline{}
 {} {} {} {} {} {}Name_Absent {} {} {} {} {}: {}\LaTeXBF{exception}; \newline{}
 {} {} {} {} {} {}Directory_Full {} {}: {}\LaTeXBF{exception}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{end} {}Directory_Enquiries;}

\section{Raising exceptions}
\label{320}

The {\bfseries raise} statement explicitly raises a specified exception.

Ex. 1
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{package} {}\LaTeXBF{body} {}Directory_Enquiries {}\LaTeXBF{is} \newline{}
 {} {} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Insert {}(New_Name {} {} {}: {}\LaTeXBF{in} {}Name; \newline{}
 {}New_Number {}: {}\LaTeXBF{in} {}Number) \newline{}
 {} {} {} {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {}… \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}… \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{if} {}New_Name {}= {}Old_Entry.A_Name {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{raise} {}Name_Duplicated; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {} {} {} {}… \newline{}
 {} {} {} {} {} {} {} {} {}New_Entry {}:= {} {}\LaTeXBF{new} {}Dir_Node\textquotesingle{}(New_Name, {}New_Number,…); \newline{}
 {} {} {} {} {} {} {} {} {}… \newline{}
 {} {} {} {} {} {}\LaTeXBF{exception} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Storage_Error {}=>{} {}\LaTeXBF{raise} {}Directory_Full; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Insert; \newline{}
 {} {} {} {} {} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Lookup {}(Given_Name {} {}: {}\LaTeXBF{in} {} {}Name; \newline{}
 {}Corr_Number {}: {}\LaTeXBF{out} {}Number) \newline{}
 {} {} {} {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {}… \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}… \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{if} {}\LaTeXBF{not} {}Found {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{raise} {}Name_Absent; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {} {} {} {}… \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Lookup; \newline{}
 {} {} {} \newline{}
 {} {} {}\LaTeXBF{end} {}Directory_Enquiries;}

\section{Exception handling and propagation}
\label{321}

Exception handlers may be grouped at the end of a block, subprogram body, etc. A handler is any sequence of statements that may end:
\begin{myitemize}
\item{} by completing;
\item{} by executing a {\bfseries return} statement;
\item{} by raising a different exception ({\bfseries raise} e;);
\item{} by re-{}raising the same exception ({\bfseries raise};).
\end{myitemize}

Suppose that an exception {\itshape e} is raised in a sequence of statements {\itshape U} (a block, subprogram body, etc.).
\begin{myitemize}
\item{} If {\itshape U} contains a handler for {\itshape e}: that handler is executed, then control leaves {\itshape U}.
\item{} If {\itshape U} contains no handler for {\itshape e}: {\itshape e} is {\itshape propagated} out of {\itshape U}; in effect, {\itshape e} is raised at the \symbol{34}point of call” of {\itshape U}.
\end{myitemize}

So the raising of an exception causes the sequence of statements responsible to be abandoned at the point of occurrence of the exception. It is not, and cannot be, resumed.

Ex. 1
\\

\TemplateSpaceIndent{ {} {} {}... \newline{}
 {} {} {}\LaTeXBF{exception} \newline{}
 {} {} {} {} {} {}\LaTeXBF{when} {}Line_Failed {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{begin} {}\ADACOM{attempt recovery} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Log_Error; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Retransmit {}(Current_Packet); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{exception} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Line_Failed {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Notify_Engineer; {}\ADACOM{recovery failed!} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Abandon_Call; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end}; \newline{}
 {} {} {}...}

\section{Information about an exception occurrence}
\label{322}

Ada provides information about an exception in an object of type Exception_Occurrence, defined in \LaTeXIdentityTemplate{Ada.Exceptions} along with subprograms taking this type as parameter:

\begin{myitemize}
\item{} Exception_Name: return the full exception name using the dot notation and in uppercase letters. For example, {\ttfamily Queue.Overflow}.
\item{} Exception_Message: return the exception message associated with the occurrence.
\item{} Exception_Information: return a string including the exception name and the associated exception message.
\end{myitemize}

For getting an exception occurrence object the following syntax is used:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; {} {}\LaTeXBF{use} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}... \newline{}
 {}\LaTeXBF{exception} \newline{}
 {} {} {}\LaTeXBF{when} {}Error: {}High_Pressure {}| {}High_Temperature {}=>{} \newline{}
 {} {} {} {} {}Put {}(\symbol{34}Exception: {}\symbol{34}); \newline{}
 {} {} {} {} {}Put_Line {}(Exception_Name {}(Error)); \newline{}
 {} {} {} {} {}Put {}(Exception_Message {}(Error)); \newline{}
 {} {} {}\LaTeXBF{when} {}Error: {}\LaTeXBF{others} {}=>{} \newline{}
 {} {} {} {} {}Put {}(\symbol{34}Unexpected {}exception: {}\symbol{34}); \newline{}
 {} {} {} {} {}Put_Line {}(Exception_Information(Error)); \newline{}
 {}\LaTeXBF{end};}

The exception message content is implementation defined when it is not set by the user who raises the exception. It usually contains a reason for the exception and the raising location.

The user can specify a message using the procedure Raise_Exception.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}Valve_Failure {}: {}\LaTeXBF{exception}; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}... \newline{}
 {} {} {}Raise_Exception {}(Valve_Failure\textquotesingle{}\LaTeXIT{Identity}, {}\symbol{34}Failure {}while {}opening\symbol{34}); \newline{}
 {} {} {}... \newline{}
 {} {} {}Raise_Exception {}(Valve_Failure\textquotesingle{}\LaTeXIT{Identity}, {}\symbol{34}Failure {}while {}closing\symbol{34}); \newline{}
 {} {} {}... \newline{}
 {}\LaTeXBF{exception} \newline{}
 {} {} {}\LaTeXBF{when} {}Fail: {}Valve_Failure {}=>{} \newline{}
 {} {} {} {} {}Put {}(Exception_Message {}(Fail)); \newline{}
 {}\LaTeXBF{end};}

Starting with Ada 2005, a simpler syntax can be used to associate a string message with exception occurrence.\\

\TemplateSpaceIndent{ {}-{}-{} {}\AdaTwentyZeroFive{} \newline{}
 {}\LaTeXBF{declare} \newline{}
 {} {} {} {}Valve_Failure {}: {}\LaTeXBF{exception}; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{raise} {}Valve_Failure {}\LaTeXBF{with} {}\symbol{34}Failure {}while {}opening\symbol{34}; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{raise} {}Valve_Failure {}\LaTeXBF{with} {}\symbol{34}Failure {}while {}closing\symbol{34}; \newline{}
 {} {} {}... \newline{}
 {}\LaTeXBF{exception} \newline{}
 {} {} {}\LaTeXBF{when} {}Fail: {}Valve_Failure {}=>{} \newline{}
 {} {} {} {} {}Put {}(Exception_Message {}(Fail)); \newline{}
 {}\LaTeXBF{end};}

The \LaTeXIdentityTemplate{Ada.Exceptions} package also provides subprograms for saving exception occurrences and re-{}raising them.
\section{See also}
\label{323}
\subsection{Wikibook}
\label{324}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{325}

\begin{myitemize}
\item{} \ADANiveFiveRMONE{11}{Exceptions}
\item{} \AdaNiveFiveRMThree{11}{4}{1}{The Package Exceptions}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{326}

\begin{myitemize}
\item{} \ADARMONE{11}{Exceptions}
\item{} \AdaRMThree{11}{4}{1}{The Package Exceptions}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{327}

\begin{myitemize}
\item{} {\bfseries Chapter 4: Program Structure}
\begin{myitemize}
\item{} \AdaSGTwo{4}{3}{Exceptions}
\begin{myitemize}
\item{} \AdaSGThree{4}{3}{1}{Using Exceptions to Help Define an Abstraction}
\end{myitemize}

\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} {\bfseries Chapter 5: Programming Practices}
\begin{myitemize}
\item{} \AdaSGTwo{5}{8}{Using Exceptions}
\begin{myitemize}
\item{} \AdaSGThree{5}{8}{1}{Handling Versus Avoiding Exceptions}
\item{} \AdaSGThree{5}{8}{2}{Handling for Others}
\item{} \AdaSGThree{5}{8}{3}{Propagation}
\item{} \AdaSGThree{5}{8}{4}{Localizing the Cause of an Exception}
\end{myitemize}

\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} {\bfseries Chapter 7: Portability}
\begin{myitemize}
\item{} \AdaSGTwo{7}{5}{Exceptions}
\begin{myitemize}
\item{} \AdaSGThree{7}{5}{1}{Predefined and User-{}Defined Exceptions}
\item{} \AdaSGThree{7}{5}{2}{Implementation-{}Specific Exceptions}
\end{myitemize}

\end{myitemize}

\end{myitemize}

\chapter{Generics}

\myminitoc
\label{328}

\label{329}

\section{Parametric polymorphism (generic units)}
\label{330}

The idea of code reuse arises from the necessity for constructing large software systems combining well-{}established building blocks. The reusability of code improves the productivity and the quality of software. The generic units are one of the ways in which the Ada language supports this characteristic. A generic unit is a subprogram or package that defines algorithms in terms of types and operations that are not defined until the user instantiates them.

Note to C++ programmers: generic units are similar to C++ templates.

For example, to define a procedure for swapping variables of any (non-{}limited) type:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {}\LaTeXBF{type} {}Element_T {}\LaTeXBF{is} {}\LaTeXBF{private}; {} {}\ADACOM{Generic formal type parameter} \newline{}
 {}\LaTeXBF{procedure} {}Swap {}(X, {}Y {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Element_T);}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Swap {}(X, {}Y {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Element_T) {}\LaTeXBF{is} \newline{}
 {} {} {}Temporary {}: {}\LaTeXBF{constant} {}Element_T {}:= {}X; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}X {}:= {}Y; \newline{}
 {} {} {}Y {}:= {}Temporary; \newline{}
 {}\LaTeXBF{end} {}Swap;}

The {\ttfamily Swap} subprogram is said to be generic. The subprogram specification is preceded by the generic formal part consisting of the reserved word \LaTeXBF{generic} followed by a list of generic formal parameters which may be empty. The entities declared as generic are not directly usable, it is necessary to instantiate them.

To be able to use {\ttfamily Swap}, it is necessary to create an instance for the wanted type. For example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Swap_Integers {}\LaTeXBF{is} {}\LaTeXBF{new} {}Swap {}(Integer);}

Now the {\ttfamily Swap_Integers} procedure can be used for variables of type {\ttfamily Integer}.

The generic procedure can be instantiated for all the needed types. It can be instantiated with different names or, if the same identifier is used in the instantiation, each declaration overloads the procedure:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Instance_Swap {}\LaTeXBF{is} {}\LaTeXBF{new} {}Swap {}(Float); \newline{}
 {}\LaTeXBF{procedure} {}Instance_Swap {}\LaTeXBF{is} {}\LaTeXBF{new} {}Swap {}(Day_T); \newline{}
 {}\LaTeXBF{procedure} {}Instance_Swap {}\LaTeXBF{is} {}\LaTeXBF{new} {}Swap {}(Element_T {}=>{} {}Stack_T);}

Similarly, generic packages can be used, for example, to implement a stack of any kind of elements:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {}Max: {}Positive; {} \newline{}
 {} {} {}\LaTeXBF{type} {}Element_T {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{package} {}Generic_Stack {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Push {}(E: {}Element_T); \newline{}
 {} {} {}\LaTeXBF{function} {}Pop {}return {}Element_T; \newline{}
 {}\LaTeXBF{end} {}Generic_Stack;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}\LaTeXBF{body} {}Generic_Stack {}\LaTeXBF{is} \newline{}
 {} {} {}Stack: {}\LaTeXBF{array} {}(1 {}.. {}Max) {}\LaTeXBF{of} {}Element_T; \newline{}
 {} {} {}Top {} {}: {}Integer {}\LaTeXBF{range} {}0 {}.. {}Max {}:= {}0; {} {}\ADACOM{initialise to empty} \newline{}
 {} {} {}\ADACOM{...} \newline{}
 {}\LaTeXBF{end} {}Generic_Stack;}

A stack of a given size and type could be defined in this way:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {}\LaTeXBF{package} {}Float_100_Stack {}\LaTeXBF{is} {}\LaTeXBF{new} {}Generic_Stack {}(100, {}Float); \newline{}
 {} {} {}\LaTeXBF{use} {}Float_100_Stack; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Push {}(45.8); \newline{}
 {} {} {}\ADACOM{...} \newline{}
 {}\LaTeXBF{end};}

\section{Generic parameters}
\label{331}

The generic unit declares {\itshape generic formal parameters}, which can be:

\begin{myitemize}
\item{} objects (of mode {\itshape in} or {\itshape in out} but never {\itshape out})
\item{} types
\item{} subprograms
\item{} instances of another, designated, generic unit.
\end{myitemize}

When instantiating the generic, the programmer passes one {\itshape actual parameter} for each formal. Formal values and subprograms can have defaults, so passing an actual for them is optional.
\subsection{Generic formal objects}
\label{332}

Formal parameters of mode {\itshape in} accept any value, constant, or variable of the designated type. The actual is copied into the generic instance, and behaves as a
constant inside the generic; this implies that the designated type cannot be limited. It is possible to specify a default value, like this:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}Object {}: {}\LaTeXBF{in} {}Natural {}:= {}0;}

For mode {\itshape in out}, the actual must be a variable.

One limitation with generic formal objects is that they are never considered static, even if the actual happens to be static. If the object is a number, it cannot be used to create a new type. It can however be used to create a new derived type, or a subtype:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}Size {}: {}\LaTeXBF{in} {}Natural {}:= {}0; \newline{}
 {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}T1 {}\LaTeXBF{is} {}\LaTeXBF{mod} {}Size; {}\ADACOM{illegal!} \newline{}
 {} {} {} {}\LaTeXBF{type} {}T2 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}.. {}Size; {}\ADACOM{illegal!} \newline{}
 {} {} {} {}\LaTeXBF{type} {}T3 {}\LaTeXBF{is} {}\LaTeXBF{new} {}Integer {}\LaTeXBF{range} {}1 {}.. {}Size; {}\ADACOM{OK} \newline{}
 {} {} {} {}\LaTeXBF{subtype} {}T4 {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}1 {}.. {}Size; {}\ADACOM{OK} \newline{}
 {}\LaTeXBF{end} {}P;}

The reason why formal objects are nonstatic is to allow the compiler to emit the object code for the generic only once, and to have all instances share it, passing it the address of their actual object as a parameter. This bit of compiler technology is called {\itshape shared generics}. If formal objects were static, the compiler would have to emit one copy of the object code, with the object embedded in it, for each instance, potentially leading to an explosion in object code size ({\itshape code bloat}).

(Note to C++ programmers: in C++, since formal objects can be static, the compiler cannot implement shared generics in the general case; it would have to examine the entire body of the generic before deciding whether or not to share its object code. In contrast, Ada generics are designed so that the compiler can instantiate a generic {\itshape without looking at its body}.)
\subsection{Generic formal types}
\label{333}

The syntax allows the programmer to specify which type categories are acceptable as actuals. As a rule of thumb: The syntax expresses how the generic sees the type, i.e. it assumes the worst, not how the creator of the instance sees the type.

This is the syntax of RM 12.5:
\\

\TemplateSpaceIndent{ {} {}formal_type_declaration {}::= \newline{}
 {} {} {} {}\LaTeXBF{type} {}defining_identifier{[}discriminant_part{]} {}\LaTeXBF{is} \newline{}
 {}formal_type_definition; \newline{}
 {} {} \newline{}
 {} {}formal_type_definition {}::= {}formal_private_type_definition \newline{}
 {}| {}formal_derived_type_definition \newline{}
 {}| {}formal_discrete_type_definition \newline{}
 {}| {}formal_signed_integer_type_definition \newline{}
 {}| {}formal_modular_type_definition \newline{}
 {}| {}formal_floating_point_definition \newline{}
 {}| {}formal_ordinary_fixed_point_definition \newline{}
 {}| {}formal_decimal_fixed_point_definition \newline{}
 {}| {}formal_array_type_definition \newline{}
 {}| {}formal_access_type_definiton \newline{}
 {}| {}formal_interface_type_definition}

This is quite complex, so some examples are given below. A type declared with the syntax {\ttfamily \LaTeXBF{type} T (<{}>{})} denotes a type with {\itshape unknown discriminants}. This is the Ada vernacular for indefinite types, i.e. types for which objects cannot be declared without giving an initial expression. An example of such a type is one with a discriminant without default, another example is an unconstrained array type.

\begin{longtable}{|>{\RaggedRight}p{0.45982\linewidth}|>{\RaggedRight}p{0.45982\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Generic formal type }&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Acceptable actual types\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{limited} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any type at all. The actual type can be \mylref{250}{limited} or not, indefinite or definite, but the {\itshape generic} treats it as limited and indefinite, i.e. does not assume that assignment is available for the type.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any nonlimited type: the generic knows that it is possible to assign to variables of this type, but it is not possible to declare objects of this type without initial value.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any nonlimited definite type: the generic knows that it is possible to assign to variables of this type and to declare objects without initial value.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{abstract} \LaTeXBF{tagged} \LaTeXBF{limited} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any \mylref{365}{tagged type}, abstract or concrete, limited or not.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{tagged} \LaTeXBF{limited} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any concrete tagged type, limited or not.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{abstract} \LaTeXBF{tagged} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any nonlimited tagged type, abstract or concrete.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{tagged} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any nonlimited, concrete tagged type.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{new} Parent;} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any type derived from {\ttfamily Parent}. The generic knows about {\ttfamily Parent}\textquotesingle{}s operations, so can call them. Neither {\ttfamily T} nor {\ttfamily Parent} can be abstract.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{abstract} \LaTeXBF{new} Parent \LaTeXBF{with} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any type, abstract or concrete, derived from {\ttfamily Parent}, where {\ttfamily Parent} is a tagged type, so calls to {\ttfamily T}\textquotesingle{}s operations can dispatch dynamically.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is} \LaTeXBF{new} Parent \LaTeXBF{with} \LaTeXBF{private};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any concrete type, derived from the tagged type {\ttfamily Parent}.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} (<{}>{});} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any discrete type: \mylref{145}{integer}, \mylref{151}{modular}, or \mylref{157}{enumeration}.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{range} <{}>{};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any signed integer type\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{mod} <{}>{};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any modular type\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{delta} <{}>{};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any (non-{}decimal) \mylref{173}{fixed point type}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{delta} <{}>{} \LaTeXBF{digits} <{}>{};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any decimal fixed point type\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{digits} <{}>{};} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any \mylref{167}{floating point type}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily }\LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{array} (I) \LaTeXBF{of} E; &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any \mylref{183}{array type} with index of type {\ttfamily I} and elements of type {\ttfamily E} ({\ttfamily I} and {\ttfamily E} could be formal parameters as well)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is} \LaTeXBF{access} O;} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Any \mylref{220}{access type} pointing to objects of type {\ttfamily O} ({\ttfamily O} could be a formal parameter as well)\\ \hline
\end{longtable}

In the body we can only use the operations predefined for the type category of the formal parameter. That is, the generic specification is a contract between the generic implementor and the client instantiating the generic unit. This is different to the parametric features of other languages, such as C++.

It is possible to further restrict the set of acceptable actual types like so:

\begin{longtable}{|>{\RaggedRight}p{0.30476\linewidth}|>{\RaggedRight}p{0.61488\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Generic formal type }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Acceptable actual types}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (<{}>{}) \LaTeXBF{is}}... &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Definite or indefinite types (loosely speaking: types with or without discriminants, but other forms of indefiniteness exist)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T (D : DT) \LaTeXBF{is}}... &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Types with a discriminant of type DT (it is possible to specify several discriminants, too)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \LaTeXBF{type} T \LaTeXBF{is}}... &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Definite types (loosely speaking types without a discriminant or with a discriminant with default value)\\ \hline
\end{longtable}

\subsection{Generic formal subprograms}
\label{334}

It is possible to pass a subprogram as a parameter to a generic. The generic
specifies a generic formal subprogram, complete with parameter list and return
type (if the subprogram is a function). The actual must match this parameter
profile. It is not necessary that the {\itshape names} of parameters match, though.

Here is the specification of a generic subprogram that takes another subprogram
as its parameter:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {}\LaTeXBF{type} {}Element_T {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {}\LaTeXBF{with} {}\LaTeXBF{function} {}\symbol{34}*\symbol{34} {}(X, {}Y: {}Element_T) {}\LaTeXBF{return} {}Element_T; \newline{}
 {}\LaTeXBF{function} {}Square {}(X {}: {}Element_T) {}\LaTeXBF{return} {}Element_T;}

And here is the body of the generic subprogram; it calls parameter as it would
any other subprogram.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Square {}(X: {}Element_T) {}\LaTeXBF{return} {}Element_T {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}\LaTeXBF{return} {}X {}* {}X; {} {} {}\ADACOM{The formal operator \symbol{34}*\symbol{34}.} \newline{}
 {}\LaTeXBF{end} {}Square;}

This generic function could be used, for example, with matrices, having defined the matrix product.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Square; \newline{}
 {}\LaTeXBF{with} {}Matrices; \newline{}
 {}\LaTeXBF{procedure} {}Matrix_Example {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{function} {}Square_Matrix {}\LaTeXBF{is} {}\LaTeXBF{new} {}Square \newline{}
 {} {} {} {} {}(Element_T {}=>{} {}Matrices.Matrix_T, {}\symbol{34}*\symbol{34} {}=>{} {}Matrices.Product); \newline{}
 {} {} {}A {}: {}Matrices.Matrix_T {}:= {}Matrices.Identity; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}A {}:= {}Square_Matrix {}(A); \newline{}
 {}\LaTeXBF{end} {}Matrix_Example;}

It is possible to specify a default with \symbol{34}the box\symbol{34} ({\ttfamily \LaTeXBF{is} \LaTeXIdentityTemplate{<{}>{}}}), like this:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {}\LaTeXBF{type} {}Element_T {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {}\LaTeXBF{with} {}\LaTeXBF{function} {}\symbol{34}*\symbol{34} {}(X, {}Y: {}Element_T) {}\LaTeXBF{return} {}Element_T {}\LaTeXBF{is} {}<{}>{};}

This means that if, at the point of instantiation, a function \symbol{34}*\symbol{34} exists for the
actual type, and if it is directly visible, then it will be used by default as the
actual subprogram.

One of the main uses is passing needed operators. The following example shows this {\small (follow download links for full example)}:
\\

\TemplateSpaceIndent{ {} {} {}\ADAFile{Algorithms/binary_search.adb}}

\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {} {}\LaTeXBF{type} {}Element_Type {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {} {} {} {}{\itshape ...} \newline{}
 {} {} {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{function} {}\symbol{34}<{}\symbol{34} \newline{}
 {} {} {} {} {} {} {} {}(Left {} {}: {}\LaTeXBF{in} {}Element_Type; \newline{}
 {} {} {} {} {} {} {} {} {}Right {}: {}\LaTeXBF{in} {}Element_Type) \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {} {}Boolean \newline{}
 {} {} {} {} {} {}\LaTeXBF{is} {}\LaTeXIdentityTemplate{<{}>{}}; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Search \newline{}
 {} {} {} {} {}(Elements {}: {}\LaTeXBF{in} {}Array_Type; \newline{}
 {} {} {} {} {} {}Search {} {} {}: {}\LaTeXBF{in} {}Element_Type; \newline{}
 {} {} {} {} {} {}Found {} {} {} {}: {}\LaTeXBF{out} {}Boolean; \newline{}
 {} {} {} {} {} {}Index {} {} {} {}: {}\LaTeXBF{out} {}Index_Type\textquotesingle{}\LaTeXIT{Base}) \newline{}
 {} {} {} {} {} {}{\itshape ...}}

\subsection{Generic instances of other generic packages}
\label{335}

A generic formal can be a package; it must be an instance of a generic package, so that the generic knows the interface exported by the package:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{package} {}P {}\LaTeXBF{is} {}\LaTeXBF{new} {}Q {}(\LaTeXIdentityTemplate{<{}>{}});}

This means that the actual must be an instance of the generic package Q. The box after Q means that we do not care which actual generic parameters were used to create the actual for P. It is possible to specify the exact parameters, or to specify that the defaults must be used, like this:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\ADACOM{P1 must be an instance of Q with the specified actual parameters:} \newline{}
 {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{package} {}P1 {}\LaTeXBF{is} {}\LaTeXBF{new} {}Q {}(Param1 {}=>{} {}X, {}Param2 {}=>{} {}Y); \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{P2 must be an instance of Q where the actuals are the defaults:} \newline{}
 {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{package} {}P2 {}\LaTeXBF{is} {}\LaTeXBF{new} {}Q; \newline{}
 {}}

It is all or nothing: if you specify the generic parameters, you must specify all of them. Similarly, if you specify no parameters and no box, then all the generic formal parameters of Q must have defaults. The actual package must, of course, match these constraints.

The generic sees both the public part and the generic parameters of the actual package (Param1 and Param2 in the above example).

This feature allows the programmer to pass arbitrarily complex types as parameters
to a generic unit, while retaining complete type safety and encapsulation. {\itshape (example needed)}

It is not possible for a package to list itself as a generic formal, so no generic recursion is possible. The following is illegal:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}A; \newline{}
 {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{package} {}P {}\LaTeXBF{is} {}\LaTeXBF{new} {}A {}(\LaTeXIdentityTemplate{<{}>{}}); \newline{}
 {}\LaTeXBF{package} {}A; {}\ADACOM{illegal: A references itself}}

In fact, this is only a particular case of:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}A; {}\ADACOM{illegal: A does not exist yet at this point!} \newline{}
 {}\LaTeXBF{package} {}A;}

which is also illegal, despite the fact that A is no longer generic.
\section{Instantiating generics}
\label{336}

To instantiate a generic unit, use the keyword {\bfseries new}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{function} {}Square_Matrix {}\LaTeXBF{is} {}\LaTeXBF{new} {}Square \newline{}
 {} {} {} {}(Element_T {}=>{} {}Matrices.Matrix_T, {}\symbol{34}*\symbol{34} {}=>{} {}Matrices.Product);}

Notes of special interest to C++ programmers:

\begin{myitemize}
\item{} The generic formal types define {\itshape completely} which types are acceptable as actuals; therefore, the compiler can instantiate generics without looking at the body of the generic.
\item{} Each instance has a name and is different from all other instances. In particular, if a generic package declares a type, and you create two instances of the package, then you will get two different, incompatible types, even if the actual parameters are the same.
\item{} Ada requires that all instantiations be explicit.
\item{} It is not possible to create special-{}case instances of a generic (known as \symbol{34}template specialisation\symbol{34} in C++).
\end{myitemize}

As a consequence of the above, Ada does not permit template metaprogramming. However,
this design has significant advantages:

\begin{myitemize}
\item{} the object code can be shared by all instances of a generic, unless of course the programmer has requested that subprograms be inlined; there is no danger of code bloat.
\item{} when reading programs written by other people, there are no hidden instantiations, and no special cases to worry about. Ada follows the Law of Least Astonishment.
\end{myitemize}

\section{Advanced generics}
\label{337}
\subsection{Generics and nesting}
\label{338}

A generic unit can be nested inside another unit, which itself may be generic. Even though no special rules apply (just the normal rules about generics and the rules about nested units), novices may be confused. It is important to understand the difference between a generic unit and {\itshape instances} of a generic unit.

{\bfseries Example 1}. A generic subprogram nested in a nongeneric package.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Bag_Of_Strings {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Bag {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{procedure} {}Operator {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}String); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Apply_To_All {}(B {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bag); \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\ADACOM{omitted} \newline{}
 {}\LaTeXBF{end} {}Bag_Of_Strings;}

To use {\bfseries Apply_To_All}, you first define the procedure to be applied to each String in the Bag. Then, you instantiate {\bfseries Apply_To_All}, and finally you call the instance.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Bag_Of_Strings; \newline{}
 {}\LaTeXBF{procedure} {}Example_1 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}String) {}\LaTeXBF{is} {}\LaTeXBF{separate}; {}\ADACOM{omitted} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize_All {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Bag_Of_Strings.Apply_To_All {}(Operator {}=>{} {}Capitalize); \newline{}
 {} {} {} {}B {}: {}Bag_Of_Strings.Bag; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Capitalize_All {}(B); \newline{}
 {}\LaTeXBF{end} {}Example_1;}

{\bfseries Example 2.} A generic subprogram nested in a generic package

This is the same as above, except that now the Bag itself is generic:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Element_Type {}(<{}>{}) {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{package} {}Generic_Bag {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Bag {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{procedure} {}Operator {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Element_Type); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Apply_To_All {}(B {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bag); \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\ADACOM{omitted} \newline{}
 {}\LaTeXBF{end} {}Generic_Bag;}

As you can see, the generic formal subprogram {\bfseries Operator} takes a parameter of the generic formal type {\bfseries Element_Type}. This is okay: the nested generic sees everything that is in its enclosing unit.

You cannot instantiate {\bfseries Generic_Bag.Apply_To_All} directly, so you must first create an instance of {\bfseries Generic_Bag}, say {\bfseries Bag_Of_Strings}, and then instantiate {\bfseries Bag_Of_Strings.Apply_To_All}.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Generic_Bag; \newline{}
 {}\LaTeXBF{procedure} {}Example_2 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}String) {}\LaTeXBF{is} {}\LaTeXBF{separate}; {}\ADACOM{omitted} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Bag_Of_Strings {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Generic_Bag {}(Element_Type {}=>{} {}String); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize_All {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Bag_Of_Strings.Apply_To_All {}(Operator {}=>{} {}Capitalize); \newline{}
 {} {} {} {}B {}: {}Bag_Of_Strings.Bag; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Capitalize_All {}(B); \newline{}
 {}\LaTeXBF{end} {}Example_2;}

\subsection{Generics and child units}
\label{339}

{\bfseries Example 3}. A generic unit that is a child of a nongeneric unit.

Each instance of the generic child is a child of the parent unit, and so it can see the parent\textquotesingle{}s public and private parts.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Bag_Of_Strings {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Bag {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\ADACOM{omitted} \newline{}
 {}\LaTeXBF{end} {}Bag_Of_Strings; {} \newline{}
 {} \newline{}
 {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{procedure} {}Operator {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}String); \newline{}
 {}\LaTeXBF{procedure} {}Bag_Of_Strings.Apply_To_All {}(B {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bag);}

The differences between this and Example 1 are:
\begin{myitemize}
\item{} {\bfseries Bag_Of_Strings.Apply_To_All} is compiled separately. In particular, {\bfseries Bag_Of_Strings.Apply_To_All} might have been written by a different person who did not have access to the source text of {\bfseries Bag_Of_Strings}.
\item{} Before you can use {\bfseries Bag_Of_Strings.Apply_To_All}, you must {\bfseries with} it explicitly; {\bfseries with}ing the parent, {\bfseries Bag_Of_Strings}, is not sufficient.
\item{} If you do not use {\bfseries Bag_Of_Strings.Apply_To_All}, your program does not contain its object code.
\item{} Because {\bfseries Bag_Of_Strings.Apply_To_All} is at the library level, it can declare controlled types; the nested package could not do that in Ada 95. In Ada 2005, one can declare controlled types at any level.
\end{myitemize}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Bag_Of_Strings.Apply_To_All; {}\ADACOM{implicitly withs Bag_Of_Strings, too} \newline{}
 {}\LaTeXBF{procedure} {}Example_3 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}String) {}\LaTeXBF{is} {}\LaTeXBF{separate}; {}\ADACOM{omitted} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize_All {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Bag_Of_Strings.Apply_To_All {}(Operator {}=>{} {}Capitalize); \newline{}
 {} {} {} {}B {}: {}Bag_Of_Strings.Bag; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Capitalize_All {}(B); \newline{}
 {}\LaTeXBF{end} {}Example_3;}

{\bfseries Example 4}. A generic unit that is a child of a generic unit

This is the same as Example 3, except that now the Bag is generic, too.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Element_Type {}(<{}>{}) {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{package} {}Generic_Bag {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Bag {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\ADACOM{omitted} \newline{}
 {}\LaTeXBF{end} {}Generic_Bag; \newline{}
 {} \newline{}
 {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{procedure} {}Operator {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Element_Type); \newline{}
 {}\LaTeXBF{procedure} {}Generic_Bag.Apply_To_All {}(B {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bag); \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}Generic_Bag.Apply_To_All; \newline{}
 {}\LaTeXBF{procedure} {}Example_4 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize {}(S {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}String) {}\LaTeXBF{is} {}\LaTeXBF{separate}; {}\ADACOM{omitted} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Bag_Of_Strings {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Generic_Bag {}(Element_Type {}=>{} {}String); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Capitalize_All {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Bag_Of_Strings.Apply_To_All {}(Operator {}=>{} {}Capitalize); \newline{}
 {} {} {} {}B {}: {}Bag_Of_Strings.Bag; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Capitalize_All {}(B); \newline{}
 {}\LaTeXBF{end} {}Example_4;}

{\bfseries Example 5}. A parameterless generic child unit

Children of a generic unit {\bfseries must} be generic, no matter what. If you think about it, it is quite logical: a child unit sees the public and private parts of its parent, including the variables declared in the parent. If the parent is generic, which instance should the child see? The answer is that the child must be the child of only one instance of the parent, therefore the child must also be generic.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Element_Type {}(<{}>{}) {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Hash_Type {}\LaTeXBF{is} {}(<{}>{}); \newline{}
 {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{function} {}Hash_Function {}(E {}: {}Element_Type) {}\LaTeXBF{return} {}Hash_Type; \newline{}
 {}\LaTeXBF{package} {}Generic_Hash_Map {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Map {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\ADACOM{omitted} \newline{}
 {}\LaTeXBF{end} {}Generic_Hash_Map;}

Suppose we want a child of a {\bfseries Generic_Hash_Map} that can serialise the map to disk; for this it needs to sort the map by hash value. This is easy to do, because we know that {\bfseries Hash_Type} is a discrete type, and so has a less-{}than operator. The child unit that does the serialisation does not need any additional generic parameters, but it must be generic nevertheless, so it can see its parent\textquotesingle{}s generic parameters, public and private part.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {}\LaTeXBF{package} {}Generic_Hash_Map.Serializer {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{procedure} {}Dump {}(Item {}: {}\LaTeXBF{in} {}Map; {}To_File {}: {}\LaTeXBF{in} {}String); \newline{}
 {} {} {} {} {}\LaTeXBF{procedure} {}Restore {}(Item {}: {}\LaTeXBF{out} {}Map; {}From_File {}: {}\LaTeXBF{in} {}String); \newline{}
 {}\LaTeXBF{end} {}Generic_Hash_Map.Serializer; \newline{}
 {}}

To read and write a map to disk, you first create an instance of {\bfseries Generic_Hash_Map}, for example {\bfseries Map_Of_Unbounded_Strings}, and then an instance of {\bfseries Map_Of_Unbounded_Strings.Serializer}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Strings.Unbounded; \newline{}
 {}\LaTeXBF{with} {}Generic_Hash_Map.Serializer; \newline{}
 {}\LaTeXBF{procedure} {}Example_5 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{use} {}Ada.Strings.Unbounded; \newline{}
 {} {} {} {}\LaTeXBF{function} {}Hash {}(S {}: {}\LaTeXBF{in} {}Unbounded_String) {}\LaTeXBF{return} {}Integer {}\LaTeXBF{is} {}\LaTeXBF{separate}; {}\ADACOM{omitted} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Map_Of_Unbounded_Strings {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Generic_Hash_Map {}(Element_Type {}=>{} {}Unbounded_String, \newline{}
 {}Hash_Type {}=>{} {}Integer, \newline{}
 {}Hash_Function {}=>{} {}Hash); \newline{}
 {} {} {} {}\LaTeXBF{package} {}Serializer {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{new} {}Map_Of_Unbounded_Strings.Serializer; \newline{}
 {} {} {} {}M {}: {}Map_Of_Unbounded_Strings.Map; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Serializer.Restore {}(Item {}=>{} {}M, {}From_File {}=>{} {}\symbol{34}map.dat\symbol{34}); \newline{}
 {}\LaTeXBF{end} {}Example_5;}

\section{See also}
\label{340}
\subsection{Wikibook}
\label{341}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{365}{Ada Programming/Object Orientation}: tagged types provides other mean of polymorphism in Ada.
\end{myitemize}

\subsection{Wikipedia}
\label{342}

\begin{myitemize}
\item{} \myhref{http://en.wikipedia.org/wiki/Generic\%20programming}{Generic programming}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{343}

\begin{myitemize}
\item{} \ADARMONE{12}{Generic Units}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FUnidades\%20gen\%E9ricas}{es:Programación en Ada/Unidades genéricas}\chapter{Tasking}

\myminitoc
\label{344}

\label{345}

\section{Tasks}
\label{346}

A {\itshape task unit} is a program unit that is obeyed concurrently with the rest of an Ada program. The corresponding activity, a new locus of control, is called a {\itshape task} in Ada terminology, and is similar to a {\itshape thread}, for example in \myhref{http://en.wikibooks.org/wiki/Java\%3AThreads}{Java Threads}. The execution of the main program is also a task, the anonymous environment task. A task unit has both a declaration and a body, which is mandatory. A task body may be compiled separately as a subunit, but a task may not be a library unit, nor may it be generic. Every task depends on a {\itshape master}, which is the immediately surrounding declarative region -{} a block, a subprogram, another task, or a package. The execution of a master does not complete until all its dependent tasks have terminated. The environment task is the master of all other tasks; it terminates only when all other tasks have terminated.

Task units are similar to packages in that a task declaration defines entities exported from the task, whereas its body contains local declarations and statements of the task.

A single task is declared as follows:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}Single {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}{\itshape declarations of exported identifiers} \newline{}
 {} {} {}\LaTeXBF{end} {}Single; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Single {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}{\itshape local declarations and statements} \newline{}
 {} {} {}\LaTeXBF{end} {}Single;}

A task declaration can be simplified, if nothing is exported, thus:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}No_Exports;}

Ex. 1
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{procedure} {}Housekeeping {}\LaTeXBF{is} \newline{}
 {} {} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{task} {}Check_CPU; \newline{}
 {} {} {} {} {} {}\LaTeXBF{task} {}Backup_Disk; \newline{}
 {} {} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Check_CPU {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {}... \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Check_CPU; \newline{}
 {} {} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Backup_Disk {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {}... \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Backup_Disk; \newline{}
 {} {} {} {} {} {}\ADACOM{the two tasks are automatically created and begin execution} \newline{}
 {} {} {}\LaTeXBF{begin} {}\ADACOM{Housekeeping} \newline{}
 {} {} {} {} {} {}\LaTeXBF{null}; \newline{}
 {} {} {} {} {} {}\ADACOM{Housekeeping waits here for them to terminate} \newline{}
 {} {} {}\LaTeXBF{end} {}Housekeeping;}

It is possible to declare task types, thus allowing task units to be created dynamically, and incorporated in data structures:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}\LaTeXBF{type} {}T {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}... \newline{}
 {} {} {}\LaTeXBF{end} {}T; \newline{}
 {} {} {}... \newline{}
 {} {} {}Task_1, {}Task_2 {}: {}T; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}T {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}... \newline{}
 {} {} {}\LaTeXBF{end} {}T;}

Task types are {\bfseries limited}, i.e. they are restricted in the same way as limited private types, so assignment and comparison are not allowed.
\subsection{Rendezvous}
\label{347}

The only entities that a task may export are entries. An {\bfseries entry} looks much like a procedure. It has an identifier and may have {\bfseries in}, {\bfseries out} or {\bfseries in out} parameters. Ada supports communication from task to task by means of the {\itshape entry call}. Information passes between tasks through the actual parameters of the entry call. We can encapsulate data structures within tasks and operate on them by means of entry calls, in a way analogous to the use of packages for encapsulating variables. The main difference is that an entry is executed by the called task, not the calling task, which is suspended until the call completes. If the called task is not ready to service a call on an entry, the calling task waits in a (FIFO) queue associated with the entry. This interaction between calling task and called task is known as a {\itshape rendezvous}. The calling task requests rendezvous with a specific named task by calling one of its entries. A task accepts rendezvous with any caller of a specific entry by executing an {\bfseries accept} statement for the entry. If no caller is waiting, it is held up.
Thus entry call and accept statement behave symmetrically. (To be honest, optimized object code may reduce the number of context switches below the number implied by this naive description.)

Ex. 2
The following task type implements a single-{}slot buffer, i.e. an encapsulated variable that can have values inserted and removed in strict alternation. Note that the buffer task has no need of state variables to implement the buffer protocol: the alternation of insertion and removal operations is directly enforced by the control structure in the body of Encapsulated_Buffer_Task_Type which is, as is typical, a {\bfseries loop}.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}\LaTeXBF{type} {}Encapsulated_Buffer_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item); \newline{}
 {} {} {}\LaTeXBF{end} {}Encapsulated_Buffer_Task_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}Buffer_Pool {}: {}\LaTeXBF{array} {}(0 {}.. {}15) {}\LaTeXBF{of} {}Encapsulated_Buffer_Task_Type; \newline{}
 {} {} {}This_Item {} {} {}: {}Item; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Encapsulated_Buffer_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Datum {}: {}Item; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Datum {}:= {}An_Item; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Insert; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}An_Item {}:= {}Datum; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Remove; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {}\LaTeXBF{end} {}Encapsulated_Buffer_Task_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}Buffer_Pool(1).Remove {}(This_Item); \newline{}
 {} {} {}Buffer_Pool(2).Insert {}(This_Item);}

\subsection{Selective Wait}
\label{348}

To avoid being held up when it could be doing productive work, a server task often needs the freedom to accept a call on any one of a number of alternative entries. It does this by means of the {\itshape selective wait} statement, which allows a task to wait for a call on any of two or more entries.

If only one of the alternatives in a selective wait statement has a pending entry call, then that one is accepted.
If two or more alternatives have calls pending, the implementation is free to accept any one of them. For example, it could choose one at random. This introduces {\itshape bounded non-{}determinism} into the program. A sound Ada program should not depend on a particular method being used to choose between pending entry calls.
(However, there are facilities to influence the method used, when that is necessary.)

Ex. 3
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}\LaTeXBF{type} {}Encapsulated_Variable_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Store {}(An_Item {}: {}\LaTeXBF{in} {} {}Item); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Fetch {}(An_Item {}: {}\LaTeXBF{out} {}Item); \newline{}
 {} {} {}\LaTeXBF{end} {}Encapsulated_Variable_Task_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Encapsulated_Variable_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Datum {}: {}Item; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{accept} {}Store {}(An_Item {}: {}\LaTeXBF{in} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {}Datum {}:= {}An_Item; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Store; \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{select} {} {} {} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Store {}(An_Item {}: {}\LaTeXBF{in} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Datum {}:= {}An_Item; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Store; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Fetch {}(An_Item {}: {}\LaTeXBF{out} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}An_Item {}:= {}Datum; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Fetch; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {}\LaTeXBF{end} {}Encapsulated_Variable_Task_Type;}

\\

\TemplateSpaceIndent{ {} {} {}x, {}y {}: {}Encapsulated_Variable_Task_Type;}

creates two variables of type Encapsulated_Variable_Task_Type. They can be used thus:
\\

\TemplateSpaceIndent{ {} {} {}it {}: {}Item; \newline{}
 {} {} {}... \newline{}
 {} {} {}x.Store(Some_Expression); \newline{}
 {} {} {}... \newline{}
 {} {} {}x.Fetch {}(it); \newline{}
 {} {} {}y.Store {}(it);}

Again, note that the control structure of the body ensures that an Encapsulated_Variable_Task_Type must be given an initial value by a first Store operation before any Fetch operation can be accepted.
\subsection{Guards}
\label{349}

Depending on circumstances, a server task may not be able to accept calls for some of the entries that have accept alternatives in a selective wait statement. The acceptance of any alternative can be made conditional by using a {\itshape guard}, which is {\itshape \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FTypes\%23Boolean}{Boolean}} precondition for acceptance. This makes it easy to write monitor-{}like server tasks, with no need for an explicit signaling mechanism, nor for mutual exclusion.
An alternative with a True guard is said to be {\itshape open}. It is an error if no alternative is open when the selective wait statement is executed, and this raises the Program_Error exception.

Ex. 4
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}Cyclic_Buffer_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item); \newline{}
 {} {} {}\LaTeXBF{end} {}Cyclic_Buffer_Task_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Cyclic_Buffer_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Q_Size {}: {}\LaTeXBF{constant} {}:= {}100; \newline{}
 {} {} {} {} {} {}\LaTeXBF{subtype} {}Q_Range {}\LaTeXBF{is} {}Positive {}\LaTeXBF{range} {}1 {}.. {}Q_Size; \newline{}
 {} {} {} {} {} {}Length {}: {}Natural {}\LaTeXBF{range} {}0 {}.. {}Q_Size {}:= {}0; \newline{}
 {} {} {} {} {} {}Head, {}Tail {}: {}Q_Range {}:= {}1; \newline{}
 {} {} {} {} {} {}Data {}: {}\LaTeXBF{array} {}(Q_Range) {}\LaTeXBF{of} {}Item; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Length {}<{} {}Q_Size {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Data(Tail) {}:= {}An_Item; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Insert; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Tail {}:= {}Tail {}\LaTeXBF{mod} {}Q_Size {}+ {}1; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Length {}:= {}Length {}+ {}1; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Length {}>{} {}0 {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}An_Item {}:= {}Data(Head); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Remove; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Head {}:= {}Head {}\LaTeXBF{mod} {}Q_Size {}+ {}1; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Length {}:= {}Length {}-{} {}1; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {}\LaTeXBF{end} {}Cyclic_Buffer_Task_Type;}

\section{Protected types}
\label{350}

Tasks allow for encapsulation and safe usage of variable data without the need for any explicit mutual exclusion and signaling mechanisms. Ex. 4 shows how easy it is to write server tasks that safely manage locally-{}declared
data on behalf of multiple clients. There is no need for mutual exclusion of access to the managed data,
{\itshape because it is never accessed concurrently}. However, the overhead of creating a task merely to serve up some data may be excessive. For such applications, Ada 95 provides {\bfseries protected} modules. A protected module encapsulates a data structure and exports subprograms that operate on it under automatic mutual exclusion.
It also provides automatic, implicit signaling of conditions between client tasks. Again, a protected module can be either a single protected object or a protected type, allowing many protected objects to be created.

A protected module can export only procedures, functions and entries, and its body may contain only the bodies of procedures, functions and entries. The protected data is declared after {\bfseries private} in its specification, but is accessible only within the protected module\textquotesingle{}s body. Protected procedures and entries may read and/or write its encapsulated data, and automatically exclude each other. Protected functions may only read the encapsulated data,
so that multiple protected function calls can be concurrently executed in the same protected object, with complete safety; but protected procedure calls and entry calls exclude protected function calls, and vice versa. Exported entries and subprograms of a protected object are executed by its calling task, as a protected object has no independent locus of control. (To be honest, optimized object code may reduce the number of context switches below the number implied by this naive description.)

Like a task entry, a protected entry can employ a guard to control admission. This provides automatic signaling, and ensures that when a protected entry call is accepted, its guard condition is True, so that a guard provides a reliable precondition for the entry body.

Ex. 5
The following is a simple protected type analogous to the Encapsulated_Buffer task in Ex. 2.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{protected} {}\LaTeXBF{type} {}Protected_Buffer_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item); \newline{}
 {} {} {}\LaTeXBF{private} \newline{}
 {} {} {} {} {} {}Buffer {}: {}Item; \newline{}
 {} {} {} {} {} {}Empty {} {}: {}Boolean {}:= {}True; \newline{}
 {} {} {}\LaTeXBF{end} {}Protected_Buffer_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{protected} {}\LaTeXBF{body} {}Protected_Buffer_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item) \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Empty {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}Buffer {}:= {}An_Item; \newline{}
 {} {} {} {} {} {} {} {} {}Empty {}:= {}False; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Insert; \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item) \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}\LaTeXBF{not} {}Empty {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}An_Item {}:= {}Buffer; \newline{}
 {} {} {} {} {} {} {} {} {}Empty {}:= {}True; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Remove; \newline{}
 {} {} {}\LaTeXBF{end} {}Protected_Buffer_Type;}

Note how the guards, using the state variable Empty, ensure that messages are alternately inserted and removed,
and that no attempt can be made to take data from an empty buffer. All this is achieved without explicit signaling or mutual exclusion constructs, whether in the calling task or in the protected type itself.

The notation for calling a protected entry or procedure is exactly the same as that for calling a task entry. This makes it easy to replace one implementation of the abstract type by the other, the calling code being unaffected.

Ex. 6
The following task type implements Dijkstra\textquotesingle{}s semaphore ADT, with FIFO scheduling of resumed processes. The algorithm will accept calls to both Wait and Signal, so long as the semaphore invariant would not be violated. When that circumstance approaches, calls to Wait are ignored for the time being.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}\LaTeXBF{type} {}Semaphore_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Initialize {}(N {}: {}\LaTeXBF{in} {}Natural); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Wait; \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Signal; \newline{}
 {} {} {}\LaTeXBF{end} {}Semaphore_Task_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Semaphore_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Count {}: {}Natural; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{accept} {}Initialize {}(N {}: {}\LaTeXBF{in} {}Natural) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {}Count {}:= {}N; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Initialize; \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Count {}>{} {}0 {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Wait {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Count {}:= {}Count {}-{} {}1; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Wait; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Signal; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Count {}:= {}Count {}+ {}1; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {}\LaTeXBF{end} {}Semaphore_Task_Type;}

This task could be used as follows:
\\

\TemplateSpaceIndent{ {} {} {}nr_Full, {}nr_Free {}: {}Semaphore_Task_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}nr_Full.Initialize {}(0); {}nr_Free.Initialize {}(nr_Slots); \newline{}
 {} {} {}... \newline{}
 {} {} {}nr_Free.Wait; {}nr_Full.Signal;}

Alternatively, semaphore functionality can be provided by a protected object, with major efficiency gains.

Ex. 7
The Initialize and Signal operations of this protected type are unconditional, so they are implemented as protected procedures, but the Wait operation must be guarded and is therefore implemented as an entry.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{protected} {}\LaTeXBF{type} {}Semaphore_Protected_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Initialize {}(N {}: {}\LaTeXBF{in} {}Natural); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Wait; \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Signal; \newline{}
 {} {} {}\LaTeXBF{private} \newline{}
 {} {} {} {} {} {}Count {}: {}Natural {}:= {}0; \newline{}
 {} {} {}\LaTeXBF{end} {}Semaphore_Protected_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{protected} {}\LaTeXBF{body} {}Semaphore_Protected_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Initialize {}(N {}: {}\LaTeXBF{in} {}Natural) {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}Count {}:= {}N; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Initialize; \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Wait \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Count {}>{} {}0 {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}Count {}:= {}Count {}-{} {}1; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Wait; \newline{}
 {} {} {} {} {} {}\LaTeXBF{procedure} {}Signal {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {}Count {}:= {}Count {}+ {}1; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}Signal; \newline{}
 {} {} {}\LaTeXBF{end} {}Semaphore_Protected_Type;}

Unlike the task type above, this does not ensure that Initialize is called before Wait or Signal, and Count is given a default initial value instead. Restoring this defensive feature of the task version is left as an exercise for the reader.
\section{Entry families}
\label{351}

Sometimes we need a group of related entries. Entry {\itshape families}, indexed by a {\itshape \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FTypes\%23List\%20of\%20Types}{discrete type}}, meet this need.

Ex. 8
This task provides a pool of several buffers.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Buffer_Id {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}1 {}.. {}nr_Bufs; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}Buffer_Pool_Task {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Insert {}(Buffer_Id) {}(An_Item {}: {}\LaTeXBF{in} {}Item); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Remove {}(Buffer_Id) {}(An_Item {}: {}\LaTeXBF{out} {}Item); \newline{}
 {} {} {}\LaTeXBF{end} {}Buffer_Pool_Task; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Buffer_Pool_Task {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Data {} {} {}: {}\LaTeXBF{array} {}(Buffer_Id) {}\LaTeXBF{of} {}Item; \newline{}
 {} {} {} {} {} {}Filled {}: {}\LaTeXBF{array} {}(Buffer_Id) {}\LaTeXBF{of} {}Boolean {} {}:= {}(others {}=>{} {}False); \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}Data\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}\LaTeXBF{not} {}Filled(I) {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Insert {}(I) {}(An_Item {}: {}\LaTeXBF{in} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Data(I) {}:= {}An_Item; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Insert; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Filled(I) {}:= {}True; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}Filled(I) {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Remove {}(I) {}(An_Item {}: {}\LaTeXBF{out} {}Item) {}\LaTeXBF{do} \newline{}
 {}An_Item {}:= {}Data(I); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Remove; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}Filled(I) {}:= {}False; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{null}; {}\ADACOM{N.B. \symbol{34}polling\symbol{34} or \symbol{34}busy waiting\symbol{34}} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; {} {} {} \newline{}
 {} {} {}\LaTeXBF{end} {}Buffer_Pool_Task; \newline{}
 {} {} {}... \newline{}
 {} {} {}Buffer_Pool_Task.Remove(K)(This_Item);}

Note that the busy wait \LaTeXBF{else} \LaTeXBF{null} is necessary here to prevent the task from being suspended on some buffer when there was no call pending for it, because such suspension would delay serving requests for all the other buffers (perhaps indefinitely).
\section{Termination}
\label{352}

Server tasks often contain infinite loops to allow them to service an arbitrary number of calls in succession.
But control cannot leave a task\textquotesingle{}s master until the task terminates, so we need a way for a server to know when it should terminate. This is done by a {\itshape terminate alternative} in a selective wait.

Ex. 9
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}\LaTeXBF{type} {}Terminating_Buffer_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item); \newline{}
 {} {} {}\LaTeXBF{end} {}Terminating_Buffer_Task_Type; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Terminating_Buffer_Task_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Datum {}: {}Item; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Insert {}(An_Item {}: {}\LaTeXBF{in} {} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Datum {}:= {}An_Item; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Insert; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{terminate}; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Remove {}(An_Item {}: {}\LaTeXBF{out} {}Item) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}An_Item {}:= {}Datum; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Remove; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{terminate}; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {}\LaTeXBF{end} {}Terminating_Buffer_Task_Type;}

The task terminates when:
\begin{myenumerate}
\item{} at least one terminate alternative is open, and
\item{} there are no pending calls to its entries, and
\item{} all other tasks of the same master are in the same state (or already terminated), and
\item{} the task\textquotesingle{}s master has completed (i.e. has run out of statements to execute).
\end{myenumerate}

Conditions (1) and (2) ensure that the task is in a fit state to stop.
Conditions (3) and (4) ensure that stopping cannot have an adverse effect on the rest of the program, because no further calls that might change its state are possible.
\section{Timeout}
\label{353}

A task may need to avoid being held up by calling to a slow server. A {\itshape timed entry call} lets a client specify a maximum delay before achieving rendezvous, failing which the attempted entry call is withdrawn and an alternative sequence of statements is executed.

Ex. 10
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}Password_Server {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Check {}(User, {}Pass {}: {}\LaTeXBF{in} {}String; {}Valid {}: {}\LaTeXBF{out} {}Boolean); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Set {}(User, {}Pass {}: {}\LaTeXBF{in} {} {}String); \newline{}
 {} {} {}\LaTeXBF{end} {}Password_Server; \newline{}
 {} {} {}... \newline{}
 {} {} {}User_Name, {}Password {}: {}String {}(1 {}.. {}8); \newline{}
 {} {} {}... \newline{}
 {} {} {}Put {}(\symbol{34}Please {}give {}your {}new {}password:\symbol{34}); \newline{}
 {} {} {}Get_Line {}(Password); \newline{}
 {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {}Password_Server.Set {}(User_Name, {}Password); \newline{}
 {} {} {} {} {} {}Put_Line {}(\symbol{34}Done\symbol{34}); \newline{}
 {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {}\LaTeXBF{delay} {}10.0; \newline{}
 {} {} {} {} {} {}Put_Line {}(\symbol{34}The {}system {}is {}busy {}now, {}please {}try {}again {}later.\symbol{34}); \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{select};}

To time out the {\itshape functionality} provided by a task, two distinct entries are needed: one to pass in arguments, and one to collect the result. Timing out on rendezvous with the latter achieves the desired effect.

Ex. 11
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}Process_Data {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Input {}(D {} {}: {}\LaTeXBF{in} {} {}Datum); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Output {}(D {} {}: {}\LaTeXBF{out} {}Datum); \newline{}
 {} {} {}\LaTeXBF{end} {}Process_Data; \newline{}
 {} {} {} \newline{}
 {} {} {}Input_Data, {}Output_Data {}: {}Datum; \newline{}
 {} {} {} \newline{}
 {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {}{\itshape collect} {}Input_Data {}{\itshape from sensors}; \newline{}
 {} {} {} {} {} {}Process_Data.Input {}(Input_Data); \newline{}
 {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {}Process_Data.Output {}(Output_Data); \newline{}
 {} {} {} {} {} {} {} {} {}{\itshape pass} {}Output_Data {}{\itshape to display task}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{delay} {}0.1; \newline{}
 {} {} {} {} {} {} {} {} {}Log_Error {}(\symbol{34}Processing {}did {}not {}complete {}quickly {}enough.\symbol{34}); \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop};}

Symmetrically, a delay alternative in a selective wait statement allows a server task to withdraw an offer to accept calls after a maximum delay in achieving rendezvous with any client.

Ex. 12
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{task} {}Resource_Lender {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Get_Loan {}(Period {}: {}\LaTeXBF{in} {}Duration); \newline{}
 {} {} {} {} {} {}\LaTeXBF{entry} {}Give_Back; \newline{}
 {} {} {}\LaTeXBF{end} {}Resource_Lender; \newline{}
 {} {} {}... \newline{}
 {} {} {}\LaTeXBF{task} {}\LaTeXBF{body} {}Resource_Lender {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Period_Of_Loan {}: {}Duration; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Get_Loan {}(Period {}: {}\LaTeXBF{in} {}Duration) {}\LaTeXBF{do} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Period_Of_Loan {}:= {}Period; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Get_Loan; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{accept} {}Give_Back; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{delay} {}Period_Of_Loan; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Log_Error {}(\symbol{34}Borrower {}did {}not {}give {}up {}loan {}soon \newline{}
 {}enough.\symbol{34}); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{terminate}; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{select}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {}\LaTeXBF{end} {}Resource_Lender;}

\section{Conditional entry calls}
\label{354}

An entry call can be made conditional, so that it is withdrawn if the rendezvous is not immediately achieved. This uses the select statement notation with an {\bfseries else} part. Thus the constructs
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {}Callee.Rendezvous; \newline{}
 {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {}Do_something_else; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{select};}

and
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{select} \newline{}
 {} {} {} {} {}Callee.Rendezvous; \newline{}
 {} {} {}\LaTeXBF{or} \newline{}
 {} {} {} {} {}\LaTeXBF{delay} {}0.0; \newline{}
 {} {} {} {} {}Do_something_else; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{select};}

seem to be conceptually equivalent. However, the attempt to start the rendezvous may take some time, especially if the callee is on another processor, so the {\itshape delay 0.0;} may expire although the callee would be able to accept the rendezvous, whereas the {\itshape else} construct is safe.
\section{Requeue statements}
\label{355}

A requeue statement allows an accept statement or entry body to be completed while redirecting to a different or the same entry queue. The called entry has to share the same parameter list or be parameter-{}less.
\section{Scheduling}
\label{356}

FIFO, priority, priority inversion avoidance, ... to be completed
\section{Interfaces}
\label{357}

\AdaTwentyZeroFive{}

Task and Protected types can also implement \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Finterface}{interfaces}.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Printable {}\LaTeXBF{is} {}\LaTeXBF{task} {}\LaTeXBF{interface}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Input {}(D {} {}: {}\LaTeXBF{in} {} {}Printable); \newline{}
 {} \newline{}
 {} \newline{}
 {}\LaTeXBF{task} {}Process_Data {}\LaTeXBF{is} {}\LaTeXBF{new} {}Printable {}\LaTeXBF{with} \newline{}
 {} {} {} {}\LaTeXBF{entry} {}Input {} {}(D {} {}: {}\LaTeXBF{in} {} {}Datum); \newline{}
 {} {} {} {}\LaTeXBF{entry} {}Output {}(D {} {}: {}\LaTeXBF{out} {}Datum); \newline{}
 {}\LaTeXBF{end} {}Process_Data;}

\section{See also}
\label{358}
\subsection{Wikibook}
\label{359}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Storage_IO}{Ada Programming/Libraries/Ada.Storage_IO}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{360}
\subsubsection{Ada 95}
\label{361}

\begin{myitemize}
\item{} \ADANiveFiveRMONE{9}{Tasks and Synchronization}
\end{myitemize}

\subsubsection{Ada 2005}
\label{362}

\begin{myitemize}
\item{} \AdaRMThree{3}{9}{4}{Interface Types}
\item{} \ADARMONE{9}{Tasks and Synchronization}
\end{myitemize}

\section{Ada Quality and Style Guide}
\label{363}
\begin{myitemize}
\item{} {\bfseries Chapter 4: Program Structure}
\begin{myitemize}
\item{} \AdaSGThree{4}{1}{9}{Tasks}
\item{} \AdaSGThree{4}{1}{10}{Protected Types}
\end{myitemize}

\item{} \myhref{http://www.adaic.org/docs/95style/html/sec_6/toc.html}{ Chapter 6: Concurrency}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FTareas}{es:Programación en Ada/Tareas}\chapter{Object Orientation}

\myminitoc
\label{364}

\label{365}

\section{Object orientation in Ada}
\label{366}

Object oriented programming consists in building the software in terms of \symbol{34}objects\symbol{34}. An \symbol{34}object\symbol{34} contains data and has a behavior. The data, normally, consists in constants and variables as seen in the rest of this book but could also, conceivably, reside outside the program entirely, i.e. on disk or on the network. The behavior consists in subprograms that operate on the data. What makes Object Orientation unique, compared to procedural programming, is not a single feature but the combination of several features:

\begin{myitemize}
\item{} {\itshape encapsulation}, i.e. the ability to separate the implementation of an object from its interface; this in turn separates \symbol{34}clients\symbol{34} of the object, who can only use the object in certain predefined ways, from the internals of the object, which have no knowledge of the outside clients.
\end{myitemize}

\begin{myitemize}
\item{} {\itshape inheritance}, the ability for one type of objects to inherit the data and behavior (subprograms) of another, without necessarily needing to break encapsulation;
\end{myitemize}

\begin{myitemize}
\item{} {\itshape type extension}, the ability for an object to add new data components and new subprograms on top of the inherited ones and to {\itshape replace} some inherited subprograms with its own versions; this is called {\itshape overriding}.
\end{myitemize}

\begin{myitemize}
\item{} {\itshape polymorphism}, the ability for a \symbol{34}client\symbol{34} to use the services of an object without knowing the exact type of the object, i.e. in an abstract way. The actual type of the object can indeed change at run time from one invocation to the next.
\end{myitemize}

It is possible to do object-{}oriented programming in any language, even assembly. However, type extension and polymorphism are very difficult to get right without language support.

In Ada, each of these concepts has a matching construct; this is why Ada supports object-{}oriented programming directly.

\begin{myitemize}
\item{} Packages provide encapsulation;
\item{} Derived types provide inheritance;
\item{} Record extensions, described below, provide for type extension;
\item{} Class-{}wide types, also described below, provide for polymorphism.
\end{myitemize}

Ada has had encapsulation and derived types since the first version (MIL-{}STD-{}1815 in 1980), which led some to qualify the language as \symbol{34}object-{}oriented\symbol{34} in a very narrow sense. Record extensions and class-{}wide types were added in Ada 95. Ada 2005 further adds interfaces. The rest of this chapter covers these aspects.
\subsection{The simplest object: the Singleton}
\label{367}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Directory {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{function} {}Present {}(Name_Pattern: {}String) {}\LaTeXBF{return} {}Boolean; \newline{}
 {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {} {}\LaTeXBF{with procedure} {}Visit {}(Full_Name, {}Phone_Number, {}Address: {}String; \newline{}
 {}Stop: {}\LaTeXBF{out} {}Boolean); \newline{}
 {} {} {}\LaTeXBF{procedure} {}Iterate {}(Name_Pattern: {}String); \newline{}
 {}\LaTeXBF{end} {}Directory;}

The Directory is an object consisting of data (the telephone numbers and addresses, presumably held in an external file or database) and behavior (it can look an entry up and traverse all the entries matching a Name_Pattern, calling Visit on each).

A simple package provides for encapsulation (the inner workings of the directory are hidden) and a pair of subprograms provide the behavior.

This pattern is appropriate when only one object of a certain type must exist; there is, therefore, no need for type extension or polymorphism.
\subsection{Primitive operations}
\label{368}

For the following, we need the definition of primitive operations:

The set of {\itshape primitive operations of a type T} consists of those subprograms that:

\begin{myitemize}
\item{} are declared immediately within the same package as the type (not within a nested package nor a child package);
\item{} take a parameter of the type or, for functions, {\itshape return} an object of the type;
\item{} take an access parameter of the type or, for functions, {\itshape return} an access value of the type.
\end{myitemize}

(Also predefined operators like equality \symbol{34}=\symbol{34} are primitive operations.)

An operation can be primitive on two or more types, but only on one tagged type. The following example would be illegal if also B were tagged.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}A {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}\LaTeXBF{type} {}B {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Proc {}(This: {}A; {}That: {}B); {}\ADACOM{primitive on A and B} \newline{}
 {}\LaTeXBF{end} {}P;}

\subsection{Derived types}
\label{369}

Type derivation has been part of Ada since the very start.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is private}; \newline{}
 {} {} {}\LaTeXBF{function} {}Create {}(Data: {}Boolean) {}\LaTeXBF{return} {}T; {} {}\ADACOM{primitive} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Work {}(Object {}: {}\LaTeXBF{in out} {}T); {} {} {} {} {} {} {} {}\ADACOM{primitive} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Work {}(Pointer: {}\LaTeXBF{access} {}T); {} {} {} {} {} {} {} {}\ADACOM{primitive} \newline{}
 {} {} {}\LaTeXBF{type} {}Acc_T {}\LaTeXBF{is access} {}T; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Proc {}(Pointer: {}Acc_T); {} {} {} {} {} {} {} {} {} {} {}\ADACOM{not primitive} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is record} \newline{}
 {} {} {} {} {}Data: {}Boolean; \newline{}
 {} {} {}\LaTeXBF{end record}; \newline{}
 {}\LaTeXBF{end} {}P;}

The above example creates a type T that contains data (here just a Boolean but it could be anything) and behavior consisting of some subprograms. It also demonstrates encapsulation by placing the details of the type T in the private part of the package.

The primitive operations of T are the function Create, the overloaded procedures Work, and the predefined \symbol{34}=\symbol{34} operator; Proc is not primitive, since it has an {\itshape access type} on T as parameter — don\textquotesingle{}t confuse this with an {\itshape access parameter}, as used in the second procedure Work. When deriving from T, the primitive operations are inherited.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}P; \newline{}
 {}\LaTeXBF{package} {}Q {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is new} {}P.T; \newline{}
 {}\LaTeXBF{end} {}Q;}

The type Q.Derived has the same data {\itshape and the same behavior} as P.T; it inherits both the data {\itshape and the subprograms}. Thus it is possible to write:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Q; \newline{}
 {}\LaTeXBF{procedure} {}Main {}\LaTeXBF{is} \newline{}
 {} {} {}Object: {}Q.Derived {}:= {}Q.Create {}(Data {}=>{} {}False); \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Q.Work {}(Object); \newline{}
 {}\LaTeXBF{end} {}Main;}

Admittedly, the reasons for writing this may seem obscure.
The purpose of this kind of code is to have objects of types P.T and Q.Derived, which are not compatible:
\\

\TemplateSpaceIndent{ {}Ob1: {}P.T; \newline{}
 {}Ob2: {}Q.Derived; \newline{}
 {} \newline{}
 {}Ob1 {}:= {}Ob2; {} {} {} {} {} {} {} {}-{}-{} {}illegal \newline{}
 {}Ob1 {}:= {}P.T {}(Ob2); {} {}-{}-{} {}but {}convertible}

This feature is not used very often (it\textquotesingle{}s used e.g. for declaring types reflecting physical dimensions) but I present it here to introduce the next step: type extension.
\subsection{Type extensions}
\label{370}

Type extensions are an Ada 95 amendment.

A tagged type provides support for dynamic polymorphism and type extension. A tagged type bears a hidden tag that identifies the type at run-{}time. Apart from the tag, a tagged record is like any other record, so it can contain arbitrary data.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Person {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Name {} {} {}: {}String {}(1 {}.. {}10); \newline{}
 {} {} {} {} {} {} {} {} {} {}Gender {}: {}Gender_Type; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}(O {}: {}Object); \newline{}
 {}\LaTeXBF{end} {}Person;}

As you can see, a {\ttfamily Person.Object} is an {\itshape object} in the sense that it has data and behavior (the procedure {\ttfamily Put}). However, this object does not hide its data; any program unit that has a {\ttfamily \LaTeXBF{with} Person} clause can read and write the data in a Person.Object directly. This breaks encapsulation and also illustrates that Ada completely separates the concepts of {\itshape encapsulation} and {\itshape type}. Here is a version of Person.Object that encapsulates its data:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Person {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged private}; \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}(O {}: {}Object); \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Name {} {} {}: {}String {}(1 {}.. {}10); \newline{}
 {} {} {} {} {} {} {} {} {} {}Gender {}: {}Gender_Type; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {}\LaTeXBF{end} {}Person;}

Because the type Person.Object is tagged, it is possible to create a record extension, which is a derived type with additional data.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Person; \newline{}
 {}\LaTeXBF{package} {}Programmer {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{new} {}Person.Object {}\LaTeXBF{with private}; \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{new} {}Person.Object {}\LaTeXBF{with} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {}Skilled_In {}: {}Language_List; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {}\LaTeXBF{end} {}Programmer;}

The type {\ttfamily Programmer.Object} inherits the data and behavior, i.e. the type\textquotesingle{}s primitive operations, from {\ttfamily Person.Object}; it is thus possible to write:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Programmer; \newline{}
 {}\LaTeXBF{procedure} {}Main {}\LaTeXBF{is} \newline{}
 {} {} {} {}Me {}: {}Programmer.Object; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Programmer.Put {}(Me); \newline{}
 {} {} {} {}Me.Put; {}\ADACOM{equivalent to the above, Ada 2005 only} \newline{}
 {}\LaTeXBF{end} {}Main;}

So the declaration of the type {\ttfamily Programmer.Object}, as a record extension of {\ttfamily Person.Object}, implicitly declares a {\ttfamily \LaTeXBF{procedure} Put} that applies to a {\ttfamily Programmer.Object}.

Like in the case of untagged types, objects of type Person and Programmer are convertible. However, where untagged objects are convertible in either direction, conversion of tagged types only works in the direction to the root. (Conversion away from the root would have to add components out of the blue.) Such a conversion is called a {\itshape view conversion}, because components are not lost, they only become invisible.

Extension aggregates have to be used if you go away from the root.
\subsection{Overriding}
\label{371}

Now that we have introduced tagged types, record extensions and primitive operations, it becomes possible to understand overriding. In the examples above, we introduced a type {\ttfamily Person.Object} with a primitive operation called {\ttfamily Put}. Here is the body of the package:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Text_IO; \newline{}
 {}\LaTeXBF{package body} {}Person {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}(O {}: {}Object) {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}Ada.Text_IO.Put {}(O.Name); \newline{}
 {} {} {} {} {} {} {}Ada.Text_IO.Put {}(\symbol{34} {}is {}a {}\symbol{34}); \newline{}
 {} {} {} {} {} {} {}Ada.Text_IO.Put_Line {}(Gender_Type\textquotesingle{}Image {}(O.Gender)); \newline{}
 {} {} {} {}\LaTeXBF{end} {}Put; \newline{}
 {}\LaTeXBF{end} {}Person;}

As you can see, this simple operation prints both data components of the record type to standard output. Now, remember that the record extension {\ttfamily Programmer.Object} has an additional data member. If we write:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Programmer; \newline{}
 {}\LaTeXBF{procedure} {}Main {}\LaTeXBF{is} \newline{}
 {} {} {} {}Me {}: {}Programmer.Object; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Programmer.Put {}(Me); \newline{}
 {} {} {} {}Me.Put; {}\ADACOM{equivalent to the above, Ada 2005 only} \newline{}
 {}\LaTeXBF{end} {}Main;}

then the program will call the inherited primitive operation {\ttfamily Put}, which will print the name and gender {\itshape but not the additional data}. In order to provide this extra behavior, we must {\itshape override} the inherited procedure {\ttfamily Put} like this:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Person; \newline{}
 {}\LaTeXBF{package} {}Programmer {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{new} {}Person.Object {}\LaTeXBF{with private}; \newline{}
 {} {} {} {}\LaTeXBF{overriding} {}\ADACOM{Optional keyword, new in Ada 2005} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}(O {}: {}Object); \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{new} {}Person.Object {}\LaTeXBF{with} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {}Skilled_In {}: {}Language_List; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {}\LaTeXBF{end} {}Programmer; \newline{}
 {} \newline{}
 {}\LaTeXBF{package body} {}Programmer {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Put {}(O {}: {}Object) {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}Person.Put {}(Person.Object {}(O)); {}\ADACOM{view conversion to the ancestor type} \newline{}
 {} {} {} {} {} {} {}Put {}(O.Skilled_In); {}\ADACOM{presumably declared in the same package as Language_List} \newline{}
 {} {} {} {}\LaTeXBF{end} {}Put; \newline{}
 {}\LaTeXBF{end} {}Programmer;}

{\ttfamily Programmer.Put} {\itshape overrides} {\ttfamily Person.Put}; in other words it {\itshape replaces} it completely. Since the intent is to extend the behavior rather than replace it, {\ttfamily Programmer.Put} calls {\ttfamily Person.Put} as part of its behavior. It does this by converting its parameter from the type {\ttfamily Programmer.Object} to its ancestor type {\ttfamily Person.Object}. This construct is a {\itshape view conversion}; contrary to a normal type conversion, it does {\itshape not} create a new object and does {\itshape not} incur any run-{}time cost. Of course, it is optional that an overriding operation call its ancestor; there are cases where the intent is indeed to replace, not extend, the inherited behavior.

(Note that also for untagged types, overriding of inherited operations is possible. The reason why it\textquotesingle{}s discussed here is that derivation of untagged types is done rather seldom.)
\subsection{Polymorphism, class-{}wide programming and dynamic dispatching}
\label{372}

The full power of object orientation is realized by polymorphism, class-{}wide programming and dynamic dispatching, which are different words for the same, single concept. To explain this concept, let us extend the example from the previous sections, where we declared a base tagged type {\ttfamily Person.Object} with a primitive operation {\ttfamily Put} and a record extension {\ttfamily Programmer.Object} with additional data and an overriding primitive operation {\ttfamily Put}.

Now, let us imagine a collection of persons. In the collection, some of the persons are programmers. We want to traverse the collection and call {\ttfamily Put} on each person. When the person under consideration is a programmer, we want to call {\ttfamily Programmer.Put}; when the person is not a programmer, we want to call {\ttfamily Person.Put}. This, in essence, is polymorphism, class-{}wide programming and dynamic dispatching.

Ada implements this concept by means of {\itshape class-{}wide types}.

Each tagged type, such as {\ttfamily Person.Object}, has a corresponding {\itshape class of types} which is the set of types comprising the type {\ttfamily Person.Object} itself and all types that extend {\ttfamily Person.Object}. In our example, this class consists of two types:

\begin{myitemize}
\item{} {\ttfamily Person.Object}
\item{} {\ttfamily Programmer.Object}
\end{myitemize}

Ada 95 defines the {\ttfamily Person.Object\textquotesingle{}Class} attribute to denote the corresponding class-{}wide type. In other words:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}Someone {}: {}Person.Object\textquotesingle{}Class {}:= {}...; {}\ADACOM{to be expanded later} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Someone.Put; {}\ADACOM{dynamic dispatching} \newline{}
 {}\LaTeXBF{end};}

The declaration of Someone denotes an object that may be of {\itshape either} type, {\ttfamily Person.Object} or {\ttfamily Programmer.Object}. Consequently, the call to the primitive operation {\ttfamily Put} dispatches dynamically to either {\ttfamily Person.Put} or {\ttfamily Programmer.Put}.

The only problem is that, since we don\textquotesingle{}t know whether Someone is a programmer or not, we don\textquotesingle{}t know how many data components Someone has, either, and therefore we don\textquotesingle{}t know how many bytes Someone takes in memory. For this reason, the class-{}wide type {\ttfamily Person.Object\textquotesingle{}Class} is \myhref{http://en.wikibooks.org/wiki/ada\%20Programming\%2FSubtypes\%23Indefinite_subtype}{{\itshape indefinite}}. It is impossible to declare an object of this type without giving some constraint. It is, however, possible to:

\begin{myitemize}
\item{} declare an object of a class-{}wide with an initial value (as above). The object is then constrained by its initial value.
\item{} declare an {\itshape access value} to such an object (because the access value has a known size);
\item{} pass objects of a class-{}wide type as parameters to subprograms
\item{} assign an object of a specific type (in particular, the result of a function call) to a variable of a class-{}wide type.
\end{myitemize}

With this knowledge, we can now build a polymorphic collection of persons; in this example we will quite simply create an array of access values to persons:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Person; \newline{}
 {}\LaTeXBF{procedure} {}Main {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Person_Access {}\LaTeXBF{is access} {}Person.Object\textquotesingle{}Class; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Array_Of_Persons {} {}\LaTeXBF{is array} {}(Positive {}\LaTeXBF{range} {}<{}>{}) {}of {}Person_Access; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Read_From_Disk {}\LaTeXBF{return} {}Array_Of_Persons {}\LaTeXBF{is separate}; \newline{}
 {} \newline{}
 {} {} {} {}Everyone {}: {}\LaTeXBF{constant} {}Array_Of_Persons {}:= {}Read_From_Disk; \newline{}
 {}\LaTeXBF{begin} {}\ADACOM{Main} \newline{}
 {} {} {} {}\LaTeXBF{for} {}K {}\LaTeXBF{in} {}Everyone\textquotesingle{}Range {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}Everyone {}(K).\LaTeXBF{all}.Put; {}\ADACOM{dereference followed by dynamic dispatching} \newline{}
 {} {} {} {}\LaTeXBF{end loop}; \newline{}
 {}\LaTeXBF{end} {}Main;}

The above procedure achieves our desired goal: it traverses the array of Persons and calls the procedure {\ttfamily Put} that is appropriate for each person.
\subsubsection{Advanced topic: How dynamic dispatching works}
\label{373}

You don\textquotesingle{}t need to know how dynamic dispatching works in order to use it effectively but, in case you are curious, here is an explanation.

The first component of each object in memory is the {\itshape tag}; this is why objects are of a {\itshape tagged} type rather than plain records. The tag really is an access value to a table; there is one table for each specific type.
The table contains access values to each primitive operation of the type.
In our example, since there are two types {\ttfamily Person.Object} and {\ttfamily Programmer.Object}, there are two tables, each containing a single access value.
The table for {\ttfamily Person.Object} contains an access value to {\ttfamily Person.Put} and the table for {\ttfamily Programmer.Object} contains an access value to {\ttfamily Programmer.Put}.
When you compile your program, the compiler constructs both tables and places them in the program executable code.

Each time the program creates a new object of a specific type, it automatically sets its tag to point to the appropriate table.

Each time the program calls a primitive operation, the compiler inserts object code that:

\begin{myitemize}
\item{} dereferences the tag to find the table of primitive operations for the specific type of the object at hand
\item{} dereferences the access value to the primitive operation
\item{} calls the primitive operation.
\end{myitemize}

When you perform a view conversion to an ancestor type, the compiler performs these two dereferences at compile time rather than run time: this is {\itshape static dispatching}; the compiler emits code that directly calls the primitive operation of the ancestor type specified in the view conversion.
\subsubsection{Redispatching}
\label{374}

Dispatching works on the (hidden) tag of the object. So what happens when a primitive operation Op1 calls another primitive operation Op2? Which operation will be called when Op1 is called by dispatching?
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{type} {}Root {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{private}; \newline{}
 {} {}\LaTeXBF{procedure} {}Op1 {}(R: {}Root); \newline{}
 {} {}\LaTeXBF{procedure} {}Op2 {}(R: {}Root); \newline{}
 {} \newline{}
 {} {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is} {}\LaTeXBF{new} {}Root {}\LaTeXBF{with} {}\LaTeXBF{private}; \newline{}
 {} {}-{}-{} {}Derived {}inherits {}Op1 \newline{}
 {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Op2 {}(D: {}Derived); \newline{}
 {} \newline{}
 {} {}\LaTeXBF{procedure} {}Op1 {}(R: {}Root) {}\LaTeXBF{is} \newline{}
 {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {}... \newline{}
 {} {} {} {}Op2 {}(R); {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}not {}redispatching \newline{}
 {} {} {} {}Op2 {}(Root\textquotesingle{}Class {}(R)); {} {}-{}-{} {}redispatching \newline{}
 {} {} {} {}... \newline{}
 {} {}\LaTeXBF{end} {}Op1; \newline{}
 {} \newline{}
 {} {}D: {}Derived; \newline{}
 {} {}C: {}Root\textquotesingle{}Class {}:= {}D; \newline{}
 {} \newline{}
 {} {}Op1 {}(D); {} {}-{}-{} {}static {}call \newline{}
 {} {}Op1 {}(C); {} {}-{}-{} {}dispatching {}call}

In this fragment, Op1 is not overridden, whereas Op2 is overridden. The body of Op1 calls Op2, thus which Op2 will be called for a call of Op1 with a parameter of type Derived?

The answer is: Ada gives complete control over dispatching and redispatching. If you want redispatching, it has to be required explicitly by converting the parameter to the class-{}wide type again. (Remember: View conversions never lose components, they just hide them. A conversion to the class-{}wide type makes them visible again.)

Thus the first call of Op1 (statically linked, i.e. not dispatching) calls the inherited Op1 — and within Op1, the first call to Op2 is therefore also a static call to the inherited Op2 (there is no redispatching). However the second call, since the parameter R is converted to the class-{}wide type, dispatches to the overriding Op2.

The second call of Op1 is a dispatching call to the inherited Op1 and behaves exactly as the first.

To understand what happens here, the implicitly defined inherited Op1 is just the parent operation called with a view conversion of the parameter:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{procedure} {}Op1 {}(D: {}Derived) {}\LaTeXBF{is} \newline{}
 {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Op1 {}(Root {}(R)); {} {}-{}-{} {}view {}conversion \newline{}
 {} {}\LaTeXBF{end} {}Op1;}

\subsubsection{Run-{}time type identification}
\label{375}

Run-{}time type identification allows the program to (indirectly or directly) query the tag of an object at run time to determine which type the object belongs to.
This feature, obviously, makes sense only in the context of polymorphism and dynamic dispatching, so works only on tagged types.

You can determine whether an object belongs to a certain class of types, or to a specific type, by means of the membership test \LaTeXBF{in}, like this:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Base {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is} {}\LaTeXBF{new} {}Base {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{type} {}Leaf {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Derived {}\LaTeXBF{with} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {}... \newline{}
 {}\LaTeXBF{procedure} {}Explicit_Dispatch {}(This {}: {}\LaTeXBF{in} {}Base\textquotesingle{}Class) {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{if} {}This {}\LaTeXBF{in} {}Leaf {}\LaTeXBF{then} {}... {}\LaTeXBF{end if}; \newline{}
 {} {} {} {}\LaTeXBF{if} {}This {}\LaTeXBF{in} {}Derived\textquotesingle{}Class {}\LaTeXBF{then} {}... {}\LaTeXBF{end if}; \newline{}
 {}\LaTeXBF{end} {}Explicit_Dispatch;}

Thanks to the strong typing rules of Ada, run-{}time type identification is in fact rarely needed; the distinction between class-{}wide and specific types usually allows the programmer to ensure objects are of the appropriate type without resorting to this feature.

Additionally, the reference manual defines {\ttfamily package Ada.Tags} (RM 3.9(6/2)), attribute {\ttfamily \textquotesingle{}Tag} (RM 3.9(16,18)), and {\ttfamily function Ada.Tags.Generic_Dispatching_Constructor} (RM 3.9(18.2/2)), which enable direct manipulation with tags.
\subsection{Creating Objects}
\label{376}

The Language Reference Manual\textquotesingle{}s section on
\AdaRM{3}{3}{Objects and Named Numbers} states when an object
is created, and destroyed again. This subsection illustrates
how objects are created.

The LRM section starts,
\LaTeXZeroBoxTemplate{{\itshape Objects are created at run time and contain a value of a given type. An object can be created and initialized as part of elaborating a declaration, evaluating an allocator, aggregate, or function_call}.}

For example, assume a typical hierarchy of
object oriented types: a top-{}level type {\ttfamily Person},
a {\ttfamily Programmer} type derived from {\ttfamily Person},
and possibly more kinds of persons. Each person has a name; assume {\ttfamily Person}
objects to have a {\ttfamily Name} component.
Likewise, each {\ttfamily Person} has a {\ttfamily Gender} component.
The {\ttfamily Programmer} type inherits the components and the operations
of the {\ttfamily Person} type, so {\ttfamily Programmer} objects
have a {\ttfamily Name} and a {\ttfamily Gender} component, too.
{\ttfamily Programmer} objects may have additional components specific
to programmers.

Objects of a tagged type are created the same way
as objects of any type.
The second LRM sentence says, for example, that an object will be created when you
declare a variable or a constant of a type.
For the tagged type {\ttfamily Person},
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}P\LaTeXIdentityTemplate{:} {}Person\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Text_IO\LaTeXIdentityTemplate{.}Put_Line\LaTeXIdentityTemplate{(}\symbol{34}The {}name {}is {}\symbol{34} {}\LaTeXIdentityTemplate{\&} {}P\LaTeXIdentityTemplate{.}Name\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end}\LaTeXIdentityTemplate{;}}

Nothing special so far. Just like any ordinary variable declaration
this O-{}O one is elaborated. The result of elaboration is an object named {\ttfamily P}
of type {\ttfamily Person}. However, {\ttfamily P} has only default
name and gender value components. These are likely not useful ones.
One way of giving initial values to the object\textquotesingle{}s components is
to assign an aggregate.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}P\LaTeXIdentityTemplate{:} {}Person {}\LaTeXIdentityTemplate{:=} {}\LaTeXIdentityTemplate{(}Name {}\LaTeXIdentityTemplate{=>{}} {}\symbol{34}Scorsese\symbol{34}\LaTeXIdentityTemplate{,} {}Gender {}\LaTeXIdentityTemplate{=>{}} {}Male\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Text_IO\LaTeXIdentityTemplate{.}Put_Line\LaTeXIdentityTemplate{(}\symbol{34}The {}name {}is {}\symbol{34} {}\LaTeXIdentityTemplate{\&} {}P\LaTeXIdentityTemplate{.}Name\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end}\LaTeXIdentityTemplate{;}}

The parenthesized expression after := is called an {\itshape aggregate}
(\AdaRM{4}{3}{Aggregates}).

Another way to create an object that is mentioned in the LRM
paragraph is to call a function. An object will be created as the
return value of a function call.
Therefore, instead of using an aggregate of initial values,
we might call a function returning an object.

Introducing proper O-{}O information
hiding, we change the package
containing the {\ttfamily Person} type so that {\ttfamily Person}
becomes a private type. To enable clients of the package to construct {\ttfamily Person}
objects we declare a function that returns them. (The function may
do some interesting construction work on the objects. For instance, the aggregate above will most probably raise the exception Constraint_Error depending on the name string supplied; the function can mangle the name so that it matches the declaration of the component.) We also declare
a function that returns the name of {\ttfamily Person} objects.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Persons {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Person {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{private}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Make {}\LaTeXIdentityTemplate{(}Name\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{;} {}Sex\LaTeXIdentityTemplate{:} {}Gender_Type\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Person\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Name {}\LaTeXIdentityTemplate{(}P\LaTeXIdentityTemplate{:} {}Person\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}String\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Person {}\LaTeXBF{is} {}\LaTeXBF{tagged} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Name {} {} {}\LaTeXIdentityTemplate{:} {}String {}\LaTeXIdentityTemplate{(}1 {}\LaTeXIdentityTemplate{..} {}10\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}Gender {}\LaTeXIdentityTemplate{:} {}Gender_Type\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Persons\LaTeXIdentityTemplate{;}}

Calling the {\ttfamily Make} function results in an
object which can be used for initialization.
Since the {\ttfamily Person} type is {\bfseries private} we can no longer refer to the {\ttfamily Name}
component of {\ttfamily P}.
But there is a corresponding function {\ttfamily Name} declared
with type {\ttfamily Person} making it a socalled primitive operation.
(The component and the function in this example are both named {\ttfamily Name}
However, we can choose a different name for either
if we want.)
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}P\LaTeXIdentityTemplate{:} {}Person {}\LaTeXIdentityTemplate{:=} {}Make {}\LaTeXIdentityTemplate{(}Name {}\LaTeXIdentityTemplate{=>{}} {}\symbol{34}Orwell\symbol{34}\LaTeXIdentityTemplate{,} {}Sex {}\LaTeXIdentityTemplate{=>{}} {}Male\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Text_IO\LaTeXIdentityTemplate{.}Put_Line\LaTeXIdentityTemplate{(}\symbol{34}The {}name {}is {}\symbol{34} {}\LaTeXIdentityTemplate{\&} {}Name\LaTeXIdentityTemplate{(}P\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end}\LaTeXIdentityTemplate{;}}

Objects can be copied into another. The target object is first destroyed.
Then the component values of the source object are assigned to the
corresponding components of the target object. In the following example,
the default initialized {\ttfamily P} gets a copy of one of the objects
created by the {\ttfamily Make} calls.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}P\LaTeXIdentityTemplate{:} {}Person\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}\LaTeXBF{if} {}2001 {}\LaTeXTT{>{}} {}1984 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {}P {}\LaTeXIdentityTemplate{:=} {}Make {}\LaTeXIdentityTemplate{(}Name {}\LaTeXIdentityTemplate{=>{}} {}\symbol{34}Kubrick\symbol{34}\LaTeXIdentityTemplate{,} {}Sex {}\LaTeXIdentityTemplate{=>{}} {}Male\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {}P {}\LaTeXIdentityTemplate{:=} {}Make {}\LaTeXIdentityTemplate{(}Name {}\LaTeXIdentityTemplate{=>{}} {}\symbol{34}Orwell\symbol{34}\LaTeXIdentityTemplate{,} {}Sex {}\LaTeXIdentityTemplate{=>{}} {}Male\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}\LaTeXIdentityTemplate{;} {} \newline{}
 {} \newline{}
 {} {} {} {}Text_IO\LaTeXIdentityTemplate{.}Put_Line\LaTeXIdentityTemplate{(}\symbol{34}The {}name {}is {}\symbol{34} {}\LaTeXIdentityTemplate{\&} {}Name\LaTeXIdentityTemplate{(}P\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end}\LaTeXIdentityTemplate{;}}

So far there is no mention of the {\ttfamily Programmer} type
derived from {\ttfamily Person}.
There is no polymorphism yet, and likewise initialization
does not yet mention inheritance.
Before dealing with {\ttfamily Programmer} objects and their initialization
a few words about class-{}wide types are in order.
\subsection{More details on primitive operations}
\label{377}

Remember what we said before about \mylref{368}{\symbol{34}Primitive Operations\symbol{34}}.
Primitive operations are:
\begin{myitemize}
\item{} subprograms taking a parameter of the tagged type;
\item{} functions returning an object of the tagged type;
\item{} subprograms taking a parameter of an {\itshape anonymous access type} to the tagged type;
\item{} In Ada 2005 only, functions returning an {\itshape anonymous access type} to the tagged type;
\end{myitemize}

Additionally, primitive operations must be declared before the type is {\itshape frozen} (the concept of freezing will be explained later):

Examples:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_1 {}(This {}: {}\LaTeXBF{in} {} {} {} {} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_2 {}(That {}: {} {} {} {}\LaTeXBF{out} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_3 {}(Me {} {} {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_4 {}(Them {}: {}\LaTeXBF{access} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{function} {} {}Primitive_5 {}\LaTeXBF{return} {}Object; \newline{}
 {} {} {} {}\LaTeXBF{function} {} {}Primitive_6 {}(Everyone {}: {}Boolean) {}\LaTeXBF{return} {}\LaTeXBF{access} {}Object; \newline{}
 {}\LaTeXBF{end} {}X;}

All of these subprograms are primitive operations.

A primitive operation can also take parameters of the same or other types; also, the controlling operand does not have to be the first parameter:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_1 {}(This {}: {}\LaTeXBF{in} {}Object; {}Number {}: {}\LaTeXBF{in} {}Integer); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_2 {}(You {} {}: {}\LaTeXBF{in} {}Boolean; {}That {}: {}\LaTeXBF{out} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_3 {}(Me, {}Her {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Object); \newline{}
 {}\LaTeXBF{end} {}X;}

The definition of primitive operations specifically excludes named access types and class-{}wide types as well as operations not defined immediately in the same declarative region. Counter-{}examples:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}Object; \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object_Class_Access {}\LaTeXBF{is} {}\LaTeXBF{access} {}Object\textquotesingle{}Class; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Not_Primitive_1 {}(This {}: {}\LaTeXBF{in} {} {} {} {} {}Object\textquotesingle{}Class); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Not_Primitive_2 {}(This {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Object_Access); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Not_Primitive_3 {}(This {}: {} {} {} {}\LaTeXBF{out} {}Object_Class_Access); \newline{}
 {} {} {} {}\LaTeXBF{function} {} {}Not_Primitive_4 {}\LaTeXBF{return} {}Object\textquotesingle{}Class; \newline{}
 {} {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Inner {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{procedure} {}Not_Primitive_5 {}(This {}: {}\LaTeXBF{in} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{end} {}Inner; \newline{}
 {}\LaTeXBF{end} {}X;}

\subsubsection{Advanced topic: Freezing rules}
\label{378}

Freezing rules (\myhref{http://en.wikibooks.org/wiki/\%20ARM\%2013.14}{\myplainurl{http://www.adaic.com/standards/05rm/html/RM-13-14.html} ARM 13.14}) are perhaps the most complex part of the Ada language definition; this is because the standard tries to describe freezing as unambiguously as possible.
Also, that part of the language definition deals with freezing of all entities, including complicated situations like generics and objects reached by dereferencing access values.
You can, however, get an intuitive understanding of freezing of tagged types if you understand \mylref{373}{how dynamic dispatching works}.
In that section, we saw that the compiler emits a table of primitive operations for each tagged type.
The point in the program text where this happens is the point where the tagged type is {\itshape frozen}, i.e. the point where the table becomes complete.
After the type is frozen, no more primitive operations can be added to it.

This point is the earliest of:
\begin{myitemize}
\item{} the end of the package spec where the tagged type is declared
\item{} the appearance of the first type derived from the tagged type
\end{myitemize}

Example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null}\LaTeXBF{record}; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Primitive_1 {}(This: {}\LaTeXBF{in} {}Object); \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}this {}declaration {}freezes {}Object \newline{}
 {} {} {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is} {}\LaTeXBF{new} {}Object {}\LaTeXBF{with} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}illegal: {}declared {}after {}Object {}is {}frozen \newline{}
 {} {} {}\LaTeXBF{procedure} {}Primitive_2 {}(This: {}\LaTeXBF{in} {}Object); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}X;}

Intuitively: at the point where Derived is declared, the compiler starts a new table of primitive operations for the derived type. This new table, initially, is equal to the table of the primitive operations of the parent type, {\ttfamily Object}. Hence, {\ttfamily Object} must freeze.

\begin{myitemize}
\item{} the declaration of a variable of the tagged type
\end{myitemize}

Example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Primitive_1 {}(This: {}\LaTeXBF{in} {}Object); \newline{}
 {} \newline{}
 {} {} {}V: {}Object; {}-{}-{} {}this {}declaration {}freezes {}Object \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}illegal: {}declared {}after {}Object {}is {}frozen \newline{}
 {} {} {}\LaTeXBF{procedure} {}Primitive_2 {}(This: {}\LaTeXBF{in} {}Object); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}X;}

Intuitively: after the declaration of {\ttfamily V}, it is possible to call any of the primitive operations of the type on {\ttfamily V}. Therefore, the list of primitive operations must be known and complete, i.e. frozen.

\begin{myitemize}
\item{} The completion ({\itshape not} the declaration, if any) of a constant of the tagged type:
\end{myitemize}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Primitive_1 {}(This: {}\LaTeXBF{in} {}Object); \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}this {}declaration {}does {}NOT {}freeze {}Object \newline{}
 {} {} {}Deferred_Constant: {}\LaTeXBF{constant} {}Object; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Primitive_2 {}(This {}: {}\LaTeXBF{in} {}Object); {}-{}-{} {}OK \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}only {}the {}completion {}freezes {}Object \newline{}
 {} {} {}Deferred_Constant: {}\LaTeXBF{constant} {}Object {}:= {}(\LaTeXBF{null} {}\LaTeXBF{record}); \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}illegal: {}declared {}after {}Object {}is {}frozen \newline{}
 {} {} {}\LaTeXBF{procedure} {}Primitive_3 {}(This: {}\LaTeXBF{in} {}Object); \newline{}
 {} \newline{}
 {} {}\LaTeXBF{end} {}X;}

\subsection{New features of Ada 2005}
\label{379}

\AdaTwentyZeroFive{}

Ada 2005 adds overriding indicators, allows anonymous access types in more places and offers the object.method notation.
\subsubsection{Overriding indicators}
\label{380}

The new keyword \LaTeXBF{overriding} can be used to indicate whether an operation overrides an inherited subprogram or not. Its use is optional because of upward-{}compatibility with Ada 95. For example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {} {}Primitive {}\LaTeXBF{return} {}\LaTeXBF{access} {}Object; {}\ADACOM{new in Ada 2005} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Derived_Object {}\LaTeXBF{is} {}\LaTeXBF{new} {}Object {}\LaTeXBF{with} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{not overriding} {}\ADACOM{new optional keywords in Ada 2005} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive {}(This {}: {}\LaTeXBF{in} {}Derived_Object); {}\ADACOM{new primitive operation} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{overriding} \newline{}
 {} {} {} {}\LaTeXBF{function} {} {}Primitive {}\LaTeXBF{return access} {}Derived_Object; \newline{}
 {}\LaTeXBF{end} {}X;}

The compiler will check the desired behaviour.

This is a good programming practice because it avoids some nasty bugs like not overriding an inherited subprogram because the programmer spelt the identifier incorrectly, or because a new parameter is added later in the parent type.

It can also be used with abstract operations, with renamings, or when instantiating a generic subprogram:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{not} {}\LaTeXBF{overriding} \newline{}
 {}\LaTeXBF{procedure} {}Primitive_X {}(This {}: {}\LaTeXBF{in} {}Object) {}\LaTeXBF{is} {}\LaTeXBF{abstract}; \newline{}
 {} {} \newline{}
 {}\LaTeXBF{overriding} \newline{}
 {}\LaTeXBF{function} {} {}Primitive_Y {}\LaTeXBF{return} {}Object {}\LaTeXBF{renames} {}Some_Other_Subprogram; \newline{}
 {} \newline{}
 {}\LaTeXBF{not} {}\LaTeXBF{overriding} \newline{}
 {}\LaTeXBF{procedure} {}Primitive_Z {}(This {}: {}\LaTeXBF{out} {}Object) \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Generic_Procedure {}(Element {}=>{} {}Integer);}

\subsubsection{Object.Method notation}
\label{381}

We have already seen this notation:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{null} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Primitive_1 {}(This: {}\LaTeXBF{in} {}Object; {}That: {}\LaTeXBF{in} {}Boolean); \newline{}
 {}\LaTeXBF{end} {}X;}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}X; \newline{}
 {}\LaTeXBF{procedure} {}Main {}\LaTeXBF{is} \newline{}
 {} {} {} {}Obj {}: {}X.Object; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Obj.Primitive {}(That {}=>{} {}True); {}\ADACOM{Ada 2005 object.method notation} \newline{}
 {}\LaTeXBF{end} {}Main;}

This notation is only available for primitive operations where the controlling parameter is the {\itshape first} parameter.
\subsection{Abstract types}
\label{382}

A tagged type can also be abstract (and thus can have abstract operations):
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}X {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{abstract} {}\LaTeXBF{tagged} {}{\mbox{\ldots}}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}One_Class_Member {} {} {} {} {} {}(This {}: {}\LaTeXBF{in} {} {} {} {} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Another_Class_Member {} {}(This {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Object); \newline{}
 {} {} {} {}\LaTeXBF{function} {} {}Abstract_Class_Member {}\LaTeXBF{return} {}Object {} {}\LaTeXBF{is} {}\LaTeXBF{abstract}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}X;}

An abstract operation cannot have any body, so derived types are forced to override it (unless those derived types are also abstract). See next section about interfaces for more information about this.

The difference with a non-{}abstract tagged type is that you cannot declare any variable of this type. However, you can declare an access to it, and use it as a parameter of a class-{}wide operation.
\subsection{Multiple Inheritance via Interfaces}
\label{383}

\AdaTwentyZeroFive{}

Interfaces allow for a limited form of multiple inheritance (taken from Java). On a semantic level they are similar to an \symbol{34}abstract tagged null record\symbol{34} as they may have primitive operations but cannot hold any data and thus these operations cannot have a body, they are either declared \LaTeXBF{abstract} or \LaTeXBF{null}. {\itshape Abstract} means the operation has to be overridden, {\itshape null} means the default implementation is a null body, i.e. one that does nothing.

An interface is declared with:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Printable {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{interface}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Class_Member_1 {}(This {}: {}\LaTeXBF{in} {} {} {} {} {}Object) {}\LaTeXBF{is} {}\LaTeXBF{abstract}; \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Class_Member_2 {}(This {}: {} {} {} {}\LaTeXBF{out} {}Object) {}\LaTeXBF{is} {}\LaTeXBF{null}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Printable;}

You implement an \LaTeXBF{interface} by adding it to a concrete {\itshape class}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Person; \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Programmer {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{new} {}Person.Object \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{and} {}Printable.Object \newline{}
 {} {} {} {}\LaTeXBF{with} {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Skilled_In {}: {}Language_List; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{overriding} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Class_Member_1 {} {} {}(This {}: {}\LaTeXBF{in} {}Object); \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{not} {}\LaTeXBF{overriding} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}New_Class_Member {}(This {}: {}Object; {}That {}: {}String); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Programmer;}

As usual, all inherited abstract operations must be overridden although {\itshape null subprograms} ones need not.

Such a type may implement a list of interfaces (called the {\itshape progenitors}), but can have only one {\itshape parent}. The parent may be a concrete type or also an interface.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is} {}\LaTeXBF{new} {}Parent {}\LaTeXBF{and} {}Progenitor_1 {}\LaTeXBF{and} {}Progenitor_2 {}... {}\LaTeXBF{with} {}...;}

\subsection{Multiple Inheritance via Mix-{}in}
\label{384}

Ada supports multiple inheritance of {\itshape interfaces} (see above), but only single inheritance of {\itshape implementation}. This means that a tagged type can {\itshape implement} multiple interfaces but can only {\itshape extend} a single ancestor tagged type.

This can be problematic if you want to add behavior to a type that already extends another type; for example, suppose you have
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Base {}\LaTeXBF{is tagged private}; \newline{}
 {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is new} {}Base {}\LaTeXBF{with private};}

and you want to make {\ttfamily Derived} controlled, i.e. add the behavior that {\ttfamily Derived} controls its initialization, assignment and finalization. Alas you cannot write:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is new} {}Base {}\LaTeXBF{and} {}Ada.Finalization.Controlled {}\LaTeXBF{with private}; {}\ADACOM{illegal}}

since {\ttfamily Ada.Finalization} for historical reasons does not define interfaces {\ttfamily Controlled} and {\ttfamily Limited_Controlled}, but abstract types.

If your base type is not limited, there is no good solution for this; you have to go back to the root of the class and make it controlled. (The reason will become obvious presently.)

For limited types however, another solutions is the use of a mix-{}in:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Base {}\LaTeXBF{is tagged limited private}; \newline{}
 {}\LaTeXBF{type} {}Derived; \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Controlled_Mix_In {}(Enclosing: {}\LaTeXBF{access} {}Derived) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{new} {}Ada.Finalization.Limited_Controlled {}\LaTeXBF{with null record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In); \newline{}
 {}\LaTeXBF{overriding procedure} {}Finalize {} {} {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In); \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is new} {}Base {}\LaTeXBF{with record} \newline{}
 {} {} {}Mix_In: {}Controlled_Mix_In {}(Enclosing {}=>{} {}Derived\textquotesingle{}Access); {}\ADACOM{special syntax here} \newline{}
 {} {} {}\ADACOM{other components here...} \newline{}
 {}\LaTeXBF{end record};}

This special kind of mix-{}in is an object with an access discriminant that references its enclosing object (also known as {\itshape Rosen trick}). In the declaration of the {\ttfamily Derived} type, we initialize this discriminant with a special syntax: {\ttfamily Derived\textquotesingle{}Access} really refers to an a access value to the {\itshape current instance} of type {\ttfamily Derived}. Thus the access discriminant allows the mix-{}in to see its enclosing object and all its components; therefore it can initialize and finalize its enclosing object:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In) {}\LaTeXBF{is} \newline{}
 {} {} {}Enclosing: {}Derived {}\LaTeXBF{renames} {}This.Enclosing.\LaTeXBF{all}; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}\ADACOM{initialize Enclosing...} \newline{}
 {}\LaTeXBF{end} {}Initialize;}

and similarly for {\ttfamily Finalize}.

The reason why this does not work for non-{}limited types is the self-{}referentiality via the discriminant. Imagine you have two variables of such a non-{}limited type and assign one to the other:
\\

\TemplateSpaceIndent{ {}X {}:= {}Y;}

In an assignment statement, {\ttfamily Adjust} is called only {\itshape after} {\ttfamily Finalize} of the target {\ttfamily X} and so cannot provide the new value of the discriminant. Thus {\ttfamily X.Mixin_In.Enclosing} will inevitably reference {\ttfamily Y}.

Now let\textquotesingle{}s further extend our hierarchy:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Further {}\LaTeXBF{is new} {}Derived {}\LaTeXBF{with null record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Further); \newline{}
 {}\LaTeXBF{overriding procedure} {}Finalize {} {} {}(This: {}\LaTeXBF{in out} {}Further);}

Oops, this does not work because there are no corresponding procedures for {\ttfamily Derived}, yet -{} so let\textquotesingle{}s quickly add them.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Base {}\LaTeXBF{is tagged limited private}; \newline{}
 {}\LaTeXBF{type} {}Derived; \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Controlled_Mix_In {}(Enclosing: {}\LaTeXBF{access} {}Derived) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{new} {}Ada.Finalization.Limited_Controlled {}\LaTeXBF{with null record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In); \newline{}
 {}\LaTeXBF{overriding procedure} {}Finalize {} {} {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In); \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Derived {}\LaTeXBF{is new} {}Base {}\LaTeXBF{with record} \newline{}
 {} {} {}Mix_In: {}Controlled_Mix_In {}(Enclosing {}=>{} {}Derived\textquotesingle{}Access); {} {}\ADACOM{special syntax here} \newline{}
 {} {} {}\ADACOM{other components here...} \newline{}
 {}\LaTeXBF{end record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{not overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Derived); {} {}\ADACOM{sic, they are new} \newline{}
 {}\LaTeXBF{not overriding procedure} {}Finalize {} {} {}(This: {}\LaTeXBF{in out} {}Derived); \newline{}
 {} \newline{}
 {}\LaTeXBF{type} {}Further {}\LaTeXBF{is new} {}Derived {}\LaTeXBF{with null record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Further); \newline{}
 {}\LaTeXBF{overriding procedure} {}Finalize {} {} {}(This: {}\LaTeXBF{in out} {}Further);}

We have of course to write {\ttfamily not overriding} for the procedures on {\ttfamily Derived} because there is indeed nothing they could override. The bodies are
\\

\TemplateSpaceIndent{ {}\LaTeXBF{not overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Derived) {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}\ADACOM{initialize Derived...} \newline{}
 {}\LaTeXBF{end} {}Initialize; \newline{}
 {} \newline{}
 {}\LaTeXBF{overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In) {}\LaTeXBF{is} \newline{}
 {} {} {}Enclosing: {}Derived {}\LaTeXBF{renames} {}This.Enclosing.\LaTeXBF{all}; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Initialize {}(Enclosing); \newline{}
 {}\LaTeXBF{end} {}Initialize;}

To our dismay, we have to learn that {\ttfamily Initialize/Finalize} for objects of type {\ttfamily Further} will not be called, instead those for the parent {\ttfamily Derived}. Why?
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {}X: {}Further; {} {}-{}-{} {}Initialize {}(Derived {}(X)) {}is {}called {}here \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}null; \newline{}
 {}\LaTeXBF{end}; {} {}-{}-{} {}Finalize {}(Derived {}(X)) {}is {}called {}here}

The reason is that the mix-{}in defines the local object {\ttfamily Enclosing} to be of type {\ttfamily Derived} in the renames-{}statement above.
To cure this, we have necessarily to use the dreaded redispatch (shown in different but equivalent notations):
\\

\TemplateSpaceIndent{ {}\LaTeXBF{overriding procedure} {}Initialize {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In) {}\LaTeXBF{is} \newline{}
 {} {} {}Enclosing: {}Derived {}\LaTeXBF{renames} {}This.Enclosing.\LaTeXBF{all}; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Initialize {}(Derived\textquotesingle{}Class {}(Enclosing)); \newline{}
 {}\LaTeXBF{end} {}Initialize; \newline{}
 {} \newline{}
 {}\LaTeXBF{overriding procedure} {}Finalize {}(This: {}\LaTeXBF{in out} {}Controlled_Mix_In) {}\LaTeXBF{is} \newline{}
 {} {} {}Enclosing: {}Derived\textquotesingle{}Class {}\LaTeXBF{renames} {}Derived\textquotesingle{}Class {}(This.Enclosing.\LaTeXBF{all}); \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Enclosing.Finalize; \newline{}
 {}\LaTeXBF{end} {}Finalize; \newline{}
 {} \newline{}
 {}\LaTeXBF{declare} \newline{}
 {} {} {}X: {}Further; {} {}-{}-{} {}Initialize {}(X) {}is {}called {}here \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}null; \newline{}
 {}\LaTeXBF{end}; {} {}-{}-{} {}Finalize {}(X) {}is {}called {}here}

Alternatively (and presumably better still) is to write
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Controlled_Mix_In {}(Enclosing: {}\LaTeXBF{access} {}Derived\textquotesingle{}Class) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{new} {}Ada.Finalization.Limited_Controlled {}\LaTeXBF{with null record};}

Then we automatically get redispatch and can omit the type conversions on {\ttfamily Enclosing}.
\section{Class names}
\label{385}

Both the class package and the class record need a name. In theory they may have the same name, but in practice this leads to nasty {\small (because of unintutive error messages)} name clashes when you use the {\ttfamily \LaTeXBF{use}} clause. So over time three de facto naming standards have been commonly used.
\subsection{Classes/Class}
\label{386}

The package is named by a plural noun and the record is named by the corresponding singular form.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Persons {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Person {}\LaTeXBF{is} {}\LaTeXBF{tagged} {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Name {} {} {}: {}String {}(1 {}.. {}10); \newline{}
 {} {} {} {} {} {} {} {} {} {}Gender {}: {}Gender_Type; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Persons;}

This convention is the usually used in Ada\textquotesingle{}s built-{}in libraries.

Disadvantage: Some \symbol{34}multiples\symbol{34} are tricky to spell, especially for those of us who aren\textquotesingle{}t native English speakers.
\subsection{Class/Object}
\label{387}

The package is named after the class, the record is just named Object.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Person {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Object {}\LaTeXBF{is} {}\LaTeXBF{tagged} {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Name {} {} {}: {}String {}(1 {}.. {}10); \newline{}
 {} {} {} {} {} {} {} {} {} {}Gender {}: {}Gender_Type; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Person;}

Most \myhref{http://en.wikipedia.org/wiki/Unified\%20Modeling\%20Language}{UML} and \myhref{http://en.wikipedia.org/wiki/Interface\%20description\%20language}{IDL} code generators use this technique.

Disadvantage: You can\textquotesingle{}t use the {\ttfamily \LaTeXBF{use}} clause on more than one such class packages at any one time. However you can always use the \symbol{34}type\symbol{34} instead of the package.
\subsection{Class/Class_Type}
\label{388}

The package is named after the class, the record is postfixed with {\itshape _Type}.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Person {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Person_Type {}\LaTeXBF{is} {}\LaTeXBF{tagged} {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}Name {} {} {}: {}String {}(1 {}.. {}10); \newline{}
 {} {} {} {} {} {} {} {} {} {}Gender {}: {}Gender_Type; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Person;}

Disadvantage: lots of ugly \symbol{34}_Type\symbol{34} postfixes.
\section{Object-{}Oriented Ada for C++ programmers}
\label{389}

In C++, the construct
\\

\TemplateSpaceIndent{ {}class {}C {}\{ \newline{}
 {} {} {}virtual {}void {}v(); \newline{}
 {} {} {}void {}w(); \newline{}
 {} {} {}static {}void {}u(); \newline{}
 {}\};}

is strictly equivalent to the following in Ada:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}C {}\LaTeXBF{is tagged null record}; \newline{}
 {} {} {}\LaTeXBF{procedure} {}V {}(This {}: {}C); {} {} {} {} {} {} {} {}\ADACOM{primitive operation, will be inherited upon derivation} \newline{}
 {} {} {}\LaTeXBF{procedure} {}W {}(This {}: {}C\textquotesingle{}Class); {} {}\ADACOM{not primitive, will not be inherited upon derivation} \newline{}
 {} {} {}\LaTeXBF{procedure} {}U; \newline{}
 {}\LaTeXBF{end} {}P;}

In C++, member functions implicitly take a parameter {\ttfamily this} which is of type {\ttfamily C*}. In Ada, all parameters are explicit. As a consequence, the fact that {\ttfamily u()} does {\itshape not} take a parameter is implicit in C++ but explicit in Ada.

In C++, {\ttfamily this} is a pointer. In Ada, the explicit {\ttfamily This} parameter does not have to be a pointer; all parameters of a tagged type are implicitly passed by reference anyway.
\subsection{Static dispatching}
\label{390}

In C++, function calls dispatch statically in the following cases:

\begin{myitemize}
\item{} the target of the call is an object type
\item{} the member function is non-{}virtual
\end{myitemize}

For example:
\\

\TemplateSpaceIndent{ {}C {}object; \newline{}
 {}object.v(); \newline{}
 {}object.w();}

both dispatch statically. In particular, the static dispatch for v() may be confusing; this is because object is neither a pointer nor a reference. Ada behaves exactly the same in this respect, except that Ada calls this {\itshape static binding} rather than {\itshape dispatching}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}Object {}: {}P.C; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Object.V; {}\ADACOM{statically bound} \newline{}
 {} {} {} {}Object.W; {}\ADACOM{statically bound} \newline{}
 {}\LaTeXBF{end};}

\subsection{Dynamic dispatching}
\label{391}

In C++, a function call dispatches dynamically if the two following conditions are met simultaneously:

\begin{myitemize}
\item{} the target of the call is a pointer or a reference
\item{} the member function is virtual.
\end{myitemize}

For example:
\\

\TemplateSpaceIndent{ {}C* {}object; \newline{}
 {}object-{}>{}v(); {}// {}dynamic {}dispatch \newline{}
 {}object-{}>{}w(); {}// {}static, {}non-{}virtual {}member {}function \newline{}
 {}object-{}>{}u(); {}// {}illegal: {}static {}member {}function \newline{}
 {}C::u(); {}// {}static {}dispatch}

In Ada, a primitive subprogram call dispatches (dynamically) if and only if:

\begin{myitemize}
\item{} the target object is of a class-{}wide type;
\end{myitemize}

Note: In Ada vernacular, the term {\itshape dispatching} always means {\itshape dynamic}.

For example:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {} {}Object {}: {}P.C\textquotesingle{}Class {}:= {}...; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}P.V {}(Object); {}\ADACOM{dispatching} \newline{}
 {} {} {} {}P.W {}(Object); {}\ADACOM{statically bound: not a primitive operation} \newline{}
 {} {} {} {}P.U; {}\ADACOM{statically bound} \newline{}
 {}\LaTeXBF{end};}

As can be seen {\itshape there is no need for access types or pointers} to do dispatching in Ada. In Ada, {\itshape tagged types are always passed by-{}reference to subprograms} without the need for explicit access values.

Also note that in C++, the class serves as:

\begin{myitemize}
\item{} the unit of encapsulation (Ada uses packages and visibility for this)
\item{} the type, like in Ada.
\end{myitemize}

As a consequence, you call C::u() in C++ because u() is encapsulated in C, but P.U in Ada since U is encapsulated in the {\itshape package} P, not the {\itshape type} C.
\subsection{Class-{}wide and specific types}
\label{392}

The most confusing part for C++ programmers is the concept of a \symbol{34}class-{}wide type\symbol{34}. To help you understand:

\begin{myitemize}
\item{} pointers and references in C++ are really, implicitly, class-{}wide;
\item{} object types in C++ are really specific;
\item{} C++ provides no way to declare the equivalent of:
\end{myitemize}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}C_Specific_Access {}\LaTeXBF{is access} {}C;}

\begin{myitemize}
\item{} C++ provides no way to declare the equivalent of:
\end{myitemize}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}C_Specific_Access_One {}\LaTeXBF{is access} {}C; \newline{}
 {}\LaTeXBF{type} {}C_Specific_Access_Two {}\LaTeXBF{is access} {}C;}

which, in Ada, are two different, {\itshape incompatible} types, possibly allocating their memory from different storage pools!

\begin{myitemize}
\item{} In Ada, you do {\itshape not} need access values for dynamic dispatching.
\item{} In Ada, you use access values for dynamic memory management (only) and class-{}wide types for dynamic dispatching (only).
\item{} In C++, you use pointers and references both for dynamic memory management and for dynamic dispatching.
\item{} In Ada, class-{}wide types are explicit (with {\ttfamily \textquotesingle{}Class}).
\item{} In C++, class-{}wide types are implicit (with {\ttfamily *} or {\ttfamily \&}).
\end{myitemize}

\subsection{Constructors}
\label{393}

in C++, a special syntax declares a constructor:
\\

\TemplateSpaceIndent{ {}class {}C {}\{ \newline{}
 {} {} {} {}C(/* {}optional {}parameters {}*/); {}// {}constructor \newline{}
 {}\};}

A constructor cannot be virtual. A class can have as many constructors, differentiated by their parameters, as necessary.

Ada does not have such constructors. Perhaps they were not deemed necessary since in Ada, any function that returns an object of the tagged type can serve as a kind of constructor. This is however not the same as a real constructor like the C++ one; this difference is most striking in cases of derivation trees (see Finalization below). The Ada constructor subprograms do not have to have a special name and there can be as many constructors as necessary; each function can take parameters as appropriate.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}\LaTeXBF{tagged} {}\LaTeXBF{private}; \newline{}
 {} {} {}\LaTeXBF{function} {}Make {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}T; {} {}-{}-{} {}constructor \newline{}
 {} {} {}\LaTeXBF{function} {}To_T {}(From: {}Integer) {}\LaTeXBF{return} {}T; {} {}-{}-{} {}another {}constructor \newline{}
 {} {} {}-{}-{} {}procedure {}Make {}(This: {}out {}T); {} {} {} {} {} {} {} {} {}-{}-{} {}not {}a {}constructor \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {}... \newline{}
 {}\LaTeXBF{end} {}P;}

If an Ada constructor function is also a primitive operation (as in the example above), it becomes abstract upon derivation and has to be overridden if the derived type is not itself abstract. If you do not want this, declare such functions in a nested scope.

In C++, one idiom is the {\itshape copy constructor} and its cousin the {\itshape assignment operator}:
\\

\TemplateSpaceIndent{ {}class {}C {}\{ \newline{}
 {} {} {} {}C(const {}C\& {}that); {}// {}copies {}\symbol{34}that\symbol{34} {}into {}\symbol{34}this\symbol{34} \newline{}
 {} {} {} {}C\& {}operator= {}(const {}C\& {}right); {}// {}assigns {}\symbol{34}right\symbol{34} {}to {}\symbol{34}this\symbol{34}, \newline{}
 {}which {}is {}\symbol{34}left\symbol{34} \newline{}
 {}\};}

This copy constructor is invoked implicitly on initialization, e.g.
\\

\TemplateSpaceIndent{ {}C {}a {}= {}b; {}// {}calls {}the {}copy {}constructor \newline{}
 {}C {}c; \newline{}
 {}a {}= {}c; {} {} {}// {}calls {}the {}assignment {}operator}

Ada provides a similar functionality by means of {\itshape controlled types}. A controlled type is one that extends the predefined type {\ttfamily Ada.Finalization.Controlled}:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Finalization; \newline{}
 {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Finalization.Controlled {}\LaTeXBF{with} {}\LaTeXBF{private}; \newline{}
 {} {} {}\LaTeXBF{function} {}Make {}\LaTeXBF{return} {}T; {} {}-{}-{} {}constructor \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}... {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Initialize {}(This: {}\LaTeXBF{in} {}\LaTeXBF{out} {}T); \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Adjust {} {} {} {} {}(This: {}\LaTeXBF{in} {}\LaTeXBF{out} {}T); {}-{}-{} {}copy {}contructor \newline{}
 {}\LaTeXBF{end} {}P;}

Note that Initialize is not a constructor; it resembles the C++ constructor in some way, but is also very different. Suppose you have a type T1 derived from T with an appropriate overriding of Initialize. A real constructor (like the C++ one) would automatically first construct the parent components (T), then the child components. In Ada, this is not automatic. In order to mimic this in Ada, we have to write:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}Initialize {}(This: {}\LaTeXBF{in} {}\LaTeXBF{out} {}T1) {}\LaTeXBF{is} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Initialize {}(T {}(This)); {} {}-{}-{} {}Don\textquotesingle{}t {}forget {}this {}part! \newline{}
 {} {} {}... {} {}-{}-{} {}handle {}the {}new {}components {}here \newline{}
 {}\LaTeXBF{end} {}Initialize;}

The compiler inserts a call to Initialize after each object of type T is allocated when no initial value is given. It also inserts a call to Adjust after each assignment to the object. Thus, the declarations:
\\

\TemplateSpaceIndent{ {}A: {}T; \newline{}
 {}B: {}T {}:= {}X;}

will:

\begin{myitemize}
\item{} allocate memory for A
\item{} call Initialize (A)
\item{} allocate memory for B
\item{} copy the contents of X to B
\item{} call Adjust (B)
\end{myitemize}

Initialize (B) will not be called because of the explicit initialization.

So, the equivalent of a copy constructor is an overriding of Adjust.

If you would like to provide this functionality to a type that extends another, non-{}controlled type, see \mylref{400}{\symbol{34}Multiple Inheritance\symbol{34}}.
\subsection{Destructors}
\label{394}

In C++, a destructor is a member function with only the implicit {\ttfamily this} parameter:
\\

\TemplateSpaceIndent{ {}class {}C {}\{ \newline{}
 {} {} {} {}virtual {}\~{}C(); {}// {}destructor \newline{}
 {}\}}

While a constructor {\itshape cannot} be virtual, a destructor {\itshape must} be virtual. Unfortunately, the rules of the C++ language do not enforce this, so it is quite easy for a programmer to wreak havoc in their programs by simply forgetting the keyword {\ttfamily virtual}.

In Ada, the equivalent functionality is again provided by controlled types, by overriding the procedure Finalize:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Finalization; \newline{}
 {}\LaTeXBF{package} {}P {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Finalization.Controlled {}\LaTeXBF{with} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}\LaTeXBF{function} {}Make {}\LaTeXBF{return} {}T; {} {}-{}-{} {}constructor \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}... {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Finalize {}(This: {}\LaTeXBF{in} {}\LaTeXBF{out} {}T); {} {}-{}-{} {}destructor \newline{}
 {}\LaTeXBF{end} {}P;}

Because Finalize is a primitive operation, it is automatically \symbol{34}virtual\symbol{34}; you cannot, in Ada, forget to make a destructor virtual.
\subsection{Encapsulation: public, private and protected members}
\label{395}

In C++, the unit of encapsulation is the class; in Ada, the unit of encapsulation is the package. This has consequences on how an Ada programmer places the various components of an object type.
\\

\TemplateSpaceIndent{ {}class {}C {}\{ \newline{}
 {}public: \newline{}
 {} {} {} {}int {}a; \newline{}
 {} {} {} {}void {}public_proc(); \newline{}
 {}protected: \newline{}
 {} {} {} {}int {}b; \newline{}
 {} {} {} {}int {}protected_func(); \newline{}
 {}private: \newline{}
 {} {} {} {}bool {}c; \newline{}
 {} {} {} {}void {}private_proc(); \newline{}
 {}\};}

A way to mimic this C++ class in Ada is to define a hierarchy of types, where the base type is the public part, which must be abstract so that no stand-{}alone objects of this base type can be defined. It looks like so:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{private} {}\LaTeXBF{with} {}Ada.Finalization; \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}CPP {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Public_Part {}\LaTeXBF{is} {}\LaTeXBF{abstract} {}\LaTeXBF{tagged} {}\LaTeXBF{record} {} {}-{}-{} {}no {}objects {}of {}this {}type \newline{}
 {} {} {} {} {}A: {}Integer; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Public_Proc {}(This: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Public_Part); \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Complete_Type {}\LaTeXBF{is} {}\LaTeXBF{new} {}Public_Part {}\LaTeXBF{with} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {} {} {}-{}-{} {}procedure {}Public_Proc {}(This: {}in {}out {}Complete_Type); {} {}-{}-{} \newline{}
 {}inherited, {}implicitly {}defined \newline{}
 {} \newline{}
 {}\LaTeXBF{private} {} {}-{}-{} {}visible {}for {}children \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Private_Part; {} {}-{}-{} {}declaration {}stub \newline{}
 {} {} {}\LaTeXBF{type} {}Private_Part_Pointer {}\LaTeXBF{is} {}\LaTeXBF{access} {}Private_Part; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Private_Component {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Finalization.Controlled {}\LaTeXBF{with} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {}P: {}Private_Part_Pointer; \newline{}
 {} {} {}\LaTeXBF{end} {}record; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Initialize {}(X: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Private_Component); \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Adjust {} {} {} {} {}(X: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Private_Component); \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Finalize {} {} {}(X: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Private_Component); \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Complete_Type {}\LaTeXBF{is} {}\LaTeXBF{new} {}Public_Part {}\LaTeXBF{with} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {}B: {}Integer; \newline{}
 {} {} {} {} {}P: {}Private_Component; {} {}-{}-{} {}must {}be {}controlled {}to {}avoid {}storage \newline{}
 {}leaks \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{not} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Protected_Proc {}(This: {}Complete_Type); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}CPP;}

The private part is defined as a stub only, its completion is hidden in the body. In order to make it a component of the complete type, we have to use a pointer since the size of the component is still unknown (the size of a pointer is known to the compiler). With pointers, unfortunately, we incur the danger of memory leaks, so we have to make the private component controlled.

For a little test, this is the body, where the subprogram bodies are provided with identifying prints:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Unchecked_Deallocation; \newline{}
 {}\LaTeXBF{with} {}Ada.Text_IO; \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}\LaTeXBF{body} {}CPP {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Public_Proc {}(This: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Public_Part) {}\LaTeXBF{is} {} {}-{}-{} {}primitive \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}Ada.Text_IO.Put_Line {}(\symbol{34}Public_Proc\symbol{34} {}\& {}Integer\textquotesingle{}Image {}(This.A)); \newline{}
 {} {} {}\LaTeXBF{end} {}Public_Proc; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Private_Part {}\LaTeXBF{is} {}\LaTeXBF{record} {} {}-{}-{} {}complete {}declaration \newline{}
 {} {} {} {} {}C: {}Boolean; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Initialize {}(X: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Private_Component) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}X.P {}:= {}new {}Private_Part\textquotesingle{}(C {}=>{} {}True); \newline{}
 {} {} {} {} {}Ada.Text_IO.Put_Line {}(\symbol{34}Initialize {}\symbol{34} {}\& {}Boolean\textquotesingle{}Image {}(X.P.C)); \newline{}
 {} {} {}\LaTeXBF{end} {}Initialize; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure Adjust} {}(X: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Private_Component) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}Ada.Text_IO.Put_Line {}(\symbol{34}Adjust {}\symbol{34} {}\& {}Boolean\textquotesingle{}Image {}(X.P.C)); \newline{}
 {} {} {} {} {}X.P {}:= {}new {}Private_Part\textquotesingle{}(C {}=>{} {}X.P.C); {} {}-{}-{} {}deep {}copy \newline{}
 {} {} {}\LaTeXBF{end} {}Adjust; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Finalize {}(X: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Private_Component) {}\LaTeXBF{is} \newline{}
 {} {} {} {} {}\LaTeXBF{procedure} {}Free {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Unchecked_Deallocation {}(Private_Part, \newline{}
 {}Private_Part_Pointer); \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}Ada.Text_IO.Put_Line {}(\symbol{34}Finalize {}\symbol{34} {}\& {}Boolean\textquotesingle{}Image {}(X.P.C)); \newline{}
 {} {} {} {} {}Free {}(X.P); \newline{}
 {} {} {}\LaTeXBF{end} {}Finalize; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Private_Proc {}(This: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Complete_Type) {}\LaTeXBF{is} {} {}-{}-{} {}not {}primitive \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}Ada.Text_IO.Put_Line {}(\symbol{34}Private_Proc\symbol{34} {}\& {}Integer\textquotesingle{}Image {}(This.A) {}\& \newline{}
 {}Integer\textquotesingle{}Image {}(This.B) {}\& {}\textquotesingle{} {}\textquotesingle{} {}\& {}Boolean\textquotesingle{}Image {}(This.P.P.C)); \newline{}
 {} {} {}\LaTeXBF{end} {}Private_Proc; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{not} {}\LaTeXBF{overriding} {}\LaTeXBF{procedure} {}Protected_Proc {}(This: {}Complete_Type) {}\LaTeXBF{is} {} {}-{}-{} {}primitive \newline{}
 {} {} {} {} {}X: {}Complete_Type {}:= {}This; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}Ada.Text_IO.Put_Line {}(\symbol{34}Protected_Proc\symbol{34} {}\& {}Integer\textquotesingle{}Image {}(This.A) \newline{}
 {}\& {}Integer\textquotesingle{}Image {}(This.B)); \newline{}
 {} {} {} {} {}Private_Proc {}(X); \newline{}
 {} {} {}\LaTeXBF{end} {}Protected_Proc; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}CPP;}

We see that, due to the construction, the private procedure is not a primitive operation.

Let\textquotesingle{}s define a child class so that the protected operation can be reached:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}CPP.Child {}\LaTeXBF{is} {} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Do_It {}(X: {}Complete_Type); {} {}-{}-{} {}not {}primitive \newline{}
 {} {} \newline{}
 {}\LaTeXBF{end} {}CPP.Child;}

A child can look inside the private part of the parent and thus can see the protected procedure:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Text_IO; \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}\LaTeXBF{body} {}CPP.Child {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Do_It {}(X: {}Complete_Type) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {}Ada.Text_IO.Put_Line {}(\symbol{34}Do_It\symbol{34} {}\& {}Integer\textquotesingle{}Image {}(X.A) {}\& \newline{}
 {}Integer\textquotesingle{}Image {}(X.B)); \newline{}
 {} {} {} {} {}Protected_Proc {}(X); \newline{}
 {} {} {}\LaTeXBF{end} {}Do_It; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}CPP.Child;}

This is a simple test program, its output is shown below.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}CPP.Child; \newline{}
 {}\LaTeXBF{use} {} {}CPP.Child, {}CPP; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Test_CPP {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}X, {}Y: {}Complete_Type; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {}X.A {}:= {}+1; \newline{}
 {} {} {}Y.A {}:= {}-{}1; \newline{}
 {} \newline{}
 {} {} {}Public_Proc {}(X); {} {}Do_It {}(X); \newline{}
 {} {} {}Public_Proc {}(Y); {} {}Do_It {}(Y); \newline{}
 {} \newline{}
 {} {} {}X {}:= {}Y; \newline{}
 {} \newline{}
 {} {} {}Public_Proc {}(X); {} {}Do_It {}(X); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Test_CPP;}

This is the commented output of the test program:
\\

\TemplateSpaceIndent{ {}Initialize {}TRUE {}Test_CPP: {}Initialize {}X \newline{}
 {}Initialize {}TRUE {}and {}Y \newline{}
 {}Public_Proc {}1 {}| {} {}Public_Proc {}(X): {} {}A=1 \newline{}
 {}Do_It {}1-{}1073746208 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}| {} {}Do_It {}(X): {} {} {} {} {} {} {} {}B \newline{}
 {}uninitialized \newline{}
 {}Adjust {}TRUE {}| {} {}| {} {}Protected_Proc {}(X): {}Adjust \newline{}
 {}local {}copy {}X {}of {}This \newline{}
 {}Protected_Proc {}1-{}1073746208 {} {} {} {} {} {} {} {} {}| {} {}| {} {}| \newline{}
 {}Private_Proc {}1-{}1073746208 {}TRUE {} {} {} {} {} {}| {} {}| {} {}| {} {}Private_Proc {}on {}local \newline{}
 {}copy {}of {}This \newline{}
 {}Finalize {}TRUE {}| {} {}| {} {}Protected_Proc {}(X): \newline{}
 {}Finalize {}local {}copy {}X \newline{}
 {}Public_Proc-{}1 {}| {} {}ditto {}for {}Y \newline{}
 {}Do_It-{}1 {}65536 {}| {} {}| \newline{}
 {}Adjust {}TRUE {}| {} {}| \newline{}
 {}Protected_Proc-{}1 {}65536 {} {} {} {} {} {} {} {} {} {} {} {} {} {}| {} {}| \newline{}
 {}Private_Proc-{}1 {}65536 {}TRUE {} {} {} {} {} {} {} {} {} {} {}| {} {}| \newline{}
 {}Finalize {}TRUE {}| {} {}| \newline{}
 {}Finalize {}TRUE {}| {} {}Assignment: {}Finalize {}target \newline{}
 {}X.P.C \newline{}
 {}Adjust {}TRUE {}| {} {}| {} {} {} {} {} {} {} {} {} {} {}Adjust: {}deep {}copy \newline{}
 {}Public_Proc-{}1 {}| {} {}again {}for {}X, {}i.e. {}copy {}of {}Y \newline{}
 {}Do_It-{}1 {}65536 {}| {} {}| \newline{}
 {}Adjust {}TRUE {}| {} {}| \newline{}
 {}Protected_Proc-{}1 {}65536 {} {} {} {} {} {} {} {} {} {} {} {} {} {}| {} {}| \newline{}
 {}Private_Proc-{}1 {}65536 {}TRUE {} {} {} {} {} {} {} {} {} {} {}| {} {}| \newline{}
 {}Finalize {}TRUE {}| {} {}| \newline{}
 {}Finalize {}TRUE {}Finalize {}Y \newline{}
 {}Finalize {}TRUE {}and {}X}

You see that a direct translation of the C++ behaviour into Ada is difficult, if feasible at all. Methinks, the primitive Ada subprograms corresponds more to virtual C++ methods (in the example, they are not). Each language has its own idiosyncrasies which have to be taken into account, so that attempts to directly translate code from one into the other may not be the best approach.
\subsection{De-{}encapsulation: friends and stream input-{}output}
\label{396}

In C++, a friend function or class can see all members of the class it is a friend of.
Friends break encapsulation and are therefore to be discouraged.
In Ada, since packages and not classes are the unit of encapsulation, a \symbol{34}friend\symbol{34} subprogram is simply one that is declared in the same package as the tagged type.

In C++, stream input and output are the particular case where friends are usually necessary:
\\

\TemplateSpaceIndent{ {}\#include {}<{}iostream>{} \newline{}
 {}class {}C {}\{ \newline{}
 {}public: \newline{}
 {} {} {} {}C(); \newline{}
 {} {} {} {}friend {}ostream\& {}operator<{}<{}(ostream\& {}output, {}C\& {}arg); \newline{}
 {}private: \newline{}
 {} {} {} {}int {}a, {}b; \newline{}
 {} {} {} {}bool {}c; \newline{}
 {}\};}

\\

\TemplateSpaceIndent{ {}\#include {}<{}iostream>{} \newline{}
 {}int {}main() {}\{ \newline{}
 {} {} {} {}C {}object; \newline{}
 {} {} {} {}cout {}<{}<{} {}object; \newline{}
 {} {} {} {}return {}0; \newline{}
 {}\};}

Ada does not need this construct because it defines stream input and output operations by default:
\\

\TemplateSpaceIndent{ {}package {}P {}is \newline{}
 {} {} {} {}pragma {}Elaborate_Body; {}-{}-{} {}explained {}below \newline{}
 {} {} {} {}type {}C {}is {}tagged {}private; \newline{}
 {}private \newline{}
 {} {} {} {}type {}C {}is {}tagged {}record \newline{}
 {} {} {} {} {} {} {}A, {}B {}: {}Integer; \newline{}
 {} {} {} {} {} {} {}C {}: {}Boolean; \newline{}
 {} {} {} {}end {}record; \newline{}
 {}end {}P;}

\\

\TemplateSpaceIndent{ {}with {}Ada.Text_IO.Text_Streams; \newline{}
 {}with {}P; \newline{}
 {}procedure {}Main {}is \newline{}
 {} {} {} {}Object {}: {}P.C; \newline{}
 {}begin \newline{}
 {} {} {} {}P.C\textquotesingle{}Output {}(Stream {}=>{} {}Ada.Text_IO.Text_Streams.Stream \newline{}
 {}(Ada.Text_IO.Default_Output), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Item {}=>{} {}Object); \newline{}
 {}end {}Main;}

By default, the {\ttfamily Output} attribute sends the tag of the object to the stream then calls the more basic {\ttfamily Write} attribute, which sends the components to the stream in the same order as the declaration, i.e. A, B then C. It is possible to override the default implementation of the {\ttfamily Input}, {\ttfamily Output}, {\ttfamily Read} and {\ttfamily Write} attributes like this:
\\

\TemplateSpaceIndent{ {}with {}Ada.Streams; \newline{}
 {}package {}body {}P {}is \newline{}
 {} {} {} {}procedure {}My_Write {}(Stream {}: {}not {}null {}access \newline{}
 {}Ada.Streams.Root_Stream_Type\textquotesingle{}Class; \newline{}
 {}Item {}: {}in {}C) {}is \newline{}
 {} {} {} {}begin \newline{}
 {} {} {} {} {} {} {}-{}-{} {}The {}default {}is {}to {}write {}A {}then {}B {}then {}C; {}here {}we {}change {}the \newline{}
 {}ordering. \newline{}
 {} {} {} {} {} {} {}Boolean\textquotesingle{}Write {}(Stream, {}Item.C); \newline{}
 {} {} {} {} {} {} {}Integer\textquotesingle{}Write {}(Stream, {}Item.B); \newline{}
 {} {} {} {} {} {} {}Integer\textquotesingle{}Write {}(Stream, {}Item.A); \newline{}
 {} {} {} {}end {}My_Write; \newline{}
 {} \newline{}
 {} {} {} {}for {}C\textquotesingle{}Write {}use {}My_Write; {}-{}-{} {}override {}the {}default {}attribute \newline{}
 {}end {}P;}

In the above example, {\ttfamily P.C\textquotesingle{}output} calls {\ttfamily P.C\textquotesingle{}Write} which is overridden in the body of the package. Since the specification of package {\ttfamily P} does not define any subprograms, it does not normally need a body, so a package body is forbidden. The {\ttfamily pragma Elaborate_Body} tells the compiler that this package does have a body that is needed for other reasons.

Note that the stream IO attributes are not primitive operations of the tagged type; this is also the case in C++ where the friend operators are not, in fact, member functions of the type.
\subsection{Terminology}
\label{397}

\begin{longtable}{|>{\RaggedRight}p{0.39703\linewidth}|>{\RaggedRight}p{0.52261\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ada }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} C++}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Package &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} class (as a unit of encapsulation)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Tagged type &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} class (of objects) (as a type) ({\itshape not} pointer or reference, which are class-{}wide)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Primitive operation &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} virtual member function\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Tag &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} pointer to the virtual table\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Class (of types) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} -{}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Class-{}wide type &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} -{}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Class-{}wide operation &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} static member function\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Access value to a specific tagged type &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} -{}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Access value to a class-{}wide type &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Pointer or reference to a class\\ \hline
\end{longtable}

\section{See also}
\label{398}
\subsection{Wikibook}
\label{399}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{201}{Ada Programming/Types/record}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Frecord}{record}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Finterface}{interface}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Ftagged}{tagged}
\end{myitemize}

\subsection{Wikipedia}
\label{400}

\begin{myitemize}
\item{} \myhref{http://en.wikipedia.org/wiki/Object-oriented\%20programming}{Object-{}oriented programming}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{401}
\subsubsection{Ada 95}
\label{402}

\begin{myitemize}
\item{} \AdaRMNineFive{3}{8}{Record Types}
\item{} \AdaRMNineFive{3}{9}{Tagged Types and Type Extensions}
\item{} \AdaNiveFiveRMThree{3}{9}{1}{Type Extensions}
\item{} \AdaNiveFiveRMThree{3}{9}{2}{Dispatching Operations of Tagged Types}
\item{} \AdaNiveFiveRMThree{3}{9}{3}{Abstract Types and Subprograms}
\item{} \AdaRMNineFive{3}{10}{Access Types}
\end{myitemize}

\subsubsection{Ada 2005}
\label{403}

\begin{myitemize}
\item{} \AdaRM{3}{8}{Record Types}
\item{} \AdaRM{3}{9}{Tagged Types and Type Extensions}
\item{} \AdaRMThree{3}{9}{1}{Type Extensions}
\item{} \AdaRMThree{3}{9}{2}{Dispatching Operations of Tagged Types}
\item{} \AdaRMThree{3}{9}{3}{Abstract Types and Subprograms}
\item{} \AdaRMThree{3}{9}{4}{Interface Types}
\item{} \AdaRM{3}{10}{Access Types}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{404}

\begin{myitemize}
\item{} \AdaSGOne{9}{Object-{}Oriented Features}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FTipos\%20etiquetados}{es:Programación en Ada/Tipos etiquetados}\chapter{New in Ada 2005}

\myminitoc
\label{405}

\label{406}

This is an overview of the major features that are available in {\bfseries Ada 2005}, the version of the Ada standard that was accepted by ISO in January 2007 (to differentiate it from its predecessors \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%2083}{Ada 83} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%2095}{Ada 95}, the informal name Ada 2005 is generally agreed on). For the rationale and a more detailed (and very technical) description, see the \myhref{http://www.ada-auth.org/AI-XREF.HTML\#Amend_Doc}{ Amendment} to the Ada Reference Manual following the links to the last version of every Ada Issue document (AI).

Although the standard is now published, not all compilers will be able to handle it. Many of these additions are already implemented by the following \myhref{http://en.wikipedia.org/wiki/Free\%20Software}{Free Software} compilers:
\begin{myitemize}
\item{} \myhref{http://libre.adacore.com/}{ GNAT GPL Edition}
\item{} \myhref{http://gcc.gnu.org/}{ GCC 4.1}
\item{} \myhref{http://www.adacore.com/home/gnatpro/}{ GNAT Pro 6.0.2} (the AdaCore supported version) is a complete implementation.
\end{myitemize}

After downloading and installing any of them, remember to use the {\ttfamily -{}gnat05} switch when compiling Ada 2005 code. Note that Ada 2005 is the default mode in GNAT GPL 2007 Edition.
\section{Language features}
\label{407}
\subsection{Character set}
\label{408}

Not only does Ada 2005 now support a new 32-{}bit character type {\mbox{---}} called {\ttfamily Wide_Wide_Character} {\mbox{---}} but the source code itself may be of this extended character set as well. Thus Russians and Indians, for example, will be able to use their native language in identifiers and comments. And mathematicians will rejoice: The whole Greek and fractur character sets are available for identifiers. For example, \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics}{Ada.Numerics} will be extended with a new constant:
\\

\TemplateSpaceIndent{ {}{\mbox{π}} {}: {}\LaTeXBF{constant} {}:= {}Pi;}

This is not a new idea {\mbox{---}} \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} always had the {\ttfamily -{}gnati{\itshape c}} compiler option to specify the character set \myplainurl{http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Character-Set-Control.html}. But now this idea has become standard, so all Ada compilers will need to support \myhref{http://en.wikipedia.org/wiki/Unicode}{Unicode 4.0} for identifiers {\mbox{---}} as the new standard requires.

See also:

\begin{myitemize}
\item{} \ADANFAI{285}{Support for 16-{}bit and 32-{}bit characters}
\item{} \ADANFAI{388}{Add Greek pi to Ada.Numerics}
\end{myitemize}

\subsection{Interfaces}
\label{409}

Interfaces allow for a limited form of multiple inheritance similar to Java and C\#.

You find a full description here: \mylref{400}{Ada Programming/OO}.

See also:
\begin{myitemize}
\item{} \ADANFAI{251}{Abstract Interfaces to provide multiple inheritance}
\item{} \ADANFAI{345}{Protected and task interfaces}
\end{myitemize}

\subsection{Union}
\label{410}

In addition to Ada\textquotesingle{}s safe variant record an unchecked C style union is now available.

You can find a full description here: \mylref{208}{Ada Programming/Types/record\#Union}.

See also:

\begin{myitemize}
\item{} \ADANFAI{216}{Unchecked unions -{}-{} variant records with no run-{}time discriminant}
\item{} \AdaRMAThree{B}{3}{3}{Pragma Unchecked_Union}
\end{myitemize}

\subsection{With}
\label{411}

The with statement got a massive upgrade. First there is the new \mylref{290}{limited with} which allows two packages to {\itshape with} each other. Then there is \mylref{289}{private with} to make a package only visible inside the private part of the specification.

See also:
\begin{myitemize}
\item{} \ADANFAI{217}{Limited With Clauses}
\item{} \ADANFAI{262}{Access to private units in the private part}
\end{myitemize}

\subsection{Access types}
\label{412}
\subsubsection{Not null access}
\label{413}

An access type definition can specify that the access type can never be null.

See \mylref{244}{Ada Programming/Types/access\#Not null access}.

See also: \ADANFAI{231}{Access-{}to-{}constant parameters and null-{}excluding access subtypes}
\subsubsection{Anonymous access}
\label{414}

The possible uses of anonymous access types are extended. They are allowed virtually in every type or object definition, including access to subprogram parameters. Anonymous access types may point to constant objects as well. Also, they could be declared to be not null.

With the addition of the following operations in package \LaTeXIdentityTemplate{Standard}, it is possible to test the equality of anonymous access types.
\\

\TemplateSpaceIndent{ {} {} {} {}\LaTeXBF{function} {}\symbol{34}=\symbol{34} {}(Left, {}Right {}: {}{\itshape universal_access}) {}\LaTeXBF{return} {}Boolean; \newline{}
 {} {} {} {}\LaTeXBF{function} {}\symbol{34}/=\symbol{34}(Left, {}Right {}: {}{\itshape universal_access}) {}\LaTeXBF{return} {}Boolean;}

See \mylref{229}{Ada Programming/Types/access\#Anonymous access}.

See also:
\begin{myitemize}
\item{} \ADANFAI{230}{Generalized use of anonymous access types}
\item{} \ADANFAI{385}{Stand-{}alone objects of anonymous access types}
\item{} \ADANFAI{318}{Limited and anonymous access return types}
\end{myitemize}

\section{Language library}
\label{415}
\subsection{Containers}
\label{416}

A major addition to the language library is the generic packages for containers. If you are familiar with the C++ STL,
you will likely feel very much at home using \LaTeXIdentityTemplate{Ada}.
One thing, though: Ada is a block structured language. Many ideas of how to use the STL
employ this feature of the language. For example, local subprograms can be supplied to iteration schemes.

The original Ada Issue text \ADANFAI{302}{Container library} has now been transformed into
\AdaRM{A}{18}{Containers}.

If you know how to write Ada programs, and have a need for vectors, lists, sets, or maps (tables), please have a look
at the \ADANFAI{302}{AI Text} mentioned above. There is an {\itshape !example} section in the text explaining the
use of the containers in some detail.
Matthew Heaney provides a number of demonstration programs
with his reference implementation of AI-{}302
(\LaTeXIdentityTemplate{Ada}) which you can find at
\myhref{http://charles.tigris.org}{ tigris}.

In \mylref{438}{Ada Programming/Containers} you will find a demo using containers.

{\bfseries Historical side note}: The C++ STL draws upon the work of
David R. Musser
and
Alexander A. Stepanov.
For some of their studies of generic programming, they had been using Ada 83.
The \myhref{http://www.stepanovpapers.com/}{ Stepanov Papers Collection} has a few publications available.
\subsection{Scan Filesystem Directories and Environment Variables}
\label{417}

See also:
\begin{myitemize}
\item{} \ADANFAI{248}{Directory Operations}
\item{} \ADANFAI{370}{Environment variables}
\end{myitemize}

\subsection{Numerics}
\label{418}

Besides the new constant of package \LaTeXIdentityTemplate{Ada.Numerics} (see \mylref{408}{Character Set} above), the most important addition are the packages to operate with vectors and matrices.

See also:
\begin{myitemize}
\item{} \ADANFAI{388}{Add Greek pi (π) to Ada.Numerics}
\item{} \ADANFAI{296}{Vector and matrix operations}
\end{myitemize}

(Related note on Ada programming tools:
AI-{}388 contains an interesting assessment of how compiler writers are bound
to perpetuate the lack of handling of international characters in programming support tools for now.
As an author of Ada programs, be aware that your tools provider or Ada consultant
could recommend that the program text be 7bit ASCII only.)
\section{Real-{}Time and High Integrity Systems}
\label{419}

See also:
\begin{myitemize}
\item{} \ADANFAI{297}{Timing events}
\item{} \ADANFAI{307}{Execution-{}Time Clocks}
\item{} \ADANFAI{354}{Group execution-{}time budgets}
\item{} \ADANFAI{266}{Task termination procedure}
\item{} \ADANFAI{386}{Further functions returning Time_Span values}
\end{myitemize}

\subsection{Ravenscar profile}
\label{420}

See also:
\begin{myitemize}
\item{} \ADANFAI{249}{Ravenscar profile for high-{}integrity systems}
\item{} \ADANFAI{305}{New pragma and additional restriction identifiers for real-{}time systems}
\item{} \ADANFAI{347}{Title of Annex H}
\item{} \ADANFAI{265}{Partition Elaboration Policy for High-{}Integrity Systems}
\end{myitemize}

\subsection{New scheduling policies}
\label{421}

See also:
\begin{myitemize}
\item{} \ADANFAI{355}{Priority Specific Dispatching including Round Robin}
\item{} \ADANFAI{357}{Support for Deadlines and Earliest Deadline First Scheduling}
\item{} \ADANFAI{298}{Non-{}Preemptive Dispatching}
\end{myitemize}

\subsection{Dynamic priorities for protected objects}
\label{422}

See also: \ADANFAI{327}{Dynamic ceiling priorities}
\section{Summary of what\textquotesingle{}s new}
\label{423}
\subsection{New keywords}
\label{424}

Added 3 keywords (72 total)
\begin{myitemize}
\item{} \LaTeXBF{interface}
\item{} \LaTeXBF{overriding}
\item{} \LaTeXBF{synchronized}
\end{myitemize}

\subsection{New pragmas}
\label{425}

Added 11 pragmas:
\begin{myitemize}
\item{} \AdaPragma{Assert}
\item{} \AdaPragma{Assertion_Policy}
\item{} \AdaPragma{Detect_Blocking}
\item{} \AdaPragma{No_Return}
\item{} \AdaPragma{Partition_Elaboration_Policy}
\item{} \AdaPragma{Preelaborable_Initialization}
\item{} \AdaPragma{Priority_Specific_Dispatching}
\item{} \AdaPragma{Profile}
\item{} \AdaPragma{Relative_Deadline}
\item{} \AdaPragma{Unchecked_Union}
\item{} \AdaPragma{Unsuppress}
\end{myitemize}

\subsection{New attributes}
\label{426}

Added 7 attributes:
\begin{myitemize}
\item{} \LaTeXIT{Machine_Rounding}
\item{} \LaTeXIT{Mod}
\item{} \LaTeXIT{Priority}
\item{} \LaTeXIT{Stream_Size}
\item{} \LaTeXIT{Wide_Wide_Image}
\item{} \LaTeXIT{Wide_Wide_Value}
\item{} \LaTeXIT{Wide_Wide_Width}
\end{myitemize}

\subsection{New packages}
\label{427}

\begin{myitemize}
\item{} Assertions:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Assertions}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Container library:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Containers}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Vectors}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Doubly_Linked_Lists}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Generic_Array_Sort} {\small }(generic procedure){\small }
\item{} \LaTeXIdentityTemplate{Ada.Containers.Generic_Constrained_Array_Sort} {\small }(generic procedure){\small }
\item{} \LaTeXIdentityTemplate{Ada.Containers.Hashed_Maps}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Ordered_Maps}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Hashed_Sets}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Ordered_Sets}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Indefinite_Vectors}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Indefinite_Doubly_Linked_Lists}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Indefinite_Hashed_Maps}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Indefinite_Ordered_Maps}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Indefinite_Hashed_Sets}
\item{} \LaTeXIdentityTemplate{Ada.Containers.Indefinite_Ordered_Sets}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Vector and matrix manipulation:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Numerics.Real_Arrays}
\item{} \LaTeXIdentityTemplate{Ada.Numerics.Complex_Arrays}
\item{} \LaTeXIdentityTemplate{Ada.Numerics.Generic_Real_Arrays}
\item{} \LaTeXIdentityTemplate{Ada.Numerics.Generic_Complex_Arrays}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} General OS facilities:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Directories}
\item{} \LaTeXIdentityTemplate{Ada.Directories.Information}
\item{} \LaTeXIdentityTemplate{Ada.Environment_Variables}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} String hashing:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Strings.Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Fixed.Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Bounded.Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Unbounded.Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Fixed.Wide_Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Bounded.Wide_Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Unbounded.Wide_Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Fixed.Wide_Wide_Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Bounded.Wide_Wide_Hash} {\small }(generic function){\small }
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Hash} {\small }(generic function){\small }
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Time operations:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Calendar.Time_Zones}
\item{} \LaTeXIdentityTemplate{Ada.Calendar.Arithmetic}
\item{} \LaTeXIdentityTemplate{Ada.Calendar.Formatting}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Tagged types:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Tags.Generic_Dispatching_Constructor} {\small }(generic function){\small }
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Text packages:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Complex_Text_IO}
\item{} \LaTeXIdentityTemplate{Ada.Text_IO.Bounded_IO}
\item{} \LaTeXIdentityTemplate{Ada.Text_IO.Unbounded_IO}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Text_IO.Bounded_IO}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Text_IO.Unbounded_IO}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Characters}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Wide_Characters}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} {\ttfamily Wide_Wide_Character} packages:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Bounded}
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Fixed}
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Maps}
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Maps.Wide_Wide_Constants}
\item{} \LaTeXIdentityTemplate{Ada.Strings.Wide_Wide_Unbounded}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO.Complex_IO}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO.Editing}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO.Text_Streams}
\item{} \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO.Unbounded_IO}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Execution-{}time clocks:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Execution_Time}
\item{} \LaTeXIdentityTemplate{Ada.Execution_Time.Timers}
\item{} \LaTeXIdentityTemplate{Ada.Execution_Time.Group_Budgets}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Dispatching:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Dispatching}
\item{} \LaTeXIdentityTemplate{Ada.Dispatching.EDF}
\item{} \LaTeXIdentityTemplate{Ada.Dispatching.Round_Robin}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Timing events:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Real_Time.Timing_Events}
\end{myitemize}

\end{myitemize}

\begin{myitemize}
\item{} Task termination procedures:
\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada.Task_Termination}
\end{myitemize}

\end{myitemize}

\section{See also}
\label{428}
\subsection{Wikibook}
\label{429}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%2083}{Ada Programming/Ada 83}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%2095}{Ada Programming/Ada 95}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%202012}{Ada Programming/Ada 2012}
\item{} \mylref{365}{Ada Programming/Object Orientation}
\item{} \mylref{220}{Ada Programming/Types/access}
\item{} \mylref{568}{Ada Programming/Keywords}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fand}{Ada Programming/Keywords/and}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Finterface}{Ada Programming/Keywords/interface}
\item{} \mylref{610}{Ada Programming/Attributes}
\item{} \mylref{637}{Ada Programming/Pragmas}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FRestrictions}{Ada Programming/Pragmas/Restrictions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers}{Ada Programming/Libraries/Ada.Containers}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Directories}{Ada Programming/Libraries/Ada.Directories}
\end{myitemize}

\subsection{Pages in the category Ada 2005}
\label{430}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/\%3ACategory\%3AAda\%20Programming\%2FAda\%202005\%20feature}{Category:Ada Programming/Ada 2005 feature}
\end{myitemize}

\section{External links}
\label{431}
\subsection{Papers and presentations}
\label{432}

\begin{myitemize}
\item{} \myhref{http://www.sigada.org/conf/sigada2004/SIGAda2004-CDROM/SIGAda2004-Proceedings/Ada2005Panel.pdf}{ Ada 2005: Putting it all together} (SIGAda 2004 presentation)
\item{} \myhref{http://www.adacore.com/wp-content/files/attachments/Ada_2005_and_GNAT.pdf}{ GNAT and Ada 2005} (SIGAda 2004 paper)
\item{} \myhref{http://sigada.org/ada_letters/sept2003/Invitation_to_Ada_2005.pdf}{ An invitation to Ada 2005}, and the \myhref{http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/04/040616-aec-ada2005.pdf}{ presentation of this paper} at Ada-{}Europe 2004
\end{myitemize}

\subsection{Rationale}
\label{433}

\begin{myitemize}
\item{} {\itshape \myhref{http://www.adaic.com/standards/05rat/html/Rat-TTL.html}{ Rationale for Ada 2005}} by \myhref{http://en.wikipedia.org/wiki/John\%20Barnes\%20\%28computer\%20scientist\%29}{John Barnes}:
\begin{myenumerate}
\item{} Introduction
\item{} Object Oriented Model
\item{} Access Types
\item{} Structure and Visibility
\item{} Tasking and Real-{}Time
\item{} Exceptions, Generics, Etc.
\item{} Predefined Library
\item{} Containers
\item{} Epilogue
\end{myenumerate}

\end{myitemize}

\begin{myquote}
\item{}
\begin{myquote}
\item{} References
\item{} Index
\end{myquote}

\end{myquote}

Available as a single \myhref{http://www.adaic.com/standards/05rat/Rationale05.pdf}{ document for printing}.
\subsection{Language Requirements}
\label{434}

\begin{myitemize}
\item{} \myhref{http://www.open-std.org/jtc1/sc22/WG9/n412.pdf}{ {\itshape Instructions to the Ada Rapporteur Group from SC22/WG9 for Preparation of the Amendment to ISO/IEC 8652}} (10 October 2002), and a \myhref{http://std.dkuug.dk/JTC1/sc22/wg9/n423.pdf}{ presentation of this document} at SIGAda 2002
\end{myitemize}

\subsection{Ada Reference Manual}
\label{435}

\begin{myitemize}
\item{} \myhref{http://www.adaic.com/standards/05rm/html/RM-TTL.html}{ {\bfseries Ada Reference Manual}, ISO/IEC 8652:1995(E) with COR.1:2001 and AMD.1:2007}
\item{} \myhref{http://www.adaic.com/standards/05aarm/html/AA-TTL.html}{ {\bfseries Annotated Ada Reference Manual}, ISO/IEC 8652:1995(E) with COR.1:2001 and AMD.1:2007} (colored diffs)
\item{} \myhref{http://www.ada-auth.org/amendment.html}{ List of Ada Amendment drafts}
\end{myitemize}

\subsection{Ada Issues}
\label{436}

\begin{myitemize}
\item{} \myhref{http://www.ada-auth.org/AI-XREF.HTML\#Amend_Doc}{ Amendment 200Y}
\begin{myitemize}
\item{} \ADANFAI{387}{Introduction to Amendment}
\item{} \ADANFAI{284}{New reserved words}
\item{} \ADANFAI{252}{Object.Operation notation}
\item{} \ADANFAI{218}{Accidental overloading when overriding}
\item{} \ADANFAI{348}{Null procedures}
\item{} \ADANFAI{287}{Limited aggregates allowed}
\item{} \ADANFAI{326}{Incomplete types}
\item{} \ADANFAI{317}{Partial parameter lists for formal packages}
\item{} \ADANFAI{376}{Interfaces.C works for C++ as well}
\item{} \ADANFAI{368}{Restrictions for obsolescent features}
\item{} \ADANFAI{381}{New Restrictions identifier No_Dependence}
\item{} \ADANFAI{224}{pragma Unsuppress}
\item{} \ADANFAI{161}{Default-{}initialized objects}
\item{} \ADANFAI{361}{Raise with message}
\item{} \ADANFAI{286}{Assert pragma}
\item{} \ADANFAI{328}{Preinstantiations of Complex_IO}
\item{} \ADANFAI{301}{Operations on language-{}defined string types}
\item{} \ADANFAI{340}{Mod attribute}
\item{} \ADANFAI{364}{Fixed-{}point multiply/divide}
\item{} \ADANFAI{267}{Fast float-{}to-{}integer conversions}
\item{} \ADANFAI{321}{Definition of dispatching policies}
\item{} \ADANFAI{329}{pragma No_Return -{}-{} procedures that never return}
\item{} \ADANFAI{362}{Some predefined packages should be recategorized}
\item{} \ADANFAI{351}{Time operations}
\item{} \ADANFAI{427}{Default parameters and Calendar operations}
\item{} \ADANFAI{270}{Stream item size control}
\end{myitemize}

\end{myitemize}

\chapter{Containers}

\myminitoc
\label{437}

\label{438}

What follows is a simple demo of some of the container
types. It does not cover everything, but should get you
started.

\AdaTwentyZeroFive{}
\subsubsection{First Example: Maps}
\label{439}

The program below prints greetings to the world
in a number of human languages. The greetings are stored
in a table, or hashed map. The map associates every
greeting (a value) with a language code (a key).
That is, you can use language codes as keys
to find greeting values in the table.

The elements in the map are constant strings of international
characters, or really, pointers to such constant strings.
A package {\ttfamily Regional} is used to set up both
the language IDs and an instance of
\LaTeXIdentityTemplate{Ada}.
\\

\TemplateSpaceIndent{ {} {}\ADAFile{regional.ads}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Containers.Hashed_Maps; {} {}\LaTeXBF{use} {}Ada.Containers; \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Regional {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Language_ID {}\LaTeXBF{is} {}(DE, {}EL, {}EN, {}ES, {}FR, {}NL); \newline{}
 {} {} {} {}\ADACOM{a selection from the two-{}letter codes for human languages} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Hello_Text {}\LaTeXBF{is} {}\LaTeXBF{access} {}\LaTeXBF{constant} {}Wide_String; \newline{}
 {} {} {} {}\ADACOM{objects will contain a «hello»-{}string in some language} \newline{}
 {} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{function} {}ID_Hashed {}(id: {}Language_ID) {}\LaTeXBF{return} {}Hash_Type; \newline{}
 {} {} {} {}\ADACOM{you need to provide this to every hashed container} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Phrases {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Containers.Hashed_Maps \newline{}
 {} {} {} {} {} {}(Key_Type {}=>{} {}Language_ID, \newline{}
 {} {} {} {} {} {} {}Element_Type {}=>{} {}Hello_Text, \newline{}
 {} {} {} {} {} {} {}Hash {}=>{} {}ID_Hashed, \newline{}
 {} {} {} {} {} {} {}Equivalent_Keys {}=>{} {}\symbol{34}=\symbol{34}); \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Regional;}

Here is the program, details will be explained later.
\\

\TemplateSpaceIndent{ {}\ADAFile{hello_world_extended.ads}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Regional; {}\LaTeXBF{use} {}Regional; \newline{}
 {}\LaTeXBF{with} {}Ada.Wide_Text_IO; {}\LaTeXBF{use} {}Ada; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Hello_World_Extended {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{print greetings in different spoken languages} \newline{}
 {} \newline{}
 {} {} {} {}greetings: {}Phrases.Map; \newline{}
 {} {} {} {}\ADACOM{the dictionary of greetings} \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} {} {}-{}-{} {}Hello_World_Extended \newline{}
 {} \newline{}
 {} {} {} {}Phrases.Insert(greetings, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Key {}=>{} {}EN, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}New_Item {}=>{} {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}Hello, {}World!\symbol{34})); \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{or, shorter,} \newline{}
 {} {} {} {}greetings.Insert(DE, {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}Hallo, {}Welt!\symbol{34})); \newline{}
 {} {} {} {}greetings.Insert(NL, {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}Hallo, {}Wereld!\symbol{34})); \newline{}
 {} {} {} {}greetings.Insert(ES, {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}¡Hola {}mundo!\symbol{34})); {} \newline{}
 {} {} {} {}greetings.Insert(FR, {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}Bonjour, {}Monde!\symbol{34})); \newline{}
 {} {} {} {}greetings.Insert(EL, {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}Γειάσου {}κόσμος\symbol{34})); \newline{}
 {}\ADACOM{Καλημέρα κόσμε?} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{declare} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{use} {}Phrases; \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}speaker: {}Cursor {}:= {}First(greetings); \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{while} {}Has_Element(speaker) {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {}Wide_Text_IO.Put_Line({}Element(speaker).\LaTeXBF{all} {}); \newline{}
 {} {} {} {} {} {} {} {} {} {}Next(speaker); \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {}\LaTeXBF{end}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Hello_World_Extended;}

The first of the {\ttfamily Insert} statements
is written in an Ada 95 style:
\\

\TemplateSpaceIndent{ {} {} {}Phrases.Insert(greetings, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Key {}=>{} {}EN, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}New_Item {}=>{} {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}Hello, {}World!\symbol{34}));}

The next insertions
use so called distinguished receiver notation which you
can use in Ada 2005. (It\textquotesingle{}s O-{}O parlance. While
the Insert call involves all of: a Container object (greetings),
a Key object (EN),
and a New_Item object (\LaTeXBF{new} Wide_String\textquotesingle{}(\symbol{34}Hello, World!\symbol{34})),
the Container object is distinguished
from the others in that the Insert call provides it (and only it) with the other
objects. In this case the Container object will be modified by the
call, using arguments named Key and New_Item for the modification.)
\\

\TemplateSpaceIndent{ {} {} {}greetings.Insert(ES, {}\LaTeXBF{new} {}Wide_String\textquotesingle{}(\symbol{34}¡Hola {}mundo!\symbol{34}));}

After the table is set up, the program goes on to print all the greetings
contained in the table. It does so employing a cursor that runs
along the elements in the table in some order. The typical scheme
is to obtain a cursor, here using {\ttfamily First}, and then
to iterate the following calls:

\begin{myenumerate}
\item{} {\ttfamily Has_Element}, for checking whether the cursor is at an element
\item{} {\ttfamily Element}, to get the element and
\item{} {\ttfamily Next}, to move the cursor to another element
\end{myenumerate}

When there is no more element left, the cursor will have the
special value {\ttfamily No_Element}.
Actually, this is an iteration scheme that can be used with all
containers in child packages of \LaTeXIdentityTemplate{Ada}.
\subsubsection{A slight variation: picking an element}
\label{440}

The next program shows how to pick a value from the map,
given a key. Actually, you will provide the key.
The program is like the previous one, except that it doesn\textquotesingle{}t
just print all the elements in the map, but picks one
based on a Language_ID value that it reads from standard
input.
\\

\TemplateSpaceIndent{ {}\ADAFile{hello_world_pick.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Regional; {}\LaTeXBF{use} {}Regional; \newline{}
 {}\LaTeXBF{with} {}Ada.Wide_Text_IO; {}\LaTeXBF{use} {}Ada; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Hello_World_Pick {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}... {}as {}before {}... \newline{}
 {} \newline{}
 {} {}\LaTeXBF{declare} \newline{}
 {} {} {} {} {} {}\LaTeXBF{use} {}Phrases; \newline{}
 {} {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{package} {}Lang_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}Wide_Text_IO.Enumeration_IO(Language_ID); \newline{}
 {} {} {} {} {} {}lang: {}Language_ID; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}Lang_IO.Get(lang); \newline{}
 {} {} {} {} {} {}Wide_Text_IO.Put_Line({}greetings.Element(lang).\LaTeXBF{all} {}); \newline{}
 {} {} {}\LaTeXBF{end}; \newline{}
 {} {} \newline{}
 {}\LaTeXBF{end} {}Hello_World_Pick;}

This time the {\ttfamily Element} function consumes a Key (lang)
not a Cursor. Actually, it consumes two values, the other value being
{\ttfamily greetings}, in distinguished receiver notation.
\subsubsection{Second Example: Vectors and Maps}
\label{441}

Let\textquotesingle{}s take bean counting literally. Red beans, green beans, and white
beans. (Yes, white beans really do exist.) Your job will be to collect a number
of beans, weigh them, and then determine the average weight of red,
green, and white beans, respectively. Here is one approach.

Again, we need a package, this time for storing vegetable
related information. Introducing the {\ttfamily Beans} package
(the Grams type doesn\textquotesingle{}t belong in a vegetable package, but it\textquotesingle{}s there
to keep things simple):
\\

\TemplateSpaceIndent{ {}\ADAFile{1/beans.ads}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{package} {}Beans {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Bean_Color {}\LaTeXBF{is} {}\LaTeXIdentityTemplate{(}R\LaTeXIdentityTemplate{,} {}G\LaTeXIdentityTemplate{,} {}W\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{red, green, and white beans} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Grams {}\LaTeXBF{is} {}\LaTeXBF{delta} {}0\LaTeXIdentityTemplate{.}01 {}\LaTeXBF{digits} {}7\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{enough to weigh things as light as beans but also as heavy as} \newline{}
 {} {} {} {}\ADACOM{many of them} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Bean {}\LaTeXBF{is} \newline{}
 {} {} {} {}\ADACOM{info about a single bean} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{record} \newline{}
 {} {} {} {} {} {} {} {} {} {}kind\LaTeXIdentityTemplate{:} {}Bean_Color\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}weight\LaTeXIdentityTemplate{:} {}Grams\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{record}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{subtype} {}Bean_Count {}\LaTeXBF{is} {}Positive {}\LaTeXBF{range} {}1 {}\LaTeXIdentityTemplate{..} {}1_000\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{numbers of beans to count (how many has Cinderella have to count?)} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Bean_Vecs {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada\LaTeXIdentityTemplate{.}Containers\LaTeXIdentityTemplate{.}Vectors \newline{}
 {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Element_Type {}=>{} {}Bean\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}Index_Type {}=>{} {}Bean_Count\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Beans\LaTeXIdentityTemplate{;}}

The {\ttfamily Vectors} instance offers a data structure similar to an array
that can change its size at run time. It is called {\ttfamily Vector}.
Each bean that is read will be appended to a {\ttfamily Bean_Vecs.Vector} object.

The following program first calls {\ttfamily read_input} to
fill a buffer with beans. Next, it calls a function that computes
the average weight of beans having the same color. This
function:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Beans\LaTeXIdentityTemplate{;} {} {} {}\LaTeXBF{use} {}Beans\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{function} {}average_weight \newline{}
 {} {} {}\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{:} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{;} {}desired_color\LaTeXIdentityTemplate{:} {}Bean_Color\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Grams\LaTeXIdentityTemplate{;} \newline{}
 {}\ADACOM{scan `buffer` for all beans that have `desired_color`. Compute the} \newline{}
 {}\ADACOM{mean of their `.weight` components}}

Then the average value is printed for beans of each color and
the program stops.
\\

\TemplateSpaceIndent{ {}\ADAFile{1/bean_counting.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Beans\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{with} {}average_weight\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}bean_counting {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{use} {}Beans\LaTeXIdentityTemplate{,} {}Ada\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}buffer\LaTeXIdentityTemplate{:} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}read_input\LaTeXIdentityTemplate{(}buf\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{separate}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{collect information from a series of bean measurements into `buf`} \newline{}
 {} \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} {}\ADACOM{bean_counting} \newline{}
 {} \newline{}
 {} {} {} {}read_input\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{now everything is set up for computing some statistical data.} \newline{}
 {} {} {} {}\ADACOM{For every bean color in `Bean_Color`, the function `average_weight`} \newline{}
 {} {} {} {}\ADACOM{will scan `buffer` once, and accumulate statistical data from} \newline{}
 {} {} {} {}\ADACOM{each element encountered.} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{for} {}kind {}\LaTeXBF{in} {}Bean_Color {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}Wide_Text_IO\LaTeXIdentityTemplate{.}Put_Line \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Bean_Color\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(}kind\LaTeXIdentityTemplate{)} {}\LaTeXIdentityTemplate{\&} \newline{}
 {} {} {} {} {} {} {} {} {} {}\symbol{34} {}ø {}=\symbol{34} {}\LaTeXIdentityTemplate{\&} {}Grams\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(} {}average_weight\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{,} {}kind\LaTeXIdentityTemplate{)} {}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}bean_counting\LaTeXIdentityTemplate{;}}

All container operations take place in function {\ttfamily average_weight}.
To find the mean weight of beans of the same color, the function
is looking at all beans in order. If a bean has the right color,
{\ttfamily average_weight} adds its weight to the total weight, and
increases the number of beans counted by 1.

The computation visits all beans. The iteration that is necessary
for going from one bean to the next and then performing the above steps
is best left to the {\ttfamily Iterate} procedure
which is part of all container packages. To do so, wrap
the above steps inside some procedure and pass this procedure
to {\ttfamily Iterate}. The effect is that {\ttfamily Iterate} calls your
procedure for each element in the vector, passing a cursor
value to your procedure, one for each element.

Having the container machinery do the iteration can also be
faster than moving and checking the cursor yourself, as was
done in the {\ttfamily Hello_World_Extended} example.
\\

\TemplateSpaceIndent{ {}\ADAFile{average_weight.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Beans\LaTeXIdentityTemplate{;} {} {}\LaTeXBF{use} {}Beans\LaTeXIdentityTemplate{.}Bean_Vecs\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{function} {}average_weight \newline{}
 {} {} {}\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{:} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{;} {}desired_color\LaTeXIdentityTemplate{:} {}Bean_Color\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Grams \newline{}
 {}\LaTeXBF{is} \newline{}
 {} {} {} {}total\LaTeXIdentityTemplate{:} {}Grams {}:= {}0\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{weight of all beans in `buffer` having `desired_color`} \newline{}
 {} \newline{}
 {} {} {} {}number\LaTeXIdentityTemplate{:} {}Natural {}:= {}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{number of beans in `buffer` having `desired_color`} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}accumulate\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{:} {}Cursor\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\ADACOM{if the element at `c` has the `desired_color`, measure it} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{if} {}Element\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{.}kind {}= {}desired_color {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}number {}:= {}number {}\LaTeXIdentityTemplate{+} {}1\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}total {}:= {}total {}\LaTeXIdentityTemplate{+} {}Element\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{.}weight\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}accumulate\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} {}\ADACOM{average_weight} \newline{}
 {} \newline{}
 {} {} {} {}Iterate\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{,} {}accumulate\LaTeXIdentityTemplate{\textquotesingle{}}Access\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}number {}\LaTeXIdentityTemplate{>{}} {}0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}total {}\LaTeXIdentityTemplate{/} {}number\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{return} {}0\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}average_weight\LaTeXIdentityTemplate{;}}

This approach is straightforward. However, imagine larger vectors.
{\ttfamily average_weight} will visit all elements repeatedly
for each color. If there are M colors and N beans,
{\ttfamily average_weight} will be called M * N times, and with each new
color, N more calls are necessary. A possible alternative is to collect all
information about a bean once it is visited. However, this will
likely need more variables, and you will have to find a way to return more
than one result (one average for each color), etc. Try it!

A different approach might be better. One is to copy beans of different
colors to separate vector objects. (Remembering Cinderella.) Then
{\ttfamily average_weight} must visit each element only one time. The
following procedure does this, using a new type from {\ttfamily Beans},
called {\ttfamily Bean_Pots}.
\\

\TemplateSpaceIndent{ {} {} {} {}... \newline{}
 {} {} {} {}\LaTeXBF{type} {}Bean_Pots {}\LaTeXBF{is} {}\LaTeXBF{array}\LaTeXIdentityTemplate{(}Bean_Color\LaTeXIdentityTemplate{)} {}\LaTeXBF{of} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}...}

Note how this plain array associates colors with Vectors.
The procedure for getting the beans into the right bowls uses
the bean color as array index for finding the right bowl (vector).
\\

\TemplateSpaceIndent{ {}\ADAFile{2/gather_into_pots.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{procedure} {}gather_into_pots\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{:} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{;} {}pots\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bean_Pots\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{use} {}Bean_Vecs\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}put_into_right_pot\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{:} {}Cursor\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\ADACOM{select the proper bowl for the bean at `c` and «append»} \newline{}
 {} {} {} {} {} {} {}\ADACOM{the bean to the selected bowl} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}Append\LaTeXIdentityTemplate{(}pots\LaTeXIdentityTemplate{(}Element\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{.}kind\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} {}Element\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}put_into_right_pot\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} {} {}\ADACOM{gather_into_pots} \newline{}
 {} {} {} {}Iterate\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{,} {}put_into_right_pot\LaTeXIdentityTemplate{\textquotesingle{}}Access\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{end} {}gather_into_pots\LaTeXIdentityTemplate{;}}

Everything is in place now.
\\

\TemplateSpaceIndent{ {}\ADAFile{2/bean_counting.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Beans\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{with} {}average_weight\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{with} {}gather_into_pots\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{with} {}Ada\LaTeXIdentityTemplate{.}Wide_Text_IO\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}bean_counting {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{use} {}Beans\LaTeXIdentityTemplate{,} {}Ada\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}buffer\LaTeXIdentityTemplate{:} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}bowls\LaTeXIdentityTemplate{:} {}Bean_Pots\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}read_input\LaTeXIdentityTemplate{(}buf\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{separate}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{collect information from a series of bean measurements into `buf`} \newline{}
 {} \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} {}\ADACOM{bean_counting} \newline{}
 {} \newline{}
 {} {} {} {}read_input\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{now everything is set up for computing some statistical data.} \newline{}
 {} {} {} {}\ADACOM{Gather the beans into the right pot by color.} \newline{}
 {} {} {} {}\ADACOM{Then find the average weight of beans in each pot.} \newline{}
 {} \newline{}
 {} {} {} {}gather_into_pots\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{,} {}bowls\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{for} {}color {}\LaTeXBF{in} {}Bean_Color {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}Wide_Text_IO\LaTeXIdentityTemplate{.}Put_Line \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Bean_Color\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(}color\LaTeXIdentityTemplate{)} \newline{}
 {} {} {} {} {} {} {} {} {} {}\& {}\symbol{34} {}ø {}=\symbol{34} \newline{}
 {} {} {} {} {} {} {} {} {} {}\& {}Grams\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(}average_weight\LaTeXIdentityTemplate{(}bowls\LaTeXIdentityTemplate{(}color\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} {}color\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}bean_counting\LaTeXIdentityTemplate{;}}

As a side effect of having chosen one vector per color, we can determine
the number of beans in each vector by calling the {\ttfamily Length} function.
But {\ttfamily average_weight}, too, computes the number of elements in the vector.
Hence, a summing function might replace {\ttfamily average_weight} here.
\subsubsection{All In Just One Map!}
\label{442}

The following program first calls {\ttfamily read_input} to fill a buffer
with beans. Then, information about these beans is stored in a table,
mapping bean properties to numbers of occurrence. The processing that
starts at {\ttfamily Iterate} uses chained procedure calls typical of the
\LaTeXIdentityTemplate{Ada} iteration mechanism.

The Beans package in this example instantiates another
generic library unit, \LaTeXIdentityTemplate{Ada}.
Where the \LaTeXIdentityTemplate{Ada} require a hashing
function, \LaTeXIdentityTemplate{Ada} require a comparison
function. We provide one, {\ttfamily \symbol{34}<{}\symbol{34}}, which sorts beans first by color,
then by weight. It will automatically be associated with the corresponding
generic formal function, as its name, {\ttfamily \symbol{34}<{}\symbol{34}}, matches that of the generic formal
function, {\ttfamily \symbol{34}<{}\symbol{34}}.
\\

\TemplateSpaceIndent{ {} {} {} {}... \newline{}
 {} {} {} {}\LaTeXBF{function} {}\symbol{34}<{}\symbol{34}\LaTeXIdentityTemplate{(}a\LaTeXIdentityTemplate{,} {}b\LaTeXIdentityTemplate{:} {}Bean\LaTeXIdentityTemplate{)} {}\LaTeXBF{return} {}Boolean\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{order beans, first by color, then by weight} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}Bean_Statistics \newline{}
 {} {} {} {} {} {}\ADACOM{instances will map beans of a particular color and weight to the} \newline{}
 {} {} {} {} {} {}\ADACOM{number of times they have been inserted.} \newline{}
 {} {} {} {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada\LaTeXIdentityTemplate{.}Containers\LaTeXIdentityTemplate{.}Ordered_Maps \newline{}
 {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Element_Type {}=>{} {}Natural\LaTeXIdentityTemplate{,} \newline{}
 {} {} {} {} {} {} {}Key_Type {}=>{} {}Bean\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}...}

Where the previous examples have \LaTeXBF{with}ed subprograms,
this variation on {\ttfamily bean_counting} packs them all as local
subprograms.
\\

\TemplateSpaceIndent{ {}\ADAFile{3/bean_counting.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Beans\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{with} {}Ada\LaTeXIdentityTemplate{.}Wide_Text_IO\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}bean_counting {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{use} {}Beans\LaTeXIdentityTemplate{,} {}Ada\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}buffer\LaTeXIdentityTemplate{:} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}stats_cw\LaTeXIdentityTemplate{:} {}Bean_Statistics\LaTeXIdentityTemplate{.}Map\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{maps beans to numbers of occurrences, grouped by color, ordered by} \newline{}
 {} {} {} {}\ADACOM{weight} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}read_input\LaTeXIdentityTemplate{(}buf\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}\LaTeXBF{out} {}Bean_Vecs\LaTeXIdentityTemplate{.}Vector\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} {}\LaTeXBF{separate}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{collect information from a series of bean measurements into `buf`} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}add_bean_info\LaTeXIdentityTemplate{(}specimen\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}Bean\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\ADACOM{insert bean `specimen` as a key into the `stats_cw` table unless} \newline{}
 {} {} {} {}\ADACOM{present. In any case, increase the count associated with this key} \newline{}
 {} {} {} {}\ADACOM{by 1. That is, count the number of equal beans.} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}add_bean_info\LaTeXIdentityTemplate{(}specimen\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}Bean\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{procedure} {}one_more\LaTeXIdentityTemplate{(}b\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}Bean\LaTeXIdentityTemplate{;} {}n\LaTeXIdentityTemplate{:} {}\LaTeXBF{in} {}\LaTeXBF{out} {}Natural\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {}\ADACOM{increase the count associated with this kind of bean} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {} {}n {}:= {}n {}\LaTeXIdentityTemplate{+} {}1\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}one_more\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}c {}\LaTeXIdentityTemplate{:} {}Bean_Statistics\LaTeXIdentityTemplate{.}Cursor\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}inserted\LaTeXIdentityTemplate{:} {}Boolean\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}stats_cw\LaTeXIdentityTemplate{.}Insert\LaTeXIdentityTemplate{(}specimen\LaTeXIdentityTemplate{,} {}0\LaTeXIdentityTemplate{,} {}c\LaTeXIdentityTemplate{,} {}inserted\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}Bean_Statistics\LaTeXIdentityTemplate{.}Update_Element\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{,} {}one_more\LaTeXIdentityTemplate{\textquotesingle{}}Access\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end} {}add_bean_info\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} {}\ADACOM{bean_counting} \newline{}
 {} \newline{}
 {} {} {} {}read_input\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{next, for all beans in the vector `buffer` just filled, store} \newline{}
 {} {} {} {}\ADACOM{information about each bean in the `stats_cw` table.} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{declare} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{use} {}Bean_Vecs\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{procedure} {}count_bean\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{:} {}Cursor\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {} {}add_bean_info\LaTeXIdentityTemplate{(}Element\LaTeXIdentityTemplate{(}c\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}count_bean\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}Iterate\LaTeXIdentityTemplate{(}buffer\LaTeXIdentityTemplate{,} {}count_bean\LaTeXIdentityTemplate{\textquotesingle{}}Access\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {}\ADACOM{now everything is set up for computing some statistical data. The} \newline{}
 {} {} {} {}\ADACOM{keys of the map, i.e. beans, are ordered by color and then weight.} \newline{}
 {} {} {} {}\ADACOM{The `First`, and `Ceiling` functions will find cursors} \newline{}
 {} {} {} {}\ADACOM{denoting the ends of a group.} \newline{}
 {} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{declare} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{use} {}Bean_Statistics\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\ADACOM{statistics is computed groupwise:} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}q_sum\LaTeXIdentityTemplate{:} {}Grams\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}q_count\LaTeXIdentityTemplate{:} {}Natural\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{procedure} {}q_stats\LaTeXIdentityTemplate{(}lo\LaTeXIdentityTemplate{,} {}hi\LaTeXIdentityTemplate{:} {}Cursor\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\ADACOM{`q_stats` will update the `q_sum` and `q_count` globals with} \newline{}
 {} {} {} {} {} {} {}\ADACOM{the sum of the key weights and their number, respectively. `lo`} \newline{}
 {} {} {} {} {} {} {}\ADACOM{(included) and `hi` (excluded) mark the interval of keys} \newline{}
 {} {} {} {} {} {} {}\ADACOM{to use from the map.} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{procedure} {}q_stats\LaTeXIdentityTemplate{(}lo\LaTeXIdentityTemplate{,} {}hi\LaTeXIdentityTemplate{:} {}Cursor\LaTeXIdentityTemplate{)} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {} {} {} {} {}k\LaTeXIdentityTemplate{:} {}Cursor {}:= {}lo\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {} {}q_count {}:= {}0\LaTeXIdentityTemplate{;} {}q_sum {}:= {}0\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{exit} {}\LaTeXBF{when} {}k {}= {}hi\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}q_count {}:= {}q_count {}\LaTeXIdentityTemplate{+} {}Element\LaTeXIdentityTemplate{(}k\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}q_sum {}:= {}q_sum {}\LaTeXIdentityTemplate{+} {}Key\LaTeXIdentityTemplate{(}k\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{.}weight {}\LaTeXIdentityTemplate{*} {}Element\LaTeXIdentityTemplate{(}k\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Next\LaTeXIdentityTemplate{(}k\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}q_stats\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\ADACOM{precondition} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{pragma} {}assert\LaTeXIdentityTemplate{(}\LaTeXBF{not} {}Is_Empty\LaTeXIdentityTemplate{(}stats_cw\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} {}\symbol{34}container {}is {}empty\symbol{34}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}lower\LaTeXIdentityTemplate{,} {}upper\LaTeXIdentityTemplate{:} {}Cursor {}:= {}First\LaTeXIdentityTemplate{(}stats_cw\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\ADACOM{denoting the first key of a group, and the first key of a} \newline{}
 {} {} {} {} {} {} {}\ADACOM{following group, respectively} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\ADACOM{start reporting and trigger the computations} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}Wide_Text_IO\LaTeXIdentityTemplate{.}Put_Line\LaTeXIdentityTemplate{(}\symbol{34}Summary:\symbol{34}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{for} {}color {}\LaTeXBF{in} {}Bean_Color {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {}lower {}:= {}upper\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{if} {}color {}= {}Bean_Color\LaTeXIdentityTemplate{\textquotesingle{}}Last {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}upper {}:= {}No_Element\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}upper {}:= {}Ceiling\LaTeXIdentityTemplate{(}stats_cw\LaTeXIdentityTemplate{,} {}Bean\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{(}Bean_Color\LaTeXIdentityTemplate{\textquotesingle{}}Succ\LaTeXIdentityTemplate{(}color\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{,} \newline{}
 {}0\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {} {} {}q_stats\LaTeXIdentityTemplate{(}lower\LaTeXIdentityTemplate{,} {}upper\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{if} {}q_count {}\LaTeXIdentityTemplate{>{}} {}0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Wide_Text_IO\LaTeXIdentityTemplate{.}Put_Line \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXIdentityTemplate{(}Bean_Color\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(}color\LaTeXIdentityTemplate{)} {}\& {}\symbol{34} {}group:\symbol{34} {}\& \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\symbol{34} {} {}ø {}=\symbol{34} {}\& {}Grams\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(}q_sum {}\LaTeXIdentityTemplate{/} {}q_count\LaTeXIdentityTemplate{)} {}\& \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\symbol{34}, {}\# {}=\symbol{34} {}\& {}Natural\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(}q_count\LaTeXIdentityTemplate{)} {}\& \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\symbol{34}, {}Σ {}=\symbol{34} {}\& {}Grams\LaTeXIdentityTemplate{\textquotesingle{}}Wide_Image\LaTeXIdentityTemplate{(}q_sum\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{end}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}bean_counting\LaTeXIdentityTemplate{;}}

Like in the greetings example, you can pick values from the table.
This time the values tell the number of occurrences of beans with
certain properties. The {\ttfamily stats_cw} table is ordered by key, that
is by bean properties. Given particular properties, you can use the
{\ttfamily Floor} and {\ttfamily Ceiling} functions to approximate the bean in
the table that most closely matches the desired properties.

It is now easy to print a histogram showing the frequency with which
each kind of bean has occurred. If N is the number of beans of a kind,
then print N characters on a line, or draw a graphical bar of length
N, etc. A histogram showing the number of beans per color can be drawn
after computing the sum of beans of this color, using groups like in the
previous example. You can delete beans of a color from the table using
the same technique.

Finally, think of marshalling the beans in order starting at the least
frequently occurring kind. That is, construct a vector appending first
beans that have occurred just once, followed by beans that have occurred
twice, if any, and so on. Starting from the table is possible, but be
sure to have a look at the sorting functions of
\LaTeXIdentityTemplate{Ada}.
\section{See also}
\label{443}
\subsection{Wikibook}
\label{444}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers}{Ada Programming/Libraries/Ada.Containers}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{445}

\begin{myitemize}
\item{} \AdaRMThree{A}{18}{1}{The Package Containers}
\end{myitemize}

\chapter{Interfacing}

\myminitoc
\label{446}

\label{447}

\section{Interfacing}
\label{448}

Ada is one of the few languages where interfacing is part of the language standard. The programmer can interface with other programming languages, or with the hardware.
\section{Other programming languages}
\label{449}

The language standard defines the interfaces for \myhref{http://en.wikibooks.org/wiki/C\%20Programming}{C}, \myhref{http://en.wikibooks.org/wiki/COBOL}{Cobol} and \myhref{http://en.wikibooks.org/wiki/Programming\%3AFortran}{Fortran}. Of course any implementation might define further interfaces {\mbox{---}} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FGNAT}{GNAT} for example defines an interface to \myhref{http://en.wikibooks.org/wiki/C\%2B\%2B\%20Programming}{C++}.

Interfacing with other languages is actually provided by pragma \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport}{Export}, \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport}{Import} and \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FConvention}{Convention}.
\section{Hardware devices}
\label{450}

Embedded programmers usually have to write device drivers. Ada provides extensive support for interfacing with hardware, like using \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FRepresentation\%20clauses}{representation clauses} to specify the exact representation of types used by the hardware, or standard interrupt handling for writing \myhref{http://en.wikipedia.org/wiki/Interrupt\%20service\%20routine}{Interrupt service routine}s.
\section{See also}
\label{451}
\subsection{Wikibook}
\label{452}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{692}{Ada Programming/Libraries/Interfaces}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{453}

\begin{myitemize}
\item{} \ADARMAONE{B}{Interface to Other Languages}
\item{} \ADARMAONE{C}{Systems Programming}
\end{myitemize}

\subsection{Ada 95 Rationale}
\label{454}

\begin{myitemize}
\item{} \AdaNineFiveR{b}{Interface to Other Languages}{3}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{455}
\begin{myitemize}
\item{} \AdaSGThree{7}{6}{4}{Interfacing to Foreign Languages}
\end{myitemize}

\chapter{Coding Standards}

\myminitoc
\label{456}

\label{457}

\section{Introduction}
\label{458}

Each project should follow a specific \myhref{http://en.wikipedia.org/wiki/coding\%20standard}{coding standard} to ease readability and maintenance of the source code, and reduce the insertion of errors. Depending on the requirements of the project, a set of guidelines can help to achieve the desired level of performance, portability, code complexity...

There are many \myhref{http://en.wikipedia.org/wiki/Ada\%20Semantic\%20Interface\%20Specification}{ASIS} tools that can be used to check automatically the adherence of Ada source code to the guidelines.
\section{Tools}
\label{459}

\begin{myitemize}
\item{} \myhref{http://www.adalog.fr/adacontrol2.htm}{ AdaControl} (\myhref{http://www.adalog.fr/compo/adacontrol_ug.html\#Rules-reference}{ Rules})
\item{} \myhref{http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Verifying-Properties-Using-gnatcheck.html}{ gnatcheck} (\myhref{http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Predefined-Rules.html}{ Rules})
\item{} \myhref{http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/The-GNAT-Pretty_002dPrinter-gnatpp.html}{ GNAT Pretty-{}Printer}
\item{} \myhref{http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/The-GNAT-Metric-Tool-gnatmetric.html}{ The GNAT Metric Tool gnatmetric}
\item{} \myhref{http://www.raincode.com/adaengine.html}{ RainCode Engine}
\item{} \myhref{http://www.raincode.com/adachecker.html}{ RainCode Checker}
\item{} \myhref{http://www.adastat.com/}{ AdaSTAT}
\end{myitemize}

\section{Coding guidelines}
\label{460}
\begin{myitemize}
\item{} {\itshape \myhref{http://en.wikibooks.org/wiki/Ada\%20Style\%20Guide}{Ada Quality \& Style Guide}: Guidelines for Professional Programmers}
\item{} ISO/IEC TR 15942:2000, {\itshape \myhref{http://www.dit.upm.es/ork/documents/adahis.pdf}{ Guide for the use of the Ada programming language in high integrity systems}}, First edition (2000-{}03-{}01). \myhref{http://standards.iso.org/ittf/PubliclyAvailableStandards/}{ ISO Freely Available Standards}
\item{} Stephen Leake, {\itshape \myhref{http://software.gsfc.nasa.gov/AssetsApproved/PA2.4.1.1.1.pdf}{ NASA Flight Software Branch {\mbox{---}} Ada Coding Standard}} (2004-{}01-{}30)
\item{} \myhref{http://en.wikipedia.org/wiki/European\%20Space\%20Agency}{ESA} BSSC\\

\TemplateSpaceIndent{ {}| {} {} {} {} {} {}title {}= {}Ada {}Coding {}Standard}
 . , ,

\end{myitemize}
\\

\TemplateSpaceIndent{ {} \newline{}
 {}| {} {} {} {}edition {}= {}BSSC(98)3 {}Issue {}1 \newline{}
 {}| {} {} {} {} {} {} {}year {}= {}1998 \newline{}
 {}| {} {} {} {} {} {}month {}= {}October \newline{}
 {}| {} {} {} {} {} {} {} {}url {}= {}ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/bssc983.pdf \newline{}
 {}| {}accessdate {}= {}2009-{}01-{}19}

 . , ,

\begin{myitemize}
\item{} \myhref{}{ GNAT Coding Style: A Guide for GNAT Developers \\

\TemplateSpaceIndent{ {}| {} {} {} {} {} {} {}work {}= {}GCC {}online {}documentation}
}. . Retrieved
\end{myitemize}
\myhref{}{\\

\TemplateSpaceIndent{ {} \newline{}
 {}| {} {}publisher {}= {}Free {}Software {}Foundation \newline{}
 {}| {} {} {} {} {} {} {} {}url {}= {}http://gcc.gnu.org/onlinedocs/gnat-{}style/ \newline{}
 {}| {}accessdate {}= {}2009-{}01-{}19}

}. . Retrieved (\myhref{http://gcc.gnu.org/onlinedocs/gnat-style.pdf}{ PDF})
\section{See also}
\label{461}
\subsection{Other wikibooks}
\label{462}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Style\%20Guide}{Ada Style Guide}
\end{myitemize}

\subsection{Wikibook}
\label{463}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{464}
\begin{myitemize}
\item{} \AdaSGOne{1}{Introduction}
\end{myitemize}

\section{External links}
\label{465}
\begin{myitemize}
\item{} \myhref{http://geekswithblogs.net/sdorman/archive/2007/06/13/Introduction-to-Coding-Standards.aspx}{ Introduction to Coding Standards}
\end{myitemize}

\chapter{Tips}

\myminitoc
\label{466}

\label{467}

\section{Full declaration of a type can be deferred to the unit\textquotesingle{}s body}
\label{468}

Often, you\textquotesingle{}ll want to make changes to the internals of a private type. This, in turn, will require the algorithms that act on it to be modified. If the type is completed in the unit specification, it is a pain to edit and recompile both files, even with an \myhref{http://en.wikipedia.org/wiki/Integrated\%20development\%20environment}{IDE}, but it\textquotesingle{}s something some programmers learn to live with.

It turns out you don\textquotesingle{}t have to. Nonchalantly mentioned in the \myhref{http://www.adaic.org/standards/95lrm/html/RM-TTL.html}{ ARM}, and generally skipped over in tutorials, is the fact that private types can be completed in the unit\textquotesingle{}s body itself, making them much closer to the relevant code, and saving a recompile of the specification, as well as every unit depending on it. This may seem like a small thing, and, for small projects, it is. However, if you have one of those uncooperative types that requires dozens of tweaks, or if your dependence graph has much depth, the time and annoyance saved add up quickly.

Also, this construction is very useful when coding a shared library, because it permits to change the implementation of the type while still providing a compatible \myhref{http://en.wikipedia.org/wiki/Application_binary_interface}{ABI}.

Code sample:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{package} {}Private_And_Body {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Private_Type {}\LaTeXBF{is} {}\LaTeXBF{limited} {}\LaTeXBF{private}; \newline{}
 {} \newline{}
 {} {} {}\ADACOM{Operations...} \newline{}
 {} \newline{}
 {}\LaTeXBF{private} \newline{}
 {} {} {}\LaTeXBF{type} {}Body_Type; {} {} {}\ADACOM{Defined in the body} \newline{}
 {} {} {}\LaTeXBF{type} {}Private_Type {}\LaTeXBF{is} {}\LaTeXBF{access} {}Body_Type; \newline{}
 {}\LaTeXBF{end} {}Private_And_Body;}

The type in the public part is an \mylref{220}{access} to the hidden type. This has the drawback that memory management has to be provided by the package implementation. That is the reason why {\ttfamily Private_Type} is a limited type, the client will not be allowed to copy the access values, in order to prevent dangling references.

These types are sometimes called \symbol{34}Taft types\symbol{34} {\mbox{---}}named after Tucker Taft, the main designer of Ada 95{\mbox{---}} because were introduced in the so-{}called Taft Amendment to Ada 83. In other programming languages, this technique is called \symbol{34}\myhref{http://en.wikipedia.org/wiki/opaque\%20pointer}{opaque pointer}s\symbol{34}.
\section{Lambda calculus through generics}
\label{469}

Suppose you\textquotesingle{}ve decided to roll your own \myhref{http://en.wikipedia.org/wiki/Set\%20\%28computer\%20science\%29}{set} type. You can add things to it, remove things from it, and you want to let a user apply some arbitrary function to all of its members. But the scoping rules seem to conspire against you, forcing nearly everything to be global.

The mental stumbling block is that most examples given of \mylref{329}{generics} are packages, and the Set package is already generic. In this case, the solution is to make the Apply_To_All procedure generic as well; that is, to nest the generics. Generic procedures inside packages exist in a strange scoping limbo, where anything in scope at the instantiation can be used by the instantiation, and anything normally in scope at the formal can be accessed by the formal. The end result is that the relevant scoping roadblocks no longer apply. It isn\textquotesingle{}t the full lambda calculus, just one of the most useful parts.
\\

\TemplateSpaceIndent{ {}\LaTeXBF{generic} \newline{}
 {} {} {}\LaTeXBF{type} {}Element {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {}\LaTeXBF{package} {}Sets {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}Set {}\LaTeXBF{is} {}\LaTeXBF{private}; \newline{}
 {} {} {} {}{\itshape {[}..{]}} \newline{}
 {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {}\LaTeXBF{with} {}\LaTeXBF{procedure} {}Apply_To_One {}(The_Element {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Element); \newline{}
 {} {} {}\LaTeXBF{procedure} {}Apply_To_All {}(The_Set {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Set); \newline{}
 {}\LaTeXBF{end} {}Sets;}

For a view of Functional Programming in Ada see \myfootnote{\myfnhref{http://okasaki.blogspot.com/2008/07/functional-programming-inada.html}{ Functional Programming in...Ada?}, by Chris Okasaki}.
\section{Compiler Messages}
\label{470}

Different compilers can diagnose different things differently, or the same thing using different messages, etc..
Having two compilers at hand can be useful.
{\bfseries
\begin{mydescription} {\ttfamily selected component}
\end{mydescription}
}
\begin{myquote}\item{} When a source program contains a construct such as {\ttfamily Foo.Bar}, you may see messages saying something like {\mbox{\guillemotleft}}selected component \symbol{34}Bar\symbol{34}{\mbox{\guillemotright}} or maybe like {\mbox{\guillemotleft}}selected component \symbol{34}Foo\symbol{34}{\mbox{\guillemotright}}. The phrases may seem confusing, because one refers to {\ttfamily Foo}, while the other refers to {\ttfamily Bar}. But they are both right. The reason is that {\ttfamily selected_component} is an item from Ada\textquotesingle{}s grammar (\AdaRMThree{4}{1}{3}{Selected Components}). It denotes all of: a prefix, a dot, and a selector_name. In the {\ttfamily Foo.Bar} example these correspond to {\ttfamily Foo}, \textquotesingle{}{\ttfamily .}\textquotesingle{}, and {\ttfamily Bar}. Look for more grammar words in the compiler messages, e.g. {\mbox{\guillemotleft}}prefix{\mbox{\guillemotright}}, and associate them with identifiers quoted in the messages.
\end{myquote}

\begin{myquote}
\item{} For example, if you submit the following code to the compiler,
\end{myquote}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}{\itshape Pak}\LaTeXIdentityTemplate{;} \newline{}
 {}\LaTeXBF{package} {}Foo {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}T {}\LaTeXBF{is} {}\LaTeXBF{new} {}{\itshape Pak}\LaTeXIdentityTemplate{.}Bar\LaTeXIdentityTemplate{;} {} {}\ADACOM{Oops, Pak is generic!} \newline{}
 {}\LaTeXBF{end} {}Foo\LaTeXIdentityTemplate{;}}

\begin{myquote}
\item{} the compiler may print a diagnostic message about a prefixed component: {\ttfamily Foo}\textquotesingle{}s author thought that {\ttfamily Pak} denotes a package, but actually it is the name of a {\itshape generic} package. (Which needs to be instantiated first; and then the {\itshape instance} name is a suitable prefix.)
\end{myquote}

\section{Universal integers}
\label{471}

All integer literals and also some attributes like {\ttfamily \textquotesingle{}Length} are of the anonymous type {\itshape universal_integer}, which comprises the infinite set of mathematical integers. Named numbers are of this type and are evaluated exactly (no overlow except for machine storage limitations), e.g.
\\

\TemplateSpaceIndent{ {} {}Very_Big: {}\LaTeXBF{constant} {}:= {}10**1_000_000 {}-{} {}1;}

Since {\itshape universal_integer} has no operators, its values are converted in this example to {\itshape root_integer}, another anonymous type, the calcuation is performed and the result again converted back in {\itshape universal_integer}.

Generally values of {\itshape universal_integer} are implicitly converted to the appropriate type when used in some expression. So the expression {\ttfamily \LaTeXBF{not} A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length}} is fine; the value of {\ttfamily A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length}} is interpreted as a modular integer since \LaTeXBF{not} can only be applied to modular integers (of course a context is needed to decide which modular integer type is meant). This feature can lead to pitfalls. Consider
\\

\TemplateSpaceIndent{ {} {} {} {}\LaTeXBF{type} {}Ran_6 {}\LaTeXBF{is} {}\LaTeXBF{range} {}1 {}\LaTeXIdentityTemplate{..} {}6\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Mod_6 {}\LaTeXBF{is} {}\LaTeXBF{mod} {}6\LaTeXIdentityTemplate{;}}

and then
\\

\TemplateSpaceIndent{ {} {} {} {}\LaTeXBF{if} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length} {}\LaTeXBF{in} {}Ran_6 {}\LaTeXBF{then} {} {}\ADACOM{OK} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}\LaTeXBF{not} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length} {}\LaTeXBF{in} {}Ran_6 {}\LaTeXBF{then} {} {}\ADACOM{not OK} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}} \newline{}
 {} {} {} {}\ADACOM{this is the same as} \newline{}
 {} {} {} {}\LaTeXBF{if} {}(\LaTeXBF{not} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length}) {}\LaTeXBF{in} {}Ran_6 {}\LaTeXBF{then} {} {}\ADACOM{not OK} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length} {}\LaTeXBF{in} {}1 {}\LaTeXIdentityTemplate{..} {}6 {}\LaTeXBF{then} {} {}\ADACOM{OK} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}\LaTeXBF{not} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length} {}\LaTeXBF{in} {}1 {}\LaTeXIdentityTemplate{..} {}6 {}\LaTeXBF{then} {} {}\ADACOM{not OK} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length} {}\LaTeXBF{in} {}Mod_6 {}\LaTeXBF{then} {} {}\ADACOM{OK?} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}} \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{if} {}\LaTeXBF{not} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length} {}\LaTeXBF{in} {}Mod_6 {}\LaTeXBF{then} {} {}\ADACOM{OK?} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}}}

\begin{myquote}
\item{} The second conditional cannot be compiled because the expressions to the left of {\ttfamily \LaTeXBF{in}} is incompatible to the type at the right. Note that {\ttfamily \LaTeXBF{not}} has precedence over {\ttfamily \LaTeXBF{in}}. It does not negate the entire membership test but only {\ttfamily A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length}}.
\end{myquote}

\begin{myquote}
\item{} The fourth conditional fails in various ways.
\end{myquote}

\begin{myquote}
\item{} The sixth conditional might be fine because {\ttfamily \LaTeXBF{not}} turns {\ttfamily A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length}} into a modular value which is OK if the value is covered by modular type {\ttfamily Mod_6}.
\end{myquote}

\begin{myquote}
\item{} GNAT GPL 2009 gives these diagnoses respectively:
\end{myquote}

\\

\TemplateSpaceIndent{ {}error: {}incompatible {}types \newline{}
 {}error: {}operand {}of {}not {}must {}be {}enclosed {}in {}parentheses \newline{}
 {}warning: {}not {}expression {}should {}be {}parenthesized {}here}

\begin{myquote}
\item{} A way to {\itshape avoid} these problems is to use {\ttfamily \LaTeXBF{not} \LaTeXBF{in}} for the membership test,
\end{myquote}

\\

\TemplateSpaceIndent{ {} {} {} {}\LaTeXBF{if} {}A\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIT{Length} {}\LaTeXBF{not} {}\LaTeXBF{in} {}Ran_6 {}\LaTeXBF{then} {} {}\ADACOM{OK} \newline{}
 {} {} {} {} {} {} {}{\mbox{\ldots}}}

\begin{myquote}
\item{} See
\begin{myitemize}
\item{} \AdaRM{2}{4}{Numeric Literals},
\item{} \AdaRMThree{3}{6}{2}{Operations of Array Types}), and
\item{} \AdaRM{4}{5}{Operators and Expression Evaluation},
\item{} \AdaRMThree{4}{5}{2}{Relational Operators and Membership Tests},
\item{} \mylref{599}{Membership Tests}
\end{myitemize}

\end{myquote}

\section{I/O}
\label{472}
\subsection{Text_IO Issues}
\label{473}

A canonical method of reading a sequence of lines from a text file uses the standard procedure \LaTeXIdentityTemplate{Ada}.{\itshape Get_Line}.
When the end of input is reached, {\itshape Get_Line} will fail, and exception {\itshape End_Error} is raised. Some programs will use another function
from \LaTeXIdentityTemplate{Ada} to prevent this and test for {\itshape End_of_Input}. However, this isn\textquotesingle{}t always the best choice, as has been explained
for example in
a Get_Line news group discussion on \myhref{http://groups.google.com/group/comp.lang.ada/browse_thread/thread/5afe598156615c8b\#}{ comp.lang.ada}.

A working solution uses an exception handler instead:
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{declare} \newline{}
 {} {} {} {} {} {}The_Line\LaTeXIdentityTemplate{:} {}String\LaTeXIdentityTemplate{(}1\LaTeXIdentityTemplate{..}100\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {}Last\LaTeXIdentityTemplate{:} {}Natural\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}Text_IO\LaTeXIdentityTemplate{.}Get_Line\LaTeXIdentityTemplate{(}The_Line\LaTeXIdentityTemplate{,} {}Last\LaTeXIdentityTemplate{)}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {} {} {} {} {} {} {}\ADACOM{do something with The_Line ...} \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{exception} \newline{}
 {} {} {} {} {} {}\LaTeXBF{when} {}Text_IO\LaTeXIdentityTemplate{.}End_Error {}\LaTeXIdentityTemplate{=>{}} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{null}\LaTeXIdentityTemplate{;} \newline{}
 {} {} {}\LaTeXBF{end}\LaTeXIdentityTemplate{;}}

\section{Quirks}
\label{474}

Using GNAT on Windows, calls to subprograms from \LaTeXIdentityTemplate{Ada} might need special attention. (For example, the {\ttfamily Real_Time.Clock} function might seem to return values indicating that no time has passed between two invocations when certainly some time has passed.) The cause is reported to be a missing initialization of the run-{}time support when no other real-{}time features are present in the program.\myfootnote{ Vincent Celier
. Timing code blocks
\myfnhref{ groups.google.es/group/comp.lang.ada/browse_thread/thread/c8acfc87fbb1813d
}{ Timing code blocks
}. \textit{{}},
 Usenet article forwards this information from AdaCore.} As a provisional fix, it is suggested to insert
\\

\TemplateSpaceIndent{ {}\LaTeXBF{delay} {}0\LaTeXIdentityTemplate{.}0\LaTeXIdentityTemplate{;}}

before any use of {\ttfamily Real_Time} services.
\subsection{Stack Size}
\label{475}

With some implementations, notably GNAT, knowledge of stack size manipulation will be to your advantage. Executables produced with GNAT tools and standard settings can hit the stack size limit. If so, the operating system might allow setting higher limits. Using GNU/Linux and the Bash command shell, try
\\

\TemplateSpaceIndent{ {}\${}$\text{ }${}ulimit$\text{ }${}-{}s$\text{ }${}{$\text{[}$}some$\text{ }${}number{$\text{]}$}}

The current value is printed when only {\ttfamily -{}s} is given to {\itshape ulimit}.
\section{References}
\label{476}

\section{See also}
\label{477}
\subsection{Wikibook}
\label{478}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{481}{Ada Programming/Errors}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{479}

\begin{myitemize}
\item{} \AdaRMThree{3}{10}{1}{Incomplete Type Declarations}
\end{myitemize}

\chapter{Common Errors}

\myminitoc
\label{480}

\label{481}

Some language features are often misunderstood, resulting in common programming errors, performance degradation and portability problems. The following incorrect usages of the Ada language are often seen in code written by Ada beginners.
\section{pragma Atomic \& Volatile}
\label{482}
\label{483}
It {\bfseries is almost always incorrect to use \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAtomic}{atomic} or \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FVolatile}{volatile} variables for \mylref{345}{tasking}}.\myfootnote{\myhref{
}{ Volatile: Almost Useless for Multi-{}Threaded Programming
}. Intel Software Network
. Retrieved 2008-{}05-{}30
 } When an object is atomic it just means that it will be read from or written to memory atomically. The compiler {\itshape will not} generate atomic instructions or memory barriers when accessing to that object, it will just:
\begin{myitemize}
\item{} check that the architecture guarantees atomic memory loads and stores,
\item{} disallow some compiler optimizations, like reordering or suppressing redundant accesses to the object.
\end{myitemize}

For example, the following code, where {\ttfamily A} is an atomic object can be misunderstood:
\\

\TemplateSpaceIndent{ {}A {}:= {}A {}+ {}1; {} {}\ADACOM{Not an atomic increment!}}

The compiler {\bfseries will not} (and is not allowed by the Standard to) generate an atomic increment instruction to directly increment and update from memory the variable {\ttfamily A}.\myfootnote{\myhref{
}{ Volatile
}. . Retrieved 2008-{}05-{}28
 } This is the code generated by the compiler:
\\

\TemplateSpaceIndent{ {} {} {}A {}:= {}A {}+ {}1; \newline{}
 {}804969f:${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${}a1 {}04 {}95 {}05 {}08 {} {} {} {} {} {} {}${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${}mov {} {} {} {}0x8059504,\%eax \newline{}
 {}80496a4:${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${}40 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${}inc {} {} {} {}\%eax \newline{}
 {}80496a5:${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${}a3 {}04 {}95 {}05 {}08 {} {} {} {} {} {} {}${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${}mov {} {} {} {}\%eax,0x8059504}

As can be seen, no atomic increment instruction or test-{}and-{}set opcode will be generated. Like in other programming languages, if these specific instructions are required in the program they must be written explicitly using machine code insertions.\myfootnote{ Laurent Guerby
 Ada 95 Rationale
. Intermetrics
, , 1995

}

The above code snippet is equivalent to the following code (both code sequences generates exactly the same object code), where {\ttfamily T} is a (non-{}atomic) temporary variable:
\\

\TemplateSpaceIndent{ {}T {}:= {}A; {} {} {} {} {} {}\ADACOM{A is copied atomically to local variable T} \newline{}
 {}T {}:= {}T {}+ {}1; {} {}\ADACOM{local variable T is incremented} \newline{}
 {}A {}:= {}T; {} {} {} {} {} {}\ADACOM{A is stored atomically}}

Thus it is incorrect to modify an atomic variable at the same time from multiple tasks. For example, two tasks incrementing a counter in parallel. Even in an uniprocessor, other Ada tasking features like a protected object should be used instead. In multiprocessors, depending on the \myhref{http://en.wikipedia.org/wiki/Memory\%20model\%20\%28programming\%29}{memory consistency model}, using various atomic or volatile variables for task communication can have surprising consequences.\myfootnote{\myhref{
}{ Volatile
}. . Retrieved 2008-{}05-{}28
 }\myfootnote{ Sarita V. Adve, Kourosh Gharachorloo
. Shared Memory Consistency Models: A Tutorial
\myfnhref{ www.hpl.hp.com/techreports/Compaq-{}DEC/WRL-{}95-{}7.pdf
}{ Shared Memory Consistency Models: A Tutorial
}. \textit{{} IEEE Computer
}, {{\bfseries 29
}}: 66{\mbox{$-$}}76
 December
 1996

} Therefore, extreme care should be taken when using atomic objects for task data sharing or synchronization, specially in a multiprocessor.
\section{References}
\label{484}
\LaTeXNullTemplate{}
\section{pragma Pack}
\label{485}
\label{486}\subsection{Exact data representation}
\label{487}

It is important to realize that {\bfseries pragma \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPack}{Pack} must not be used to specify the exact representation of a data type}, but to help the compiler to improve the efficiency of the generated code.\myfootnote{ Adam Beneschan
. Pragma Pack vs. Convention C, portability issue?
\myfnhref{ groups.google.es/group/comp.lang.ada/msg/6698960624779ec7
}{ Pragma Pack vs. Convention C, portability issue?
}. \textit{{}},
} The compiler is free to ignore the pragma, therefore if a specific representation of a type is required, \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FRepresentation\%20clauses}{representation clauses} should be used instead (record representation clauses, and/or attributes \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Size}{\textquotesingle{}Size} or \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Component_Size}{\textquotesingle{}Component_Size}).
\subsection{Bit-{}wise operations}
\label{488}

Although in Ada 83 packed boolean arrays were used for bit-{}wise operations,\myfootnote{Software Productivity Consortium (October 1995). {\itshape Ada 95 Quality and Style Guide}, \symbol{34}\AdaSGThree{10}{5}{7}{Packed Boolean Array Shifts}\symbol{34}} since Ada 95 \mylref{151}{modular types} are more adequate for these operations.\myfootnote{Software Productivity Consortium (October 1995). {\itshape Ada 95 Quality and Style Guide}, \symbol{34}\AdaSGThree{10}{6}{3}{Bit Operations on Modular Types}\symbol{34}} The argument may be weighed against the advantages of named Boolean array indexes such as {\ttfamily Traffic_Lights\LaTeXIdentityTemplate{\textquotesingle{}}\LaTeXIdentityTemplate{(}Red \LaTeXIdentityTemplate{=>{}} True\LaTeXIdentityTemplate{,} \LaTeXBF{others} \LaTeXIdentityTemplate{=>{}} False\LaTeXIdentityTemplate{)}}, depending on use case.
\section{\textquotesingle{}Bit_Order attribute}
\label{489}
\label{490}
The {\bfseries \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Bit\%20Order}{\textquotesingle{}Bit_Order} attribute is not intended to convert data between a big-{}endian and a little-{}endian machine} (it affects bit numbering, not byte order). The compiler will not generate code to reorder multi-{}byte fields when a non-{}native bit order is specified.\myfootnote{. . \textit{{}},
}\myfootnote{\AdaRMCiteFive{13}{5}{3}{Bit Ordering}{9/2}{I4589}{Bit_Order clauses make it possible to write record_representation_clauses that can be ported between machines having different bit ordering. They do not guarantee transparent exchange of data between such machines.}}\myfootnote{\myhref{
 | title = Gem #140: Bridging the Endianness Gap
 | accessdate = 2013-01-31
 | author = Thomas Quinot
 | year = 2013
 | month = January
 | publisher = AdaCore
 | quote = the order in which the bytes that constitute machine scalars are written to memory is not changed by the Bit_Order attribute -- only the indices of bits within machine scalars are changed.
}{}. . Retrieved }

\section{\textquotesingle{}Size attribute}
\label{491}
\label{492}
A common Ada programming mistake is to assume that specifying \textquotesingle{}Size for a type T forces the compiler to allocate exactly this number of bits for objects of this type. This is not true. {\bfseries The specified T\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Size}{\textquotesingle{}Size} will force the compiler to use this size for components in packed arrays and records and in Unchecked_Conversion}, but the compiler is still free to allocate more bits for stand-{}alone objects.

Use \textquotesingle{}Size on the object itself to force the object to the specified value.
\section{See also}
\label{493}
\subsection{Wikibook}
\label{494}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{467}{Ada Programming/Tips}
\end{myitemize}

\section{References}
\label{495}

\chapter{Algorithms}

\myminitoc
\label{496}

\label{497}

\label{498}\section{Introduction}
\label{499}

Welcome to the Ada implementations of the \myhref{http://en.wikibooks.org/wiki/Algorithms}{Algorithms} Wikibook. For those who are new to \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming} a few notes:

\begin{myitemize}
\item{} All examples are fully functional with all the needed input and output operations. However, only the code needed to outline the algorithms at hand is copied into the text -{} the full samples are available via the download links. {\small }(Note: It can take up to 48 hours until the cvs is updated){\small }.
\item{} We seldom use predefined types in the sample code but define special types suitable for the algorithms at hand.
\item{} Ada allows for default function parameters; however, we always fill in and name all parameters, so the reader can see which options are available.
\item{} We seldom use shortcuts -{} like using the attributes \LaTeXIT{Image} or \LaTeXIT{Value} for String <{}=>{} Integer conversions.
\end{myitemize}

All these rules make the code more elaborate than perhaps needed. However, we also hope it makes the code easier to understand

\myhref{http://en.wikibooks.org/wiki/Category\%3AAda\%20Programming}{Category:Ada Programming}
\label{500}

\section{Chapter 1: Introduction}
\label{501}

The following subprograms are implementations of the \myhref{http://en.wikibooks.org/wiki/Algorithms\%2FIntroduction\%23Inventing\%20an\%20Algorithm}{{\itshape Inventing an Algorithm} examples}.
\subsection{To Lower}
\label{502}

The Ada example code does not append to the array as the algorithms. Instead we create an empty array of the desired length and then replace the characters inside.
\\

\TemplateSpaceIndent{ {}\ADAFile{to_lower_1.adb} \newline{}
 {} {} {}\LaTeXBF{function} {}To_Lower {}(C {}: {}Character) {}\LaTeXBF{return} {}Character {}\LaTeXBF{renames} \newline{}
 {} {} {} {} {} {}Ada.Characters.Handling.To_Lower; \newline{}
 {} \newline{}
 {} {} {}-{}-{} {} {}tolower {}-{} {}translates {}all {}alphabetic, {}uppercase {}characters \newline{}
 {} {} {}-{}-{} {} {}in {}str {}to {}lowercase \newline{}
 {} {} {}\LaTeXBF{function} {}To_Lower {}(Str {}: {}String) {}\LaTeXBF{return} {}String {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}Result {}: {}String {}(Str\textquotesingle{}\LaTeXIT{Range}); \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{for} {}C {}\LaTeXBF{in} {} {}Str\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}Result {}(C) {}:= {}To_Lower {}(Str {}(C)); \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{return} {}Result; \newline{}
 {} {} {}\LaTeXBF{end} {}To_Lower;}

Would the append approach be impossible with Ada? No, but it would be significantly more complex and slower.
\subsection{Equal Ignore Case}
\label{503}

\ADAFile{to_lower_2.adb}
\\

\TemplateSpaceIndent{ {} {} {}-{}-{} {} {}equal-{}ignore-{}case {}-{}-{} {}returns {}true {}if {}s {}or {}t {}are {}equal, \newline{}
 {} {} {}-{}-{} {} {}ignoring {}case \newline{}
 {} {} {}\LaTeXBF{function} {}Equal_Ignore_Case \newline{}
 {} {} {} {} {}(S {} {} {} {}: {}String; \newline{}
 {} {} {} {} {} {}T {} {} {} {}: {}String) \newline{}
 {} {} {} {} {} {}\LaTeXBF{return} {}Boolean \newline{}
 {} {} {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}O {}: {}\LaTeXBF{constant} {}Integer {}:= {}S\textquotesingle{}\LaTeXIT{First} {}-{} {}T\textquotesingle{}\LaTeXIT{First}; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{if} {}T\textquotesingle{}\LaTeXIT{Length} {}/= {}S\textquotesingle{}\LaTeXIT{Length} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}False; {} {}-{}-{} {} {}if {}they {}aren\textquotesingle{}t {}the {}same {}length, {}they \newline{}
 {}-{}-{} {} {}aren\textquotesingle{}t {}equal \newline{}
 {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {} {}S\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{if} {}To_Lower {}(S {}(I)) {}/= \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}To_Lower {}(T {}(I {}+ {}O)) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}False; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{return} {}True; \newline{}
 {} {} {}\LaTeXBF{end} {}Equal_Ignore_Case;}

\label{504}

\section{Chapter 6: Dynamic Programming}
\label{505}
\subsection{Fibonacci numbers}
\label{506}

The following codes are implementations of the \myhref{http://en.wikibooks.org/wiki/Algorithms\%2FDynamic\%20Programming\%23Fibonacci_Numbers}{Fibonacci-{}Numbers examples}.
\subsubsection{Simple Implementation}
\label{507}

\ADAFile{fibonacci_1.adb}
\\

\TemplateSpaceIndent{ {}...}

To calculate Fibonacci numbers negative values are not needed so we define an integer type which starts at 0. With the integer type defined you can calculate up until {\ttfamily Fib (87)}. {\ttfamily Fib (88)} will result in an {\ttfamily Constraint_Error}.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Integer_Type {}\LaTeXBF{is} {}\LaTeXBF{range} {}0 {}.. {}999_999_999_999_999_999;}

You might notice that there is not equivalence for the {\ttfamily assert (n >{}= 0)} from the original example. Ada will test the correctness of the parameter {\itshape before} the function is called.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{function} {}Fib {}(n {}: {}Integer_Type) {}\LaTeXBF{return} {}Integer_Type {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{if} {}n {}= {}0 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}0; \newline{}
 {} {} {} {} {} {}\LaTeXBF{elsif} {}n {}= {}1 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}1; \newline{}
 {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}Fib {}(n {}-{} {}1) {}+ {}Fib {}(n {}-{} {}2); \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {}\LaTeXBF{end} {}Fib; \newline{}
 {} \newline{}
 {}...}

\subsubsection{Cached Implementation}
\label{508}

\ADAFile{fibonacci_2.adb}\\

\TemplateSpaceIndent{ {}...}

For this implementation we need a special cache type can also store a -{}1 as \symbol{34}not calculated\symbol{34} marker
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Cache_Type {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}1 {}.. {}999_999_999_999_999_999;}

The actual type for calculating the fibonacci numbers continues to start at 0. As it is a \LaTeXBF{subtype} of the cache type Ada will automatically convert between the two. {\small (the conversion is -{} of course -{} checked for validity)}
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{subtype} {}Integer_Type {}\LaTeXBF{is} {}Cache_Type {}\LaTeXBF{range} \newline{}
 {} {} {} {} {} {}0 {}.. {}Cache_Type\textquotesingle{}\LaTeXIT{Last};}

In order to know how large the cache need to be we first read the actual value from the command line.
\\

\TemplateSpaceIndent{ {} {} {}Value {}: {}\LaTeXBF{constant} {}Integer_Type {}:= \newline{}
 {} {} {} {} {} {}Integer_Type\textquotesingle{}Value {}(Ada.Command_Line.Argument {}(1));}

The Cache array starts with element 2 since Fib (0) and Fib (1) are constants and ends with the value we want to calculate.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Cache_Array {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{array} {}(Integer_Type {}\LaTeXBF{range} {}2 {}.. {}Value) {}\LaTeXBF{of} {}Cache_Type;}

The Cache is initialized to the first valid value of the cache type {\mbox{---}} this is {\ttfamily -{}1}.
\\

\TemplateSpaceIndent{ {} {} {}F {}: {}Cache_Array {}:= {}(\LaTeXBF{others} {}=>{} {}Cache_Type\textquotesingle{}First);}

What follows is the actual algorithm.
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{function} {}Fib {}(N {}: {}Integer_Type) {}\LaTeXBF{return} {}Integer_Type {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{if} {}N {}= {}0 {}\LaTeXBF{or} {}\LaTeXBF{else} {}N {}= {}1 {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}N; \newline{}
 {} {} {} {} {} {}\LaTeXBF{elsif} {}F {}(N) {}/= {}Cache_Type\textquotesingle{}First {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}F {}(N); \newline{}
 {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {}F {}(N) {}:= {}Fib {}(N {}-{} {}1) {}+ {}Fib {}(N {}-{} {}2); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}F {}(N); \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {}\LaTeXBF{end} {}Fib; \newline{}
 {} \newline{}
 {}...}

This implementation is faithful to the original from the \myhref{http://en.wikibooks.org/wiki/Algorithms}{Algorithms} book. However, in Ada you would normally do it a little different:

\ADAFile{fibonacci_3.adb}

when you use a slightly larger array which also stores the elements 0 and 1 and initializes them to the correct values
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Cache_Array {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{array} {}(Integer_Type {}\LaTeXBF{range} {}0 {}.. {}Value) {}\LaTeXBF{of} {}Cache_Type; \newline{}
 {} \newline{}
 {} {} {}F {}: {}Cache_Array {}:= \newline{}
 {} {} {} {} {} {}(0 {} {} {} {} {} {}=>{} {}0, \newline{}
 {} {} {} {} {} {} {}1 {} {} {} {} {} {}=>{} {}1, \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{others} {}=>{} {}Cache_Type\textquotesingle{}First);}

and then you can remove the first \LaTeXBF{if} path.
\\

\TemplateSpaceIndent{ {}\sout{ \LaTeXBF{if} N = 0 \LaTeXBF{or} \LaTeXBF{else} N = 1 \LaTeXBF{then}\\

\TemplateSpaceIndent{ {} {} {} {} {} {} {} {} {}\LaTeXBF{return} {}N; \newline{}
 {} {} {} {} {} {}els}
}\\

\TemplateSpaceIndent{ {}\LaTeXBF{if} {}F {}(N) {}/= {}Cache_Type\textquotesingle{}First {}\LaTeXBF{then}}
}

This will save about 45\% of the execution-{}time {\small (measured on Linux i686)} while needing only two more elements in the cache array.
\subsubsection{Memory Optimized Implementation}
\label{509}

This version looks just like the original in WikiCode.

\ADAFile{fibonacci_4.adb}
\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Integer_Type {}\LaTeXBF{is} {}\LaTeXBF{range} {}0 {}.. {}999_999_999_999_999_999; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{function} {}Fib {}(N {}: {}Integer_Type) {}\LaTeXBF{return} {}Integer_Type {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}U {}: {}Integer_Type {}:= {}0; \newline{}
 {} {} {} {} {} {}V {}: {}Integer_Type {}:= {}1; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {} {}2 {}.. {}N {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}Calculate_Next {}: {}\LaTeXBF{declare} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}T {}: {}\LaTeXBF{constant} {}Integer_Type {}:= {}U {}+ {}V; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}U {}:= {}V; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}V {}:= {}T; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Calculate_Next; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop}; \newline{}
 {} {} {} {} {} {}\LaTeXBF{return} {}V; \newline{}
 {} {} {}\LaTeXBF{end} {}Fib;}

\subsubsection{No 64 bit integers}
\label{510}

Your Ada compiler does not support 64 bit integer numbers? Then you could try to use \mylref{173}{decimal numbers} instead. Using decimal numbers results in a slower program {\small (takes about three times as long)} but the result will be the same.

The following example shows you how to define a suitable decimal type. Do experiment with the \LaTeXBF{digits} and \LaTeXBF{range} parameters until you get the optimum out of your Ada compiler.
\\

\TemplateSpaceIndent{ {}\ADAFile{fibonacci_5.adb}}

\\

\TemplateSpaceIndent{ {} {} {}\LaTeXBF{type} {}Integer_Type {}\LaTeXBF{is} {}\LaTeXBF{delta} {}1.0 {}\LaTeXBF{digits} {}18 {}\LaTeXBF{range} \newline{}
 {} {} {} {} {} {}0.0 {}.. {}999_999_999_999_999_999.0;}

You should know that floating point numbers are unsuitable for the calculation of fibonacci numbers. They will not report an error condition when the number calculated becomes too large {\mbox{---}} instead they will lose in precision which makes the result meaningless.

\chapter{Function overloading}

\myminitoc
\label{511}

\label{512}

\\

\TemplateSpaceIndent{ {}\ADAFile{function_overloading.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{function} {}Generate_Number {}(MaxValue {}: {}Integer) {}\LaTeXBF{return} {}Integer {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{subtype} {}Random_Type {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}0 {}.. {}MaxValue; \newline{}
 {} {} {} {}\LaTeXBF{package} {}Random_Pack {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada.Numerics.Discrete_Random} {}(Random_Type); \newline{}
 {} {} \newline{}
 {} {} {} {}G {}: {}Random_Pack.Generator; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Random_Pack.Reset {}(G); \newline{}
 {} {} {} {}\LaTeXBF{return} {}Random_Pack.Random {}(G); \newline{}
 {}\LaTeXBF{end} {}Generate_Number; \newline{}
 {} \newline{}
 {} \newline{}
 {}\LaTeXBF{function} {}Generate_Number {}(MinValue {}: {}Integer; \newline{}
 {}MaxValue {}: {}Integer) {}\LaTeXBF{return} {}Integer \newline{}
 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{subtype} {}Random_Type {}\LaTeXBF{is} {}Integer {}\LaTeXBF{range} {}MinValue {}.. {}MaxValue; \newline{}
 {} {} {} {}\LaTeXBF{package} {}Random_Pack {}\LaTeXBF{is} {}\LaTeXBF{new} {}\LaTeXIdentityTemplate{Ada.Numerics.Discrete_Random} {}(Random_Type); \newline{}
 {} {} \newline{}
 {} {} {} {}G {}: {}Random_Pack.Generator; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Random_Pack.Reset {}(G); \newline{}
 {} {} {} {}\LaTeXBF{return} {}Random_Pack.Random {}(G); \newline{}
 {}\LaTeXBF{end} {}Generate_Number;}

\\

\TemplateSpaceIndent{ {} {}Number_1 {}: {}Integer {}:= {}Generate_Number {}(10);}

\\

\TemplateSpaceIndent{ {} {}Number_2 {}: {}Integer {}:= {}Generate_Number {}(6, {}10);}

\section{Function overloading in Ada}
\label{513}

Ada supports all six signature options but if you use the arguments\textquotesingle{} name as option you will always have to name the parameter when calling the function. i.e.:
\\

\TemplateSpaceIndent{ {}Number_2 {}: {}Integer {}:= {}Generate_Number {}(MinValue {}=>{} {}6, \newline{}
 {}MaxValue {}=>{} {}10);}

Note that you cannot overload a generic procedure or generic function within the same package. The following example will fail to compile:
\\

\TemplateSpaceIndent{ {} {}\LaTeXBF{package} {}myPackage \newline{}
 {} {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {} {}\LaTeXBF{type} {}Value_Type {}\LaTeXBF{is} {}(<{}>{}); {} {} \newline{}
 {} {} {} {}\ADACOM{The first declaration of a generic subprogram} \newline{}
 {} {} {} {}\ADACOM{with the name \symbol{34}Generic_Subprogram\symbol{34}} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Generic_Subprogram {}(Value {}: {}\LaTeXBF{in} {}\LaTeXBF{out} {}Value_Type); \newline{}
 {} {} {} {}... \newline{}
 {} {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {} {}\LaTeXBF{type} {}Value_Type {}\LaTeXBF{is} {}(<{}>{}); {} \newline{}
 {} {} {} {}\ADACOM{This subprogram has the same name, but no} \newline{}
 {} {} {} {}\ADACOM{input or output parameters. A non-{}generic} \newline{}
 {} {} {} {}\ADACOM{procedure would be overloaded here.} \newline{}
 {} {} {} {}\ADACOM{Since this procedure is generic, overloading} \newline{}
 {} {} {} {}\ADACOM{is not allowed and this package will not compile.} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Generic_Subprogram; \newline{}
 {} {} {} {}... \newline{}
 {} {} {} {}\LaTeXBF{generic} \newline{}
 {} {} {} {} {} {}\LaTeXBF{type} {}Value_Type {}\LaTeXBF{is} {}(<{}>{}); {} \newline{}
 {} {} {} {}\ADACOM{The same situation.} \newline{}
 {} {} {} {}\ADACOM{Even though this is a function and not} \newline{}
 {} {} {} {}\ADACOM{a procedure, generic overloading of} \newline{}
 {} {} {} {}\ADACOM{the name \symbol{34}Generic_Subprogram\symbol{34} is not allowed.} \newline{}
 {} {} {} {}\LaTeXBF{function} {}Generic_Subprogram {}(Value {}: {}Value_Type) {}\LaTeXBF{return} {}Value_Type; \newline{}
 {} {}\LaTeXBF{end} {}myPackage;}

\section{See also}
\label{514}
\subsection{Wikibook}
\label{515}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{268}{Ada Programming/Subprograms}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{516}

\begin{myitemize}
\item{} \AdaRMNineFive{6}{6}{Overloading of Operators}
\item{} \AdaRMNineFive{8}{6}{The Context of Overload Resolution}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{517}

\begin{myitemize}
\item{} \AdaRM{6}{6}{Overloading of Operators}
\item{} \AdaRM{8}{6}{The Context of Overload Resolution}
\end{myitemize}

\chapter{Mathematical calculations}

\myminitoc
\label{518}

\label{519}

Ada is very well suited for all kind of calculations. You can define you own fixed point and floating point types and {\mbox{---}} with the aid of generic packages call all the mathematical functions you need. In that respect Ada is on par with \myhref{http://en.wikibooks.org/wiki/Programming\%3AFortran}{Fortran}. This module will show you how to use them and while we progress we create a simple \myhref{http://en.wikipedia.org/wiki/Reverse\%20Polish\%20notation}{RPN} calculator.
\section{Simple calculations}
\label{520}
\subsection{Addition}
\label{521}

Additions can be done using the predefined operator \LaTeXIdentityTemplate{+}. The operator is predefined for all numeric types and the following, working code, demonstrates its use:
\\

\TemplateSpaceIndent{ {}\ADAFile{numeric_1.adb} \newline{}
 {} \newline{}
 {}\ADACOM{\myhref{http://www.adaic.org/standards/95lrm/html/RM-A-10-1.html}{ The Package Text_IO}} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Numeric_1 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Value_Type {}\LaTeXBF{is} {}\LaTeXBF{digits} {}12 \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{range} {}-{}999_999_999_999.0e999 {}.. {}999_999_999_999.0e999; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {} {} {} {}\LaTeXBF{package} {}F_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {} {}Ada.Text_IO.Float_IO {}(Value_Type); \newline{}
 {} \newline{}
 {} {} {} {}Value_1 {}: {}Value_Type; \newline{}
 {} {} {} {}Value_2 {}: {}Value_Type; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}First {}Value {}: {}\symbol{34}); \newline{}
 {} {} {} {}F_IO.Get {}(Value_1); \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34}Second {}Value {}: {}\symbol{34}); \newline{}
 {} {} {} {}F_IO.Get {}(Value_2); \newline{}
 {} \newline{}
 {} {} {} {}F_IO.Put {}(Value_1); \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34} {}+ {}\symbol{34}); \newline{}
 {} {} {} {}F_IO.Put {}(Value_2); \newline{}
 {} {} {} {}T_IO.Put {}(\symbol{34} {}= {}\symbol{34}); \newline{}
 {} {} {} {}F_IO.Put {}(Value_1 {}\LaTeXIdentityTemplate{+} {}Value_2); \newline{}
 {}\LaTeXBF{end} {}Numeric_1;}

\subsection{Subtraction}
\label{522}

Subtractions can be done using the predefined operator \LaTeXIdentityTemplate{-{}}. The following extended demo shows the use of + and -{} operator together:
\\

\TemplateSpaceIndent{ {}\ADAFile{numeric_2.adb} \newline{}
 {} \newline{}
 {}\ADACOM{\myhref{http://www.adaic.org/standards/95lrm/html/RM-A-10-1.html}{ The Package Text_IO}} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}\LaTeXIdentityTemplate{;} \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Numeric_2 \newline{}
 {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{type} {}Value_Type \newline{}
 {} {} {}\LaTeXBF{is} {}\LaTeXBF{digits} \newline{}
 {} {} {} {} {} {}12 \newline{}
 {} {} {}\LaTeXBF{range} \newline{}
 {} {} {} {} {} {}-{}999_999_999_999.0e999 {}.. {}999_999_999_999.0e999; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} {} {}\LaTeXBF{package} {}F_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {} {}Ada.Text_IO.Float_IO {}(Value_Type); \newline{}
 {} \newline{}
 {} {} {}Value_1 {} {} {}: {}Value_Type; \newline{}
 {} {} {}Value_2 {} {} {}: {}Value_Type; \newline{}
 {} {} {}Result {} {} {} {}: {}Value_Type; \newline{}
 {} {} {}Operation {}: {}Character; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}T_IO.Put {}(\symbol{34}First {}Value {} {}: {}\symbol{34}); \newline{}
 {} {} {}F_IO.Get {}(Value_1); \newline{}
 {} {} {}T_IO.Put {}(\symbol{34}Second {}Value {}: {}\symbol{34}); \newline{}
 {} {} {}F_IO.Get {}(Value_2); \newline{}
 {} {} {}T_IO.Put {}(\symbol{34}Operation {} {} {} {}: {}\symbol{34}); \newline{}
 {} {} {}T_IO.Get {}(Operation); \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{case} {}Operation {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{when} {}\textquotesingle{}+\textquotesingle{} {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {}Result {}:= {}Value_1 {}+ {}Value_2; \newline{}
 {} {} {} {} {} {}\LaTeXBF{when} {}\textquotesingle{}-{}\textquotesingle{} {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {}Result {}:= {}Value_1 {}-{} {}Value_2; \newline{}
 {} {} {} {} {} {}\LaTeXBF{when} {}\LaTeXBF{others} {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {}T_IO.Put_Line {}(\symbol{34}Illegal {}Operation.\symbol{34}); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{goto} {}Exit_Numeric_2; \newline{}
 {} {} {}\LaTeXBF{end} {}\LaTeXBF{case}; \newline{}
 {} \newline{}
 {} {} {}F_IO.Put {}(Value_1); \newline{}
 {} {} {}T_IO.Put {}(\symbol{34} {}\symbol{34}); \newline{}
 {} {} {}T_IO.Put {}(Operation); \newline{}
 {} {} {}T_IO.Put {}(\symbol{34} {}\symbol{34}); \newline{}
 {} {} {}F_IO.Put {}(Value_2); \newline{}
 {} {} {}T_IO.Put {}(\symbol{34} {}= {}\symbol{34}); \newline{}
 {} {} {}F_IO.Put {}(Result); \newline{}
 {} \newline{}
 {}\LaTeXIdentityTemplate{<{}<{}}Exit_Numeric_2\LaTeXIdentityTemplate{>{}>{}} \newline{}
 {} {} {}\LaTeXBF{return}; \newline{}
 {} \newline{}
 {}\LaTeXBF{end} {}Numeric_2;}

Purists might be surprised about the use of goto {\mbox{---}} but some people prefer the use of goto over the use of multiple return statements if inside functions {\mbox{---}} given that, the opinions on this topic vary strongly. See the \mylref{75}{isn\textquotesingle{}t goto evil} article.
\subsection{Multiplication}
\label{523}

Multiplication can be done using the predefined operator \LaTeXIdentityTemplate{*}. For a demo see the next chapter about Division.
\subsection{Division}
\label{524}

Divisions can be done using the predefined operators \LaTeXIdentityTemplate{/}, \LaTeXIdentityTemplate{mod}, \LaTeXIdentityTemplate{rem}. The operator \LaTeXIdentityTemplate{/} performs a normal division, \LaTeXIdentityTemplate{mod} returns a modulus division and \LaTeXIdentityTemplate{rem} returns the remainder of the modulus division.

The following extended demo shows the use of the \LaTeXIdentityTemplate{+}, \LaTeXIdentityTemplate{-{}}, \LaTeXIdentityTemplate{*} and \LaTeXIdentityTemplate{/} operators together as well as the use of a four number wide stack to store intermediate results:

The operators \LaTeXIdentityTemplate{mod} and \LaTeXIdentityTemplate{rem} are not part of the demonstration as they are only defined for integer types.
\\

\TemplateSpaceIndent{ {}\ADAFile{numeric_3.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Numeric_3 {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Pop_Value; \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Push_Value; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Value_Type {}\LaTeXBF{is} {}\LaTeXBF{digits} {}12 {}\LaTeXBF{range} \newline{}
 {} {} {} {} {} {}-{}999_999_999_999.0e999 {}.. {}999_999_999_999.0e999; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{type} {}Value_Array {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Natural {}\LaTeXBF{range} {}1 {}.. {}4) {}\LaTeXBF{of} {}Value_Type; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {} {} {} {}\LaTeXBF{package} {}F_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Text_IO.Float_IO {}(Value_Type); \newline{}
 {} \newline{}
 {} {} {} {}Values {} {} {} {}: {}Value_Array {}:= {}(\LaTeXBF{others} {}=>{} {}0.0); \newline{}
 {} {} {} {}Operation {}: {}String {}(1 {}.. {}40); \newline{}
 {} {} {} {}Last {} {} {} {} {} {}: {}Natural; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Pop_Value {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}Values {}(Values\textquotesingle{}\LaTeXIT{First} {}+ {}1 {}.. {}Values\textquotesingle{}\LaTeXIT{Last}) {}:= \newline{}
 {} {} {} {} {} {} {} {} {}Values {}(Values\textquotesingle{}\LaTeXIT{First} {}+ {}2 {}.. {}Values\textquotesingle{}\LaTeXIT{Last}) {}\& {}0.0; \newline{}
 {} {} {} {}\LaTeXBF{end} {}Pop_Value; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{procedure} {}Push_Value {}\LaTeXBF{is} \newline{}
 {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {}Values {}(Values\textquotesingle{}\LaTeXIT{First} {}+ {}1 {}.. {}Values\textquotesingle{}\LaTeXIT{Last}) {}:= \newline{}
 {} {} {} {} {} {} {} {} {}Values {}(Values\textquotesingle{}\LaTeXIT{First} {}.. {}Values\textquotesingle{}\LaTeXIT{Last} {}-{} {}1); \newline{}
 {} {} {} {}\LaTeXBF{end} {}Push_Value; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {} {}Main_Loop: \newline{}
 {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {}T_IO.Put {}(\symbol{34}>{}\symbol{34}); \newline{}
 {} {} {} {} {} {} {}T_IO.Get_Line {}(Operation, {}Last); \newline{}
 {} \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{if} {}Last {}= {}1 {}\LaTeXBF{and} {}\LaTeXBF{then} {}Operation {}(1) {}= {}\textquotesingle{}+\textquotesingle{} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Values {}(1) {}+ {}Values {}(2); \newline{}
 {} {} {} {} {} {} {} {} {} {}Pop_Value; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Last {}= {}1 {}\LaTeXBF{and} {}\LaTeXBF{then} {}Operation {}(1) {}= {}\textquotesingle{}-{}\textquotesingle{} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Values {}(1) {}+ {}Values {}(2); \newline{}
 {} {} {} {} {} {} {} {} {} {}Pop_Value; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Last {}= {}1 {}\LaTeXBF{and} {}\LaTeXBF{then} {}Operation {}(1) {}= {}\textquotesingle{}*\textquotesingle{} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Values {}(1) {}* {}Values {}(2); \newline{}
 {} {} {} {} {} {} {} {} {} {}Pop_Value; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Last {}= {}1 {}\LaTeXBF{and} {}\LaTeXBF{then} {}Operation {}(1) {}= {}\textquotesingle{}/\textquotesingle{} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Values {}(1) {}/ {}Values {}(2); \newline{}
 {} {} {} {} {} {} {} {} {} {}Pop_Value; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Last {}= {}4 {}\LaTeXBF{and} {}\LaTeXBF{then} {}Operation {}(1 {}.. {}4) {}= {}\symbol{34}exit\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{exit} {}Main_Loop; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {} {}Push_Value; \newline{}
 {} {} {} {} {} {} {} {} {} {}F_IO.Get {}(From {}=>{} {}Operation, {}Item {}=>{} {}Values {}(1), {}Last {}=>{} \newline{}
 {}Last); \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {} {} \newline{}
 {} {} {} {} {} {} {}Display_Loop: \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}\LaTeXBF{reverse} {}Value_Array\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {}F_IO.Put \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}(Item {}=>{} {}Values {}(I), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Fore {}=>{} {}F_IO.Default_Fore, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Aft {} {}=>{} {}F_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}Exp {} {}=>{} {}4); \newline{}
 {} {} {} {} {} {} {} {} {} {}T_IO.New_Line; \newline{}
 {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}Display_Loop; \newline{}
 {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}Main_Loop; \newline{}
 {} \newline{}
 {} {} {} {}\LaTeXBF{return}; \newline{}
 {}\LaTeXBF{end} {}Numeric_3;}

\section{Exponential calculations}
\label{525}

All exponential functions are defined inside the generic package \LaTeXIdentityTemplate{Ada}.
\subsection{Power of}
\label{526}

Calculation of the form {x^y} are performed by the operator \LaTeXIdentityTemplate{**}. Beware: There are two versions of this operator. The predefined operator \LaTeXIdentityTemplate{**} allows only for Standard.Integer to be used as exponent. If you need to use a floating point type as exponent you need to use the \LaTeXIdentityTemplate{**} defined in \LaTeXIdentityTemplate{Ada}.
\subsection{Root}
\label{527}

The square root {$ \sqrt{x} $} is calculated with the function {\ttfamily Sqrt()}. There is no function defined to calculate an arbitrary root {$\sqrt[n]{x}$}. However you can use logarithms to calculate an arbitrary root using the mathematical identity: {$ \sqrt[b]{a} = e^{\log_e (a) / b} $} which will become {\ttfamily root := Exp (Log (a) / b)} in Ada. Alternatively, use {$\sqrt[b]{a}=a^{\frac1b}$} which, in Ada, is {\ttfamily root := a**(1.0/b)}.
\subsection{Logarithm}
\label{528}

\LaTeXIdentityTemplate{Ada} defines a function for both the arbitrary logarithm {$log_n(x)$} and the natural logarithm {$log_e(x)$}, both of which have the same name {\ttfamily Log()} distinguished by the number of parameters.
\subsection{Demonstration}
\label{529}

The following extended demo shows the how to use the exponential functions in Ada. The new demo also uses \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Unbounded}{Unbounded_String} instead of Strings which make the comparisons easier.

Please note that from now on we won\textquotesingle{}t copy the full sources any more. Do follow the download links to see the full program.
\\

\TemplateSpaceIndent{ {}\ADAFile{numeric_4.adb} \newline{}
 {} \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Numeric_4 {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{package} {}Str {}\LaTeXBF{renames} {}Ada.Strings.Unbounded; \newline{}
 {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Pop_Value; \newline{}
 {} {} {}\LaTeXBF{procedure} {}Push_Value; \newline{}
 {} {} {}\LaTeXBF{function} {}Get_Line {}\LaTeXBF{return} {}Str.Unbounded_String; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Value_Type {}\LaTeXBF{is} {}\LaTeXBF{digits} {}12 {}\LaTeXBF{range} \newline{}
 {} {} {} {} {} {}-{}999_999_999_999.0e999 {}.. {}999_999_999_999.0e999; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Value_Array {}\LaTeXBF{is} {}\LaTeXBF{array} {}(Natural {}\LaTeXBF{range} {}1 {}.. {}4) {}\LaTeXBF{of} {}Value_Type; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{package} {}F_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Text_IO.Float_IO {}(Value_Type); \newline{}
 {} {} {}\LaTeXBF{package} {}Value_Functions {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Numerics.Generic_Elementary_Functions {}(\newline{}
 {} {} {} {} {} {}Value_Type); \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{use} {}Value_Functions; \newline{}
 {} {} {}\LaTeXBF{use} {}\LaTeXBF{type} {}Str.Unbounded_String; \newline{}
 {} \newline{}
 {} {} {}Values {} {} {} {}: {}Value_Array {}:= {}(\LaTeXBF{others} {}=>{} {}0.0); \newline{}
 {} {} {}Operation {}: {}Str.Unbounded_String; \newline{}
 {} {} {}Dummy {} {} {} {} {}: {}Natural; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{function} {}Get_Line {}\LaTeXBF{return} {}Str.Unbounded_String {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}BufferSize {}: {}\LaTeXBF{constant} {}:= {}2000; \newline{}
 {} {} {} {} {} {}Retval {} {} {} {} {}: {}Str.Unbounded_String {}:= {}Str.Null_Unbounded_String; \newline{}
 {} {} {} {} {} {}Item {} {} {} {} {} {} {}: {}String {}(1 {}.. {}BufferSize); \newline{}
 {} {} {} {} {} {}Last {} {} {} {} {} {} {}: {}Natural; \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}Get_Whole_Line {}: \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}T_IO.Get_Line {}(Item {}=>{} {}Item, {}Last {}=>{} {}Last); \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Str.Append {}(Source {}=>{} {}Retval, {}New_Item {}=>{} {}Item {}(1 {}.. \newline{}
 {}Last)); \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{exit} {}Get_Whole_Line {}\LaTeXBF{when} {}Last {}<{} {}Item\textquotesingle{}\LaTeXIT{Last}; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}Get_Whole_Line; \newline{}
 {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{return} {}Retval; \newline{}
 {} {} {}\LaTeXBF{end} {}Get_Line; \newline{}
 {} \newline{}
 {}... \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Main_Loop {}: \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}T_IO.Put {}(\symbol{34}>{}\symbol{34}); \newline{}
 {} {} {} {} {} {} {} {} {}Operation {}:= {}Get_Line; \newline{}
 {} \newline{}
 {}... \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}e\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}insert {}e \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Push_Value; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Ada.Numerics.e; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}**\symbol{34} {}\LaTeXBF{or} {}\LaTeXBF{else} {}Operation {}= {}\symbol{34}\^{}\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}power {}of {}x\^{}y \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Values {}(1) {}** {}Values {}(2); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Pop_Value; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}sqr\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}square {}root \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Sqrt {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}root\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arbritary {}root \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Exp {}(Log {}(Values {}(2)) {}/ {}Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Pop_Value; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}ln\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}natural {}logarithm \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Log {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}log\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}based {}logarithm \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Log {}(Base {}=>{} {}Values {}(1), {}X {}=>{} {}Values {}(2)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Pop_Value; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}\LaTeXBF{exit}\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{exit} {}Main_Loop; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Push_Value; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}F_IO.Get \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}(From {}=>{} {}Str.To_String {}(Operation), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Item {}=>{} {}Values {}(1), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Last {}=>{} {}Dummy); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} \newline{}
 {}... \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}Main_Loop; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{return}; \newline{}
 {}\LaTeXBF{end} {}Numeric_4;}

\section{Higher math}
\label{530}
\subsection{Trigonometric calculations}
\label{531}

The full set of \myhref{http://en.wikibooks.org/wiki/\%2FTrigonometry}{trigonometric} functions are defined inside the generic package \LaTeXIdentityTemplate{Ada}. All functions are defined for 2π and an arbitrary cycle value (a full cycle of revolution).

Please note the difference of calling the {\ttfamily Arctan ()} function.

\ADAFile{numeric_5.adb}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Numeric_5 {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {}... \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Put_Line {}(Value {}: {}\LaTeXBF{in} {}Value_Type); \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{use} {}Value_Functions; \newline{}
 {} {} {}\LaTeXBF{use} {}\LaTeXBF{type} {}Str.Unbounded_String; \newline{}
 {} \newline{}
 {} {} {}Values {} {} {} {}: {}Value_Array {}:= {}(\LaTeXBF{others} {}=>{} {}0.0); \newline{}
 {} {} {}Cycle {} {} {} {} {}: {}Value_Type {} {}:= {}Ada.Numerics.Pi; \newline{}
 {} {} {}Operation {}: {}Str.Unbounded_String; \newline{}
 {} {} {}Dummy {} {} {} {} {}: {}Natural; \newline{}
 {} \newline{}
 {}... \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Put_Line {}(Value {}: {}\LaTeXBF{in} {}Value_Type) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{if} {}\LaTeXBF{abs} {}Value_Type\textquotesingle{}\LaTeXIT{Exponent} {}(Value) {}>{}= \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{abs} {}Value_Type\textquotesingle{}\LaTeXIT{Exponent} {}(10.0 {}** {}F_IO.Default_Aft) \newline{}
 {} {} {} {} {} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}F_IO.Put \newline{}
 {} {} {} {} {} {} {} {} {} {} {}(Item {}=>{} {}Value, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Fore {}=>{} {}F_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Aft {} {}=>{} {}F_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Exp {} {}=>{} {}4); \newline{}
 {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {}F_IO.Put \newline{}
 {} {} {} {} {} {} {} {} {} {} {}(Item {}=>{} {}Value, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Fore {}=>{} {}F_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Aft {} {}=>{} {}F_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Exp {} {}=>{} {}0); \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {}T_IO.New_Line; \newline{}
 {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{return}; \newline{}
 {} {} {}\LaTeXBF{end} {}Put_Line; \newline{}
 {} \newline{}
 {}... \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Main_Loop {}: \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}Display_Loop {}: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{for} {}I {}\LaTeXBF{in} {}\LaTeXBF{reverse} {} {}Value_Array\textquotesingle{}\LaTeXIT{Range} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Put_Line {}(Values {}(I)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}Display_Loop; \newline{}
 {} {} {} {} {} {} {} {} {}T_IO.Put {}(\symbol{34}>{}\symbol{34}); \newline{}
 {} {} {} {} {} {} {} {} {}Operation {}:= {}Get_Line; \newline{}
 {} \newline{}
 {}... \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}deg\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}switch {}to {}degrees \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Cycle {}:= {}360.0; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}rad\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}switch {}to {}degrees \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Cycle {}:= {}Ada.Numerics.Pi; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}grad\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}switch {}to {}degrees \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Cycle {}:= {}400.0; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}pi\symbol{34} {}\LaTeXBF{or} {}\LaTeXBF{else} {}Operation {}= {}\symbol{34}π\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}switch {}to {}degrees \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Push_Value; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Ada.Numerics.Pi; \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}sin\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}sinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Sin {}(X {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}cos\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}cosinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Cos {}(X {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}tan\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}tangents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Tan {}(X {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}cot\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}cotanents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Cot {}(X {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}asin\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}sinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arcsin {}(X {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}acos\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}cosinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arccos {}(X {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}atan\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}tangents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arctan {}(Y {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}acot\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}cotanents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arccot {}(X {}=>{} {}Values {}(1), {}Cycle {}=>{} {}Cycle); \newline{}
 {} \newline{}
 {}... \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}Main_Loop; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{return}; \newline{}
 {}\LaTeXBF{end} {}Numeric_5;}

The Demo also contains an improved numeric output which behaves more like a normal calculator.
\subsection{Hyperbolic calculations}
\label{532}

You guessed it: The full set of hyperbolic functions is defined inside the generic package \LaTeXIdentityTemplate{Ada}.
\\

\TemplateSpaceIndent{ {}\ADAFile{numeric_6.adb}}

\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {}\LaTeXBF{with} {}\LaTeXIdentityTemplate{Ada}; \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Numeric_6 {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{package} {}Str {}\LaTeXBF{renames} {}Ada.Strings.Unbounded; \newline{}
 {} {} {}\LaTeXBF{package} {}T_IO {}\LaTeXBF{renames} {}Ada.Text_IO; \newline{}
 {} {} {}\LaTeXBF{package} {}Exept {}\LaTeXBF{renames} {}Ada.Exceptions; \newline{}
 {} \newline{}
 {}... \newline{}
 {} \newline{}
 {} {}\LaTeXBF{begin} \newline{}
 {} {} {}Main_Loop {}: \newline{}
 {} {} {} {} {} {}\LaTeXBF{loop} \newline{}
 {} {} {} {} {} {} {} {} {}Try {}: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Display_Loop {}: \newline{}
 {}... \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}sinh\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}sinus {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Sinh {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}cosh\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}cosinus {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Coth {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}tanh\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}tangents {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Tanh {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}coth\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}cotanents {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Coth {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}asinh\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}sinus {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arcsinh {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}acosh\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}cosinus {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arccosh {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}atanh\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}tangents {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arctanh {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}acoth\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}cotanents {}hyperbolic \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arccoth {}(Values {}(1)); \newline{}
 {}... \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{exception} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{when} {}An_Exception {}: {}\LaTeXBF{others} {}=>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}T_IO.Put_Line \newline{}
 {}(Exept.Exception_Information {}(An_Exception)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{end} {}Try; \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{loop} {}Main_Loop; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{return}; \newline{}
 {}\LaTeXBF{end} {}Numeric_6;}

As added bonus this version supports error handling and therefore won\textquotesingle{}t just crash when an illegal calculation is performed.
\subsection{Complex arithmethic}
\label{533}

For \myhref{http://en.wikibooks.org/wiki/Algebra\%2FComplex\%20Numbers}{complex arithmetic} Ada provides the package \LaTeXIdentityTemplate{Ada}. This package is part of the \symbol{34}special need Annexes\symbol{34} which means it is optional. The open source Ada compiler GNAT implements all \symbol{34}special need Annexes\symbol{34} and therefore has complex arithmetic available.

Since Ada supports user defined operators, all {\small (\LaTeXIdentityTemplate{+}, \LaTeXIdentityTemplate{-{}}, \LaTeXIdentityTemplate{*})} operators have their usual meaning as soon as the package \LaTeXIdentityTemplate{Ada} has been instantiated {\small (\LaTeXBF{package} ... \LaTeXBF{is} \LaTeXBF{new} ...)} and the type has been made visible {\small (\LaTeXBF{use} \LaTeXBF{type} ...)}

Ada also provides the packages \LaTeXIdentityTemplate{Ada} and \LaTeXIdentityTemplate{Ada} which provide similar functionality to their normal counterparts. But there are some differences:

\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada} supports only the exponential and trigonometric functions which make sense in complex arithmetic.
\end{myitemize}

\begin{myitemize}
\item{} \LaTeXIdentityTemplate{Ada} is a child package of \LaTeXIdentityTemplate{Ada} and therefore needs its own \LaTeXBF{with}. Note: the {\ttfamily \LaTeXIdentityTemplate{Ada}Get ()} function is pretty fault tolerant -{} if you forget the \symbol{34},\symbol{34} or the \symbol{34}()\symbol{34} pair it will still parse the input correctly.
\end{myitemize}

So, with only a very few modifications you can convert your \symbol{34}normals\symbol{34} calculator to a calculator for complex arithmetic:

\ADAFile{numeric_7.adb}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{with} {}Ada.Text_IO.Complex_IO; \newline{}
 {}\LaTeXBF{with} {}Ada.Numerics.Generic_Complex_Types; \newline{}
 {}\LaTeXBF{with} {}Ada.Numerics.Generic_Complex_Elementary_Functions; \newline{}
 {}\LaTeXBF{with} {}Ada.Strings.Unbounded; \newline{}
 {}\LaTeXBF{with} {}Ada.Exceptions; {} \newline{}
 {} \newline{}
 {}\LaTeXBF{procedure} {}Numeric_7 {}\LaTeXBF{is} \newline{}
 {} \newline{}
 {}... \newline{}
 {} {} \newline{}
 {} {} {}\LaTeXBF{package} {}Complex_Types {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Numerics.Generic_Complex_Types {}(\newline{}
 {} {} {} {} {} {}Value_Type); \newline{}
 {} {} {}\LaTeXBF{package} {}Complex_Functions {}\LaTeXBF{is} {}\LaTeXBF{new} \newline{}
 {} {} {} {} {} {}Ada.Numerics.Generic_Complex_Elementary_Functions {}(\newline{}
 {} {} {} {} {} {}Complex_Types); \newline{}
 {} {} {}\LaTeXBF{package} {}C_IO {}\LaTeXBF{is} {}\LaTeXBF{new} {}Ada.Text_IO.Complex_IO {}(Complex_Types); \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{type} {}Value_Array {}\LaTeXBF{is} \newline{}
 {} {} {} {} {} {}\LaTeXBF{array} {}(Natural {}\LaTeXBF{range} {}1 {}.. {}4) {}\LaTeXBF{of} {}Complex_Types.Complex; \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Put_Line {}(Value {}: {}\LaTeXBF{in} {}Complex_Types.Complex); \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{use} {}\LaTeXBF{type} {}Complex_Types.Complex; \newline{}
 {} {} {}\LaTeXBF{use} {}\LaTeXBF{type} {}Str.Unbounded_String; \newline{}
 {} {} {}\LaTeXBF{use} {}Complex_Functions; \newline{}
 {} \newline{}
 {} {} {}Values {} {} {} {}: {}Value_Array {}:= \newline{}
 {} {} {} {} {} {}(\LaTeXBF{others} {}=>{} {}Complex_Types.Complex\textquotesingle{}(Re {}=>{} {}0.0, {}Im {}=>{} {}0.0)); \newline{}
 {} \newline{}
 {}... \newline{}
 {} {} \newline{}
 {} {} {}\LaTeXBF{procedure} {}Put_Line {}(Value {}: {}\LaTeXBF{in} {}Complex_Types.Complex) {}\LaTeXBF{is} \newline{}
 {} {} {}\LaTeXBF{begin} \newline{}
 {} {} {} {} {} {}\LaTeXBF{if} {}(\LaTeXBF{abs} {}Value_Type\textquotesingle{}\LaTeXIT{Exponent} {}(Value.Re) {}>{}= \newline{}
 {} {} {} {} {} {} {} {} {} {}\LaTeXBF{abs} {}Value_Type\textquotesingle{}\LaTeXIT{Exponent} {}(10.0 {}** {}C_IO.Default_Aft)) \newline{}
 {} {} {} {} {} {} {} {}\LaTeXBF{or} {}\LaTeXBF{else} {}(\LaTeXBF{abs} {}Value_Type\textquotesingle{}\LaTeXIT{Exponent} {}(Value.Im) {}>{}= \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{abs} {}Value_Type\textquotesingle{}\LaTeXIT{Exponent} {}(10.0 {}** {}C_IO.Default_Aft)) \newline{}
 {} {} {} {} {} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {}C_IO.Put \newline{}
 {} {} {} {} {} {} {} {} {} {} {}(Item {}=>{} {}Value, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Fore {}=>{} {}C_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Aft {} {}=>{} {}C_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Exp {} {}=>{} {}4); \newline{}
 {} {} {} {} {} {}\LaTeXBF{else} \newline{}
 {} {} {} {} {} {} {} {} {}C_IO.Put \newline{}
 {} {} {} {} {} {} {} {} {} {} {}(Item {}=>{} {}Value, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Fore {}=>{} {}C_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Aft {} {}=>{} {}C_IO.Default_Aft, \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}Exp {} {}=>{} {}0); \newline{}
 {} {} {} {} {} {}\LaTeXBF{end} {}\LaTeXBF{if}; \newline{}
 {} {} {} {} {} {}T_IO.New_Line; \newline{}
 {} \newline{}
 {} {} {} {} {} {}\LaTeXBF{return}; \newline{}
 {} {} {}\LaTeXBF{end} {}Put_Line; \newline{}
 {} \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} \newline{}
 {}... \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}e\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}insert {}e \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Push_Value; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= \newline{}
 {}Complex_Types.Complex\textquotesingle{}(Re {}=>{} {}Ada.Numerics.e, {}Im \newline{}
 {}=>{} {}0.0); \newline{}
 {} \newline{}
 {}... \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}pi\symbol{34} {}\LaTeXBF{or} {}\LaTeXBF{else} {}Operation {}= {}\symbol{34}π\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}insert {}pi \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Push_Value; \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= \newline{}
 {}Complex_Types.Complex\textquotesingle{}(Re {}=>{} {}Ada.Numerics.Pi, {}Im \newline{}
 {}=>{} {}0.0); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}sin\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}sinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Sin {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}cos\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}cosinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Cot {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}tan\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}tangents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Tan {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}cot\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}cotanents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Cot {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}asin\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}sinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arcsin {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}acos\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}cosinus \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arccos {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}atan\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}tangents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arctan {}(Values {}(1)); \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\LaTeXBF{elsif} {}Operation {}= {}\symbol{34}acot\symbol{34} {}\LaTeXBF{then} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {} {}arc-{}cotanents \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Values {}(1) {}:= {}Arccot {}(Values {}(1)); \newline{}
 {} \newline{}
 {}... \newline{}
 {} \newline{}
 {} {} {}\LaTeXBF{return}; \newline{}
 {}\LaTeXBF{end} {}Numeric_7;}

\subsection{Vector and Matrix Arithmetic}
\label{534}

Ada supports \myhref{http://en.wikibooks.org/wiki/Linear\%20Algebra\%2FVectors\%20in\%20Space}{vector} and \myhref{http://en.wikibooks.org/wiki/Linear_Algebra\%2FDescribing_the_Solution_Set\%23matrix}{matrix} Arithmetic for both normal real types and complex types. For those, the generic packages Ada.Numerics.Generic_Real_Arrays and Ada.Numerics.Generic_Complex_Arrays are used. Both packages offer the usual set of operations, however there is no I/O package and understandably, no package for elementary functions.

Since there is no I/O package for vector and matrix I/O creating a demo is by far more complex {\mbox{---}} and hence not ready yet. You can have a look at the current progress which will be a universal calculator merging all feature.

Status: Stalled -{} for a Vector and Matrix stack we need Indefinite_Vectors {\mbox{---}} which are currently not part of GNAT/Pro. Well I could use the booch components ...

\ADAFile{numeric_8-{}complex_calculator.ada}
\ADAFile{numeric_8-{}get_line.ada}
\ADAFile{numeric_8-{}real_calculator.ada}
\ADAFile{numeric_8-{}real_vector_calculator.ada}
\section{See also}
\label{535}
\subsection{Wikibook}
\label{536}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F-}{Ada Programming/Delimiters/-{}}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Generic_Complex_Types}{Ada Programming/Libraries/Ada.Numerics.Generic_Complex_Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Generic_Elementary_Functions}{Ada Programming/Libraries/Ada.Numerics.Generic_Elementary_Functions}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{537}

\begin{myitemize}
\item{} \AdaRMNineFive{4}{4}{Expressions}
\item{} \AdaNiveFiveRMAThree{A}{5}{1}{Elementary Functions}
\item{} \AdaNiveFiveRMAThree{A}{10}{1}{The Package Text_IO}
\item{} \AdaNiveFiveRMATwo{G}{1}{Complex Arithmetic}
\item{} \AdaNiveFiveRMATwo{G}{3}{Vector and Matrix Manipulation}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{538}

\begin{myitemize}
\item{} \AdaRM{4}{4}{Expressions}
\item{} \AdaRMAThree{A}{5}{1}{Elementary Functions}
\item{} \AdaRMAThree{A}{10}{1}{The Package Text_IO}
\item{} \ADARMATWO{G}{1}{Complex Arithmetic}
\item{} \ADARMATWO{G}{3}{Vector and Matrix Manipulation}
\end{myitemize}

\chapter{Statements}

\myminitoc
\label{539}

\label{540}

\label{541}
{\itshape Note: there are some simplifications in the explanations below. Don\textquotesingle{}t take anything too literally.}

Most programming languages have the concept of a statement. A {\bfseries {\itshape statement}}{\itshape } is a command that the programmer gives to the computer. For example:
\\

\TemplateSpaceIndent{ {}Ada.Text_IO.Put_Line {}(\symbol{34}Hi {}there!\symbol{34});}

\label{542}
This command has a verb (\symbol{34}\symbol{34}) and other details (what to print). In this case, the command {\ttfamily \symbol{34}\symbol{34}} means \symbol{34}show on the screen,\symbol{34} not \symbol{34}print on the printer.\symbol{34} The programmer either gives the statement directly to the computer (by typing it while running a special program), or creates a text file with the command in it. You could create a file called \symbol{34}hi.txt\symbol{34}, put the above command in it, and give the file to the computer.

If you have more than one command in the file, each will be performed in order, top to bottom. So the file could contain:
\\

\TemplateSpaceIndent{ {}Ada.Text_IO.Put_Line {}(\symbol{34}Hi {}there!\symbol{34}); \newline{}
 {}Ada.Text_IO.Put_Line {}(\symbol{34}Strange {}things {}are {}afoot...\symbol{34});}

This does seem like a lot of typing but don\textquotesingle{}t worry: Ada allows you to declare shorter aliasnames if you need a long statement very often.

\chapter{Variables}

\myminitoc
\label{543}

\label{544}

\label{545}
Variables are {\itshape references} that stand in for a {\itshape value} that is contained at a certain memory address.

Variables are said to have a value and {\itshape may} have a \myhref{http://en.wikibooks.org/wiki/Computer\%20Programming\%2FTypes}{data type}. If a variable has a type, then only values of this type may be assigned to it. Variables do not always have a type.

A value can have many values of many different types: integers (7), ratios (1/2), (approximations of) reals (10.234), complex numbers (4+2i), characters (\textquotesingle{}a\textquotesingle{}), strings (\symbol{34}hello\symbol{34}), and much more.

Different languages use different names for their types and may not include any of the above.
\section{Assignment statements}
\label{546}

An {\itshape assignment statement} is used to set a variable to a new value.

Assignment statements are written as {\ttfamily {\itshape name} {\bfseries \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3A\%3D}{=}} {\itshape value}}.
\\

\TemplateSpaceIndent{ {} {} {}X {}\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3A\%3D}{=} {}10;}

\label{547}
\begin{myenumerate}
\item{} REDIRECT \myhref{http://en.wikibooks.org/wiki/Template\%3AComputer\%20Programming\%2FVariables\%2F2}{Template:Computer Programming/Variables/2}
\end{myenumerate}

Ada is the same. The declaration is as follows:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{declare} \newline{}
 {} {} {}X {}: {}Integer {}\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3A\%3D}{=} {}10; \newline{}
 {}\LaTeXBF{begin} \newline{}
 {} {} {}Do_Something {}(X); \newline{}
 {}\LaTeXBF{end};}

\label{548}\section{Uses}
\label{549}

Variables store everything in your program. The purpose of any useful program is to modify variables.
\section{See also}
\label{550}
\subsection{Ada Reference Manual}
\label{551}
\begin{myitemize}
\item{} \AdaRM{3}{3}{Objects and Named Numbers}
\end{myitemize}

\chapter{Lexical elements}

\myminitoc
\label{552}

\label{553}

\section{Character set}
\label{554}

The character set used in Ada programs is composed of:

\begin{myitemize}
\item{} Upper-{}case letters: A, ..., Z and lower-{}case letters: a, ..., z.
\item{} Digits: 0, ..., 9.
\item{} Special characters.
\end{myitemize}

Take into account that in Ada 95 the letter range includes accented characters and other letters used in Western Europe languages, those belonging to the {\itshape \myhref{http://en.wikipedia.org/wiki/ISO\%208859-1}{ISO Latin-{}1}} character set, as ç, ñ, ð, etc.

In \mylref{406}{Ada 2005} the character set has been extended to the full \myhref{http://en.wikipedia.org/wiki/Unicode}{Unicode} set, so the identifiers and comments can be written in almost any language in the world.

Ada is a case-{}insensitive language, i. e. the upper-{}case set is equivalent to the lower-{}case set except in character string literals and character literals.
\section{Lexical elements}
\label{555}

In Ada we can find the following lexical elements:

\begin{myitemize}
\item{} Identifiers
\item{} Numeric Literals
\item{} Character Literals
\item{} String Literals
\item{} \mylref{581}{Delimiters}
\item{} Comments
\item{} \mylref{568}{Reserved Words}
\end{myitemize}

Example:
\\

\TemplateSpaceIndent{ {}Temperature_In_Room {}:= {}25; {} {}\ADACOM{Temperature to be preserved in the room.}}

This line contains 5 lexical elements:

\begin{myitemize}
\item{} The identifier {\ttfamily Temperature_In_Room}.
\item{} The compound delimiter {\ttfamily :=}.
\item{} The number {\ttfamily 25}.
\item{} The single delimiter {\ttfamily ;}.
\item{} The comment {\ttfamily \ADACOM{Temperature to be preserved in the room.}}.
\end{myitemize}

\subsection{Identifiers}
\label{556}

Definition in {\itshape \myhref{http://en.wikipedia.org/wiki/Backus-Naur\%20form}{BNF}}:
\\

\TemplateSpaceIndent{ {}identifier {}::= {}letter {}\{ {}{[} {}underscore {}{]} {}letter {}| {}digit {}\} \newline{}
 {}letter {}::= {}A {}| {}... {}| {}Z {}| {}a {}| {}... {}| {}z \newline{}
 {}digit {}::= {}0 {}| {}... {}| {}9 \newline{}
 {}underscore {}::= {}_}

From this definition we must exclude the keywords that are reserved words in the language and cannot be used as identifiers.

Examples:

The following words are legal Ada identifiers:\\

\TemplateSpaceIndent{ {}Time_Of_Day {} {}TimeOfDay {} {}El_Niño_Forecast {} {}Façade {} {}counter {}ALARM}

The following ones are {\bfseries NOT} legal Ada identifiers:\\

\TemplateSpaceIndent{ {}_Time_Of_Day {} {}2nd_turn {} {}Start_ {} {}Access {} {}Price_In_\${}$\text{ }${}$\text{ }${}General__Alarm}

{\bfseries Exercise}: could you give the reason for not being legal for each one of them?
\subsection{Numbers}
\label{557}

The numeric literals are composed of the following characters:
\begin{myitemize}
\item{} digits {\ttfamily 0 .. 9}
\item{} the decimal separator {\ttfamily .},
\item{} the exponentiation sign {\ttfamily e} or {\ttfamily E},
\item{} the negative sign {\ttfamily -{}} (in exponents only) and
\item{} the underscore {\ttfamily _}.
\end{myitemize}

The underscore is used as separator for improving legibility for humans, but it is ignored by the compiler. You can separate numbers following any rationale, e.g. decimal integers in groups of three digits, or binary integers in groups of eight digits.

For example, the real number such as 98.4 can be represented as: {\ttfamily 9.84E1},
{\ttfamily 98.4e0}, {\ttfamily 984.0e-{}1} or {\ttfamily 0.984E+2}, but not as {\ttfamily 984e-{}1}.

For integer numbers, for example 1900, it could be written as {\ttfamily 1900}, {\ttfamily 19E2}, {\ttfamily 190e+1} or {\ttfamily 1_900E+0}.

A numeric literal could also be expressed in a base different to 10, by enclosing the number between {\ttfamily \#} characters, and preceding it by the base, which can be a number between 2 and 16. For example, {\ttfamily 2\#101\#}
is 101\textsubscript{2}, that is 5\textsubscript{10}; a hexadecimal number with exponent is {\ttfamily 16\#B\#E2}, that is 11 {\mbox{\times}} 16{$^{\textrm{\scriptsize 2}}$} = 2,816.

Note that there are no negative literals; e.g. -{}1 is not a literal, rather it is the literal 1 preceded by the unary minus operator.
\subsection{Character literals}
\label{558}

Their type is \LaTeXIdentityTemplate{Standard}.Character, Wide_Character or Wide_Wide_Character. They are delimited by an \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%27}{apostrophe (\textquotesingle{})}.

Examples:
\\

\TemplateSpaceIndent{ {}\textquotesingle{}A\textquotesingle{} {}\textquotesingle{}n\textquotesingle{} {}\textquotesingle{}\%\textquotesingle{}}

\subsection{String literals}
\label{559}

\mylref{259}{String} literals are of type \LaTeXIdentityTemplate{Standard}.String, Wide_String or Wide_Wide_String. They are delimited by the
\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FSpecial\%2F\%22}{quotation mark (\symbol{34})}.

Example:
\\

\TemplateSpaceIndent{ {}\symbol{34}This {}is {}a {}string {}literal\symbol{34}}

\subsection{Delimiters}
\label{560}

Single delimiters are one of the following special characters:
\\

\TemplateSpaceIndent{ {}\& {} {} {} {}\textquotesingle{} {} {} {} {}({} {} {} {}) {} {} {} {}* {} {} {} {}+ {} {} {} {}, {} {} {} {}-{} {} {} {} {}. {} {} {} {}/ {} {} {} {}: {} {} {} {}; {} {} {} {}<{} {} {} {} {}= {} {} \newline{}
 {} {}>{} {} {} {} {}}

Compound delimiters are composed of two special characters, and they are the following ones:\\

\TemplateSpaceIndent{ {}=>{} {} {} {} {}.. {} {} {} {}** {} {} {} {}:= {} {} {} {}/= {} {} {} {}>{}= {} {} {} {}<{}= {} {} {} {}<{}<{} {} {} {} {}>{}>{} {} {} {} {}<{}>{}}

You can see a full reference of the delimiters in \mylref{581}{Ada Programming/Delimiters}.
\subsection{Comments}
\label{561}

Comments in Ada start with two consecutive hyphens ({\ttfamily -{}-{}}) and end in the end of line.
\\

\TemplateSpaceIndent{ {}\ADACOM{This is a comment in a full line} \newline{}
 {}My_Savings {}:= {}My_Savings {}* {}10.0; {}\ADACOM{This is a comment in a line after a sentece} \newline{}
 {}My_Savings {}:= {}My_Savings {}* {}\ADACOM{This is a comment inserted inside a sentence} \newline{}
 {} {} {} {} {}1_000_000.0;}

A comment can appear where an end of line can be inserted.
\subsection{Reserved words}
\label{562}

Reserved words are equivalent in upper-{}case and lower-{}case letters, although the typical style is the one from the Reference Manual, that is to write them in all lower-{}case letters.

In Ada some keywords have a different meaning depending on context. You can refer to \mylref{568}{Ada Programming/Keywords} and the following pages for each keyword.

\label{563}

\begin{center}

\begin{longtable}{>{\RaggedRight}p{0.95982\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAll\%20Keywords}{Ada Keywords}}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{tabular}{>{\RaggedRight}p{0.24062\linewidth}>{\RaggedRight}p{0.17714\linewidth}>{\RaggedRight}p{0.17714\linewidth}>{\RaggedRight}p{0.17714\linewidth}>{\RaggedRight}p{0.02708\linewidth}} \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{abort}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{else}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{new}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{return}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{abs}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{elsif}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{not}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{reverse}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{abstract}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{end}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{null}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{accept}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{entry}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{select}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{access}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{exception}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{of}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{separate}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{aliased}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{exit}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{or}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{some}} (Ada{\mbox{$~$}}2012)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{all}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{others}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{subtype}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{and}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{for}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{out}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{synchronized}} (Ada{\mbox{$~$}}2005)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{array}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{function}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{overriding}} (Ada{\mbox{$~$}}2005)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{at}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{tagged}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{generic}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{package}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{task}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{begin}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{goto}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{pragma}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{terminate}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{body}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{private}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{then}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{if}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{procedure}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{type}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{case}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{in}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{protected}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{constant}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{interface}} (Ada{\mbox{$~$}}2005)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{until}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{is}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{raise}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{use}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{declare}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{range}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{delay}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{limited}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{record}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{when}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{delta}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{loop}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{rem}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{while}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{digits}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{renames}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{with}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{do}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{mod}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{requeue}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{xor}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \end{tabular}
\end{longtable}

\end{center}

\section{See also}
\label{564}
\subsection{Wikibook}
\label{565}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{581}{Ada Programming/Delimiters}
\item{} \mylref{568}{Ada Programming/Keywords}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{566}

\begin{myitemize}
\item{} \ADARMONE{2}{Lexical Elements}
\item{} \AdaRM{2}{1}{Character Set}
\item{} \AdaRM{2}{2}{Lexical Elements, Separators, and Delimiters}
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FElementos\%20del\%20lenguaje}{es:Programación en Ada/Elementos del lenguaje}\chapter{Keywords}

\myminitoc
\label{567}

\label{568}

\section{Language summary keywords}
\label{569}

Most Ada “keywords” have different functions depending on where they are used. A good example is {\bfseries \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Ffor}{for}} which controls the representation clause when used within a declaration part and controls a loop when used within an implementation.

In Ada, a keyword is a {\bfseries reserved word}, so it cannot be used as an identifier. Some of them are used as \mylref{610}{attribute} names.
\section{List of keywords}
\label{570}

\label{571}

\begin{center}

\begin{longtable}{>{\RaggedRight}p{0.95982\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAll\%20Keywords}{Ada Keywords}}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{tabular}{>{\RaggedRight}p{0.24062\linewidth}>{\RaggedRight}p{0.17714\linewidth}>{\RaggedRight}p{0.17714\linewidth}>{\RaggedRight}p{0.17714\linewidth}>{\RaggedRight}p{0.02708\linewidth}} \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{abort}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{else}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{new}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{return}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{abs}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{elsif}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{not}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{reverse}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{abstract}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{end}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{null}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{accept}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{entry}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{select}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{access}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{exception}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{of}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{separate}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{aliased}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{exit}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{or}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{some}} (Ada{\mbox{$~$}}2012)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{all}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{others}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{subtype}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{and}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{for}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{out}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{synchronized}} (Ada{\mbox{$~$}}2005)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{array}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{function}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{overriding}} (Ada{\mbox{$~$}}2005)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{at}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{tagged}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{generic}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{package}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{task}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{begin}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{goto}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{pragma}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{terminate}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{body}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{private}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{then}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{if}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{procedure}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{type}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{case}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{in}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{protected}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{constant}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{interface}} (Ada{\mbox{$~$}}2005)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{until}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{is}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{raise}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{use}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{declare}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{range}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{delay}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{limited}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{record}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{when}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{delta}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{loop}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{rem}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{while}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{digits}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{renames}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{with}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{do}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{mod}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{requeue}} (Ada{\mbox{$~$}}95)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \LaTeXBF{xor}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \end{tabular}
\end{longtable}

\end{center}

\section{See also}
\label{572}
\subsection{Wikibook}
\label{573}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAspects}{Ada Programming/Aspects}
\item{} \mylref{610}{Ada Programming/Attributes}
\item{} \mylref{637}{Ada Programming/Pragmas}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{574}
\subsubsection{Ada 83}
\label{575}

\begin{myitemize}
\item{} \AdaEightThreeRM{2}{Reserved Words}
\item{} \AdaEightThreeRM{E}{Syntax Summary}
\end{myitemize}

\subsubsection{Ada 95}
\label{576}

\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-9.html}{ 2.9 Reserved Words}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-P.html}{ Annex P: (informative) Syntax Summary}
\end{myitemize}

\subsubsection{Ada 2005}
\label{577}

\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2-9.html}{ 2.9 Reserved Words}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-P.html}{ Annex P: (informative) Syntax Summary}
\end{myitemize}

\subsubsection{Ada 2012}
\label{578}

\begin{myitemize}
\item{} \myhref{http://www.ada-auth.org/standards/12rm/html/RM-2-9.html}{ 2.9 Reserved Words}
\item{} \myhref{http://www.ada-auth.org/standards/12rm/html/RM-P.html}{ Annex P: (informative) Syntax Summary}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{579}

\begin{myitemize}
\item{} \AdaSGThree{3}{1}{3}{Capitalization}
\end{myitemize}

\chapter{Delimiters}

\myminitoc
\label{580}

\label{581}

\section{Single character delimiters}
\label{582}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%26}{\&}
\end{mydescription}
}
\begin{myquote}\item{} ampersand {\small }(also operator \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%26}{\&}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%27}{\textquotesingle{}}
\end{mydescription}
}
\begin{myquote}\item{} apostrophe, tick
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%28}{(}
\end{mydescription}
}
\begin{myquote}\item{} left parenthesis
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%29}{)}
\end{mydescription}
}
\begin{myquote}\item{} right parenthesis
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A}{*}
\end{mydescription}
}
\begin{myquote}\item{} asterisk, multiply {\small }(also operator \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2F\%2A}{*}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2B}{+}
\end{mydescription}
}
\begin{myquote}\item{} plus sign {\small }(also operator \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2B}{+}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2C}{,}
\end{mydescription}
}
\begin{myquote}\item{} comma
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F-}{-{}}
\end{mydescription}
}
\begin{myquote}\item{} hyphen, minus {\small }(also operator \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2F-}{-{}}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fdot}{.}
\end{mydescription}
}
\begin{myquote}\item{} full stop, point, dot
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2F}{/}
\end{mydescription}
}
\begin{myquote}\item{} solidus, divide {\small }(also operator \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2F\%2F}{/}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3A}{}
\end{mydescription}
}
\begin{myquote}\item{} colon
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3B}{;}
\end{mydescription}
}
\begin{myquote}\item{} semicolon
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fless\%20than}{<{}}
\end{mydescription}
}
\begin{myquote}\item{} less than sign {\small }(also operator){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3D}{=}
\end{mydescription}
}
\begin{myquote}\item{} equal sign {\small }(also operator \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2F\%3D}{=}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fgreater\%20than}{>{}}
\end{mydescription}
}
\begin{myquote}\item{} greater than sign {\small }(also operator){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fvertical\%20line}{}
\end{mydescription}
}
\begin{myquote}\item{} vertical line
\end{myquote}

\section{Compound character delimiters}
\label{583}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Farrow}{=>{}}
\end{mydescription}
}
\begin{myquote}\item{} arrow
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fdouble\%20dot}{..}
\end{mydescription}
}
\begin{myquote}\item{} double dot
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A\%2A}{**}
\end{mydescription}
}
\begin{myquote}\item{} double star, exponentiate {\small }(also operator \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2F\%2A\%2A}{**}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3A\%3D}{=}
\end{mydescription}
}
\begin{myquote}\item{} assignment
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2F\%3D}{/=}
\end{mydescription}
}
\begin{myquote}\item{} inequality {\small }(also operator){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fgreater\%20than\%20or\%20equal\%20to}{>{}=}
\end{mydescription}
}
\begin{myquote}\item{} greater than or equal to {\small }(also operator){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fless\%20than\%20or\%20equal\%20to}{<{}=}
\end{mydescription}
}
\begin{myquote}\item{} less than or equal to {\small }(also operator){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fleft\%20label}{<{}<{}}
\end{mydescription}
}
\begin{myquote}\item{} left label bracket
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fright\%20label}{>{}>{}}
\end{mydescription}
}
\begin{myquote}\item{} right label bracket
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fbox}{<{}>{}}
\end{mydescription}
}
\begin{myquote}\item{} box
\end{myquote}

\section{Others}
\label{584}

The following ones are special characters but not delimiters.
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FSpecial\%2F\%22}{\symbol{34}}
\end{mydescription}
}
\begin{myquote}\item{} quotation mark, used for \mylref{559}{string literals}.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FSpecial\%2Fnumber\%20sign}{\#}
\end{mydescription}
}
\begin{myquote}\item{} number sign, used in \mylref{557}{based numeric literals}.
\end{myquote}

The following special characters are unused in Ada code -{} they are illegal except within string literals and comments (they are used in the Reference Manual Backus-{}Naur syntax definition of Ada):
{\bfseries
\begin{mydescription} {[}
\end{mydescription}
}
\begin{myquote}\item{} left square bracket
\end{myquote}
{\bfseries
\begin{mydescription} {]}
\end{mydescription}
}
\begin{myquote}\item{} right square bracket
\end{myquote}
{\bfseries
\begin{mydescription} \{
\end{mydescription}
}
\begin{myquote}\item{} left curly bracket
\end{myquote}
{\bfseries
\begin{mydescription} \}
\end{mydescription}
}
\begin{myquote}\item{} right curly bracket
\end{myquote}

\section{See also}
\label{585}
\subsection{Wikibook}
\label{586}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{587}

\begin{myitemize}
\item{} \AdaRMNineFive{2}{1}{Character Set}
\item{} \AdaRMNineFive{2}{2}{Lexical Elements, Separators, and Delimiters}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{588}

\begin{myitemize}
\item{} \AdaRM{2}{1}{Character Set}
\item{} \AdaRM{2}{2}{Lexical Elements, Separators, and Delimiters}
\end{myitemize}

\chapter{Operators}

\myminitoc
\label{589}

\label{590}

\section{Standard operators}
\label{591}

\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada} allows \myhref{http://en.wikipedia.org/wiki/operator\%20overloading}{operator overloading} for all standard operators and so the following summaries can only describe the suggested standard operations for each operator. It is quite possible to misuse any standard operator to perform something unusual.

Each operator is either a \mylref{568}{keyword} or a \mylref{581}{delimiter} -{}-{} hence all operator pages are redirects to the appropriate \mylref{568}{keyword} or \mylref{581}{delimiter}.

Operators have arguments which in the RM are called Left and Right for binary operators, Right for unary operators (indicating the position with respect to the operator symbol).

The list is sorted from lowest precedence to highest precedence.
\subsection{Logical operators}
\label{592}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fand}{and}
\end{mydescription}
}
\begin{myquote}\item{} and {$x \land y$}, {\small }(also keyword \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fand}{and}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2For}{or}
\end{mydescription}
}
\begin{myquote}\item{} or {$x \lor y$}, {\small }(also keyword \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2For}{or}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fxor}{xor}
\end{mydescription}
}
\begin{myquote}\item{} exclusive or {$(x \land \bar{y}) \lor (\bar{x} \land y)$}, {\small }(also keyword \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fxor}{xor}){\small }
\end{myquote}

\subsection{Relational operators}
\label{593}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2F\%2F\%3D}{/=}
\end{mydescription}
}
\begin{myquote}\item{} Not Equal {$x \ne y$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2F\%3D}{/=}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2F\%3D}{=}
\end{mydescription}
}
\begin{myquote}\item{} Equal {$x = y$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3D}{=}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fless\%20than}{<{}}
\end{mydescription}
}
\begin{myquote}\item{} Less than {$x<y$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fless\%20than}{<{}}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fless\%20than\%20or\%20equal\%20to}{<{}=}
\end{mydescription}
}
\begin{myquote}\item{} Less than or equal to ({$x \le y$}), {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fless\%20than\%20or\%20equal\%20to}{<{}=}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fgreater\%20than}{>{}}
\end{mydescription}
}
\begin{myquote}\item{} Greater than ({$x > y$}), {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fgreater\%20than}{>{}}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fgreater\%20than\%20or\%20equal\%20to}{>{}=}
\end{mydescription}
}
\begin{myquote}\item{} Greater than or equal to ({$x \ge y$}), {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fgreater\%20than\%20or\%20equal\%20to}{>{}=}){\small }
\end{myquote}

\subsection{Binary adding operators}
\label{594}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2B}{+}
\end{mydescription}
}
\begin{myquote}\item{} Add {$x + y$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2B}{+}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F-}{-{}}
\end{mydescription}
}
\begin{myquote}\item{} Subtract {$x - y$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F-}{-{}}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%26}{\&}
\end{mydescription}
}
\begin{myquote}\item{} Concatenate , {x} \& {$ y$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%26}{\&}){\small }
\end{myquote}

\subsection{Unary adding operators}
\label{595}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2B}{+}
\end{mydescription}
}
\begin{myquote}\item{} Plus sign {$+x$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2B}{+}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F-}{-{}}
\end{mydescription}
}
\begin{myquote}\item{} Minus sign {$-x$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F-}{-{}}){\small }
\end{myquote}

\subsection{Multiplying operator}
\label{596}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A}{*}
\end{mydescription}
}
\begin{myquote}\item{} Multiply, {$x \times y$}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A}{*}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2F}{/}
\end{mydescription}
}
\begin{myquote}\item{} Divide {x / y}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2F}{/}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fmod}{mod}
\end{mydescription}
}
\begin{myquote}\item{} modulus {\small }(also keyword \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fmod}{mod}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Frem}{rem}
\end{mydescription}
}
\begin{myquote}\item{} remainder {\small }(also keyword \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Frem}{rem}){\small }
\end{myquote}

\subsection{Highest precedence operator}
\label{597}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A\%2A}{**}
\end{mydescription}
}
\begin{myquote}\item{} Power {x^y}, {\small }(also special character \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A\%2A}{**}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fnot}{not}
\end{mydescription}
}
\begin{myquote}\item{} logical not {$\lnot x$}, {\small }(also keyword \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fnot}{not}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fabs}{abs}
\end{mydescription}
}
\begin{myquote}\item{} absolute value {\small } {$|x|$} (also keyword \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fabs}{abs}){\small }
\end{myquote}

\section{Short-{}circuit control forms}
\label{598}

These are not operators and thus cannot be overloaded.
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fand\%23Boolean_shortcut_operator}{and then}
\end{mydescription}
}
\begin{myquote}\item{} {\itshape e.g.} {\ttfamily {\bfseries if} Y /= 0 {\bfseries and then} X/Y >{} Limit {\bfseries then} ...}
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2For\%23Boolean_shortcut_operator}{or else}
\end{mydescription}
}
\begin{myquote}\item{} {\itshape e.g.} {\ttfamily {\bfseries if} Ptr = {\bfseries null} {\bfseries or else} Ptr.I = 0 {\bfseries then} ...}
\end{myquote}

\section{Membership tests}
\label{599}

The Membership Tests also cannot be overloaded because they are not operators.
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fin}{in}
\end{mydescription}
}
\begin{myquote}\item{} element of, {$var \in type$}, {\itshape e.g.} {\ttfamily \LaTeXBF{if} I \LaTeXBF{in} Positive \LaTeXBF{then}}, {\small }(also keyword \LaTeXBF{in}){\small }
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FOperators\%2Fin}{not in}
\end{mydescription}
}
\begin{myquote}\item{} not element of, {$var \notin type$}, {\itshape e.g.} {\ttfamily \LaTeXBF{if} I \LaTeXBF{not} \LaTeXBF{in} Positive \LaTeXBF{then}}, {\small }(also keywords \LaTeXBF{not} \LaTeXBF{in}){\small }
\end{myquote}

\subsection{Range membership test}
\label{600}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{if} {}Today {}\LaTeXBF{not} {}\LaTeXBF{in} {}Tuesday {}.. {}Thursday {}\LaTeXBF{then} \newline{}
 {} {} {} {}...}

\subsection{Subtype membership test}
\label{601}
\\

\TemplateSpaceIndent{ {}Is_Non_Negative {}:= {}X {}\LaTeXBF{in} {}Natural;}

\subsection{Class membership test}
\label{602}
\\

\TemplateSpaceIndent{ {}\LaTeXBF{exit} {}\LaTeXBF{when} {}Object {}\LaTeXBF{in} {}Circle\textquotesingle{}\LaTeXIT{Class};}

\section{See also}
\label{603}
\subsection{Wikibook}
\label{604}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada 95 Reference Manual}
\label{605}

\begin{myitemize}
\item{} \AdaRM{4}{5}{Operators and Expression Evaluation}
\end{myitemize}

\subsection{Ada 2005 Reference Manual}
\label{606}

\begin{myitemize}
\item{} \AdaRM{4}{5}{Operators and Expression Evaluation}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{607}

\begin{myitemize}
\item{} \AdaSGThree{2}{1}{3}{Alignment of Operators}
\item{} \AdaSGThree{5}{7}{4}{Overloaded Operators}
\item{} \AdaSGThree{5}{7}{5}{Overloading the Equality Operator}
\end{myitemize}

\label{608}

\begin{center}

\begin{longtable}{>{\RaggedRight}p{0.95982\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAll\%20Operators}{Ada Operators}}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{tabular}{>{\RaggedRight}p{0.10867\linewidth}>{\RaggedRight}p{0.19774\linewidth}>{\RaggedRight}p{0.09086\linewidth}>{\RaggedRight}p{0.09086\linewidth}>{\RaggedRight}p{0.10867\linewidth}>{\RaggedRight}p{0.16212\linewidth}} \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fand}{and}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fand\%23Boolean\%20shortcut\%20operator}{and then}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fgreater\%20than}{>{}}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2B}{+}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fabs}{abs}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%26}{\&}}} \\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2For}{or}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2For\%23Boolean\%20shortcut\%20operator}{or else}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fgreater\%20than\%20or\%20equal\%20to}{>{}=}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F-}{-{}}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fmod}{mod}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fxor}{xor}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%3D}{=}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fless\%20than}{<{}}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A}{*}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Frem}{rem}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fin}{in}}}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fnot}{not}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2F\%3D}{/=}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2Fless\%20than\%20or\%20equal\%20to}{<{}=}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2A\%2A}{**}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FDelimiters\%2F\%2F}{/}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily {\bfseries \mytabhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FKeywords\%2Fin}{not in}}} \end{tabular}
\end{longtable}

\end{center}

\chapter{Attributes}

\myminitoc
\label{609}

\label{610}

\section{Language summary attributes}
\label{611}

The concept of {\bfseries attributes} is pretty unique to \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada}. Attributes allow you to get {\mbox{---}}and sometimes set{\mbox{---}} information about objects or other language entities such as types. A good example is the \LaTeXIT{Size} attribute. It describes the size of an object or a type in bits.
\\

\TemplateSpaceIndent{ {}A {}: {}Natural {}:= {}Integer\textquotesingle{}\LaTeXIT{Size}; {}\ADACOM{A is now 32 (with the \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} compiler for the x86 architecture)}}

However, unlike the \LaTeXTT{sizeof} operator from \myhref{http://en.wikibooks.org/wiki/C\%20Programming}{C}/\myhref{http://en.wikibooks.org/wiki/C\%2B\%2B\%20Programming}{C++} the \LaTeXIT{Size} attribute can also be set:
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}Byte {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}128 {}.. {}127; {} {}\ADACOM{The range fits into 8 bits but the} \newline{}
 {}\ADACOM{compiler is still free to choose.} \newline{}
 {}\LaTeXBF{for} {} {}Byte\textquotesingle{}\LaTeXIT{Size} {}\LaTeXBF{use} {}8; {} {} {} {} {} {} {} {} {} {} {}\ADACOM{Now we force the compiler to use 8 bits.}}

Of course not all attributes can be set. An attribute starts with a tick \textquotesingle{} and is followed by its name. The compiler determines by context if the tick is the beginning of an attribute or of a character literal.
\\

\TemplateSpaceIndent{ {}A {}: {}Character {}:= {}Character\textquotesingle{}\LaTeXIT{Val} {}(32) {}\ADACOM{A is now a space} \newline{}
 {}B {}: {}Character {}:= {}\textquotesingle{} {}\textquotesingle{}; {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\ADACOM{B is also a space}}

\section{List of language defined attributes}
\label{612}
{\bfseries
\begin{mydescription} Ada 2005
\end{mydescription}
}
\begin{myquote}\item{} This is a new \mylref{406}{Ada 2005} attribute.
\end{myquote}
{\bfseries
\begin{mydescription} Ada 2012
\end{mydescription}
}
\begin{myquote}\item{} This is a new \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%202012}{Ada 2012} attribute.
\end{myquote}
{\bfseries
\begin{mydescription} Obsolescent
\end{mydescription}
}
\begin{myquote}\item{} This is a deprecated attribute and should not be used in new code.
\end{myquote}

\subsection{A {\mbox{$-$}} B}
\label{613}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Access}{\textquotesingle{}Access}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Address}{\textquotesingle{}Address}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Adjacent}{\textquotesingle{}Adjacent}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Aft}{\textquotesingle{}Aft}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Alignment}{\textquotesingle{}Alignment}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Base}{\textquotesingle{}Base}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Bit_Order}{\textquotesingle{}Bit_Order}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Body_Version}{\textquotesingle{}Body_Version}
\end{myitemize}

\subsection{C}
\label{614}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Callable}{\textquotesingle{}Callable}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Caller}{\textquotesingle{}Caller}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Ceiling}{\textquotesingle{}Ceiling}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Class}{\textquotesingle{}Class}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Component_Size}{\textquotesingle{}Component_Size}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Compose}{\textquotesingle{}Compose}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Constrained}{\textquotesingle{}Constrained}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Copy_Sign}{\textquotesingle{}Copy_Sign}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Count}{\textquotesingle{}Count}
\end{myitemize}

\subsection{D {\mbox{$-$}} F}
\label{615}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Definite}{\textquotesingle{}Definite}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Delta}{\textquotesingle{}Delta}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Denorm}{\textquotesingle{}Denorm}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Digits}{\textquotesingle{}Digits}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Emax}{\textquotesingle{}Emax} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Exponent}{\textquotesingle{}Exponent}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27External_Tag}{\textquotesingle{}External_Tag}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Epsilon}{\textquotesingle{}Epsilon} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27First}{\textquotesingle{}First}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27First_Bit}{\textquotesingle{}First_Bit}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Floor}{\textquotesingle{}Floor}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Fore}{\textquotesingle{}Fore}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Fraction}{\textquotesingle{}Fraction}
\end{myitemize}

\subsection{G {\mbox{$-$}} L}
\label{616}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Has_Same_Storage}{\textquotesingle{}Has_Same_Storage} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Identity}{\textquotesingle{}Identity}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Image}{\textquotesingle{}Image}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Input}{\textquotesingle{}Input}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Large}{\textquotesingle{}Large} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Last}{\textquotesingle{}Last}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Last_Bit}{\textquotesingle{}Last_Bit}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Leading_Part}{\textquotesingle{}Leading_Part}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Length}{\textquotesingle{}Length}
\end{myitemize}

\subsection{M}
\label{617}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine}{\textquotesingle{}Machine}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Emax}{\textquotesingle{}Machine_Emax}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Emin}{\textquotesingle{}Machine_Emin}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Mantissa}{\textquotesingle{}Machine_Mantissa}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Overflows}{\textquotesingle{}Machine_Overflows}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Radix}{\textquotesingle{}Machine_Radix}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Rounding}{\textquotesingle{}Machine_Rounding} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Rounds}{\textquotesingle{}Machine_Rounds}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Mantissa}{\textquotesingle{}Mantissa} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Max}{\textquotesingle{}Max}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Max_Aligment_For_Allocation}{\textquotesingle{}Max_Aligment_For_Allocation} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Max_Size_In_Storage_Elements}{\textquotesingle{}Max_Size_In_Storage_Elements}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Min}{\textquotesingle{}Min}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Mod}{\textquotesingle{}Mod} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Model}{\textquotesingle{}Model}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Model_Emin}{\textquotesingle{}Model_Emin}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Model_Epsilon}{\textquotesingle{}Model_Epsilon}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Model_Mantissa}{\textquotesingle{}Model_Mantissa}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Model_Small}{\textquotesingle{}Model_Small}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Modulus}{\textquotesingle{}Modulus}
\end{myitemize}

\subsection{O {\mbox{$-$}} R}
\label{618}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Old}{\textquotesingle{}Old} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Output}{\textquotesingle{}Output}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Overlaps_Storage}{\textquotesingle{}Overlaps_Storage} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Partition_ID}{\textquotesingle{}Partition_ID}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Pos}{\textquotesingle{}Pos}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Position}{\textquotesingle{}Position}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Pred}{\textquotesingle{}Pred}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Priority}{\textquotesingle{}Priority} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Range}{\textquotesingle{}Range}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Read}{\textquotesingle{}Read}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Remainder}{\textquotesingle{}Remainder}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Result}{\textquotesingle{}Result} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Round}{\textquotesingle{}Round}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Rounding}{\textquotesingle{}Rounding}
\end{myitemize}

\subsection{S}
\label{619}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Safe_Emax}{\textquotesingle{}Safe_Emax} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Safe_First}{\textquotesingle{}Safe_First}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Safe_Large}{\textquotesingle{}Safe_Large} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Safe_Last}{\textquotesingle{}Safe_Last}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Safe_Small}{\textquotesingle{}Safe_Small} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Scale}{\textquotesingle{}Scale}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Scaling}{\textquotesingle{}Scaling}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Signed_Zeros}{\textquotesingle{}Signed_Zeros}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Size}{\textquotesingle{}Size}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Small}{\textquotesingle{}Small}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Storage_Pool}{\textquotesingle{}Storage_Pool}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Storage_Size}{\textquotesingle{}Storage_Size}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Stream_Size}{\textquotesingle{}Stream_Size} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Succ}{\textquotesingle{}Succ}
\end{myitemize}

\subsection{T {\mbox{$-$}} V}
\label{620}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Tag}{\textquotesingle{}Tag}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Terminated}{\textquotesingle{}Terminated}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Truncation}{\textquotesingle{}Truncation}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Unbiased_Rounding}{\textquotesingle{}Unbiased_Rounding}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Unchecked_Access}{\textquotesingle{}Unchecked_Access}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Val}{\textquotesingle{}Val}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Valid}{\textquotesingle{}Valid}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Value}{\textquotesingle{}Value}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Version}{\textquotesingle{}Version}
\end{myitemize}

\subsection{W {\mbox{$-$}} Z}
\label{621}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Wide_Image}{\textquotesingle{}Wide_Image}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Wide_Value}{\textquotesingle{}Wide_Value}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Wide_Wide_Image}{\textquotesingle{}Wide_Wide_Image} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Wide_Wide_Value}{\textquotesingle{}Wide_Wide_Value} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Wide_Wide_Width}{\textquotesingle{}Wide_Wide_Width} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Wide_Width}{\textquotesingle{}Wide_Width}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Width}{\textquotesingle{}Width}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Write}{\textquotesingle{}Write}
\end{myitemize}

\section{List of implementation defined attributes}
\label{622}

The following attributes are not available in all Ada compilers, only in those that had implemented them.

Currently, there are only listed the implementation-{}defined attributes of a few compilers. You can help Wikibooks \myhref{http://en.wikibooks.org/w/index.php?title=Programming:Ada:Attributes\&action=edit}{ adding} specific attributes of other compilers:
{\bfseries
\begin{mydescription} GNAT
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://www.adacore.com/wp-content/files/auto_update/gnat-unw-docs/html/gnat_rm_3.html}{ Implementation-{}defined attribute} of the \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FGNAT}{GNAT} compiler from AdaCore/FSF.
\end{myquote}
{\bfseries
\begin{mydescription} HP Ada
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf}{ Implementation-{}defined attribute} of the \myhref{http://h71000.www7.hp.com/commercial/ada/ada_index.html}{ HP Ada} compiler (formerly known as \symbol{34}DEC Ada\symbol{34}).
\end{myquote}
{\bfseries
\begin{mydescription} ICC
\end{mydescription}
}
\begin{myquote}\item{} Implementation-{}defined attribute\myfootnote{\symbol{34}4.2 ICC-{}Defined Attributes\symbol{34}, {\itshape ICC Ada Implementation Reference {\mbox{---}} ICC Ada Version 8.2.5 for i960MC Targets}, document version 2.11.4\myplainurl{http://www.irvine.com/support/general/}} of the Irvine \myhref{http://www.irvine.com/products.html}{ ICC} compiler.
\end{myquote}
{\bfseries
\begin{mydescription} PowerAda
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://www.ocsystems.com/user_guide/powerada/html/powerada-117.html\#HEADING117-0}{ Implementation-{}defined attribute} of OC Systems\textquotesingle{} \myhref{http://www.ocsystems.com/prod_powerada.html}{ PowerAda}.
\end{myquote}
{\bfseries
\begin{mydescription} SPARCompiler
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view\#F.Implementation-Dependent_Characteristi-30}{ Implementation-{}defined attribute} of Sun\textquotesingle{}s \myhref{http://docs.sun.com/app/docs/coll/15.4}{ SPARCompiler Ada}.
\end{myquote}

\subsection{A {\mbox{$-$}} D}
\label{623}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Abort_Signal}{\textquotesingle{}Abort_Signal} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Address_Size}{\textquotesingle{}Address_Size} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Architecture}{\textquotesingle{}Architecture} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Asm_Input}{\textquotesingle{}Asm_Input} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Asm_Output}{\textquotesingle{}Asm_Output} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27AST_Entry}{\textquotesingle{}AST_Entry} (GNAT, HP Ada)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Bit}{\textquotesingle{}Bit} (GNAT, HP Ada)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Bit_Position}{\textquotesingle{}Bit_Position} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27CG_Mode}{\textquotesingle{}CG_Mode} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Code_Address}{\textquotesingle{}Code_Address} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Compiler_Key}{\textquotesingle{}Compiler_Key} (SPARCompiler)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Compiler_Version}{\textquotesingle{}Compiler_Version} (SPARCompiler)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Declared}{\textquotesingle{}Declared} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Default_Bit_Order}{\textquotesingle{}Default_Bit_Order} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Dope_Address}{\textquotesingle{}Dope_Address} (SPARCompiler)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Dope_Size}{\textquotesingle{}Dope_Size} (SPARCompiler)
\end{myitemize}

\subsection{E {\mbox{$-$}} H}
\label{624}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Elaborated}{\textquotesingle{}Elaborated} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Elab_Body}{\textquotesingle{}Elab_Body} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Elab_Spec}{\textquotesingle{}Elab_Spec} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Emax}{\textquotesingle{}Emax} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Enabled}{\textquotesingle{}Enabled} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Entry_Number}{\textquotesingle{}Entry_Number} (SPARCompiler)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Enum_Rep}{\textquotesingle{}Enum_Rep} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Enum_Val}{\textquotesingle{}Enum_Val} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Epsilon}{\textquotesingle{}Epsilon} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Exception_Address}{\textquotesingle{}Exception_Address} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Aft}{\textquotesingle{}Extended_Aft} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Base}{\textquotesingle{}Extended_Base} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Digits}{\textquotesingle{}Extended_Digits} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Fore}{\textquotesingle{}Extended_Fore} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Image}{\textquotesingle{}Extended_Image} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Value}{\textquotesingle{}Extended_Value} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Width}{\textquotesingle{}Extended_Width} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Wide_Image}{\textquotesingle{}Extended_Wide_Image} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Wide_Value}{\textquotesingle{}Extended_Wide_Value} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Extended_Wide_Width}{\textquotesingle{}Extended_Wide_Width} (PowerAda)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Fixed_Value}{\textquotesingle{}Fixed_Value} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Has_Access_Values}{\textquotesingle{}Has_Access_Values} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Has_Discriminants}{\textquotesingle{}Has_Discriminants} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27High_Word}{\textquotesingle{}High_Word} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Homogeneous}{\textquotesingle{}Homogeneous} (SPARCompiler)
\end{myitemize}

\subsection{I {\mbox{$-$}} N}
\label{625}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Img}{\textquotesingle{}Img} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Integer_Value}{\textquotesingle{}Integer_Value} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Invalid_Value}{\textquotesingle{}Invalid_Value} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Linear_Address}{\textquotesingle{}Linear_Address} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Low_Word}{\textquotesingle{}Low_Word} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Machine_Size}{\textquotesingle{}Machine_Size} (GNAT, HP Ada)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Max_Interrupt_Priority}{\textquotesingle{}Max_Interrupt_Priority} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Max_Priority}{\textquotesingle{}Max_Priority} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Maximum_Alignment}{\textquotesingle{}Maximum_Alignment} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Mechanism_Code}{\textquotesingle{}Mechanism_Code} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Null_Parameter}{\textquotesingle{}Null_Parameter} (GNAT, HP Ada)
\end{myitemize}

\subsection{O {\mbox{$-$}} T}
\label{626}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Object_Size}{\textquotesingle{}Object_Size} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Old}{\textquotesingle{}Old} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Passed_By_Reference}{\textquotesingle{}Passed_By_Reference} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Pool_Address}{\textquotesingle{}Pool_Address} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Range_Length}{\textquotesingle{}Range_Length} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Ref}{\textquotesingle{}Ref} (SPARCompiler)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Storage_Unit}{\textquotesingle{}Storage_Unit} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Stub_Type}{\textquotesingle{}Stub_Type} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Target}{\textquotesingle{}Target} (ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Target_Name}{\textquotesingle{}Target_Name} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Task_ID}{\textquotesingle{}Task_ID} (SPARCompiler)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Tick}{\textquotesingle{}Tick} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27To_Address}{\textquotesingle{}To_Address} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Type_Class}{\textquotesingle{}Type_Class} (GNAT, HP Ada)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Type_Key}{\textquotesingle{}Type_Key} (SPARCompiler)
\end{myitemize}

\subsection{U {\mbox{$-$}} Z}
\label{627}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27UET_Address}{\textquotesingle{}UET_Address} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Unconstrained_Array}{\textquotesingle{}Unconstrained_Array} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Universal_Literal_String}{\textquotesingle{}Universal_Literal_String} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Unrestricted_Access}{\textquotesingle{}Unrestricted_Access} (GNAT, ICC)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27VADS_Size}{\textquotesingle{}VADS_Size} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Value_Size}{\textquotesingle{}Value_Size} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Wchar_T_Size}{\textquotesingle{}Wchar_T_Size} (GNAT)
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAttributes\%2F\%27Word_Size}{\textquotesingle{}Word_Size} (GNAT)
\end{myitemize}

\section{See also}
\label{628}
\subsection{Wikibook}
\label{629}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAspects}{Ada Programming/Aspects}
\item{} \mylref{637}{Ada Programming/Pragmas}
\item{} \mylref{568}{Ada Programming/Keywords}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{630}
\subsubsection{Ada 83}
\label{631}
\begin{myitemize}
\item{} \AdaEightThreeRM{4}{Attributes}
\item{} \AdaEightThreeRM{A}{Predefined Language Attributes}
\end{myitemize}

\subsubsection{Ada 95}
\label{632}

\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-4-1.html}{ 4.1 Attributes}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-K.html}{ Annex K: (informative) Language-{}Defined Attributes}
\end{myitemize}

\subsubsection{Ada 2005}
\label{633}

\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-4-1.html}{ 4.1 Attributes}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-K.html}{ Annex K: (informative) Language-{}Defined Attributes}
\end{myitemize}

\subsubsection{Ada 2012}
\label{634}

\begin{myitemize}
\item{} \myhref{http://www.ada-auth.org/standards/12rm/html/RM-4-1.html}{ 4.1 Attributes}
\item{} \myhref{http://www.ada-auth.org/standards/12rm/html/RM-K.html}{ Annex K: (informative) Language-{}Defined Attributes}
\end{myitemize}

\section{References}
\label{635}

\chapter{Pragmas}

\myminitoc
\label{636}

\label{637}

\section{Description}
\label{638}

\mylref{637}{Pragmas} control the compiler, i.e. they are \myhref{http://en.wikipedia.org/wiki/Compiler\%20directive}{compiler directives}. They have the standard form of
\\

\TemplateSpaceIndent{ {}\LaTeXBF{pragma} {}{\itshape Name} {}({\itshape Parameter_List});}

where the parameter list is optional.
\section{List of language defined pragmas}
\label{639}

Some pragmas are specially marked:
{\bfseries
\begin{mydescription} Ada{\mbox{$~$}}2005
\end{mydescription}
}
\begin{myquote}\item{} This is a new \mylref{406}{Ada{\mbox{$~$}}2005} pragma.
\end{myquote}
{\bfseries
\begin{mydescription} Ada{\mbox{$~$}}2012
\end{mydescription}
}
\begin{myquote}\item{} This is a new \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%202012}{Ada{\mbox{$~$}}2012} pragma.
\end{myquote}
{\bfseries
\begin{mydescription} Obsolescent
\end{mydescription}
}
\begin{myquote}\item{} This is a deprecated pragma and it should not be used in new code.
\end{myquote}

\subsection{A {\mbox{$-$}} H}
\label{640}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAll_Calls_Remote}{All_Calls_Remote}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAssert}{Assert} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAssertion_Policy}{Assertion_Policy} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAsynchronous}{Asynchronous} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAtomic}{Atomic} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAtomic_Components}{Atomic_Components} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAttach_Handler}{Attach_Handler} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FControlled}{Controlled}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FConvention}{Convention} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCPU}{CPU} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FDefault_Storage_Pool}{Default_Storage_Pool} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FDetect_Blocking}{Detect_Blocking} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FDiscard_Names}{Discard_Names}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FDispatching_Domain}{Dispatching_Domain} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FElaborate}{Elaborate}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FElaborate_All}{Elaborate_All}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FElaborate_Body}{Elaborate_Body}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport}{Export} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\end{myitemize}

\subsection{I {\mbox{$-$}} O}
\label{641}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport}{Import} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FIndependent}{Independent} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FIndependent_Component}{Independent_Component} {\small }(Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInline}{Inline} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInspection_Point}{Inspection_Point}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterface}{Interface} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterrupt_Handler}{Interrupt_Handler} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterrupt_Priority}{Interrupt_Priority} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLinker_Options}{Linker_Options}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FList}{List}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLocking_Policy}{Locking_Policy}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FMemory_Size}{Memory_Size} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNo_Return}{No_Return} {\small }(Ada{\mbox{$~$}}2005){\small } {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNormalize_Scalars}{Normalize_Scalars}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FOptimize}{Optimize}
\end{myitemize}

\subsection{P {\mbox{$-$}} R}
\label{642}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPack}{Pack} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPage}{Page}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPartition_Elaboration_Policy}{Partition_Elaboration_Policy} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPreelaborable_Initialization}{Preelaborable_Initialization} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPreelaborate}{Preelaborate}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPriority}{Priority} {\small }(Obsolescent since Ada{\mbox{$~$}}2012){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPriority_Specific_Dispatching}{Priority_Specific_Dispatching} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FProfile}{Profile} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPure}{Pure}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FQueueing_Policy}{Queueing_Policy}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FRelative_Deadline}{Relative_Deadline} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FRemote_Call_Interface}{Remote_Call_Interface}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FRemote_Types}{Remote_Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FRestrictions}{Restrictions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FReviewable}{Reviewable}
\end{myitemize}

\subsection{S {\mbox{$-$}} Z}
\label{643}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShared}{Shared} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShared_Passive}{Shared_Passive}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FStorage_Size}{Storage_Size}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FStorage_Unit}{Storage_Unit} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSuppress}{Suppress}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSystem_Name}{System_Name} {\small }(Obsolescent){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTask_Dispatching_Policy}{Task_Dispatching_Policy}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnchecked_Union}{Unchecked_Union} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnsuppress}{Unsuppress} {\small }(Ada{\mbox{$~$}}2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FVolatile}{Volatile}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FVolatile_Components}{Volatile_Components}
\end{myitemize}

\section{List of implementation defined pragmas}
\label{644}

The following pragmas are not available in all Ada compilers, only in those that had implemented them.

Currently, there are only listed the implementation-{}defined pragmas of a few compilers. You can help Wikibooks \myhref{http://en.wikibooks.org/w/index.php?title=Ada_Programming/Pragmas\&action=edit}{ adding} specific aspects of other compilers:
{\bfseries
\begin{mydescription} GNAT
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://www.adacore.com/wp-content/files/auto_update/gnat-unw-docs/html/gnat_rm_2.html}{ Implementation defined pragma} of the \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FGNAT}{GNAT} compiler from AdaCore and FSF.
\end{myquote}
{\bfseries
\begin{mydescription} HP Ada
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://h71000.www7.hp.com/commercial/ada/ada_lrm.pdf}{ Implementation defined pragma} of the \myhref{http://h71000.www7.hp.com/commercial/ada/ada_index.html}{ HP Ada} compiler (formerly known as \symbol{34}DEC Ada\symbol{34}).
\end{myquote}
{\bfseries
\begin{mydescription} ICC
\end{mydescription}
}
\begin{myquote}\item{} Implementation-{}defined pragma\myfootnote{\symbol{34}2.2 ICC-{}Defined Pragmas\symbol{34}, {\itshape ICC Ada Implementation Reference {\mbox{---}} ICC Ada Version 8.2.5 for i960MC Targets}, document version 2.11.4.\myplainurl{http://www.irvine.com/support/general/}} of the Irvine \myhref{http://www.irvine.com/products.html}{ ICC} compiler.
\end{myquote}
{\bfseries
\begin{mydescription} PowerAda
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://www.ocsystems.com/user_guide/powerada/html/powerada-106.html\#HEADING106-0}{ Implementation defined pragma} of OC Systems\textquotesingle{} \myhref{http://www.ocsystems.com/prod_powerada.html}{ PowerAda}.
\end{myquote}
{\bfseries
\begin{mydescription} SPARCompiler
\end{mydescription}
}
\begin{myquote}\item{} \myhref{http://docs.sun.com/app/docs/doc/802-3641/6i7h8si5i?a=view\#F.Implementation-Dependent_Characteristi-2}{ Implementation defined pragma} of Sun\textquotesingle{}s \myhref{http://docs.sun.com/app/docs/coll/15.4}{ SPARCompiler Ada}.\myplainurl{http://findarticles.com/p/articles/mi_m0EIN/is_1994_Nov_2/ai_15882197}
\end{myquote}

\subsection{A {\mbox{$-$}} C}
\label{645}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAbort_Defer}{Abort_Defer} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAda_83}{Ada_83} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAda_95}{Ada_95} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAda_05}{Ada_05} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAda_2005}{Ada_2005} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAda_12}{Ada_12} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAda_2012}{Ada_2012} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAnnotate}{Annotate} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAssume_No_Invalid_Values}{Assume_No_Invalid_Values} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FAst_Entry}{Ast_Entry} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FBit_Pack}{Bit_Pack} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FBuilt_In}{Built_In} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FByte_Pack}{Byte_Pack} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FC_Pass_By_Copy}{C_Pass_By_Copy} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCall_Mechanism}{Call_Mechanism} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCanonical_Streams}{Canonical_Streams} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCheck}{Check} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCheck_Name}{Check_Name} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCheck_Policy}{Check_Policy} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCM_Info}{CM_Info} {\small }(PowerAda){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FComment}{Comment} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCommon_Object}{Common_Object} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCompatible_Calls}{Compatible_Calls} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCompile_Time_Error}{Compile_Time_Error} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCompile_Time_Warning}{Compile_Time_Warning} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FComplete_Representation}{Complete_Representation} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FComplex_Representation}{Complex_Representation} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FComponent_Alignment}{Component_Alignment} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCompress}{Compress} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FConstrain_Private}{Constrain_Private} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FConvention_Identifier}{Convention_Identifier} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCPP_Class}{CPP_Class} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCPP_Constructor}{CPP_Constructor} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCPP_Virtual}{CPP_Virtual} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FCPP_Vtable}{CPP_Vtable} {\small }(GNAT){\small }
\end{myitemize}

\subsection{D {\mbox{$-$}} H}
\label{646}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FData_Mechanism}{Data_Mechanism} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FDebug}{Debug} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FDebug_Policy}{Debug_Policy} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FDelete_Subprogram_Entry}{Delete_Subprogram_Entry} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FElaboration_Checks}{Elaboration_Checks} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FEliminate}{Eliminate} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FError}{Error} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport_Exception}{Export_Exception} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport_Function}{Export_Function} {\small }(GNAT, HP Ada, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport_Mechanism}{Export_Mechanism} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport_Object}{Export_Object} {\small }(GNAT, HP Ada, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport_Procedure}{Export_Procedure} {\small }(GNAT, HP Ada, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport_Value}{Export_Value} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExport_Valued_Procedure}{Export_Valued_Procedure} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExtend_System}{Extend_System} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExtensions_Allowed}{Extensions_Allowed} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExternal}{External} {\small }(GNAT, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExternal_Name}{External_Name} {\small }(ICC, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FExternal_Name_Casing}{External_Name_Casing} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FFast_Math}{Fast_Math} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FFavor_Top_Level}{Favor_Top_Level} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FFinalize_Storage_Only}{Finalize_Storage_Only} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FFloat_Representation}{Float_Representation} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FForeign}{Foreign} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FGeneric_Mechanism}{Generic_Mechanism} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FGeneric_Policy}{Generic_Policy} {\small }(SPARCompiler){\small }
\end{myitemize}

\subsection{I {\mbox{$-$}} L}
\label{647}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2Fi960_Intrinsic}{i960_Intrinsic} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FIdent}{Ident} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImages}{Images} {\small }(PowerAda){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImplemented}{Implemented}, previously named \textquotesingle{}Implemented_By_Entry\textquotesingle{} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImplicit_Code}{Implicit_Code} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImplicit_Packing}{Implicit_Packing} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport_Exception}{Import_Exception} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport_Function}{Import_Function} {\small }(GNAT, HP Ada, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport_Mechanism}{Import_Mechanism} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport_Object}{Import_Object} {\small }(GNAT, HP Ada, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport_Procedure}{Import_Procedure} {\small }(GNAT, HP Ada, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FImport_Valued_Procedure}{Import_Valued_Procedure} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInclude}{Include} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInitialize}{Initialize} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInitialize_Scalars}{Initialize_Scalars} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInline_Always}{Inline_Always} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInline_Generic}{Inline_Generic} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInline_Only}{Inline_Only} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInstance_Policy}{Instance_Policy} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterface_Constant}{Interface_Constant} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterface_Information}{Interface_Information} {\small }(PowerAda){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterface_Mechanism}{Interface_Mechanism} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterface_Name}{Interface_Name} {\small }(GNAT, HP Ada, ICC, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInterrupt_State}{Interrupt_State} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FInvariant}{Invariant} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FKeep_Names}{Keep_Names} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLabel}{Label} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLicense}{License} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLink_With}{Link_With} {\small }(GNAT, ICC, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLinker_Alias}{Linker_Alias} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLinker_Constructor}{Linker_Constructor} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLinker_Destructor}{Linker_Destructor} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLinker_Section}{Linker_Section} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FLong_Float}{Long_Float} {\small }(GNAT: OpenVMS, HP Ada){\small }
\end{myitemize}

\subsection{M {\mbox{$-$}} P}
\label{648}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FMachine_Attribute}{Machine_Attribute} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FMain}{Main} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FMain_Storage}{Main_Storage} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNo_Body}{No_Body} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNo_Image}{No_Image} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNo_Strict_Aliasing}{No_Strict_Aliasing} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNo_Suppress}{No_Suppress} {\small }(PowerAda){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNo_Reorder}{No_Reorder} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNo_Zero}{No_Zero} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNoinline}{Noinline} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNon_Reentrant}{Non_Reentrant} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNot_Elaborated}{Not_Elaborated} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FNot_Null}{Not_Null} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FObsolescent}{Obsolescent} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FOptimize_Alignment}{Optimize_Alignment} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FOptimize_Code}{Optimize_Code} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FOptimize_Options}{Optimize_Options} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FOrdered}{Ordered} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FParameter_Mechanism}{Parameter_Mechanism} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPassive}{Passive} {\small }(GNAT, HP Ada, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPersistent_BSS}{Persistent_BSS} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPhysical_Address}{Physical_Address} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPolling}{Polling} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPostcondition}{Postcondition} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPrecondition}{Precondition} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPreserve_Layout}{Preserve_Layout} {\small }(PowerAda){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FProfile_Warnings}{Profile_Warnings} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPropagate_Exceptions}{Propagate_Exceptions} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FProtect_Registers}{Protect_Registers} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FProtected_Call}{Protected_Call} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FProtected_Return}{Protected_Return} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPsect_Object}{Psect_Object} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPure_Function}{Pure_Function} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPut}{Put} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FPut_Line}{Put_Line} {\small }(ICC){\small }
\end{myitemize}

\subsection{R {\mbox{$-$}} S}
\label{649}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FReserve_Registers}{Reserve_Registers} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FRestriction_Warnings}{Restriction_Warnings} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FRTS_Interface}{RTS_Interface} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSCCS_ID}{SCCS_ID} {\small }(PowerAda){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShare_Body}{Share_Body} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShare_Code}{Share_Code} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShare_Generic}{Share_Generic} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShareable}{Shareable} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShort_Circuit_And_Or}{Short_Circuit_And_Or} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FShort_Descriptors}{Short_Descriptors} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSimple_Storage_Pool_Type}{Simple_Storage_Pool_Type} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSimple_Task}{Simple_Task} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSource_File_Name}{Source_File_Name} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSource_File_Name_Project}{Source_File_Name_Project} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSource_Reference}{Source_Reference} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FStack_Size}{Stack_Size} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FStatic_Elaboration}{Static_Elaboration} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FStatic_Elaboration_Desired}{Static_Elaboration_Desired} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FStream_Convert}{Stream_Convert} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FStyle_Checks}{Style_Checks} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSubtitle}{Subtitle} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSuppress_All}{Suppress_All} {\small }(GNAT, HP Ada, PowerAda, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSuppress_Elaboration_Checks}{Suppress_Elaboration_Checks} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSuppress_Exception_Locations}{Suppress_Exception_Locations} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSuppress_Initialization}{Suppress_Initialization} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FSystem_Table}{System_Table} {\small }(ICC){\small }
\end{myitemize}

\subsection{T {\mbox{$-$}} Z}
\label{650}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTask_Attributes}{Task_Attributes} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTask_Info}{Task_Info} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTask_Name}{Task_Name} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTask_Storage}{Task_Storage} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTest_Case}{Test_Case} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FThread_Body}{Thread_Body} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FThread_Local_Storage}{Thread_Local_Storage} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTime_Slice}{Time_Slice} {\small }(GNAT, HP Ada, ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTime_Slice_Attributes}{Time_Slice_Attributes} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FTitle}{Title} {\small }(GNAT, HP Ada){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnimplemented_Unit}{Unimplemented_Unit} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUniversal_Aliasing}{Universal_Aliasing} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUniversal_Data}{Universal_Data} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnmodified}{Unmodified} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnreferenced}{Unreferenced} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnreferenced_Objects}{Unreferenced_Objects} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnreserve_All_Interrupts}{Unreserve_All_Interrupts} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUnsigned_Literal}{Unsigned_Literal} {\small }(ICC){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FUse_VADS_Size}{Use_VADS_Size} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FValidity_Checks}{Validity_Checks} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FWarning}{Warning} {\small }(SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FWarnings}{Warnings} {\small }(GNAT, SPARCompiler){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FWeak_External}{Weak_External} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPragmas\%2FWide_Character_Encoding}{Wide_Character_Encoding} {\small }(GNAT){\small }
\end{myitemize}

\section{See also}
\label{651}
\subsection{Wikibook}
\label{652}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAspects}{Ada Programming/Aspects}
\item{} \mylref{610}{Ada Programming/Attributes}
\item{} \mylref{568}{Ada Programming/Keywords}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{653}
\subsubsection{Ada 83}
\label{654}
\begin{myitemize}
\item{} \AdaEightThreeRM{2}{Pragmas}
\item{} \AdaEightThreeRM{B}{Predefined Language Pragmas}
\end{myitemize}

\subsubsection{Ada 95}
\label{655}
\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-8.html}{ 2.8 Pragmas}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-L.html}{ Annex L: (informative) Language-{}Defined Pragmas}
\end{myitemize}

\subsubsection{Ada 2005}
\label{656}
\begin{myitemize}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-2-8.html}{ 2.8 Pragmas}
\item{} \myhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-2-L.html}{ Annex L: (informative) Language-{}Defined Pragmas}
\end{myitemize}

\subsubsection{Ada 2012}
\label{657}
\begin{myitemize}
\item{} \myhref{http://www.ada-auth.org/standards/12rm/html/RM-2-8.html}{ 2.8 Pragmas}
\item{} \myhref{http://www.ada-auth.org/standards/12rm/html/RM-L.html}{ Annex L: (informative) Language-{}Defined Pragmas}
\end{myitemize}

\section{References}
\label{658}

\chapter{Libraries}

\myminitoc
\label{659}

\label{660}

\section{Predefined Language Libraries}
\label{661}

The library which comes with Ada in general and \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} in particular. Ada\textquotesingle{}s built in library is quite extensive and well structured. These chapters too are more reference like.

\begin{myitemize}
\item{} \mylref{668}{Standard}
\item{} \mylref{676}{Ada}
\item{} \mylref{692}{Interfaces}
\item{} \mylref{700}{System}
\item{} \mylref{702}{GNAT}
\end{myitemize}

\section{Other Language Libraries}
\label{662}

Other libraries which are not part of the standard but freely available.

\begin{myitemize}
\item{} \mylref{708}{Multi Purpose}
\item{} \mylref{714}{Container Libraries}
\item{} \mylref{719}{GUI Libraries}
\item{} \mylref{725}{Distributed Objects}
\item{} \mylref{730}{Database}
\item{} \mylref{732}{Web Programming}
\item{} \mylref{737}{Input/Output}
\end{myitemize}

\section{See also}
\label{663}
\subsection{Wikibook}
\label{664}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{665}

\begin{myitemize}
\item{} \ADARMAONE{A}{(normative) Predefined Language Environment}
\end{myitemize}

\subsection{Resources}
\label{666}

\begin{myitemize}
\item{} A collection of \myhref{http://www.adaic.org/ada-resources/tools-libraries/}{ Tools and Libraries} maintained by the Ada Resource Association.
\end{myitemize}

\myhref{http://es.wikibooks.org/wiki/Programaci\%F3n\%20en\%20Ada\%2FUnidades\%20predefinidas}{es:Programación en Ada/Unidades predefinidas}\chapter{Libraries: Standard}

\myminitoc
\label{667}

\label{668}

The {\bfseries Standard} package is implicit. This means two things:

\begin{myenumerate}
\item{} You do not need to \LaTeXBF{with} or \LaTeXBF{use} the package, in fact you cannot {\small }(see below){\small }. It\textquotesingle{}s always available {\small }(except where hidden by a homograph, RM \AdaRM{8}{3}{(8)}){\small }.
\item{} {\bfseries Standard} may contain constructs which are not quite legal Ada {\small }(like the definitions of {\ttfamily Character} and {\ttfamily Wide_Character}){\small }.
\end{myenumerate}

A \LaTeXBF{with} clause mentioning {\ttfamily Standard} references a user-{}defined package {\ttfamily Standard} that hides the predefined one. So do not do this. However any library unit hidden by a homograph can be made visible again by qualifying its name with {\ttfamily Standard}, like e.g. {\ttfamily Standard.My_Unit}.
\section{Implementation}
\label{669}

Since the package {\ttfamily Standard} is very important for portability, here are some examples for various compilers:

\begin{myitemize}
\item{} The package \myhref{http://en.wikibooks.org/wiki/\%2FRM}{Standard} from \myhref{http://en.wikipedia.org/wiki/ISO\%208652}{ISO 8652}.
\item{} The package \myhref{http://en.wikibooks.org/wiki/\%2FGNAT}{Standard} from \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT}.
\item{} The package \myhref{http://en.wikibooks.org/wiki/\%2FApex}{Standard} from \myhref{http://www-306.ibm.com/software/awdtools/developer/ada}{ Rational Apex}.
\item{} The package \myhref{http://en.wikibooks.org/wiki/\%2FObjectAda}{Standard} from \myhref{http://www.aonix.com/objectada.html}{ ObjectAda}
\item{} The \myhref{http://en.wikibooks.org/wiki/\%2FAppletMagic}{Standard} definitions for \myhref{http://www.sofcheck.com/products/adamagic.html\#appletmagic}{ AppletMagic}
\end{myitemize}

\section{Portability}
\label{670}

The only mandatory types in Standard are Boolean, Integer and its subtypes, Float, Character, Wide_Character, Wide_Wide_Character, String, Wide_String, Wide_Wide_String, Duration. There is an implementation permission in RM \AdaRM{A}{1}{(51)} that there may be more integer and floating point types and an implementation advice RM \AdaRM{A}{1}{(52)} about the names to be chosen. There even is no requirement that those additional types must have different sizes. So it is e.g. legal for an implementation to provide two types Long_Integer and Long_Long_Integer which both have the same range and size.

Note that the ranges and sizes of these types can be different in every platform {\small (except of course for Boolean and {[}{[}Wide_{]}Wide_{]}Character)}. There is an implementation requirement that the size of type Integer is at least 16 bits, and that of Long_Integer at least 32 bits (if present) RM \AdaRMThree{3}{5}{4}{(21..22)}. So if you want full portability of your types, do not use types from Standard {\small (except where you must, see below)}, rather define you own types. A compiler will reject any type declaration whose range it cannot satisfy.

This means e.g. if you need a 64-{}bit type and find that with your current implementation Standard.Long_Long_Integer is such a type, when porting your program to another implementation, this type may be shorter, but the compiler will not tell you -{} and your program will most probably crash. However, when you define your own type like
\\

\TemplateSpaceIndent{ {}\LaTeXBF{type} {}My_Integer_64 {}\LaTeXBF{is} {}\LaTeXBF{range} {}-{}(2**63) {}.. {}+(2**63 {}-{} {}1);}

then, when porting to an implementation that cannot satisfy this range, the compiler will reject your program.

The type Integer is mandatory when you use {[}{[}wide{]} wide{]} strings or exponentiation x**i. This is why some projects even define their own strings, but this means throwing out the child with the bath tub. Using Integer with strings and exponentiation will normally not lead to portability issues.
\section{See also}
\label{671}
\subsection{Wikibook}
\label{672}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{661}{Ada Programming/Libraries\#Predefined Language Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{673}

\begin{myitemize}
\item{} \AdaRM{A}{1}{The Package Standard}
\item{} \AdaRMThree{3}{5}{4}{Integer Types}
\item{} \AdaRMThree{3}{5}{7}{Floating Point Types}
\end{myitemize}

\subsection{Ada Quality and Style Guide}
\label{674}

\begin{myitemize}
\item{} \AdaSGThree{7}{1}{1}{Obsolescent Features} {\mbox{$-$}} Avoid using the package ASCII
\item{} \AdaSGThree{7}{2}{1}{Predefined Numeric Types} {\mbox{$-$}} Avoid the predefined numeric types
\end{myitemize}

\chapter{Libraries: Ada}

\myminitoc
\label{675}

\label{676}

The {\bfseries Ada} package is only an anchor or namespace for Ada\textquotesingle{}s standard library. Most compilers will not allow you to add new packages to the Ada hierarchy and even if your compiler allows it you should not do so since all package names starting with {\itshape Ada.} are reserved for future extensions.
\section{List of language defined child units}
\label{677}

The following library units (packages and generic subprograms) are descendents of the package Ada.
{\bfseries
\begin{mydescription} Ada 2005
\end{mydescription}
}
\begin{myquote}\item{} This package is available since \mylref{406}{Ada 2005}.
\end{myquote}

\subsection{A {\mbox{$-$}} C}
\label{678}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Assertions}{Ada.Assertions} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Asynchronous_Task_Control}{Ada.Asynchronous_Task_Control}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Calendar}{Ada.Calendar}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Calendar.Arithmetic}{Ada.Calendar.Arithmetic} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Calendar.Formatting}{Ada.Calendar.Formatting} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Calendar.Time_Zones}{Ada.Calendar.Time_Zones} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters}{Ada.Characters}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Conversions}{Ada.Characters.Conversions} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Handling}{Ada.Characters.Handling}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Latin_1}{Ada.Characters.Latin_1}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Command_Line}{Ada.Command_Line}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Complex_Text_IO}{Ada.Complex_Text_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers}{Ada.Containers} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Doubly_Linked_Lists}{Ada.Containers.Doubly_Linked_Lists} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Generic_Array_Sort}{Ada.Containers.Generic_Array_Sort} {\small }(Ada 2005 generic procedure){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Generic_Constrained_Array_Sort}{Ada.Containers.Generic_Constrained_Array_Sort} {\small }(Ada 2005 generic procedure){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Hashed_Maps}{Ada.Containers.Hashed_Maps} {\small } (Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Hashed_Sets}{Ada.Containers.Hashed_Sets} {\small } (Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Indefinite_Doubly_Linked_Lists}{Ada.Containers.Indefinite_Doubly_Linked_Lists} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Indefinite_Hashed_Maps}{Ada.Containers.Indefinite_Hashed_Maps} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Indefinite_Hashed_Sets}{Ada.Containers.Indefinite_Hashed_Sets} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Indefinite_Ordered_Maps}{Ada.Containers.Indefinite_Ordered_Maps} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Indefinite_Ordered_Sets}{Ada.Containers.Indefinite_Ordered_Sets} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Indefinite_Vectors}{Ada.Containers.Indefinite_Vectors} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Ordered_Maps}{Ada.Containers.Ordered_Maps} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Ordered_Sets}{Ada.Containers.Ordered_Sets} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers.Vectors}{Ada.Containers.Vectors} {\small }(Ada 2005){\small }
\end{myitemize}

\subsection{D {\mbox{$-$}} F}
\label{679}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Decimal}{Ada.Decimal}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Direct_IO}{Ada.Direct_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Directories}{Ada.Directories} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Directories.Information}{Ada.Directories.Information} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Dispatching}{Ada.Dispatching} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Dispatching.EDF}{Ada.Dispatching.EDF} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Dispatching.Round_Robin}{Ada.Dispatching.Round_Robin} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Dynamic_Priorities}{Ada.Dynamic_Priorities}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Environment_Variables}{Ada.Environment_Variables} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Exceptions}{Ada.Exceptions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Execution_Time}{Ada.Execution_Time} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Execution_Time.Timers}{Ada.Execution_Time.Timers} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Execution_Time.Group_Budgets}{Ada.Execution_Time.Group_Budgets} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Finalization}{Ada.Finalization}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Float_Text_IO}{Ada.Float_Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Float_Wide_Text_IO}{Ada.Float_Wide_Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Float_Wide_Wide_Text_IO}{Ada.Float_Wide_Wide_Text_IO} {\small }(Ada 2005){\small }
\end{myitemize}

\subsection{G {\mbox{$-$}} R}
\label{680}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Integer_Text_IO}{Ada.Integer_Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Integer_Wide_Text_IO}{Ada.Integer_Wide_Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Integer_Wide_Wide_Text_IO}{Ada.Integer_Wide_Wide_Text_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Interrupts}{Ada.Interrupts}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Interrupts.Names}{Ada.Interrupts.Names}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.IO_Exceptions}{Ada.IO_Exceptions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics}{Ada.Numerics}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Complex_Arrays}{Ada.Numerics.Complex_Arrays} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Complex_Elementary_Functions}{Ada.Numerics.Complex_Elementary_Functions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Complex_Types}{Ada.Numerics.Complex_Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Discrete_Random}{Ada.Numerics.Discrete_Random}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Elementary_Functions}{Ada.Numerics.Elementary_Functions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Float_Random}{Ada.Numerics.Float_Random}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Generic_Complex_Arrays}{Ada.Numerics.Generic_Complex_Arrays} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Generic_Complex_Elementary_Functions}{Ada.Numerics.Generic_Complex_Elementary_Functions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Generic_Complex_Types}{Ada.Numerics.Generic_Complex_Types}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Generic_Elementary_Functions}{Ada.Numerics.Generic_Elementary_Functions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Generic_Real_Arrays}{Ada.Numerics.Generic_Real_Arrays} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Real_Arrays}{Ada.Numerics.Real_Arrays} {\small }(Ada 2005){\small }
\end{myitemize}

\subsection{R {\mbox{$-$}} S}
\label{681}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Real_Time}{Ada.Real_Time}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Real_Time.Timing_Events}{Ada.Real_Time.Timing_Events} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Sequential_IO}{Ada.Sequential_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Storage_IO}{Ada.Storage_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Streams}{Ada.Streams}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Streams.Stream_IO}{Ada.Streams.Stream_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings}{Ada.Strings}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Bounded}{Ada.Strings.Bounded}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Bounded.Hash}{Ada.Strings.Bounded.Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Fixed}{Ada.Strings.Fixed}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Fixed.Hash}{Ada.Strings.Fixed.Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Hash}{Ada.Strings.Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Maps}{Ada.Strings.Maps}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Maps.Constants}{Ada.Strings.Maps.Constants}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Unbounded}{Ada.Strings.Unbounded}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Unbounded.Hash}{Ada.Strings.Unbounded.Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Bounded}{Ada.Strings.Wide_Bounded}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Bounded.Wide_Hash}{Ada.Strings.Wide_Bounded.Wide_Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Fixed}{Ada.Strings.Wide_Fixed}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Fixed.Wide_Hash}{Ada.Strings.Wide_Fixed.Wide_Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Hash}{Ada.Strings.Wide_Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Maps}{Ada.Strings.Wide_Maps}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Maps.Wide_Constants}{Ada.Strings.Wide_Maps.Wide_Constants}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Unbounded}{Ada.Strings.Wide_Unbounded}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Unbounded.Wide_Hash}{Ada.Strings.Wide_Unbounded.Wide_Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Bounded}{Ada.Strings.Wide_Wide_Bounded} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Bounded.Wide_Wide_Hash}{Ada.Strings.Wide_Wide_Bounded.Wide_Wide_Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Fixed}{Ada.Strings.Wide_Wide_Fixed} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Fixed.Wide_Wide_Hash}{Ada.Strings.Wide_Wide_Fixed.Wide_Wide_Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Hash}{Ada.Strings.Wide_Wide_Hash} {\small }(Ada 2005 generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Maps}{Ada.Strings.Wide_Wide_Maps} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Maps.Wide_Wide_Constants}{Ada.Strings.Wide_Wide_Maps.Wide_Wide_Constants} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Unbounded}{Ada.Strings.Wide_Wide_Unbounded} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Unbounded.Wide_Wide_Hash}{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Hash} {\small }(Ada 2005 generic function){\small }
\end{myitemize}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Synchronous_Task_Control}{Ada.Synchronous_Task_Control}
\end{myitemize}

\subsection{T {\mbox{$-$}} U}
\label{682}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Tags}{Ada.Tags}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Tags.Generic_Dispatching_Constructor}{Ada.Tags.Generic_Dispatching_Constructor} {\small }(generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Task_Attributes}{Ada.Task_Attributes}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Task_Identification}{Ada.Task_Identification}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Task_Termination}{Ada.Task_Termination} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO}{Ada.Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Bounded_IO}{Ada.Text_IO.Bounded_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Complex_IO}{Ada.Text_IO.Complex_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Decimal_IO}{Ada.Text_IO.Decimal_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Editing}{Ada.Text_IO.Editing}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Enumeration_IO}{Ada.Text_IO.Enumeration_IO} {\small }(Nested package of \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO}{Ada.Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Fixed_IO}{Ada.Text_IO.Fixed_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Float_IO}{Ada.Text_IO.Float_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Integer_IO}{Ada.Text_IO.Integer_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Modular_IO}{Ada.Text_IO.Modular_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Text_Streams}{Ada.Text_IO.Text_Streams}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.Unbounded_IO}{Ada.Text_IO.Unbounded_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Unchecked_Conversion}{Ada.Unchecked_Conversion} {\small }(generic function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Unchecked_Deallocation}{Ada.Unchecked_Deallocation} {\small }(generic procedure){\small }
\end{myitemize}

\subsection{W {\mbox{$-$}} Z}
\label{683}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Characters}{Ada.Wide_Characters} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO}{Ada.Wide_Text_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Bounded_IO}{Ada.Wide_Text_IO.Bounded_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Complex_IO}{Ada.Wide_Text_IO.Complex_IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Decimal_IO}{Ada.Wide_Text_IO.Decimal_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Editing}{Ada.Wide_Text_IO.Editing}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Enumeration_IO}{Ada.Wide_Text_IO.Enumeration_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Fixed_IO}{Ada.Wide_Text_IO.Fixed_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Float_IO}{Ada.Wide_Text_IO.Float_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Integer_IO}{Ada.Wide_Text_IO.Integer_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Modular_IO}{Ada.Wide_Text_IO.Modular_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Text_Streams}{Ada.Wide_Text_IO.Text_Streams}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.Unbounded_IO}{Ada.Wide_Text_IO.Unbounded_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Characters}{Ada.Wide_Wide_Characters} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO}{Ada.Wide_Wide_Text_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Bounded_IO}{Ada.Wide_Wide_Text_IO.Bounded_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Complex_IO}{Ada.Wide_Wide_Text_IO.Complex_IO} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Decimal_IO}{Ada.Wide_Wide_Text_IO.Decimal_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Editing}{Ada.Wide_Wide_Text_IO.Editing} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Enumeration_IO}{Ada.Wide_Wide_Text_IO.Enumeration_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Fixed_IO}{Ada.Wide_Wide_Text_IO.Fixed_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Float_IO}{Ada.Wide_Wide_Text_IO.Float_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Integer_IO}{Ada.Wide_Wide_Text_IO.Integer_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Modular_IO}{Ada.Wide_Wide_Text_IO.Modular_IO} {\small }(Nested package of \LaTeXIdentityTemplate{Ada.Wide_Wide_Text_IO}){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Text_Streams}{Ada.Wide_Wide_Text_IO.Text_Streams} {\small }(Ada 2005){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.Unbounded_IO}{Ada.Wide_Wide_Text_IO.Unbounded_IO} {\small }(Ada 2005){\small }
\end{myitemize}

\section{List of implementation defined child units}
\label{684}

The Reference Manual allows compiler vendors to add extensions to the Standard Libraries. However, these extensions cannot be directly childs of the package Ada, only grandchilds -{}-{} for example \LaTeXIdentityTemplate{Ada.Characters.Latin_9}.

Currently, only the implementation defined library units of the \myhref{http://en.wikipedia.org/wiki/GNAT}{GNAT} compiler are listed here. You can help Wikibooks by \myhref{http://en.wikibooks.org/w/index.php?title=Ada_Programming/Libraries/Ada\&action=edit}{ adding} implementation dependent packages of other compilers:
{\bfseries
\begin{mydescription} GNAT
\end{mydescription}
}
\begin{myquote}\item{} Extended package \myhref{http://gcc.gnu.org/onlinedocs/gnat_rm/The-GNAT-Library.html}{ implemented by GNAT}.
\end{myquote}
{\bfseries
\begin{mydescription} ObjectAda
\end{mydescription}
}
\begin{myquote}\item{} Extended package implemented by ObjectAda.
\end{myquote}
{\bfseries
\begin{mydescription} APEX
\end{mydescription}
}
\begin{myquote}\item{} Extended package implemented by IBM/Rational APEX.
\end{myquote}

\subsection{A {\mbox{$-$}} K}
\label{685}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Latin_9}{Ada.Characters.Latin_9} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Wide_Latin_1}{Ada.Characters.Wide_Latin_1} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Wide_Latin_9}{Ada.Characters.Wide_Latin_9} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Wide_Wide_Latin_1}{Ada.Characters.Wide_Wide_Latin_1} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Characters.Wide_Wide_Latin_9}{Ada.Characters.Wide_Wide_Latin_9} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Command_Line.Environment}{Ada.Command_Line.Environment} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Command_Line.Remove}{Ada.Command_Line.Remove} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Direct_IO.C_Streams}{Ada.Direct_IO.C_Streams} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Exceptions.Is_Null_Occurrence}{Ada.Exceptions.Is_Null_Occurrence} {\small }(GNAT child function){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Exceptions.Traceback}{Ada.Exceptions.Traceback} {\small }(GNAT){\small }
\end{myitemize}

\subsection{L {\mbox{$-$}} Q}
\label{686}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Float_Text_IO}{Ada.Long_Float_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Float_Wide_Text_IO}{Ada.Long_Float_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Integer_Text_IO}{Ada.Long_Integer_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Integer_Wide_Text_IO}{Ada.Long_Integer_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Long_Float_Text_IO}{Ada.Long_Long_Float_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Long_Float_Wide_Text_IO}{Ada.Long_Long_Float_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Long_Integer_Text_IO}{Ada.Long_Long_Integer_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Long_Long_Integer_Wide_Text_IO}{Ada.Long_Long_Integer_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Long_Complex_Elementary_Functions}{Ada.Numerics.Long_Complex_Elementary_Functions} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Long_Complex_Types}{Ada.Numerics.Long_Complex_Types} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Long_Elementary_Functions}{Ada.Numerics.Long_Elementary_Functions} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Long_Long_Complex_Elementary_Functions}{Ada.Numerics.Long_Long_Complex_Elementary_Functions} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Long_Long_Complex_Types}{Ada.Numerics.Long_Long_Complex_Types} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Long_Long_Elementary_Functions}{Ada.Numerics.Long_Long_Elementary_Functions} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Short_Complex_Elementary_Functions}{Ada.Numerics.Short_Complex_Elementary_Functions} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Short_Complex_Types}{Ada.Numerics.Short_Complex_Types} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Numerics.Short_Elementary_Functions}{Ada.Numerics.Short_Elementary_Functions} {\small }(GNAT){\small }
\end{myitemize}

\subsection{R {\mbox{$-$}} Z}
\label{687}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Sequential_IO.C_Streams}{Ada.Sequential_IO.C_Streams} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Short_Float_Text_IO}{Ada.Short_Float_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Short_Float_Wide_Text_IO}{Ada.Short_Float_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Short_Integer_Text_IO}{Ada.Short_Integer_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Short_Integer_Wide_Text_IO}{Ada.Short_Integer_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Short_Short_Integer_Text_IO}{Ada.Short_Short_Integer_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Short_Short_Integer_Wide_Text_IO}{Ada.Short_Short_Integer_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Streams.Stream_IO.C_Streams}{Ada.Streams.Stream_IO.C_Streams} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Unbounded.Text_IO}{Ada.Strings.Unbounded.Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Unbounded.Wide_Text_IO}{Ada.Strings.Wide_Unbounded.Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO}{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Text_IO.C_Streams}{Ada.Text_IO.C_Streams} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Text_IO.C_Streams}{Ada.Wide_Text_IO.C_Streams} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Wide_Wide_Text_IO.C_Streams}{Ada.Wide_Wide_Text_IO.C_Streams} {\small }(GNAT){\small }
\end{myitemize}

\section{See also}
\label{688}
\subsection{Wikibook}
\label{689}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\item{} \mylref{668}{Ada Programming/Libraries/Standard}
\item{} \mylref{700}{Ada Programming/Libraries/System}
\item{} \mylref{692}{Ada Programming/Libraries/Interfaces}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{690}

\AdaRM{A}{2}{The Package Ada}

\chapter{Libraries: Interfaces}

\myminitoc
\label{691}

\label{692}

The Interfaces package helps in interfacing with other programming languages. Ada is one of the few languages where interfacing with other languages is part of the language standard. The language standard defines the interfaces for \myhref{http://en.wikibooks.org/wiki/C\%20Programming}{C}, \myhref{http://en.wikibooks.org/wiki/COBOL}{Cobol} and \myhref{http://en.wikibooks.org/wiki/Programming\%3AFortran}{Fortran}. Of course any implementation might define further interfaces {\mbox{---}} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FGNAT}{GNAT} for example defines an interface to \myhref{http://en.wikibooks.org/wiki/C\%2B\%2B\%20Programming}{C++}.

Interfacing with other languages is actually provided by \AdaPragma{Export}, \AdaPragma{Import} and \AdaPragma{Convention}
\section{Child Packages}
\label{693}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.C}{Interfaces.C}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.C.Extensions}{Interfaces.C.Extensions} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.C.Pointers}{Interfaces.C.Pointers}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.C.Streams}{Interfaces.C.Streams} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.C.Strings}{Interfaces.C.Strings}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.CPP}{Interfaces.CPP} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.COBOL}{Interfaces.COBOL}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.Fortran}{Interfaces.Fortran}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.OS2Lib}{Interfaces.OS2Lib} {\small }(GNAT, OS/2){\small }
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.OS2Lib.Errors}{Interfaces.OS2Lib.Errors} {\small }(GNAT, OS/2){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.OS2Lib.Synchronization}{Interfaces.OS2Lib.Synchronization} {\small }(GNAT, OS/2){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.OS2Lib.Threads}{Interfaces.OS2Lib.Threads} {\small }(GNAT, OS/2){\small }
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.Packed_Decimal}{Interfaces.Packed_Decimal} {\small }(GNAT){\small }
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.VxWorks}{Interfaces.VxWorks} {\small }(GNAT, VxWorks){\small }
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FInterfaces.VxWorks.IO}{Interfaces.VxWorks.IO} {\small }(GNAT, VxWorks){\small }
\end{myitemize}

\end{myitemize}

\section{See also}
\label{694}
\subsection{Wikibook}
\label{695}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\item{} \mylref{668}{Ada Programming/Libraries/Standard}
\item{} \mylref{676}{Ada Programming/Libraries/Ada}
\item{} \mylref{700}{Ada Programming/Libraries/System}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{696}
\subsubsection{Ada 95}
\label{697}

\begin{myitemize}
\item{} \ADARMAONE{B}{Interface to Other Languages}
\item{} \AdaRM{B}{2}{The Package Interfaces}
\end{myitemize}

\subsubsection{Ada 2005}
\label{698}

\begin{myitemize}
\item{} \ADARMAONE{B}{Interface to Other Languages}
\item{} \AdaRM{B}{2}{The Package Interfaces}
\end{myitemize}

\chapter{Libraries: System}

\myminitoc
\label{699}

\label{700}
\chapter{Libraries: GNAT}

\myminitoc
\label{701}

\label{702}

The GNAT package hierarchy defines several units for general purpose programming provided by the GNAT compiler. It is distributed along with the compiler and uses the same license.

\myhref{http://sourceforge.net/projects/gnat4oa}{ GNAT-{}4-{}ObjectAda} is a project for porting the GNAT library to the ObjectAda compiler.
\section{Child packages}
\label{703}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Array_Split}{GNAT.Array_Split}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.AWK}{GNAT.AWK}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Bounded_Buffers}{GNAT.Bounded_Buffers}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Bounded_Mailboxes}{GNAT.Bounded_Mailboxes}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Bubble_Sort}{GNAT.Bubble_Sort}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Bubble_Sort_A}{GNAT.Bubble_Sort_A}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Bubble_Sort_G}{GNAT.Bubble_Sort_G}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Calendar}{GNAT.Calendar}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Calendar.Time_IO}{GNAT.Calendar.Time_IO}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Case_Util}{GNAT.Case_Util}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.CGI}{GNAT.CGI}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.CGI.Cookie}{GNAT.CGI.Cookie}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.CGI.Debug}{GNAT.CGI.Debug}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Command_Line}{GNAT.Command_Line}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Compiler_Version}{GNAT.Compiler_Version}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.CRC32}{GNAT.CRC32}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Ctrl_C}{GNAT.Ctrl_C}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Current_Exception}{GNAT.Current_Exception}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Debug_Pools}{GNAT.Debug_Pools}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Debug_Utilities}{GNAT.Debug_Utilities}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Directory_Operations}{GNAT.Directory_Operations}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Directory_Operations.Iteration}{GNAT.Directory_Operations.Iteration}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Dynamic_HTables}{GNAT.Dynamic_HTables}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Dynamic_Tables}{GNAT.Dynamic_Tables}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Exception_Actions}{GNAT.Exception_Actions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Exceptions}{GNAT.Exceptions}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Exception_Traces}{GNAT.Exception_Traces}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Expect}{GNAT.Expect}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Float_Control}{GNAT.Float_Control}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Heap_Sort}{GNAT.Heap_Sort}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Heap_Sort_A}{GNAT.Heap_Sort_A}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Heap_Sort_G}{GNAT.Heap_Sort_G}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.HTable}{GNAT.HTable}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.IO}{GNAT.IO}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.IO_Aux}{GNAT.IO_Aux}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Lock_Files}{GNAT.Lock_Files}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.MD5}{GNAT.MD5}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Memory_Dump}{GNAT.Memory_Dump}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Most_Recent_Exception}{GNAT.Most_Recent_Exception}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.OS_Lib}{GNAT.OS_Lib}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Perfect_Hash_Generators}{GNAT.Perfect_Hash_Generators}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Regexp}{GNAT.Regexp}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Registry}{GNAT.Registry}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Regpat}{GNAT.Regpat}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Secondary_Stack_Info}{GNAT.Secondary_Stack_Info}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Semaphores}{GNAT.Semaphores}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Signals}{GNAT.Signals}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Sockets}{GNAT.Sockets} (\myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Sockets_examples}{GNAT.Sockets examples})
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Sockets.Constants}{GNAT.Sockets.Constants}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Sockets.Linker_Options}{GNAT.Sockets.Linker_Options}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Sockets.Thin}{GNAT.Sockets.Thin}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Source_Info}{GNAT.Source_Info}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Spelling_Checker}{GNAT.Spelling_Checker}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Spitbol}{GNAT.Spitbol}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Spitbol.Patterns}{GNAT.Spitbol.Patterns}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Spitbol.Table_Boolean\%20new}{GNAT.Spitbol.Table_Boolean new}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Spitbol.Table_Integer}{GNAT.Spitbol.Table_Integer}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Spitbol.Table_VString\%20new}{GNAT.Spitbol.Table_VString new}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Strings}{GNAT.Strings}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.String_Split}{GNAT.String_Split}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Table}{GNAT.Table}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Task_Lock}{GNAT.Task_Lock}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Threads}{GNAT.Threads}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Traceback}{GNAT.Traceback}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Traceback.Symbolic}{GNAT.Traceback.Symbolic}
\end{myitemize}

\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGNAT.Wide_String_Split}{GNAT.Wide_String_Split}
\end{myitemize}

\section{See also}
\label{704}
\subsection{External links}
\label{705}

\begin{myitemize}
\item{} \myhref{http://gcc.gnu.org/onlinedocs/gnat_rm/The-GNAT-Library.html}{ The GNAT Library}
\end{myitemize}

\subsection{Wikibook}
\label{706}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\chapter{Libraries: Multi-{}Purpose}

\myminitoc
\label{707}

\label{708}

{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FAdaCL}{AdaCL, Ada Class Library}
\end{mydescription}
}
\begin{myquote}\item{} Filtering of text files, string tools, process control, command line parsing, CGI, garbage collector, components.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FMatreshka}{Matreshka}
\end{mydescription}
}
\begin{myquote}\item{} Core components for information system development: Unicode support (case conversions and folding, collation, normalization); regular expression engine; XML processor; FastCGI, SQL database access.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FParaffin}{paraffin}
\end{mydescription}
}
\begin{myquote}\item{} \symbol{34}A suite of Ada 2005 generics to facilitate iterative and recursive parallelism\symbol{34}.\myfootnote{\myhref{
}{Iterative and recursive parallelism generics for Ada 2005
}. . Retrieved 2012-{}08-{}28 } Features include load-{}balancing and monitoring of stacks.
\end{myquote}

\section{See also}
\label{709}
\subsection{Wikibook}
\label{710}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{711}

-{}-{} does not apply -{}-{}
\subsection{References}
\label{712}

\chapter{Libraries: Container}

\myminitoc
\label{713}

\label{714}

The following Libraries help you store and manage objects inside container classes:
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FContainer\%2FBooch}{Booch Components}
\end{mydescription}
}
\begin{myquote}\item{} the most complete of all container class libraries {\small }(at least when used with \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FAdaCL}{AdaCL, Ada Class Library}){\small }.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FAdaCL}{AdaCL, Ada Class Library}
\end{mydescription}
}
\begin{myquote}\item{} A \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FContainer\%2FBooch}{Booch Components} extension pack for storing indefinite objects.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FContainer\%2FCharles}{Charles}
\end{mydescription}
}
\begin{myquote}\item{} Build on the C++ STL and therefore very easy to learn for C++ developers.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FContainer\%2FAI302}{AI302}
\end{mydescription}
}
\begin{myquote}\item{} Proof of concept for \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers}{Ada.Containers}
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FAda.Containers}{Ada.Containers}
\end{mydescription}
}
\begin{myquote}\item{} \AdaTwentyZeroFive{}
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FSAL}{Stephe\textquotesingle{}s Ada Library}
\end{mydescription}
}
\begin{myquote}\item{} dynamic arrays, lists, trees
\end{myquote}

\section{See also}
\label{715}
\subsection{Wikibook}
\label{716}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{717}

\begin{myitemize}
\item{} \AdaRMThree{A}{18}{1}{The Package Containers}
\end{myitemize}

\chapter{Libraries: GUI}

\myminitoc
\label{718}

\label{719}

The following libraries can be used to make Graphical User Interfaces:{\bfseries
\begin{mydescription} \myhref{http://www.rrsoftware.com/html/prodinf/claw/claw.htm}{ CLAW}
\end{mydescription}
}
\begin{myquote}\item{} Commercial GUI toolkit for Windows. \myhref{http://www.adapower.com/adapower1/claw/}{ Introductory Edition} is distributed under \myhref{http://en.wikipedia.org/wiki/GMGPL}{GMGPL}.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGUI\%2FGtkAda}{GtkAda}
\end{mydescription}
}
\begin{myquote}\item{} Binding to the popular GTK+ toolkit.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGUI\%2FGWindows}{GWindows}
\end{mydescription}
}
\begin{myquote}\item{} RAD GUI Development Framework for Windows.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGUI\%2FQt4Ada}{Qt4Ada}
\end{mydescription}
}
\begin{myquote}\item{} An Ada2005 binding to Qt4. Under CeCILL license V2.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGUI\%2FQtAda}{QtAda}
\end{mydescription}
}
\begin{myquote}\item{} An Ada2005 binding to the Qt libraries and associated tools. Under GPL and \myhref{http://en.wikipedia.org/wiki/GMGPL}{GMGPL} (commercially supported) licenses.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://wiki.libagar.org/wiki/Ada_bindings}{ libAgar}
\end{mydescription}
}
\begin{myquote}\item{} Ada bindings for the \myhref{http://libagar.org/}{ libagar} OpenGL GUI library (BSD license).
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://sourceforge.net/projects/tcladashell/}{ TASH}
\end{mydescription}
}
\begin{myquote}\item{} TclAdaSHell, An Ada binding to Tcl/Tk. GPL with \symbol{34}Linking Exception\symbol{34}.
\end{myquote}

\section{See also}
\label{720}
\subsection{Wikibook}
\label{721}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{722}

-{}-{} does not apply -{}-{}
\subsection{External Links}
\label{723}
\begin{myitemize}
\item{} \myhref{http://www.adapower.com/index.php?Command=Class\&ClassID=AdaGUI\&Title=Ada+GUI}{ adapower.com -{} Links to tools and Bindings for GUI Applications}
\item{} \myhref{http://www.adapower.com/index.php?Command=Class\&ClassID=GUIExamples\&Title=GUI+Examples}{ adapower.com -{} Examples of programming GUIs in Ada}
\end{myitemize}

\chapter{Libraries: Distributed Systems}

\myminitoc
\label{724}

\label{725}

The following Libraries help you in Distributed programming:
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FDistributed\%2FGLADE}{GLADE}
\end{mydescription}
}
\begin{myquote}\item{} A full implementation of the Ada \myhref{http://www.adaic.org/standards/95lrm/html/RM-E.html}{ Annex E: Distributed Systems}
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FDistributed\%2FPolyORB}{PolyORB}
\end{mydescription}
}
\begin{myquote}\item{} A \myhref{http://en.wikibooks.org/wiki/Programming\%3ACORBA}{CORBA} and \myhref{http://www.adaic.org/standards/95lrm/html/RM-E.html}{ Annex E: Distributed Systems} implementation.
\end{myquote}

\section{See also}
\label{726}
\subsection{Wikibook}
\label{727}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\item{} \myhref{http://en.wikibooks.org/wiki/Programming\%3ACORBA}{Programming:CORBA}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{728}

\begin{myitemize}
\item{} \ADARMAONE{E}{(normative) Distributed Systems}
\end{myitemize}

\chapter{Libraries: Databases}

\myminitoc
\label{729}

\label{730}

The following libraries help you in Database programming:
\begin{landscape}

\begin{longtable}{|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|>{\RaggedRight}p{0.05714\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Library}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} License}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interbase Firebird}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} MySQL}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} ODBC}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Oracle}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} PostgreSQL}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} SQLite 3}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Sybase}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Other database}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Binary packages}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://framework.kow.com.br}{ APQ}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GMGPL&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://packages.qa.debian.org/a/apq.html}{ Debian}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Thread-{}safe connection pools\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://gnade.sourceforge.net}{ GNADE (GNu Ada Database Environment)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GMGPL&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3.x, 4.x}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://packages.qa.debian.org/g/gnade.html}{ Debian}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Embedded SQL preprocessor\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://repo.or.cz/w/gnadelite.git}{ gnadelite}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://www.adacore.com/wp-content/files/auto_update/gnatcoll-docs/gnatcoll.html\#Database-interface}{ GNATCOLL (database interface module)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GPL/GMGPL&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} gnatcoll_db2ada generates thick Ada bindings to a specified database schema. Requires Ada 2005.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FDatabase\%2FGWindows}{GWindows}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Windows only?\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://adaforge.qtada.com/cgi-bin/tracker.fcgi/matreshka/wiki}{ Matreshka SQL}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} BSD&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://www.opensuse.org}{ OpenSUSE}, \myhref{http://www.fedoraproject.org}{ Fedora}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://pobry.blogspot.fr/p/ada-contributions.html}{ ODBC}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GPL&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} none&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Windows only. Depends on Win32Ada. Very simple.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://www.qtada.com/}{ QtAda (QtSql module)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GPL/GMGPL&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IBM DB/2, SQLite2&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Microsoft Windows&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Binding to Qt: requires C++\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://www.dmitry-kazakov.de/ada/components.htm\#SQLite}{ Simple Components for Ada}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GMGPL&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Fedora, Debian&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} SQLite bindings are intended for static linking with the SQLite3 amalgation. ODBC bindings support 32-{} and 64-{}bit platforms\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://www.inspirel.com/soci-ada/}{ SOCI-{}Ada}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Boost&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Requires C++.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://coreland.ath.cx/code/sqlite3-ada}{ SQLite3-{}Ada}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Public domain&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Yes}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\mbox{---}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ?&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \\ \hline
\end{longtable}

\end{landscape}

\chapter{Libraries: Web}

\myminitoc
\label{731}

\label{732}

The following libraries help you in Internet or Web programming:
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FAdaCL}{AdaCL, Ada Class Library}
\end{mydescription}
}
\begin{myquote}\item{} Powerful CGI implementation.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FIO\%2FXML\%2FAda}{XML/Ada}
\end{mydescription}
}
\begin{myquote}\item{} XML and Unicode support.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FWeb\%2FAWS}{AWS}
\end{mydescription}
}
\begin{myquote}\item{} A full-{}featured Web-{}Server.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FMatreshka}{Matreshka}
\end{mydescription}
}
\begin{myquote}\item{} FastCGI, XML, Unicode and localization support.
\end{myquote}

\section{See also}
\label{733}
\subsection{Wikibook}
\label{734}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{735}

-{}-{} does not apply -{}-{}

\chapter{Libraries: Input Output}

\myminitoc
\label{736}

\label{737}

The following libraries help you when doing \mylref{303}{input/output}:
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FAdaCL}{AdaCL, Ada Class Library}
\end{mydescription}
}
\begin{myquote}\item{} A multipurpose library featuring filtering of text files, string I/O, command line parsing, etc.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FIO\%2FXML\%2FAda}{XML/Ada}
\end{mydescription}
}
\begin{myquote}\item{} XML and Unicode support.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FMultiPurpose\%2FMatreshka}{Matreshka}
\end{mydescription}
}
\begin{myquote}\item{} SAX-{}style XML reader and writer. Supports XML1.0 (Fifth Edition), XML1.1 (Second Edition), Namespaces in XML and XML Base Specifications. Strings, files and sockets can be used as input source in both blocking and non-{}blocking modes. Full Unicode support and many text codecs is provided also.
\end{myquote}
\section{See also}
\label{738}
\subsection{Wikibook}
\label{739}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{740}

-{}-{} does not apply -{}-{}

\chapter{Platform Support}

\myminitoc
\label{741}

\label{742}

Ada is known to be very portable, but there is sometimes a necessity of using a specific platform feature. For that matter, there are some non-{}standard libraries.

\begin{myitemize}
\item{} \mylref{748}{Linux}
\item{} \mylref{754}{Windows}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FPOSIX}{POSIX systems}
\item{} \mylref{759}{Virtual machines}
\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FVM\%2FJava}{Java}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FVM\%2FdotNET}{.NET}
\end{myitemize}

\end{myitemize}

\section{See also}
\label{743}
\subsection{Wikibook}
\label{744}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{745}

-{}-{} does not apply -{}-{}
\subsection{Ada Quality and Style Guide}
\label{746}

\begin{myitemize}
\item{} \AdaSGOne{7}{Portability}
\end{myitemize}

\chapter{Platform: Linux}

\myminitoc
\label{747}

\label{748}

The following libraries help you when you target the Linux Platform.
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FPOSIX}{Florist}
\end{mydescription}
}
\begin{myquote}\item{} POSIX.5 binding. It will let you perform Linux system calls in the POSIX subset.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FNcurses}{Ncurses}
\end{mydescription}
}
\begin{myquote}\item{} text terminal library.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FTexttools}{Texttools}
\end{mydescription}
}
\begin{myquote}\item{} ncurses-{}based library for the Linux console.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FLibraries\%2FGUI\%2FGtkAda}{GtkAda}
\end{mydescription}
}
\begin{myquote}\item{} GUI library (actually multiplatform).
\end{myquote}

\section{See also}
\label{749}
\subsection{Wikibook}
\label{750}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{751}

-{}-{} does not apply -{}-{}
\subsection{External resources}
\label{752}

\begin{myitemize}
\item{} \myhref{http://www.pegasoft.ca/resources/boblap/book.html}{ The Big Online Book of Linux Ada Programming}
\item{} \myhref{http://www.cs.kuleuven.be/~dirk/ada-belgium/events/06/060226-fosdem-4-ada-in-debian.pdf}{ Ada in Debian GNU/Linux}, slides suitable for a 50minute presentation, by \myhref{http://en.wikibooks.org/wiki/User\%3ALudovic\%20Brenta}{Ludovic Brenta}.
\end{myitemize}

\chapter{Platform: Windows}

\myminitoc
\label{753}

\label{754}

The following Libraries and Tools help you when you target the MS-{}Windows Platform.
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FWindows\%2Fwin32binding}{GWindows}
\end{mydescription}
}
\begin{myquote}\item{} Win32 binding
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://www.rrsoftware.com/html/prodinf/claw/claw.htm}{ CLAW}
\end{mydescription}
}
\begin{myquote}\item{} Another Win32 binding that works with any Ada 95 compiler. An introductory edition is available free of charge for non-{}commercial use.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FWindows\%2Fwin32binding}{GNATCOM}
\end{mydescription}
}
\begin{myquote}\item{} COM/DCOM/ActiveX binding
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FWindows\%2Fwin32binding}{GNAVI}
\end{mydescription}
}
\begin{myquote}\item{} Visual \myhref{http://en.wikipedia.org/wiki/Rapid_application_development}{RAD} {\small }(\myhref{http://en.wikipedia.org/wiki/Rapid\%20application\%20development}{Rapid application development}){\small } Development environment
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/\%2FConsole\%2F}{/Console/}
\end{mydescription}
}
\begin{myquote}\item{} Libraries for console I/O.
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/\%2FVisual\%20C\%2B\%2B\%20-\%20GNAT\%20interface\%2F}{/Visual C++ -{} GNAT interface/}
\end{mydescription}
}
\begin{myquote}\item{} Guide for calling Ada functions from C++ using GNAT and Visual C++.
\end{myquote}

\section{See also}
\label{755}
\subsection{Wikibook}
\label{756}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{757}

-{}-{} does not apply -{}-{}

\chapter{Platform: Virtual Machines}

\myminitoc
\label{758}

\label{759}

The following tools help you when you target a virtual machine.
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FVM\%2FJava}{Java}
\end{mydescription}
}
\begin{myquote}\item{} Programming Ada 95 for Java\textquotesingle{}s JVM (JGnat, AppletMagic)
\end{myquote}
{\bfseries
\begin{mydescription} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FPlatform\%2FVM\%2FdotNET}{.NET}
\end{mydescription}
}
\begin{myquote}\item{} Programming Ada for the .NET Platform (GNAT Pro .NET, A\#)
\end{myquote}

\section{See also}
\label{760}
\subsection{Wikibook}
\label{761}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{660}{Ada Programming/Libraries}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{762}

-{}-{} does not apply -{}-{}

\chapter{Portals}

\myminitoc
\label{763}

\label{764}

\section{Forges of open-{}source projects}
\label{765}
{\bfseries
\begin{mydescription} \myhref{http://sourceforge.net/directory/language:ada/}{ SourceForge}
\end{mydescription}
}
\begin{myquote}\item{} Currently there are 200 Ada projects hosted at SourceForge {\mbox{---}} including the example programs for \myhref{https://sourceforge.net/projects/wikibook-ada}{ Ada Programming} wikibook.
\end{myquote}

{\bfseries
\begin{mydescription} \myhref{https://github.com/languages/Ada}{ GitHub}
\end{mydescription}
}
\begin{myquote}\item{} A source code repository based on Git with many recent developments.
\end{myquote}

{\bfseries
\begin{mydescription} Ada-{}centric forges
\end{mydescription}
}
\begin{myquote}\item{} There are some Ada-{}centric forges hosted by Ada associations and individuals:
\end{myquote}

\begin{myquote}
\item{}
\begin{myitemize}
\item{} \myplainurl{http://forge.ada-ru.org}
\item{} \myplainurl{http://www.ada-france.org:8081}
\item{} \myplainurl{http://codelabs.ch}
\item{} \myplainurl{http://scm.ada.cx}
\end{myitemize}

\end{myquote}

{\bfseries
\begin{mydescription} \myhref{http://developer.berlios.de/softwaremap/trove_list.php?form_cat=52}{ BerliOS}
\end{mydescription}
}

\section{Directories of freely available tools and libraries}
\label{766}
{\bfseries
\begin{mydescription} \myhref{http://www.adaic.org/ada-resources/tools-libraries/}{ Ada Information Clearinghouse {\mbox{---}} Free Tools and Libraries}
\end{mydescription}
}

{\bfseries
\begin{mydescription} Oloh (\myhref{http://www.ohloh.net/languages/21}{ language summary}, \myhref{http://www.ohloh.net/tags/ada}{ ada tag}, \myhref{http://www.ohloh.net/p?page=3\&q=language\%3Aada\&sort=relevance}{ language search})
\end{mydescription}
}
\begin{myquote}\item{} Oloh is a directory of Open Source projects. Its main features are source code analysis of public repositories and public reviews of projects.
\end{myquote}

{\bfseries
\begin{mydescription} \myhref{http://freecode.com/tags/ada?sort=vitality\&with=\&without=}{ Freecode}
\end{mydescription}
}
\begin{myquote}\item{} Freecode, formerly Freshmeat.net, is a software directory where developers can register their projects and users find interesting software. Although the content is somewhat redundant to other portals, some projects are exclusively listed here.
\end{myquote}

\section{Collections of Ada source code}
\label{767}
{\bfseries
\begin{mydescription} \myhref{http://www.iste.uni-stuttgart.de/ps/adabasis.html}{ AdaBasis}
\end{mydescription}
}
\begin{myquote}\item{} AdaBasis consists of about 560 MB of public domain source code and documents, mainly taken from the Public Ada Library (PAL). The software has been classified and is presented in a hierarchical manner, separated in different application domains, and, for some domains, with an additional multi-{}faceted searching facility. \newline{}
 The intent is to provide students, teachers and researchers with a large collection of reusable Ada components and systems for use in language and software engineering courses. \newline{}
 AdaBasis was set up by the Programming Languages Group of the Institut für Informatik at the University of Stuttgart, Germany. They plan to enlarge the library in the future, and welcome free public domain contributions. For more informations or to make suggestions please contact \myhref{mailto:adabasis@informatik.uni-stuttgart.de}{ adabasis@informatik.uni-{}stuttgart.de}
\end{myquote}

{\bfseries
\begin{mydescription} \myhref{http://www2.informatik.uni-stuttgart.de/iste/ps/ada-software/html/PAL.html}{ The Public Ada Library (PAL)}
\end{mydescription}
}
\begin{myquote}\item{} The PAL is a library of Ada and VHDL software, information, and courseware that contains over 1 BILLION bytes of material (mainly in compressed form). All items in the PAL have been released to the public with unlimited distribution, and, in most cases (the exceptions are shareware), the items are freeware.
\end{myquote}

{\bfseries
\begin{mydescription} {[}ftp
\end{mydescription}
}
\begin{myquote}\item{}//ftp.cs.kuleuven.ac.be/pub/Ada-{}Belgium/cdrom/index.html Ada and Software Engineering Library Version 2 (ASE2){]} : {\itshape The ASE2 Library contains over 1.1GB of material on Ada and Software Engineering assembled through a collaboration with over 60 organizations}. Walnut Creek CDROM once sold copies of this library. Nowadays it is no longer maintained but is still hosted in the Ada Belgium FTP server. It may contain useful resources, but it is highly redundant with other libraries.
\end{myquote}

{\bfseries
\begin{mydescription} \myhref{http://www.adapower.com/index.php?Command=Packages\&Title=Packages+for+Reuse}{ AdaPower}
\end{mydescription}
}
\begin{myquote}\item{} A directory and collection of Ada tools and resources.
\end{myquote}

\section{See also}
\label{768}
\subsection{Wikibook}
\label{769}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}
\item{} \mylref{773}{Ada Programming/Tutorials}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FWikis}{Ada Programming/Wikis}
\end{myitemize}

\subsection{Ada Reference Manual}
\label{770}

-{}-{} does not apply -{}-{}
\subsection{Ada Quality and Style Guide}
\label{771}

-{}-{} does not apply -{}-{}

\chapter{Tutorials}

\myminitoc
\label{772}

\label{773}

This page contains a list of other Ada tutorials on the Net.

\begin{myenumerate}
\item{} \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming}{Ada Programming}, available on Wikibooks, is currently the only tutorial based on the \mylref{406}{Ada 2005} standard and currently being updated to \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FAda\%202012}{Ada 2012}.
\item{} \myhref{http://www.dwheeler.com/lovelace/}{ Lovelace} is a free (no-{}charge), self-{}directed Ada 95 tutorial available on the World Wide Web (WWW). Lovelace assumes that the user already knows another algorithmic programming language, such as C, C++, or Pascal. Lovelace is interactive and contains many short sections, most of which end with a question to help ensure that users understand the material. Lovelace can be used directly from the WWW, downloaded, or run from CD-{}ROM. Lovelace was developed by David A. Wheeler.
\item{} \myhref{http://www.adatutor.com/}{ AdaTutor} is an interactive Ada 95 tutorial distributed as a public-{}domain Ada program. A \myhref{http://zhu-qy.blogspot.com.es/2012/08/adatutor.html}{ web edition} of the tutorial is also available.
\item{} The \myhref{http://www.adahome.com/Ammo/Cplpl2Ada.html}{ Ada-{}95: A guide for C and C++ programmers} is a short hypertext tutorial for programmers who have a C or C++ style programming language background. It was written by Simon Johnston, with some additional text by Tucker Taft. \myhref{http://home.agh.edu.pl/~jpi/download/ada/guide-c2ada.pdf}{ PDF edition}.
\item{} \myhref{http://goanna.cs.rmit.edu.au/~dale/ada/aln.html}{ Dale Stanbrough\textquotesingle{}s Introduction} is a set of notes that provide a simple introduction to Ada. This material has been used for a few years as a simple introduction to the language.
\item{} Coronado Enterprises Ada 95 Tutorial: \myhref{http://www.infres.enst.fr/~pautet/Ada95/a95list.htm}{ shareware edition}, \myhref{http://www.coronadoenterprises.com/tutorials/ada95/index.html}{ commercial edition}.
\end{myenumerate}

\chapter{Web 2.0}

\myminitoc
\label{774}

\label{775}
\LaTeXNullTemplate{}

Here is a list of \myhref{http://en.wikipedia.org/wiki/Web\%202.0}{Web 2.0} resources about Ada:
\subsection{News \& Blogs}
\label{776}
	
\begin{myitemize}
\item{} \myhref{http://www.reddit.com/r/ada/}{ reddit.com {\mbox{---}} Ada} {[}{\small }\myhref{http://www.reddit.com/r/ada/.rss}{ RSS}{\small }{]}, social news website on which users can post links to content on the web
\item{} \myhref{http://www.adacore.com/category/developers-center/gems/}{ Ada Gems} {[}{\small }\myhref{http://www.adacore.com/rss/gems}{ RSS}{\small }{]}, programming tips and articles about specific language features
\item{} \myhref{http://planet.ada.cx/}{ Planet Ada} {[}{\small }\myhref{http://planet.ada.cx/rss20.xml}{ RSS}{\small }{]}, an aggregate feed of mostly Ada-{}related blogs.
\item{} \myhref{http://ada-programming.blogspot.com/}{ Ada Programming blog} {[}{\small }\myhref{http://ada-programming.blogspot.com/feeds/posts/default}{ RSS}{\small }{]}, by Martin Krischik and other authors
\item{} \myhref{http://blog.kickin-the-darkness.com/search/label/Ada}{ Kickin\textquotesingle{} the Darkness} {[}{\small }\myhref{http://blog.kickin-the-darkness.com/feeds/posts/default}{ RSS}{\small }{]}, by Marc A. Criley
\item{} \myhref{http://www.archeia.com/}{ Archeia} {[}{\small }\myhref{http://www.archeia.com/rss_feed.html}{ RSS}{\small }{]}, by Lucretia
\item{} \myhref{http://adrianhoe.com/adrianhoe/category/software_development/ada/}{ Pragmatic Revelations} {[}{\small }\myhref{http://adrianhoe.com/adrianhoe/feed/rss/}{ RSS}{\small }{]}
\end{myitemize}

\subsection{Forums \& developer rings}
\label{777}
\begin{myitemize}
\item{} \myhref{http://stackoverflow.com/questions/tagged/ada}{ Stack Overflow {\mbox{---}} Ada questions}
\item{} \myhref{http://www.linkedin.com/groups?gid=114211}{ Linked In {\mbox{---}} Ada developers group} (free register needed)
\item{} \myhref{http://www.tek-tips.com/threadminder.cfm?pid=199}{ Tek-{}Tips {\mbox{---}} Ada Forum}
\end{myitemize}

\subsection{General Info}
\label{778}

\begin{myitemize}
\item{} \myhref{http://www.slideshare.net/}{ SlideShare}, presentations \myhref{http://www.slideshare.net/group/ada-programming/slideshows}{ about Ada}. See also: \myhref{http://www.slideshare.net/tag/ada-programming}{ Ada programming}, \myhref{http://www.slideshare.net/tag/ada-95}{ Ada 95}, \myhref{http://www.slideshare.net/tag/ada-2005}{ Ada 2005}, \myhref{http://www.slideshare.net/tag/ada-2012}{ Ada 2012} tag pages.
\item{} \myhref{http://www.ohloh.net/tags/ada}{ Ohloh}, a directory of Open Source projects. Its main features are \myhref{http://www.ohloh.net/languages/21}{ source code analysis} of public repositories and public reviews of projects
\item{} \myhref{http://commons.ada.cx}{ Ada Commons}, wiki for Ada developers
\item{} \myhref{http://ada.krischik.com}{ Ada@Krischik}, Ada homepage of Martin Krischik
\item{} \myhref{http://www.wikicfp.com/cfp/call?conference=ada}{ WikiCFP {\mbox{---}} Calls For Papers on Ada} {[}{\small }\myhref{http://www.wikicfp.com/cfp/rss?cat=ada}{ RSS}{\small }{]}
\item{} \myhref{http://www.youtube.com/user/AdaCore05}{ AdaCore channel on youtube.com}, Ada related videos.
\end{myitemize}

\subsection{Wikimedia projects}
\label{779}
\begin{myitemize}
\item{} {\bfseries Wikipedia articles} (\myhref{http://en.wikipedia.org/wiki/Category\%3AAda\%20programming\%20language}{Ada category}):
\begin{myitemize}
\item{} \myhref{http://en.wikipedia.org/wiki/Ada\%20\%28programming\%20language\%29}{Ada}
\item{} \myhref{http://en.wikipedia.org/wiki/Jean\%20Ichbiah}{Jean Ichbiah}
\item{} \myhref{http://en.wikipedia.org/wiki/Beaujolais\%20effect}{Beaujolais effect}
\item{} \myhref{http://en.wikipedia.org/wiki/ISO\%208652}{ISO 8652}
\item{} \myhref{http://en.wikipedia.org/wiki/Ada\%20Semantic\%20Interface\%20Specification}{Ada Semantic Interface Specification}
\item{} ...
\end{myitemize}

\item{} {\bfseries Wiktionary entries}:
\begin{myitemize}
\item{} \myhref{http://en.wiktionary.org/wiki/ACATS}{ACATS}
\item{} \myhref{http://en.wiktionary.org/wiki/Ada}{Ada}
\item{} \myhref{http://en.wiktionary.org/wiki/ASIS}{ASIS}
\end{myitemize}

\item{} {\bfseries Wikisource documents}:
\begin{myitemize}
\item{} \myhref{http://en.wikisource.org/wiki/Steelman\%20language\%20requirements}{Steelman language requirements}
\item{} \myhref{http://en.wikisource.org/wiki/Stoneman\%20requirements}{Stoneman requirements}
\end{myitemize}

\item{} {\bfseries Wikibooks tutorials}:
\begin{myitemize}
\item{} {\itshape \myhref{http://en.wikibooks.org/wiki/\%3Aes\%3AProgramaci\%F3n_en_Ada}{Programación en Ada}}, in Spanish
\item{} {\itshape \myhref{http://en.wikibooks.org/wiki/\%3Afr\%3AProgrammation_Ada}{Programmation Ada}}, in French
\item{} {\itshape \myhref{http://en.wikibooks.org/wiki/\%3Ait\%3AAda}{Ada}}, in Italian
\end{myitemize}

\item{} {\bfseries Wikiquote}:
\begin{myitemize}
\item{} \myhref{http://en.wikiquote.org/wiki/Programming_languages\#Ada}{ Programming languages {\mbox{---}} Ada}
\end{myitemize}

\item{} {\bfseries Wikiversity}:
\begin{myitemize}
\item{} \myhref{http://en.wikiversity.org/wiki/Ada}{ Ada course} (you can enroll!)
\end{myitemize}

\end{myitemize}

\subsection{Source code}
\label{780}

\begin{myitemize}
\item{} \myhref{http://wikibook-ada.sourceforge.net}{ Examples {\itshape Ada Programming} wikibook}
\item{} \myhref{http://www.rosettacode.org/wiki/Ada}{ Rosetta Code {\mbox{---}} Ada Category}, programming examples in multiple languages
\item{} \myhref{http://en.literateprograms.org/Category:Programming_language:Ada}{ literateprograms.org {\mbox{---}} Ada Category}, examples of \myhref{http://en.wikipedia.org/wiki/literate\%20programming}{literate programming} in multiple languages
\end{myitemize}

\subsection{Projects}
\label{781}

\begin{myitemize}
\item{} \myhref{http://adacl.sourceforge.net/index.php}{ AdaCL}
\item{} \myhref{http://booch95.sourceforge.net/pmwiki.php}{ The Ada 95 Booch Components}
\item{} \myhref{http://gnuada.sourceforge.net}{ The GNU Ada Compiler}
\item{} \myhref{http://gnat-asis.sourceforge.net}{ ASIS}
\item{} \myhref{http://gnat-glade.sourceforge.net}{ GLADE}
\item{} \myhref{http://gnat-florist.sourceforge.net}{ Florist}
\item{} \myhref{http://gcc.gnu.org/wiki/GNAT}{ GNAT {\mbox{---}} GCC Wiki}
\item{} \myhref{http://www.rtems.com/wiki/index.php/RTEMSAda}{ RTEMSAda}
\item{} \myhref{http://avr-ada.sourceforge.net/}{ AVR-{}Ada} -{} Ada compiler for Atmel microcontrollers (Arduinos)
\end{myitemize}

\myhref{http://en.wikibooks.org/wiki/Category\%3AAda\%20Programming}{Web 2.0}

\chapter{Contributors}
\label{Contributors}
\begin{longtable}{rp{0.6\linewidth}}
\textbf{Edits}&\textbf{User}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:A10112}{A10112}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:ALK}{ALK}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:AdRiley}{AdRiley}\\
64& \myhref{http://en.wikibooks.org/w/index.php?title=User:Adrignola}{Adrignola}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Alan.poindexter}{Alan.poindexter}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Alisonken1}{Alisonken1}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ammon}{Ammon}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Andreas_Ipp}{Andreas Ipp}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Aramael}{Aramael}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Arny}{Arny}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Arthurvogel}{Arthurvogel}\\
7& \myhref{http://en.wikibooks.org/w/index.php?title=User:Avicennasis}{Avicennasis}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Benjstarratt}{Benjstarratt}\\
14& \myhref{http://en.wikibooks.org/w/index.php?title=User:Carsrac}{Carsrac}\\
56& \myhref{http://en.wikibooks.org/w/index.php?title=User:CarsracBot}{CarsracBot}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Chouclac}{Chouclac}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Cspurrier}{Cspurrier}\\
44& \myhref{http://en.wikibooks.org/w/index.php?title=User:Darklama}{Darklama}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:David_Hoos}{David Hoos}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Derbeth}{Derbeth}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dhenry}{Dhenry}\\
12& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dirk_H\%C3\%BCnniger}{Dirk Hünniger}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dmitry-kazakov}{Dmitry-{}kazakov}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Doug}{Doug}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:DougP}{DougP}\\
17& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dragontamer}{Dragontamer}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Fraterm}{Fraterm}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Friess}{Friess}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Frikk}{Frikk}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Frodet}{Frodet}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis}{Geocachernemesis}\\
97& \myhref{http://en.wikibooks.org/w/index.php?title=User:GeorgBauhaus}{GeorgBauhaus}\\
8& \myhref{http://en.wikibooks.org/w/index.php?title=User:Godunko}{Godunko}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Hagindaz}{Hagindaz}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Herbythyme}{Herbythyme}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:JMatthews}{JMatthews}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:James_Dennett}{James Dennett}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jclee}{Jclee}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jcreem}{Jcreem}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jeffinous}{Jeffinous}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jesselang}{Jesselang}\\
34& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jguk}{Jguk}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jlaire}{Jlaire}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jlenthe}{Jlenthe}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jomegat}{Jomegat}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Kayau}{Kayau}\\
1102& \myhref{http://en.wikibooks.org/w/index.php?title=User:Krischik}{Krischik}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Kwhitefoot}{Kwhitefoot}\\
16& \myhref{http://en.wikibooks.org/w/index.php?title=User:Larry_Luther}{Larry Luther}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:LesmanaZimmer}{LesmanaZimmer}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Lincher}{Lincher}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Lodacom}{Lodacom}\\
118& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ludovic_Brenta}{Ludovic Brenta}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Maciej_Sobczak}{Maciej Sobczak}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mahanga}{Mahanga}\\
463& \myhref{http://en.wikibooks.org/w/index.php?title=User:ManuelGR}{ManuelGR}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard}{Mike.lifeguard}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Moskvax}{Moskvax}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Nikai}{Nikai}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Okellogg}{Okellogg}\\
6& \myhref{http://en.wikibooks.org/w/index.php?title=User:Oleszkie}{Oleszkie}\\
8& \myhref{http://en.wikibooks.org/w/index.php?title=User:Panic2k4}{Panic2k4}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Panzon}{Panzon}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Parallelized}{Parallelized}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Paxton}{Paxton}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Per.sandberg}{Per.sandberg}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual}{QuiteUnusual}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:RamaccoloBot}{RamaccoloBot}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Randhol}{Randhol}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Recent_Runes}{Recent Runes}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Red4tribe}{Red4tribe}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Robert_Horning}{Robert Horning}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rosen}{Rosen}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rursus}{Rursus}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:SQL}{SQL}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Sam}{Sam}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Sjw}{Sjw}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Sparre}{Sparre}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Spongebob88}{Spongebob88}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Stephen_leake}{Stephen leake}\\
711& \myhref{http://en.wikibooks.org/w/index.php?title=User:Suruena}{Suruena}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Swhalen}{Swhalen}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:The_bellman}{The bellman}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Thenub314}{Thenub314}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Tkoskine}{Tkoskine}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Tobias_Bergemann}{Tobias Bergemann}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn}{Van der Hoorn}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Venullian}{Venullian}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:VillemtheVillain\%21}{VillemtheVillain!}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Vito_Genovese}{Vito Genovese}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Warinthepocket}{Warinthepocket}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:WhirlWind}{WhirlWind}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Wikibob}{Wikibob}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Xania}{Xania}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:\%E3\%82\%BF\%E3\%83\%81\%E3\%82\%B3\%E3\%83\%9E_robot}{タチコマ robot}\\
\end{longtable}
\pagebreak
\listoffigures
\label{ListOfFigures}
\begin{itemize}
\item GFDL: Gnu Free Documentation License. \url{http://www.gnu.org/licenses/fdl.html}
\item cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. \url{http://creativecommons.org/licenses/by-sa/3.0/}
\item cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. \url{http://creativecommons.org/licenses/by-sa/2.5/}
\item cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. \url{http://creativecommons.org/licenses/by-sa/2.0/}
\item cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. \url{http://creativecommons.org/licenses/by-sa/1.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/deed.en}
\item cc-by-2.5: Creative Commons Attribution 2.5 License. \url{http://creativecommons.org/licenses/by/2.5/deed.en}
\item cc-by-3.0: Creative Commons Attribution 3.0 License. \url{http://creativecommons.org/licenses/by/3.0/deed.en}
\item GPL: GNU General Public License. \url{http://www.gnu.org/licenses/gpl-2.0.txt}
\item LGPL: GNU Lesser General Public License. \url{http://www.gnu.org/licenses/lgpl.html}
 \item PD: This image is in the public domain.
\item ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\item LFK: Lizenz Freie Kunst. \url{http://artlibre.org/licence/lal/de}
\item CFR: Copyright free use.
\item EPL: Eclipse Public License. \url{http://www.eclipse.org/org/documents/epl-v10.php}
\end{itemize}
Copies of the GPL, the LGPL as well as a GFDL are included in chapter \mylref{Licenses}{Licenses}. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.
\pagebreak
\small
\begin{longtable}{|p{0.05\textwidth}|p{0.6\textwidth}|p{0.15\textwidth}|}
\hline
\href{http://en.wikibooks.org/wiki/File:Ada_types.png}{1}&

\myhref{http://en.wikibooks.org/wiki/User\%3AManuelGR}{ManuelGR}
 & GFDL\\ \hline

\end{longtable}
\pagebreak\KOMAoptions{fontsize=9pt,DIV=90,BCOR=0pt}
\pagebreak
\chapter{Licenses}
\label{Licenses}
{\tiny
\section {GNU GENERAL PUBLIC LICENSE}
\begin{multicols}{4}

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

 * a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
 * b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
 * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
 * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

 * a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
 * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
 * c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
 * d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
 * e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

 * a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
 * b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
 * c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
 * d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
 * e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
 * f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.

A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.
15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
\end{multicols}

\section{GNU Free Documentation License}
\begin{multicols}{4}

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

 * A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
 * B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
 * C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
 * D. Preserve all the copyright notices of the Document.
 * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
 * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
 * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
 * H. Include an unaltered copy of this License.
 * I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
 * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
 * K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
 * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
 * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
 * N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
 * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

 Copyright (C) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with … Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
\end{multicols}

\section{GNU Lesser General Public License}
\begin{multicols}{4}

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

 * a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
 * b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

 * a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

 * a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
 * c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
 * d) Do one of the following:
 o 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
 o 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
 * e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

 * a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
 * b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.
\end{multicols}
}
\pagebreak
\end{CJK}
\end{document}

headers/options.tex

% Festlegungen für minitoc
% \renewcommand{\myminitoc}{\minitoc}
% \renewcommand{\mtctitle}{Überblick}
% \setcounter{minitocdepth}{1}
% \dominitoc % diese Zeile aktiviert das Erstellen der minitocs, sie muss vor \tableofcontents kommen

% Seitenformat
% ------------
%\KOMAoption{paper}{A5} % zulässig: letter, legal, executive; A-, B-, C-, D-Reihen
\KOMAoption{open}{right}			% zulässig: right (jedes Kapitel beginnt rechts), left, any
\KOMAoption{numbers}{auto}
% Satzspiegel jetzt neu berechnen, damit er bei Kopf- und Fußzeilen beachtet wird
\KOMAoptions{DIV=13}

% Kopf- und Fusszeilen
% --------------------
% Breite und Trennlinie
%\setheadwidth[-6mm]{textwithmarginpar}
%\setheadsepline[textwithmarginpar]{0.4pt}
\setheadwidth{text}
\setheadsepline[text]{0.4pt}

% Variante 1: Kopf: links Kapitel, rechts Abschnitt (ohne Nummer); Fuß: außen die Seitenzahl
\ohead{\headmark}
\renewcommand{\chaptermark}[1]{\markleft{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{#1}{}}
\ofoot[\pagemark]{\pagemark}

% Variante 2: Kopf außen die Seitenzahl, Fuß nichts
%\ohead{\pagemark}
%\ofoot{}

% Standardschriften
% -----------------
%\KOMAoption{fontsize}{18pt}
\addtokomafont{disposition}{\rmfamily}
\addtokomafont{title}{\rmfamily}
\setkomafont{pageheadfoot}{\normalfont\rmfamily\mdseries}

% vertikaler Ausgleich
% --------------------
% nein -> \raggedbottom
% ja -> \flushbottom aber ungeeignet bei Fußnoten
%\raggedbottom
\flushbottom

% Tiefe des Inhaltsverzeichnisses bestimmen
% ---
% -1 nur \part{}
% 0 bis \chapter{}
% 1 bis \section{}
% 2 bis \subsection{} usw.
\newcommand{\mytocdepth}{1}

% mypart - Teile des Buches und Inhaltsverzeichnis
% --
% Standard: nur im Inhaltsverzeichnis, zusätzlicher Eintrag ohne Seitenzahl
% Variante: nur im Inhaltsverzeichnis, zusätzlicher Eintrag mit Seitenzahl
%\renewcommand{\mypart}[1]{\addcontentsline{toc}{part}{#1}}
% Variante: mit eigener Seite vor dem ersten Kapitel, mit Eintrag und Seitenzahl im Inhaltsverzeichnis
\renewcommand{\mypart}[1]{\part{#1}}

% maketitle
% ---
% Bestandteile des Innentitels
%\title{Einführung in SQL}
%\author{Jürgen Thomas}
%\subtitle{Datenbanken bearbeiten}
\date{}
% Bestandteile von Impressum und CR
% Bestandteile von Impressum und CR

\uppertitleback{
%Detaillierte Daten zu dieser Publikation sind bei Wikibooks zu erhalten:\newline{} \url{http://de.wikibooks.org/}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet zu erhalten: \newline{}\url{https://portal.d-nb.de/opac.htm?method=showSearchForm#top}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet unter der Katalog-Nr. 1008575860 zu erhalten: \newline{}\url{http://d-nb.info/1008575860}

%Namen von Programmen und Produkten sowie sonstige Angaben sind häufig geschützt. Da es auch freie Bezeichnungen gibt, wird das Symbol \textregistered{} nicht verwendet.

%Erstellt am
\today{}
}

\lowertitleback{
{\footnotesize
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page \pageref{ListOfFigures}. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page \pageref{Contributors}. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page \pageref{Licenses}, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page \pageref{ListOfFigures}. This PDF was generated by the \LaTeX{} typesetting software. The \LaTeX{} source code is included as an attachment ({\tt source.7z.txt}) in this PDF file. To extract the source from the PDF file, we recommend the use of \url{http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/} utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting {\tt Save Attachment}. After extracting it from the PDF file you have to rename it to {\tt source.7z}. To uncompress the resulting archive we recommend the use of \url{http://www.7-zip.org/}. The \LaTeX{} source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from \url{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}. This distribution also contains a configured version of the {\tt pdflatex
} compiler with all necessary packages and fonts needed to compile the \LaTeX{} source included in this PDF file.
}}

\renewcommand{\mysubtitle}[1]{}
\renewcommand{\mymaintitle}[1]{}
\renewcommand{\myauthor}[1]{}

\newenvironment{myshaded}{%
 \def\FrameCommand{ \hskip-2pt \fboxsep=\FrameSep \colorbox{shadecolor}}%
 \MakeFramed {\advance\hsize-\width \FrameRestore}}%
 {\endMakeFramed}

headers/packages1.tex

% Standard für Formatierung
%\usepackage[utf8]{inputenc} % use \usepackage[utf8]{inputenc} for tex4ht
\usepackage[usenames]{color}
\usepackage{textcomp}
\usepackage{alltt}
\usepackage{syntax}
\usepackage{parskip}
\usepackage[normalem]{ulem}
\usepackage[pdftex,unicode=true]{hyperref}
\usepackage{tocstyle}
\usepackage[defblank]{paralist}
\usepackage{trace}
\usepackage{bigstrut}
% Minitoc
%\usepackage{minitoc}

% Keystroke
\usepackage{keystroke}
\usepackage{supertabular}

\usepackage{wrapfig}
\newcommand{\bigs}{\bigstrut{}}

headers/packages2.tex

% für Zeichensätze

%replacemnt for pslatex
\usepackage{mathptmx}
\usepackage[scaled=.92]{helvet}
\usepackage{courier}

\usepackage[T1]{fontenc} % disable this line for tex4ht

% für Tabellen
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array,ragged2e}
\usepackage{longtable}

% für Kopf- und Fußzeilen, Fußnoten
\usepackage{scrpage2}
\usepackage{footnote}

% für Rahmen
\usepackage{verbatim}
\usepackage{framed}
\usepackage{mdframed}
\usepackage{listings}
\usepackage{lineno}

% für Symbole
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}

\usepackage{pifont}
\usepackage{marvosym}
\let\Cross\undefined
\usepackage{fourier-orns} % disable this line for tex4ht % für weitere Logos, z.B. \danger

% für Grafik-Einbindung
\usepackage[pdftex]{graphicx}
\usepackage{wasysym}
\let\Square\undefined

% unklare Verwendung
\usepackage{bbm}
\usepackage{skull}

%arabtex
\usepackage[T1]{tipa} % disable this line for tex4ht

\usepackage{fancyvrb}
\usepackage{bbding}
\usepackage{textcomp}
\usepackage[table]{xcolor}
\usepackage{microtype}
\usepackage{lscape}
\usepackage{amsthm}
\usepackage{tocstyle}

headers/paper.tex

\KOMAoption{paper}{A4}

headers/svg.tex

\newcommand{\SVGExtension}{png}

headers/templates-chemie.tex

\newcommand{\TemplateEnergieerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Energie}\\ \hline
{\bfseries Albert Einstein (14.3. 1879 - 18.4.1955)}: Umwandlung von Energie in Masse und von Masse in Energie ist möglich.\\
$E = m \cdot c^2$ (c = Lichtgeschwindigkeit = 300.000 km/s)\\ \hline
{\bfseries
Bei einer chemischen Reaktion ist die Summe aus Masse und Energie der Ausgangsstoffe gleich der Summe aus Masse und Energie der Endstoffe.
}\\\hline
Wird Energie frei, tritt ein unwägbar kleiner Massenverlust auf. Wird Energie investiert, tritt Massenzunahme auf. Dieses kann allerdings mit herkömmlichen Waagen nicht gemessen werden. \\ \hline
\end{longtable}
}

\newcommand{\TemplatePeriodensystem}[1]{
Hier sollte das Periodensystem stehen. Ein solches wird sehr wahrscheinlich von Orlando Camargo Rodriguez frei zur Verfügung gestellt werden. Dateiname: tabela_periodica.tex ist bereits online. Lizenz aber noch nicht genau genug definiert.
}

\newcommand{\TemplateMassenerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Masse}\\ \hline
{\bfseries Antoine Lavoisier (1743 - 1794)}: Rien ne se perd, rien ne se crée\\
Die Gesamtmasse ändert sich bei chemischen Reaktionen (im Rahmen der Messgenauigkeiten) nicht.\\ \hline
Masse der Ausgangsstoffe=Masse der Produkte \\ \hline
\end{longtable}
}

\newcommand{\TemplateDaltonsAtomhyposthese}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
\begin{enumerate}
\item Materie besteht aus extrem kleinen, bei Reaktion ungeteilt bleibenden Teilchen, den Atomen.
\item Die Masse der Atome eines bestimmten Elements sind gleich (alle Atome eines Elements sind gleich). Die Atome verschiedener Elemente unterscheiden sich in ihren Eigenschaften (zum Beispiel in Größe, Masse, usw.).
\item Es existieren so viele Atomsorten wie Elemente.
\item Bei chemischen Reaktionen werden Atome in neuer Kombination vereinigt oder voneinander getrennt.
\item Eine bestimmte Verbindung wird von den Atomen der betreffenden Elemente in einem bestimmten, einfachen Zahlenverhältnis gebildet.
\end{enumerate}
\\ \hline
\end{longtable}
}

\newcommand{\TemplateUnveraenderlicheMassenverhaeltnisse}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz der unveränderlichen Massenverhältnisse}\\ \hline
Louis Proust (1799) \\ \hline
Bei chemischen Reaktionen, also Vereinigung beziehungsweise Zersetzung, reagieren die Reinstoffe immer in einem von der Natur vorgegebenen festen Verhältnis miteinander.
\\ \hline
\end{longtable}
}

headers/templates-dirk.tex

\newenvironment{TemplateCodeInside}[6]
{
\def\leftbox{#5}
\def\rightbox{}
\def\framecolor{shadecolor}
\ifstr{#4}{e}{ \def\framecolor{red}
 \def\rightbox{Falsch} } {}
\ifstr{#4}{v}{ \def\framecolor{mydarkgreen}
 \def\rightbox{Richtig} } {}

\begin{scriptsize}
\begin{mdframed} [
backgroundcolor=shadecolor, linewidth=0pt,
skipabove=#2, skipbelow=#3,
innertopmargin=0.5ex, innerbottommargin=0]
\ttfamily

\ifstr{\leftbox} {} {
 % Ausgabe nur, wenn rechte Box Inhalt hat, dann links mit Standardtext
 \ifstr{\rightbox}{}{}
 { \fbox{Quelltext} \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
 }
} {
\fbox{\leftbox}
% und bei Bedarf zusätzlich rechts die zweite Box
 \ifstr{\rightbox}{}{}
 { \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
 }
}

\begin{flushleft}
} % Ende der begin-Anweisungen, es folgen die end-Anweisungen
{\end{flushleft}\end{mdframed}\end{scriptsize} }

\newcommand{\TemplateCode}[9]
% **
{

\ifstr{#1}{}{~}{
\minisec{\normalfont \scriptsize \centering \textbf{\textit{#1}} \medskip } }

\begin{scriptsize}

% Code-Abschnitt mit #4
\begin{TemplateCodeInside} {} {0pt} {0pt} {#3} {#5} {}
#6
\end{TemplateCodeInside}

% Ausgabetext mit #4
#4

% #2 Fußzeile ausgeben, sofern vorgesehen
\ifstr{#2} {} {} { \centering \textit{#2} \medskip \\ }

\end{scriptsize}
}

headers/templates-juetho.tex

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newenvironment{TemplateCodeInside}[6]
% no more parameters
% **
% Template Code Inside
% Darstellung eines Code-Teils oder der Code-Ausgabe
% wird für folgende Wiki-Vorlagen benutzt:
% Vorlage:Syntax
% <source>...</source>
% Regal:Programmierung: Vorlage:CodeIntern
% außerdem mehrfache Verwendung durch das Makro "Template Code"
%
% #1 leer Anzeige als Code: grauer Hintergrund, ohne Rahmen
% sonst Anzeige als Ausgabe: weißer Hintergrund, mit Rahmen
% #2 Abstand vor dem Rahmen
% 0pt als Standardwert
% \baselineskip nur dann, wenn es der erste Teil innerhalb der Umgebung ist
% und keine Kopfzeile vorgesehen ist
% #3 Abstand nach dem Rahmen
% 0pt als Standardwert
% \baselineskip nur dann, wenn es der letzte Teil innerhalb der Umgebung ist
% und keine Fußzeile vorgesehen ist
% #4 spezieller Hinweis, verwendet für die Zusatzbox rechts
% leer als Standardwert
% e steht für error, also Zusatz 'Falsch' in rot
% v steht für valid, also Zusatz 'Richtig' in grün (genauer: jeder beliebige andere Inhalt)
% #5 spezieller Text für die Zusatzbox links
% leer als Standardwert
% spezieller Hinweis: Wenn dieser Text leer ist, aber 'e' oder 'v' vorgesehen ist,
% dann wird 'Quelltext' eingetragen
% #6 Zeilennummerierung *** funktioniert noch nicht, wird vorerst ignoriert ***
% leer als Standardwert -> ausschalten
% true als Spezialwert -> einschalten
% **
% auch wenn die Variablen am Anfang dieser Datei nur lokal überschrieben werden,
% muss zwischen den Variablen von TemplateCode und TemplateCodeInside unterschieden werden.
% In TemplateCode werden die folgenden Variablen benutzt:
% \wbtemplengthb für skipabove
% \wbtemplengthc für skipbelow
% \wbtempcounta als Zwischenspeicher
% \wbtemptexta als Ausgabetext, der automatisch erzeugt wird
%
% In TemplateCodeInside werden die folgenden Variablen benutzt:
% \wbtemplengtha für framelinewidth
% \wbtemplengthd für innertopmargin
% \wbtempcolorb für die Schriftfarbe der rechten Box
% **
{
% Argumente für Hintergrund und Rahmen definieren
% \wbtemplengtha für framelinewidth
\definecolor{framebackground}{gray}{0.9}
% Argumente mit Inhalt versehen
% #1 - Standard leer: als Code anzeigen
% mit Inhalt: als Ausgabe anzeigen
\ifstr{#1}{}{\setlength{\wbtemplengtha}{0pt}}
{ \definecolor{framebackground}{rgb}{1.0,1.0,1.0}
\setlength{\wbtemplengtha}{1pt} }

% 2./3.Parameter in Variable übernehmen
% es gelingt mir nicht, unten #2 und #3 direkt zuzuweisen
%\setlength{\wbtemplengthb}{#2}
%\setlength{\wbtemplengthc}{#3}

% 4./5.Parameter in Variable übernehmen
% der Box für den rechten Rahmen wird der richtige Text und die richtige Farbe zugewiesen
% Standard: grün, 'Richtig'
% im Fall 'e': rot, 'Falsch'
\renewcommand{\wbtempcolorb}{mydarkgreen}
\renewcommand{\wbtemptextb}{Richtig}
\ifstr{#4} {e} { \renewcommand{\wbtempcolorb}{red} \renewcommand{\wbtemptextb}{Falsch} } {}

% Festlegen des oberen inneren Rands:
% Standard als normaler Zeilenabstand
% wenn es keine obere Box gibt, dann genügt der Standardabstand
\setlength{\wbtemplengthd}{0pt}
\ifstr{#4}{}{}{\setlength{\wbtemplengthd}{\baselineskip}}
\ifstr{#5}{}{}{\setlength{\wbtemplengthd}{\baselineskip}}

% Aufruf von mdframed mit den festgelegten Parametern
\begin{scriptsize}
%\begin{mdframed} [backgroundcolor=framebackground,
%linewidth=\wbtemplengtha, %skipabove=\wbtemplengthb, skipbelow=\wbtemplengthc,
%splittopskip=5\baselineskip, splitbottomskip=5\baselineskip,
%skipabove=#2, skipbelow=#3,
%innertopmargin=\wbtemplengthd, innerbottommargin=1ex]
\begin{shaded}
\ttfamily
% Anzeige der kleinen Boxen nur dann, wenn eine davon nicht leer ist
\ifstr{#5}{}
% wenn die rechte Box vorgesehen ist und die linke nicht, kommt links der Standardtext
{ \ifstr{#4}{}{}
 {\fbox{Quelltext} \hfill \textbf{\color{\wbtempcolorb} \fcolorbox{black}{white}{\wbtemptextb}} }
}
% andernfalls kommt links auf jeden Fall die vorgesehene Box
{ \fbox{#5}
% und bei Bedarf zusätzlich rechts die zweite Box
 \ifstr{#4}{}{}{\hfill \textbf{\color{\wbtempcolorb} \fcolorbox{black}{white}{\wbtemptextb}}}
}

%\ifstr{#6}{true}{\linenumbers[1]}{}
%\begin{lstlisting}
\begin{flushleft}
} % Ende der begin-Anweisungen, es folgen die end-Anweisungen
{\end{flushleft}
%\end{lstlisting}
%\end{mdframed}
\end{shaded}
\end{scriptsize}}

\newcommand{\TemplateCode}[9]
% no more parameters
% **
% Template Code
% Darstellung von Code (einzeln oder mehrfach, Kopf- und Fußzeile,
% mit oder ohne Ausgabe)
% wird für folgende Wiki-Vorlagen benutzt:
% Regal:Programmierung: Vorlage:Code
% Regal:Programmierung: Vorlage:NETCode
% Regal:Programmierung: Vorlage:MultiCode
%
% #1 Inhalt der Kopfzeile
% kann auch leer sein
% #2 Inhalt der Fußzeile
% kann auch leer sein
% #3 spezieller Hinweis, verwendet für die Zusatzbox rechts
% leer als Standardwert
% e steht für error, also Zusatz 'Falsch' in rot
% v steht für valid, also Zusatz 'Richtig' in grün (genauer: jeder beliebige andere Inhalt)
% #4 spezieller Text für die Zusatzbox links
% leer als Standardwert
% spezieller Hinweis: Wenn dieser Text leer ist, aber 'e' oder 'v' vorgesehen ist,
% dann wird 'Quelltext' eingetragen
% spezieller Hinweis: Wenn der Text #6 vorgesehen ist und außerdem mindestens
% einer der Texte #7/#8/#9, dann muss sinnvollerweise der Parameter #4
% für den Text #6 verwendet werden
% #5 Inhalt für den Ausgabe-Teil
% kann auch leer sein
% #6 Inhalt für den Quelltext 1
% kann auch leer sein
% bei NETCode und MultiCode der Text für C++
% bei DualCode der Text für lang1
% #7 Inhalt für den Quelltext 2
% kann auch leer sein
% bei NETCode und MultiCode der Text für C#
% bei DualCode der Text für lang2
% #8 Inhalt für den Quelltext 3
% kann auch leer sein
% bei NETCode und MultiCode der Text für VB.NET
% #9 Inhalt für den Quelltext 4
% kann auch leer sein
% bei MultiCode der Text für Delphi Prism
% **
% Hier werden die folgenden Variablen von wiki-templates.tex benutzt;
% diese dürfen in TemplateCodeInside nicht benutzt werden, weil sie unter Umständen
% überschrieben werden könnten.
% \wbtemplengthb für skipabove
% \wbtemplengthc für skipbelow
% \wbtempcounta als Zwischenspeicher
% \wbtemptexta als Ausgabetext, der automatisch erzeugt wird
%
% **
{
% Die Umgebung Template Code Inside setzt die Schriftgröße ebenfalls fest,
% dies soll aber auch für Kopf- und Fußzeile gelten.
\begin{scriptsize}

% #1 Kopfzeile ausgeben, sofern vorgesehen
% wenn sie nicht vorgesehen ist, muss der obere Abstand definiert werden
% \wbtemplengthb für skipabove
\ifstr{#1}{}
{ \setlength{\wbtemplengthb}{\baselineskip} }
{ \minisec{\normalfont \scriptsize \centering \textbf{#1} \\[-0.5\baselineskip]}
 \setlength{\wbtemplengthb}{0pt} }

% #2 unterer Abstand ist standardmäßig 0 pt, aber beim letzten Abschnitt
% ohne Fußzeile ist der Abstand festzusetzen
\setlength{\wbtemplengthc}{0pt}
% \wbtemplengthc für skipbelow
% \wbtempcounta als temp-Variable verwenden, welcher Abschnitt der letzte ist
\wbtempcounta=0
% prüfe zunächst, bei welcher Ausgabe der "Abstand nachher" auf \baselineskip gesetzt werden muss;
% in allen anderen Fällen bleibt es beim Standardwert 0pt
% * nur erforderlich, wenn keine Fußzeile vorgesehen ist
% * wenn Ausgabe #4 vorgesehen ist, dann dort
% * wenn Quellcode #9 vorgesehen ist, dann dort
% * wenn Quellcode #8 vorgesehen ist, dann dort
% * wenn Quellcode #7 vorgesehen ist, dann dort
% * wenn Quellcode #6 vorgesehen ist, dann dort
% das einfachste Verfahren ist, dies vorwärts zu prüfen
\ifstr{#2}{}{}{
 \ifstr{#6}{}{}{\wbtempcounta=6 }
 \ifstr{#7}{}{}{\wbtempcounta=7 }
 \ifstr{#8}{}{}{\wbtempcounta=8 }
 \ifstr{#9}{}{}{\wbtempcounta=9 }
 \ifstr{#4}{}{}{\wbtempcounta=10 }
}

% nach der ersten Ausgabe wird der "Abstand vorher" immer auf 0 gesetzt
% Quelltext 1 mit #6
\ifstr{#6}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=6 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {#5} {}
#6
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% in gleicher Weise werden die weiteren Teile ausgegeben, bei #7 #8 #9 gibt es Standardtexte
% Quelltext 2 mit #7
\ifstr{#7}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=7 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{C\#-Quelltext}}
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#7
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% Quelltext 3 mit #8
\ifstr{#8}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=8 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{VB.NET-Quelltext}}
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#8
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% Quelltext 4 mit #9
\ifstr{#9}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=9 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{C\#-Quelltext}}
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#9
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% Ausgabetext mit #4
\ifstr{#4}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=10 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{Ausgabe}}
 \begin{TemplateCodeInside} {x} {\wbtemplengthb} {\wbtemplengthc} {} {\wbtemptexta} {}
#4
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% #2 Fußzeile ausgeben, sofern vorgesehen
% wenn sie nicht vorgesehen ist, muss der obere Abstand definiert werden
\ifstr{#2}{}{}
{ \centering \textbf{#2} \medskip \\ }

\end{scriptsize}
}

\begin{comment}
\newcommand{\TemplatePreformat}[1]
{\begin{TemplateCodeInside}{x}{\baselineskip}{\baselineskip}{}{}{}
#1
\end{TemplateCodeInside}
}

\newcommand{\TemplateSpaceIndent}[1]
{\begin{TemplateCodeInside}{x}{\baselineskip}{\baselineskip}{}{}{}
#1
\end{TemplateCodeInside}
}
\end{comment}

\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}~}

headers/templates.tex

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newcommand{\CPPAuthorsTemplate}[4]{
\LaTeXZeroBoxTemplate{
The following people are authors to this book:

#3

You can verify who has contributed to this book by examining the history logs at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like #1, as from the authors #2.

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. In short: you are free to share and to make derivatives of this work under the conditions that you appropriately attribute it, and that you only distribute it under the same, similar or a compatible license. Any of the above conditions can be waived if you get permission from the copyright holder.
Unless otherwise noted, #4 used in this book have their own copyright, may use different licenses than the one used here, and were not created by the above authors. The authors, contributors, and licenses used should be acknowledged separately.}
}

\newcommand{\tlTemplate}[1]{{\{\{{\ttfamily #1}\}\}}}

\newcommand{\matrixdimTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
{\bfseries Matrix Dimensions: }\\
A: $p \times p$ \\
B: $p \times q$\\
C: $r \times p$\\
D: $r \times q$\\
\end{myshaded}
}

\newcommand{\matlabTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This operation can be performed using this MATLAB command:
{\ttfamily #1}
\end{myshaded}}

\newcommand{\PrintUnitPage}[3]{\pagebreak
\begin{flushleft}
{\bfseries \Large #1}
\end{flushleft}

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}>{\RaggedRight}p{0.5\linewidth}}
& #2
\end{longtable}}

\newcommand{\LaTeXCodeTipTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
#1 \\
#2 \\
#3
\end{myshaded}
}

\newcommand{\DisassemblySyntax}[1]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This code example uses #1 Syntax
\end{myshaded}}

\newcommand{\LaTeXDeutschTemplate}[1]{ {\bfseries deutsch:} #1 }

\newcommand{\LaTeXNullTemplate}[1]{}
\newcommand{\LatexSymbol}[1]{\LaTeX}

\newcommand{\LaTeXDoubleBoxTemplate}[2]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}
\end{minipage}

}

\newcommand{\LaTeXSimpleBoxTemplate}[2]{
{\bfseries #1} \\
#2
}

\newcommand{\SolutionBoxTemplate}[2]{
#2
}

\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}

\newcommand{\LaTeXLatinExcerciseTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Excercise: #1} \\
#2 \\
{\bfseries Solution}
#3
\end{myshaded}

}

\newcommand{\LaTeXShadedColorBoxTemplate}[2]{
{\linewidth}#1\begin{myshaded}
#2
\end{myshaded}
}

\newcommand{\PGP}[1]{PGP:#1}

\newcommand{\DETAILS}[1]{For more details on this topic, see #1}

\newcommand{\ADAFile}[1]{\LaTeXZeroBoxTemplate{File: #1}}
\newcommand{\ADASample}[1]{\LaTeXZeroBoxTemplate{This code sample is also available in #1}}

\newcommand{\LaTeXZeroBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\LaTeXZeroBoxOpenTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
}

\newcommand{\PDFLink}[1]{
\textbf{PDF} #1
}

\newcommand{\Lysippos}[1]{Lysippos}

\newcommand{\SonnensystemFakten}[3]{
#1 \\
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #2} \\
#3 \\
\end{myshaded}
}

\newcommand{\VorlageReferenzenEintrag}[3]{
\begin{longtable}{p{0.2\linewidth}p{0.8\linewidth}}

{[\bfseries #1]} & {\itshape #2} #3 \\
\end{longtable}

}

\newcommand{\MBOX}[2]{\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
\begin{longtable}{p{0.2\linewidth}p{0.7\linewidth}}
#1 & #2 \\
\end{longtable}
\end{myshaded}}

\newcommand{\LaTeXIdentityTemplate}[1]{#1
}

\newcommand{\AdaRM}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaEightThreeRM}[2]{\myfnhref{http://archive.adaic.com/standards/83lrm/html/lrm-#1.html}{Annex #1: #2}}

\newcommand{\AdaRMThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaRMAThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{Annex #1.#2.#3 #4}}

\newcommand{\AdaRMATwo}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2.html}{Annex #1.#2 #3}}

\newcommand{\AdaNiveFiveRMThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaSGThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaSGTwo}[3]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaSGOne}[2]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/}{Chapter #1: #2}}

\newcommand{\AdaSGOne}[2]{\myfnhref{_#1/}{Chapter #1: #2}}

\newcommand{\AdaRMNineFive}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaRMCiteFive}[7]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{ISO/IEC 8652:2007. #1.#2.#3 #4 (#5). Ada 2005 Reference Manual. #7 }}

\newcommand{\AdaTwentyZeroFive}[1]{{\itshape This language feature is only available in Ada 2005}}

\newcommand{\ADANFAI}[2]{\myfnhref{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00#1.TXT}{AI95-00#1-01 #2}}

\newcommand{\ADARMAONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1.html}{Annex #1 #2}}

\newcommand{\ADARMONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1.html}{Section #1: #2}}
\newcommand{\ADANiveFiveRMONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1.html}{Section #1: #2}}

\newcommand{\AdaNiveFiveRMAThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2-#3.html}{Annex #1.#2-#3 #4}}

\newcommand{\AdaNiveFiveRMATwo}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2.html}{Annex #1.#2 #3}}

\newcommand{\AdaNiveFiveR}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95rat/rat95html/rat95-p#3-#1.html}{#1 #2}}

\newcommand{\AdaNiveFiveRTwo}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95rat/rat95html/rat95-p#4-#1.html}{#1.#2 #3}}

\newcommand{\AdaPragma}[1]{\LaTeXTTBF{pragma} }

\newcommand{\TychoBrahe}[1]{Tycho Brahe}

\newcommand{\LaTeXPlainBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\Hinweis}[1]{
\begin{TemplateInfo}{{\Huge \textcircled{\LARGE !}}}{Hinweis}
#1
\end{TemplateInfo}}

\newcommand{\LaTexInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}}

\newcommand{\EqnTemplate}[1]{
\begin{flushright}
\textbf{[#1]}
\end{flushright}}

\newcommand{\RefTemplate}[1]{[#1]}

\newcommand{\LaTeXGCCTakeTemplate}[1]{
\LaTeXDoubleBoxTemplate{Take home:}{#1}
}

\newcommand{\LaTeXEditorNote}[1]{\LaTeXDoubleBoxTemplate{Editor's note}{#1}}

\newcommand{\BNPForVersion}[1]{
\LaTeXInfoTemplateOne{Applicable Blender version: #1}
}

\newcommand{\LaTeXInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}
}

\newcommand{\LaTexHelpFulHintTemplate}[1]{
\LaTeXDoubleBoxTemplate{Helpful Hint:}{#1}
}

\newcommand{\MyLaTeXTemplate}[3]{
\LaTeXDoubleBoxTemplate{MyLaTeXTemplate1:}{#1 \\ #2 \\ #3}
}

\newcommand{\TemplatePreformat}[1]{
\par
\begin{scriptsize}
%\setlength{\baselineskip}{0.9\baselineskip}
\ttfamily
#1
\par
\end{scriptsize}
}

\newcommand{\TemplateSpaceIndent}[1]{
\begin{scriptsize}
\begin{framed}
\ttfamily
#1
\end{framed}
\end{scriptsize}
}

\newcommand{\GenericColorBox}[2]
{
\newline
\begin{tabular}[t]{p{0.6cm}p{4cm}}
#1\\
\end{tabular}
}

\newcommand{\legendNamedColorBox}[2]
{
 \GenericColorBox{
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{#1}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

\newcommand{\legendColorBox}[2]
{
 \GenericColorBox{
 \definecolor{tempColor}{rgb}{#1}
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{tempColor}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

%\newcommand{\ubung} {{\LARGE \triangleright}}
\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}\,}

\newcommand{\TemplateSource}[1]
{
%\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{true}
\begin{scriptsize}
\begin{myshaded}\ttfamily
#1
\end{myshaded}
\end{scriptsize}
%\end{TemplateCodeInside}
}

\newenvironment{TemplateInfo}[2]
% no more parameters
%**
% Template Info
% Kasten mit Logo, Titelzeile, Text
% kann für folgende Wiki-Vorlagen benutzt werden:
% Vorlage:merke, Vorlage:Achtung u.ä.
%
% #1 Logo (optional) default: \Info
% #2 Titel (optional) default: Information; könnte theoretisch auch leer sein,
% das ist aber wegen des Logos nicht sinnvoll
%**
{
% Definition des Kastens mit Standardwerten
% u.U. ist linewidth=1pt erorderlich
\begin{mdframed}[skipabove=\baselineskip, skipbelow=\baselineskip,
linewidth=1pt,
innertopmargin=0, innerbottommargin=0]
% linksbündig ist besser, weil es in der Regel wenige Zeilen sind, die teilweise kurz sind
\begin{flushleft}
% Überschrift größer darstellen
\begin{Large}
% #1 wird als Logo verwendet, Vorgabe ist \Info aus marvosym
% für andere Logos muss ggf. das Package eingebunden werden
% das Logo kann auch mit einer Größe verbunden werden, z.B. \LARGE\danger als #1
{#1 } \
% #2 wird als Titelzeile verwendet, Vorgabe ist 'Information'
{\bfseries #2}
\medskip \end{Large} \\
} % Ende der begin-Anweisungen, es folgenden die end-Anweisungen
{ \end{flushleft}\end{mdframed} }

\newcommand{\TemplateHeaderExercise}[3]
% no more parameters
%**
% Template Header Exercise
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
% ist gedacht für folgende Wiki-Vorlage:
% Vorlage:Übung4
% kann genauso für den Aufgaben-Teil folgender Vorlagen verwendet werden:
% Vorlage:Übung (wird zz. nur einmal benutzt)
% Vorlage:Übung2 (wird zz. gar nicht benutzt)
% Vorlage:Übung3 (wird zz. in 2 Büchern häufig benutzt)
% C++-Programmierung/ Vorlage:Aufgabe (wird zz. nur selten benutzt,
% ist in LatexRenderer.hs schon erledigt)
%
% #1 Text (optional) 'Aufgabe' oder 'Übung', kann auch leer sein
% #2 Nummer (Pflicht) könnte theoretisch auch leer sein, aber dann sieht die Zeile
% seltsam aus; oder die if-Abfragen wären unnötig komplex
% #3 Titel (optional) Inhaltsangabe der Aufgabe, kann auch leer sein
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateHeaderSolution}[3]
% no more parameters
%**
% Template Header Solution
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
%
% ist gedacht für den Lösungen-Teil der Vorlagen und wird genauso
% verwendet wie \TemplateHeaderExercise
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, Lösung zu #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateUbungDrei}[4]
{
\TemplateHeaderExercise{Übung}{#1}{#2}
#3
\TemplateHeaderSolution{Übung}{#1}{#2}
#4
}

\newcommand{\Mywrapfigure}[2]
{
\begin{wrapfigure}{r}{#1\textwidth}
\begin{center}
#2
\end{center}
\end{wrapfigure}
}

\newcommand{\Mymakebox}[2]
{
\begin{minipage}{#1\textwidth}
#2
\end{minipage}
}

\newcommand{\MyBlau}[1]{
\textcolor{darkblue}{#1}
}
\newcommand{\MyRot}[1]{
\textcolor{red}{#1}
}
\newcommand{\MyGrun}[1]{
\textcolor{mydarkgreen}{#1}
}
\newcommand{\MyBg}[2]{
\fcolorbox{#1}{#1}{#2}
}

\newcommand{\BNPModule}[1]{
the "#1" module
}

\newcommand{\LaTeXMerkeZweiTemplate}[1]{\LaTeXDoubleBoxTemplate{Merke}{#1}}

\newcommand{\LaTeXDefinitionTemplate}[1]{\LaTeXDoubleBoxTemplate{Definition}{#1}}

\newcommand{\LaTeXAnorganischeChemieFuerSchuelerVorlageMerksatzTemplate}[1]{\LaTeXDoubleBoxTemplate{Merksatz}{#1}}

\newcommand{\LaTeXTextTemplate}[1]{\LaTeXDoubleBoxTemplate{}{#1}}

\newcommand{\LaTeXExampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXexampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXPTPBoxTemplate}[1]{\LaTeXDoubleBoxTemplate{Points to ponder:}{#1}}

\newcommand{\LaTeXNOTETemplate}[2]{\LaTeXDoubleBoxTemplate{Note:}{#1 #2}}

\newcommand{\LaTeXNotizTemplate}[1]{\LaTeXDoubleBoxTemplate{Notiz:}{#1}}

\newcommand{\LaTeXbodynoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXcquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXCquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXSideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXsideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXExercisesTemplate}[1]{\LaTeXDoubleBoxTemplate{Exercises:}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageTippTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}

\newcommand{\LaTeXTipTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}
\newcommand{\LaTeXUnknownTemplate}[1]{unknown}

\newcommand{\LaTeXCppProgrammierungVorlageHinweisTemplate}[1]{\LaTeXDoubleBoxTemplate{Hinweis}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageSpaeterImBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Thema wird später näher erläutert...}{#1}}

\newcommand{\SGreen}[1]{This page uses material from Dr. Sheldon Green's Hypertext Help with LaTeX.}
\newcommand{\ARoberts}[1]{This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.}

\newcommand{\LaTeXCppProgrammierungVorlageAnderesBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Buchempfehlung}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageNichtNaeherBeschriebenTemplate}[1]{\LaTeXDoubleBoxTemplate{Nicht Thema dieses Buches...}{#1}}

\newcommand{\LaTeXPythonUnterLinuxVorlagenVorlageDetailsTemplate}[1]{\LaTeXDoubleBoxTemplate{Details}{#1}}

\newcommand{\LaTeXChapterTemplate}[1]{\chapter{#1}
\myminitoc
}

\newcommand{\Sample}[2]{
\begin{longtable}{|p{\linewidth}|}
\hline
#1 \\ \hline
#2 \\ \hline
\end{longtable}
}

\newcommand{\Syntax}[1]{
\LaTeXDoubleBoxTemplate{Syntax}{#1}}

\newcommand{\LaTeXTT}[1]{{\ttfamily #1}}
\newcommand{\LaTeXBF}[1]{{\bfseries #1}}
\newcommand{\ADAPK}[3]{{#1.#2}}
\newcommand{\LaTeXTTBF}[1]{{\bfseries \ttfamily #1}}
\newcommand{\LaTeXIT}[1]{{\itshape #1}}
\newcommand{\ADACOM}[1]{{\itshape -{}-#1}}

\newcommand{\LaTeXCenter}[1]{
\begin{center}
#1
\end{center}}

\newcommand{\BNPManual}[2]{The Blender Manual page on #1 at \url{http://wiki.blender.org/index.php/Doc:Manual/#1}}
\newcommand{\BNPWeb}[2]{#1 at \url{#2}}

\newcommand{\Noframecenter}[2]{
\begin{tablular}{p{\linewidth}}
#2\\
#1
\end{tabluar}
}

\newcommand{\LaTeXTTUlineTemplate}[1]{{\ttfamily \uline{#1}}
}

\newcommand{\PythonUnterLinuxDenulltails}[1]{
\begin{tabular}{|p{\linewidth}|}\hline
\textbf{Denulltails} \\ \hline
#1 \\ \hline
\end{tabular}}

\newcommand{\GNURTip}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
\textbf{Tip} \\ \hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlUebung}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlNotiz}[1]{
\begin{table}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{table}}

\newcommand{\ACFSZusatz}[1]{\textbf{ Zusatzinformation }}
\newcommand{\ACFSVorlageB}[1]{\textbf{ Beobachtung }}
\newcommand{\ACFSVorlageV}[1]{\textbf{ Versuchsbeschreibung }}
\newcommand{\TemplateHeaderSolutionUebung}[2]{\TemplateHeaderSolution{Übung}{#1}{#2}}
\newcommand{\TemplateHeaderExerciseUebung}[2]{\TemplateHeaderExercise{Übung}{#1}{#2}}

\newcommand{\ChemTemplate}[9]{\texttt{
#1#2#3#4#5#6#7#8#9}}

\newcommand{\WaningTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warning}
#1
\end{TemplateInfo}}

\newcommand{\WarnungTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warnung}
#1
\end{TemplateInfo}}

\newcommand{\BlenderAlignedToViewIssue}[1]{
\begin{TemplateInfo}{\danger}{Blender3d Aligned to view issue}
This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (\url{http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}) to view issue to understand the settings that need to be changed.
\end{TemplateInfo}}

\newcommand{\BlenderVersion}[1]{
{\itshape Diese Seite bezieht sich auf }{\bfseries \quad Blender Version #1}}

\newcommand{\Literal}[1]{{\itshape #1}}

\newcommand{\JavaIllustration}[3]{
\begin{tablular}
{Figure #1: #2}
\\
#3
\end{ltablular}
}

\newcommand{\PDFLink}[1]{#1 PDF}

\newcommand{\Ja}[1]{\Checkmark {\bfseries Ja}}
\newcommand{\Nein}[1]{\XSolidBrush {\bfseries Nein}}

\newcommand{\SVGVersions}[8]{
{\scriptsize
\begin{tabular}{|p{0.45\linewidth}|p{0.13\linewidth}|}\hline
Squiggle (Batik) & #1 \\ \hline
Opera (Presto) & #2 \\ \hline
Firefox (Gecko; auch SeaMonkey, Iceape, Iceweasel etc) & #3 \\ \hline
Konqueror (KSVG) & #4 \\ \hline
Safari (Webkit) & #5 \\ \hline
Chrome (Webkit) & #6 \\ \hline
Microsoft Internet Explorer (Trident) & #7 \\ \hline
librsvg & #8 \\\hline
\end{tabular}}

}

\theoremstyle{plain}
\newtheorem{satz}{Satz}
\newtheorem{beweis}{Beweis}
\newtheorem{beispiel}{Beispiel}

\theoremstyle{definition}
\newtheorem{mydef}{Definition}

\newcommand{\NFSatz}[2]{\begin{satz}#1\end{satz}#2}

\newcommand{\NFDef}[2]{\begin{mydef}#1\end{mydef}#2}

\newcommand{\NFBeweis}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFBeispiel}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFFrage}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{#1}: #2} \\
#3
\end{myshaded}

}

\newcommand{\NFFrageB}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{Frage}: #1} \\
#2
\end{myshaded}

}

\newcommand{\NFVertiefung}[1]{
{\bfseries Vertiefung:} \\
Der Inhalt des folgenden Abschnitts ist eine Vertiefung des Stoffes. Für die nächsten Kapitel ist es nicht notwendig, dass du dieses Kapitel gelesen hast.

}

headers/title.tex

\publishers{Wikibooks.org}
\title{Ada Programming}

headers/unicodes.tex

\newcommand{\R}{\ensuremath{\mathbb{R}}}
\newcommand{\N}{\ensuremath{\mathbb{N}}}
\newcommand{\Z}{\ensuremath{\mathbb{Z}}}
\newcommand{\Q}{\ensuremath{\mathbb{Q}}}
\renewcommand{\C}{\ensuremath{\mathbb{C}}}

main/main.out

\BOOKMARK [0][]{chapter.1}{\376\377\0001\000\040\000B\000a\000s\000i\000c\000\040\000A\000d\000a}{}% 1
\BOOKMARK [1][]{section.1.1}{\376\377\0001\000.\0001\000\040\0003\0004\000H\000e\000l\000l\000o\000,\000\040\000w\000o\000r\000l\000d\000!\0003\0004\000\040\000p\000r\000o\000g\000r\000a\000m\000s}{chapter.1}% 2
\BOOKMARK [1][]{section.1.2}{\376\377\0001\000.\0002\000\040\000C\000o\000m\000p\000i\000l\000i\000n\000g\000\040\000t\000h\000e\000\040\0003\0004\000H\000e\000l\000l\000o\000,\000\040\000w\000o\000r\000l\000d\000!\0003\0004\000\040\000p\000r\000o\000g\000r\000a\000m}{chapter.1}% 3
\BOOKMARK [1][]{section.1.3}{\376\377\0001\000.\0003\000\040\000T\000h\000i\000n\000g\000s\000\040\000t\000o\000\040\000l\000o\000o\000k\000\040\000o\000u\000t\000\040\000f\000o\000r}{chapter.1}% 4
\BOOKMARK [1][]{section.1.4}{\376\377\0001\000.\0004\000\040\000W\000h\000e\000r\000e\000\040\000t\000o\000\040\000a\000s\000k\000\040\000f\000o\000r\000\040\000h\000e\000l\000p}{chapter.1}% 5
\BOOKMARK [1][]{section.1.5}{\376\377\0001\000.\0005\000\040\000N\000o\000t\000e\000s}{chapter.1}% 6
\BOOKMARK [0][]{chapter.2}{\376\377\0002\000\040\000I\000n\000s\000t\000a\000l\000l\000i\000n\000g}{}% 7
\BOOKMARK [1][]{section.2.1}{\376\377\0002\000.\0001\000\040\000A\000d\000a\000M\000a\000g\000i\000c\000\040\000f\000r\000o\000m\000\040\000S\000o\000f\000C\000h\000e\000c\000k}{chapter.2}% 8
\BOOKMARK [1][]{section.2.2}{\376\377\0002\000.\0002\000\040\000A\000d\000a\000M\000U\000L\000T\000I\000\040\000f\000r\000o\000m\000\040\000G\000r\000e\000e\000n\000\040\000H\000i\000l\000l\000s\000\040\000S\000o\000f\000t\000w\000a\000r\000e}{chapter.2}% 9
\BOOKMARK [1][]{section.2.3}{\376\377\0002\000.\0003\000\040\000D\000E\000C\000\040\000A\000d\000a\000\040\000f\000r\000o\000m\000\040\000H\000P}{chapter.2}% 10
\BOOKMARK [1][]{section.2.4}{\376\377\0002\000.\0004\000\040\000G\000N\000A\000T\000,\000\040\000t\000h\000e\000\040\000G\000N\000U\000\040\000A\000d\000a\000\040\000C\000o\000m\000p\000i\000l\000e\000r\000\040\000f\000r\000o\000m\000\040\000A\000d\000a\000C\000o\000r\000e\000\040\000a\000n\000d\000\040\000t\000h\000e\000\040\000F\000r\000e\000e\000\040\000S\000o\000f\000t\000w\000a\000r\000e\000\040\000F\000o\000u\000n\000d\000a\000t\000i\000o\000n}{chapter.2}% 11
\BOOKMARK [1][]{section.2.5}{\376\377\0002\000.\0005\000\040\000I\000C\000C\000\040\000f\000r\000o\000m\000\040\000I\000r\000v\000i\000n\000e\000\040\000C\000o\000m\000p\000i\000l\000e\000r\000\040\000C\000o\000r\000p\000o\000r\000a\000t\000i\000o\000n}{chapter.2}% 12
\BOOKMARK [1][]{section.2.6}{\376\377\0002\000.\0006\000\040\000J\000a\000n\000u\000s\000/\000A\000d\000a\000\040\0008\0003\000\040\000a\000n\000d\000\040\0009\0005\000\040\000f\000r\000o\000m\000\040\000R\000R\000\040\000S\000o\000f\000t\000w\000a\000r\000e}{chapter.2}% 13
\BOOKMARK [1][]{section.2.7}{\376\377\0002\000.\0007\000\040\000M\000A\000X\000A\000d\000a\000\040\000f\000r\000o\000m\000\040\000C\000o\000n\000c\000u\000r\000r\000e\000n\000t}{chapter.2}% 14
\BOOKMARK [1][]{section.2.8}{\376\377\0002\000.\0008\000\040\000O\000b\000j\000e\000c\000t\000A\000d\000a\000\040\000f\000r\000o\000m\000\040\000A\000t\000e\000g\000o\000\040\000\050\000f\000o\000r\000m\000e\000r\000l\000y\000\040\000A\000o\000n\000i\000x\000\051}{chapter.2}% 15
\BOOKMARK [1][]{section.2.9}{\376\377\0002\000.\0009\000\040\000P\000o\000w\000e\000r\000A\000d\000a\000\040\000f\000r\000o\000m\000\040\000O\000C\000\040\000S\000y\000s\000t\000e\000m\000s}{chapter.2}% 16
\BOOKMARK [1][]{section.2.10}{\376\377\0002\000.\0001\0000\000\040\000R\000a\000t\000i\000o\000n\000a\000l\000\040\000A\000p\000e\000x\000\040\000f\000r\000o\000m\000\040\000A\000t\000e\000g\000o\000\040\000\050\000f\000o\000r\000m\000e\000r\000l\000y\000\040\000I\000B\000M\000\040\000R\000a\000t\000i\000o\000n\000a\000l\000\040\000A\000t\000e\000g\000o\000\040\000a\000c\000q\000u\000i\000r\000e\000s\000\040\000I\000B\000M\000\040\000R\000a\000t\000i\000o\000n\000a\000l\000\040\000A\000p\000e\000x\000\040\000A\000d\000a\000\040\000D\000e\000v\000e\000l\000o\000p\000e\000r\000\040\000p\000r\000o\000d\000u\000c\000t\000\040\000f\000a\000m\000i\000l\000y\000\051}{chapter.2}% 17
\BOOKMARK [1][]{section.2.11}{\376\377\0002\000.\0001\0001\000\040\000S\000C\000O\000R\000E\000\040\000f\000r\000o\000m\000\040\000D\000D\000C\000-\000I}{chapter.2}% 18
\BOOKMARK [1][]{section.2.12}{\376\377\0002\000.\0001\0002\000\040\000X\000D\000\040\000A\000d\000a\000\040\000f\000r\000o\000m\000\040\000S\000W\000E\000P\000-\000E\000D\000S}{chapter.2}% 19
\BOOKMARK [1][]{section.2.13}{\376\377\0002\000.\0001\0003\000\040\000X\000G\000C\000\040\000A\000d\000a\000\040\000f\000r\000o\000m\000\040\000X\000G\000C\000\040\000S\000o\000f\000t\000w\000a\000r\000e}{chapter.2}% 20
\BOOKMARK [1][]{section.2.14}{\376\377\0002\000.\0001\0004\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.2}% 21
\BOOKMARK [0][]{chapter.3}{\376\377\0003\000\040\000B\000u\000i\000l\000d\000i\000n\000g}{}% 22
\BOOKMARK [1][]{section.3.1}{\376\377\0003\000.\0001\000\040\000B\000u\000i\000l\000d\000i\000n\000g\000\040\000w\000i\000t\000h\000\040\000v\000a\000r\000i\000o\000u\000s\000\040\000c\000o\000m\000p\000i\000l\000e\000r\000s}{chapter.3}% 23
\BOOKMARK [1][]{section.3.2}{\376\377\0003\000.\0002\000\040\000C\000o\000m\000p\000i\000l\000i\000n\000g\000\040\000o\000u\000r\000\040\000D\000e\000m\000o\000\040\000S\000o\000u\000r\000c\000e}{chapter.3}% 24
\BOOKMARK [1][]{section.3.3}{\376\377\0003\000.\0003\000\040\000E\000x\000t\000e\000r\000n\000a\000l\000\040\000l\000i\000n\000k\000s}{chapter.3}% 25
\BOOKMARK [0][]{chapter.4}{\376\377\0004\000\040\000C\000o\000n\000t\000r\000o\000l\000\040\000S\000t\000a\000t\000e\000m\000e\000n\000t\000s}{}% 26
\BOOKMARK [1][]{section.4.1}{\376\377\0004\000.\0001\000\040\000C\000o\000n\000d\000i\000t\000i\000o\000n\000a\000l\000s}{chapter.4}% 27
\BOOKMARK [1][]{section.4.2}{\376\377\0004\000.\0002\000\040\000U\000n\000c\000o\000n\000d\000i\000t\000i\000o\000n\000a\000l\000s}{chapter.4}% 28
\BOOKMARK [1][]{section.4.3}{\376\377\0004\000.\0003\000\040\000L\000o\000o\000p\000s}{chapter.4}% 29
\BOOKMARK [1][]{section.4.4}{\376\377\0004\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.4}% 30
\BOOKMARK [0][]{chapter.5}{\376\377\0005\000\040\000T\000y\000p\000e\000\040\000S\000y\000s\000t\000e\000m}{}% 31
\BOOKMARK [1][]{section.5.1}{\376\377\0005\000.\0001\000\040\000P\000r\000e\000d\000e\000f\000i\000n\000e\000d\000\040\000t\000y\000p\000e\000s}{chapter.5}% 32
\BOOKMARK [1][]{section.5.2}{\376\377\0005\000.\0002\000\040\000T\000h\000e\000\040\000T\000y\000p\000e\000\040\000H\000i\000e\000r\000a\000r\000c\000h\000y}{chapter.5}% 33
\BOOKMARK [1][]{section.5.3}{\376\377\0005\000.\0003\000\040\000C\000o\000n\000c\000u\000r\000r\000e\000n\000c\000y\000\040\000T\000y\000p\000e\000s}{chapter.5}% 34
\BOOKMARK [1][]{section.5.4}{\376\377\0005\000.\0004\000\040\000L\000i\000m\000i\000t\000e\000d\000\040\000T\000y\000p\000e\000s}{chapter.5}% 35
\BOOKMARK [1][]{section.5.5}{\376\377\0005\000.\0005\000\040\000D\000e\000f\000i\000n\000i\000n\000g\000\040\000n\000e\000w\000\040\000t\000y\000p\000e\000s\000\040\000a\000n\000d\000\040\000s\000u\000b\000t\000y\000p\000e\000s}{chapter.5}% 36
\BOOKMARK [1][]{section.5.6}{\376\377\0005\000.\0006\000\040\000S\000u\000b\000t\000y\000p\000e\000\040\000c\000a\000t\000e\000g\000o\000r\000i\000e\000s}{chapter.5}% 37
\BOOKMARK [1][]{section.5.7}{\376\377\0005\000.\0007\000\040\000Q\000u\000a\000l\000i\000f\000i\000e\000d\000\040\000e\000x\000p\000r\000e\000s\000s\000i\000o\000n\000s}{chapter.5}% 38
\BOOKMARK [1][]{section.5.8}{\376\377\0005\000.\0008\000\040\000T\000y\000p\000e\000\040\000c\000o\000n\000v\000e\000r\000s\000i\000o\000n\000s}{chapter.5}% 39
\BOOKMARK [1][]{section.5.9}{\376\377\0005\000.\0009\000\040\000E\000l\000a\000b\000o\000r\000a\000t\000e\000d\000\040\000D\000i\000s\000c\000u\000s\000s\000i\000o\000n\000\040\000o\000f\000\040\000T\000y\000p\000e\000s\000\040\000f\000o\000r\000\040\000S\000i\000g\000n\000e\000d\000\040\000I\000n\000t\000e\000g\000e\000r\000\040\000T\000y\000p\000e\000s}{chapter.5}% 40
\BOOKMARK [1][]{section.5.10}{\376\377\0005\000.\0001\0000\000\040\000R\000e\000l\000a\000t\000i\000o\000n\000s\000\040\000b\000e\000t\000w\000e\000e\000n\000\040\000t\000y\000p\000e\000s}{chapter.5}% 41
\BOOKMARK [1][]{section.5.11}{\376\377\0005\000.\0001\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.5}% 42
\BOOKMARK [0][]{chapter.6}{\376\377\0006\000\040\000I\000n\000t\000e\000g\000e\000r\000\040\000t\000y\000p\000e\000s}{}% 43
\BOOKMARK [1][]{section.6.1}{\376\377\0006\000.\0001\000\040\000W\000o\000r\000k\000i\000n\000g\000\040\000d\000e\000m\000o}{chapter.6}% 44
\BOOKMARK [1][]{section.6.2}{\376\377\0006\000.\0002\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.6}% 45
\BOOKMARK [0][]{chapter.7}{\376\377\0007\000\040\000U\000n\000s\000i\000g\000n\000e\000d\000\040\000i\000n\000t\000e\000g\000e\000r\000\040\000t\000y\000p\000e\000s}{}% 46
\BOOKMARK [1][]{section.7.1}{\376\377\0007\000.\0001\000\040\000D\000e\000s\000c\000r\000i\000p\000t\000i\000o\000n}{chapter.7}% 47
\BOOKMARK [1][]{section.7.2}{\376\377\0007\000.\0002\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.7}% 48
\BOOKMARK [0][]{chapter.8}{\376\377\0008\000\040\000E\000n\000u\000m\000e\000r\000a\000t\000i\000o\000n\000s}{}% 49
\BOOKMARK [1][]{section.8.1}{\376\377\0008\000.\0001\000\040\000O\000p\000e\000r\000a\000t\000o\000r\000s\000\040\000a\000n\000d\000\040\000a\000t\000t\000r\000i\000b\000u\000t\000e\000s}{chapter.8}% 50
\BOOKMARK [1][]{section.8.2}{\376\377\0008\000.\0002\000\040\000E\000n\000u\000m\000e\000r\000a\000t\000i\000o\000n\000\040\000l\000i\000t\000e\000r\000a\000l\000s}{chapter.8}% 51
\BOOKMARK [1][]{section.8.3}{\376\377\0008\000.\0003\000\040\000E\000n\000u\000m\000e\000r\000a\000t\000i\000o\000n\000\040\000s\000u\000b\000t\000y\000p\000e\000s}{chapter.8}% 52
\BOOKMARK [1][]{section.8.4}{\376\377\0008\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.8}% 53
\BOOKMARK [0][]{chapter.9}{\376\377\0009\000\040\000F\000l\000o\000a\000t\000i\000n\000g\000\040\000p\000o\000i\000n\000t\000\040\000t\000y\000p\000e\000s}{}% 54
\BOOKMARK [1][]{section.9.1}{\376\377\0009\000.\0001\000\040\000D\000e\000s\000c\000r\000i\000p\000t\000i\000o\000n}{chapter.9}% 55
\BOOKMARK [1][]{section.9.2}{\376\377\0009\000.\0002\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.9}% 56
\BOOKMARK [0][]{chapter.10}{\376\377\0001\0000\000\040\000F\000i\000x\000e\000d\000\040\000p\000o\000i\000n\000t\000\040\000t\000y\000p\000e\000s}{}% 57
\BOOKMARK [1][]{section.10.1}{\376\377\0001\0000\000.\0001\000\040\000D\000e\000s\000c\000r\000i\000p\000t\000i\000o\000n}{chapter.10}% 58
\BOOKMARK [1][]{section.10.2}{\376\377\0001\0000\000.\0002\000\040\000O\000r\000d\000i\000n\000a\000r\000y\000\040\000F\000i\000x\000e\000d\000\040\000P\000o\000i\000n\000t}{chapter.10}% 59
\BOOKMARK [1][]{section.10.3}{\376\377\0001\0000\000.\0003\000\040\000D\000e\000c\000i\000m\000a\000l\000\040\000F\000i\000x\000e\000d\000\040\000P\000o\000i\000n\000t}{chapter.10}% 60
\BOOKMARK [1][]{section.10.4}{\376\377\0001\0000\000.\0004\000\040\000D\000i\000f\000f\000e\000r\000e\000n\000c\000e\000s\000\040\000b\000e\000t\000w\000e\000e\000n\000\040\000O\000r\000d\000i\000n\000a\000r\000y\000\040\000a\000n\000d\000\040\000D\000e\000c\000i\000m\000a\000l\000\040\000F\000i\000x\000e\000d\000\040\000P\000o\000i\000n\000t\000\040\000T\000y\000p\000e\000s}{chapter.10}% 61
\BOOKMARK [1][]{section.10.5}{\376\377\0001\0000\000.\0005\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.10}% 62
\BOOKMARK [0][]{chapter.11}{\376\377\0001\0001\000\040\000A\000r\000r\000a\000y\000s}{}% 63
\BOOKMARK [1][]{section.11.1}{\376\377\0001\0001\000.\0001\000\040\000D\000e\000c\000l\000a\000r\000i\000n\000g\000\040\000a\000r\000r\000a\000y\000s}{chapter.11}% 64
\BOOKMARK [1][]{section.11.2}{\376\377\0001\0001\000.\0002\000\040\000U\000s\000i\000n\000g\000\040\000a\000r\000r\000a\000y\000s}{chapter.11}% 65
\BOOKMARK [1][]{section.11.3}{\376\377\0001\0001\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.11}% 66
\BOOKMARK [0][]{chapter.12}{\376\377\0001\0002\000\040\000R\000e\000c\000o\000r\000d\000s}{}% 67
\BOOKMARK [1][]{section.12.1}{\376\377\0001\0002\000.\0001\000\040\000B\000a\000s\000i\000c\000\040\000r\000e\000c\000o\000r\000d}{chapter.12}% 68
\BOOKMARK [1][]{section.12.2}{\376\377\0001\0002\000.\0002\000\040\000N\000u\000l\000l\000\040\000r\000e\000c\000o\000r\000d}{chapter.12}% 69
\BOOKMARK [1][]{section.12.3}{\376\377\0001\0002\000.\0003\000\040\000R\000e\000c\000o\000r\000d\000\040\000V\000a\000l\000u\000e\000s}{chapter.12}% 70
\BOOKMARK [1][]{section.12.4}{\376\377\0001\0002\000.\0004\000\040\000D\000i\000s\000c\000r\000i\000m\000i\000n\000a\000t\000e\000d\000\040\000r\000e\000c\000o\000r\000d}{chapter.12}% 71
\BOOKMARK [1][]{section.12.5}{\376\377\0001\0002\000.\0005\000\040\000V\000a\000r\000i\000a\000n\000t\000\040\000r\000e\000c\000o\000r\000d}{chapter.12}% 72
\BOOKMARK [1][]{section.12.6}{\376\377\0001\0002\000.\0006\000\040\000U\000n\000i\000o\000n}{chapter.12}% 73
\BOOKMARK [1][]{section.12.7}{\376\377\0001\0002\000.\0007\000\040\000T\000a\000g\000g\000e\000d\000\040\000r\000e\000c\000o\000r\000d}{chapter.12}% 74
\BOOKMARK [1][]{section.12.8}{\376\377\0001\0002\000.\0008\000\040\000A\000b\000s\000t\000r\000a\000c\000t\000\040\000t\000a\000g\000g\000e\000d\000\040\000r\000e\000c\000o\000r\000d}{chapter.12}% 75
\BOOKMARK [1][]{section.12.9}{\376\377\0001\0002\000.\0009\000\040\000W\000i\000t\000h\000\040\000a\000l\000i\000a\000s\000e\000d\000\040\000e\000l\000e\000m\000e\000n\000t\000s}{chapter.12}% 76
\BOOKMARK [1][]{section.12.10}{\376\377\0001\0002\000.\0001\0000\000\040\000L\000i\000m\000i\000t\000e\000d\000\040\000R\000e\000c\000o\000r\000d\000s}{chapter.12}% 77
\BOOKMARK [1][]{section.12.11}{\376\377\0001\0002\000.\0001\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.12}% 78
\BOOKMARK [0][]{chapter.13}{\376\377\0001\0003\000\040\000A\000c\000c\000e\000s\000s\000\040\000t\000y\000p\000e\000s}{}% 79
\BOOKMARK [1][]{section.13.1}{\376\377\0001\0003\000.\0001\000\040\000W\000h\000a\000t\000\047\000s\000\040\000a\000n\000\040\000A\000c\000c\000e\000s\000s\000\040\000T\000y\000p\000e\000?}{chapter.13}% 80
\BOOKMARK [1][]{section.13.2}{\376\377\0001\0003\000.\0002\000\040\000P\000o\000o\000l\000\040\000a\000c\000c\000e\000s\000s}{chapter.13}% 81
\BOOKMARK [1][]{section.13.3}{\376\377\0001\0003\000.\0003\000\040\000G\000e\000n\000e\000r\000a\000l\000\040\000a\000c\000c\000e\000s\000s}{chapter.13}% 82
\BOOKMARK [1][]{section.13.4}{\376\377\0001\0003\000.\0004\000\040\000A\000n\000o\000n\000y\000m\000o\000u\000s\000\040\000a\000c\000c\000e\000s\000s}{chapter.13}% 83
\BOOKMARK [1][]{section.13.5}{\376\377\0001\0003\000.\0005\000\040\000I\000m\000p\000l\000i\000c\000i\000t\000\040\000D\000e\000r\000e\000f\000e\000r\000e\000n\000c\000e}{chapter.13}% 84
\BOOKMARK [1][]{section.13.6}{\376\377\0001\0003\000.\0006\000\040\000N\000u\000l\000l\000\040\000e\000x\000c\000l\000u\000s\000i\000o\000n\000s}{chapter.13}% 85
\BOOKMARK [1][]{section.13.7}{\376\377\0001\0003\000.\0007\000\040\000A\000c\000c\000e\000s\000s\000\040\000t\000o\000\040\000S\000u\000b\000p\000r\000o\000g\000r\000a\000m}{chapter.13}% 86
\BOOKMARK [1][]{section.13.8}{\376\377\0001\0003\000.\0008\000\040\000A\000c\000c\000e\000s\000s\000\040\000F\000A\000Q}{chapter.13}% 87
\BOOKMARK [1][]{section.13.9}{\376\377\0001\0003\000.\0009\000\040\000T\000h\000i\000n\000\040\000a\000n\000d\000\040\000F\000a\000t\000\040\000A\000c\000c\000e\000s\000s\000\040\000T\000y\000p\000e\000s}{chapter.13}% 88
\BOOKMARK [1][]{section.13.10}{\376\377\0001\0003\000.\0001\0000\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.13}% 89
\BOOKMARK [0][]{chapter.14}{\376\377\0001\0004\000\040\000L\000i\000m\000i\000t\000e\000d\000\040\000t\000y\000p\000e\000s}{}% 90
\BOOKMARK [1][]{section.14.1}{\376\377\0001\0004\000.\0001\000\040\000L\000i\000m\000i\000t\000e\000d\000\040\000T\000y\000p\000e\000s}{chapter.14}% 91
\BOOKMARK [1][]{section.14.2}{\376\377\0001\0004\000.\0002\000\040\000I\000n\000i\000t\000i\000a\000l\000i\000s\000i\000n\000g\000\040\000L\000i\000m\000i\000t\000e\000d\000\040\000T\000y\000p\000e\000s}{chapter.14}% 92
\BOOKMARK [1][]{section.14.3}{\376\377\0001\0004\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.14}% 93
\BOOKMARK [1][]{section.14.4}{\376\377\0001\0004\000.\0004\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.14}% 94
\BOOKMARK [0][]{chapter.15}{\376\377\0001\0005\000\040\000S\000t\000r\000i\000n\000g\000s}{}% 95
\BOOKMARK [1][]{section.15.1}{\376\377\0001\0005\000.\0001\000\040\000F\000i\000x\000e\000d\000-\000l\000e\000n\000g\000t\000h\000\040\000s\000t\000r\000i\000n\000g\000\040\000h\000a\000n\000d\000l\000i\000n\000g}{chapter.15}% 96
\BOOKMARK [1][]{section.15.2}{\376\377\0001\0005\000.\0002\000\040\000B\000o\000u\000n\000d\000e\000d\000-\000l\000e\000n\000g\000t\000h\000\040\000s\000t\000r\000i\000n\000g\000\040\000h\000a\000n\000d\000l\000i\000n\000g}{chapter.15}% 97
\BOOKMARK [1][]{section.15.3}{\376\377\0001\0005\000.\0003\000\040\000U\000n\000b\000o\000u\000n\000d\000e\000d\000-\000l\000e\000n\000g\000t\000h\000\040\000s\000t\000r\000i\000n\000g\000\040\000h\000a\000n\000d\000l\000i\000n\000g}{chapter.15}% 98
\BOOKMARK [1][]{section.15.4}{\376\377\0001\0005\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.15}% 99
\BOOKMARK [0][]{chapter.16}{\376\377\0001\0006\000\040\000S\000u\000b\000p\000r\000o\000g\000r\000a\000m\000s}{}% 100
\BOOKMARK [1][]{section.16.1}{\376\377\0001\0006\000.\0001\000\040\000P\000r\000o\000c\000e\000d\000u\000r\000e\000s}{chapter.16}% 101
\BOOKMARK [1][]{section.16.2}{\376\377\0001\0006\000.\0002\000\040\000F\000u\000n\000c\000t\000i\000o\000n\000s}{chapter.16}% 102
\BOOKMARK [1][]{section.16.3}{\376\377\0001\0006\000.\0003\000\040\000N\000a\000m\000e\000d\000\040\000p\000a\000r\000a\000m\000e\000t\000e\000r\000s}{chapter.16}% 103
\BOOKMARK [1][]{section.16.4}{\376\377\0001\0006\000.\0004\000\040\000D\000e\000f\000a\000u\000l\000t\000\040\000p\000a\000r\000a\000m\000e\000t\000e\000r\000s}{chapter.16}% 104
\BOOKMARK [1][]{section.16.5}{\376\377\0001\0006\000.\0005\000\040\000R\000e\000n\000a\000m\000i\000n\000g}{chapter.16}% 105
\BOOKMARK [1][]{section.16.6}{\376\377\0001\0006\000.\0006\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.16}% 106
\BOOKMARK [0][]{chapter.17}{\376\377\0001\0007\000\040\000P\000a\000c\000k\000a\000g\000e\000s}{}% 107
\BOOKMARK [1][]{section.17.1}{\376\377\0001\0007\000.\0001\000\040\000S\000e\000p\000a\000r\000a\000t\000e\000\040\000c\000o\000m\000p\000i\000l\000a\000t\000i\000o\000n}{chapter.17}% 108
\BOOKMARK [1][]{section.17.2}{\376\377\0001\0007\000.\0002\000\040\000P\000a\000r\000t\000s\000\040\000o\000f\000\040\000a\000\040\000p\000a\000c\000k\000a\000g\000e}{chapter.17}% 109
\BOOKMARK [1][]{section.17.3}{\376\377\0001\0007\000.\0003\000\040\000U\000s\000i\000n\000g\000\040\000p\000a\000c\000k\000a\000g\000e\000s}{chapter.17}% 110
\BOOKMARK [1][]{section.17.4}{\376\377\0001\0007\000.\0004\000\040\000P\000a\000c\000k\000a\000g\000e\000\040\000o\000r\000g\000a\000n\000i\000s\000a\000t\000i\000o\000n}{chapter.17}% 111
\BOOKMARK [1][]{section.17.5}{\376\377\0001\0007\000.\0005\000\040\000N\000o\000t\000e\000s}{chapter.17}% 112
\BOOKMARK [1][]{section.17.6}{\376\377\0001\0007\000.\0006\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.17}% 113
\BOOKMARK [0][]{chapter.18}{\376\377\0001\0008\000\040\000I\000n\000p\000u\000t\000\040\000O\000u\000t\000p\000u\000t}{}% 114
\BOOKMARK [1][]{section.18.1}{\376\377\0001\0008\000.\0001\000\040\000O\000v\000e\000r\000v\000i\000e\000w}{chapter.18}% 115
\BOOKMARK [1][]{section.18.2}{\376\377\0001\0008\000.\0002\000\040\000T\000e\000x\000t\000\040\000I\000/\000O}{chapter.18}% 116
\BOOKMARK [1][]{section.18.3}{\376\377\0001\0008\000.\0003\000\040\000D\000i\000r\000e\000c\000t\000\040\000I\000/\000O}{chapter.18}% 117
\BOOKMARK [1][]{section.18.4}{\376\377\0001\0008\000.\0004\000\040\000S\000e\000q\000u\000e\000n\000t\000i\000a\000l\000\040\000I\000/\000O}{chapter.18}% 118
\BOOKMARK [1][]{section.18.5}{\376\377\0001\0008\000.\0005\000\040\000S\000t\000r\000e\000a\000m\000\040\000I\000/\000O}{chapter.18}% 119
\BOOKMARK [1][]{section.18.6}{\376\377\0001\0008\000.\0006\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.18}% 120
\BOOKMARK [0][]{chapter.19}{\376\377\0001\0009\000\040\000E\000x\000c\000e\000p\000t\000i\000o\000n\000s}{}% 121
\BOOKMARK [1][]{section.19.1}{\376\377\0001\0009\000.\0001\000\040\000R\000o\000b\000u\000s\000t\000n\000e\000s\000s}{chapter.19}% 122
\BOOKMARK [1][]{section.19.2}{\376\377\0001\0009\000.\0002\000\040\000M\000o\000d\000u\000l\000e\000s\000,\000\040\000p\000r\000e\000c\000o\000n\000d\000i\000t\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000p\000o\000s\000t\000c\000o\000n\000d\000i\000t\000i\000o\000n\000s}{chapter.19}% 123
\BOOKMARK [1][]{section.19.3}{\376\377\0001\0009\000.\0003\000\040\000P\000r\000e\000d\000e\000f\000i\000n\000e\000d\000\040\000e\000x\000c\000e\000p\000t\000i\000o\000n\000s}{chapter.19}% 124
\BOOKMARK [1][]{section.19.4}{\376\377\0001\0009\000.\0004\000\040\000I\000n\000p\000u\000t\000-\000o\000u\000t\000p\000u\000t\000\040\000e\000x\000c\000e\000p\000t\000i\000o\000n\000s}{chapter.19}% 125
\BOOKMARK [1][]{section.19.5}{\376\377\0001\0009\000.\0005\000\040\000E\000x\000c\000e\000p\000t\000i\000o\000n\000\040\000d\000e\000c\000l\000a\000r\000a\000t\000i\000o\000n\000s}{chapter.19}% 126
\BOOKMARK [1][]{section.19.6}{\376\377\0001\0009\000.\0006\000\040\000R\000a\000i\000s\000i\000n\000g\000\040\000e\000x\000c\000e\000p\000t\000i\000o\000n\000s}{chapter.19}% 127
\BOOKMARK [1][]{section.19.7}{\376\377\0001\0009\000.\0007\000\040\000E\000x\000c\000e\000p\000t\000i\000o\000n\000\040\000h\000a\000n\000d\000l\000i\000n\000g\000\040\000a\000n\000d\000\040\000p\000r\000o\000p\000a\000g\000a\000t\000i\000o\000n}{chapter.19}% 128
\BOOKMARK [1][]{section.19.8}{\376\377\0001\0009\000.\0008\000\040\000I\000n\000f\000o\000r\000m\000a\000t\000i\000o\000n\000\040\000a\000b\000o\000u\000t\000\040\000a\000n\000\040\000e\000x\000c\000e\000p\000t\000i\000o\000n\000\040\000o\000c\000c\000u\000r\000r\000e\000n\000c\000e}{chapter.19}% 129
\BOOKMARK [1][]{section.19.9}{\376\377\0001\0009\000.\0009\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.19}% 130
\BOOKMARK [0][]{chapter.20}{\376\377\0002\0000\000\040\000G\000e\000n\000e\000r\000i\000c\000s}{}% 131
\BOOKMARK [1][]{section.20.1}{\376\377\0002\0000\000.\0001\000\040\000P\000a\000r\000a\000m\000e\000t\000r\000i\000c\000\040\000p\000o\000l\000y\000m\000o\000r\000p\000h\000i\000s\000m\000\040\000\050\000g\000e\000n\000e\000r\000i\000c\000\040\000u\000n\000i\000t\000s\000\051}{chapter.20}% 132
\BOOKMARK [1][]{section.20.2}{\376\377\0002\0000\000.\0002\000\040\000G\000e\000n\000e\000r\000i\000c\000\040\000p\000a\000r\000a\000m\000e\000t\000e\000r\000s}{chapter.20}% 133
\BOOKMARK [1][]{section.20.3}{\376\377\0002\0000\000.\0003\000\040\000I\000n\000s\000t\000a\000n\000t\000i\000a\000t\000i\000n\000g\000\040\000g\000e\000n\000e\000r\000i\000c\000s}{chapter.20}% 134
\BOOKMARK [1][]{section.20.4}{\376\377\0002\0000\000.\0004\000\040\000A\000d\000v\000a\000n\000c\000e\000d\000\040\000g\000e\000n\000e\000r\000i\000c\000s}{chapter.20}% 135
\BOOKMARK [1][]{section.20.5}{\376\377\0002\0000\000.\0005\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.20}% 136
\BOOKMARK [0][]{chapter.21}{\376\377\0002\0001\000\040\000T\000a\000s\000k\000i\000n\000g}{}% 137
\BOOKMARK [1][]{section.21.1}{\376\377\0002\0001\000.\0001\000\040\000T\000a\000s\000k\000s}{chapter.21}% 138
\BOOKMARK [1][]{section.21.2}{\376\377\0002\0001\000.\0002\000\040\000P\000r\000o\000t\000e\000c\000t\000e\000d\000\040\000t\000y\000p\000e\000s}{chapter.21}% 139
\BOOKMARK [1][]{section.21.3}{\376\377\0002\0001\000.\0003\000\040\000E\000n\000t\000r\000y\000\040\000f\000a\000m\000i\000l\000i\000e\000s}{chapter.21}% 140
\BOOKMARK [1][]{section.21.4}{\376\377\0002\0001\000.\0004\000\040\000T\000e\000r\000m\000i\000n\000a\000t\000i\000o\000n}{chapter.21}% 141
\BOOKMARK [1][]{section.21.5}{\376\377\0002\0001\000.\0005\000\040\000T\000i\000m\000e\000o\000u\000t}{chapter.21}% 142
\BOOKMARK [1][]{section.21.6}{\376\377\0002\0001\000.\0006\000\040\000C\000o\000n\000d\000i\000t\000i\000o\000n\000a\000l\000\040\000e\000n\000t\000r\000y\000\040\000c\000a\000l\000l\000s}{chapter.21}% 143
\BOOKMARK [1][]{section.21.7}{\376\377\0002\0001\000.\0007\000\040\000R\000e\000q\000u\000e\000u\000e\000\040\000s\000t\000a\000t\000e\000m\000e\000n\000t\000s}{chapter.21}% 144
\BOOKMARK [1][]{section.21.8}{\376\377\0002\0001\000.\0008\000\040\000S\000c\000h\000e\000d\000u\000l\000i\000n\000g}{chapter.21}% 145
\BOOKMARK [1][]{section.21.9}{\376\377\0002\0001\000.\0009\000\040\000I\000n\000t\000e\000r\000f\000a\000c\000e\000s}{chapter.21}% 146
\BOOKMARK [1][]{section.21.10}{\376\377\0002\0001\000.\0001\0000\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.21}% 147
\BOOKMARK [1][]{section.21.11}{\376\377\0002\0001\000.\0001\0001\000\040\000A\000d\000a\000\040\000Q\000u\000a\000l\000i\000t\000y\000\040\000a\000n\000d\000\040\000S\000t\000y\000l\000e\000\040\000G\000u\000i\000d\000e}{chapter.21}% 148
\BOOKMARK [0][]{chapter.22}{\376\377\0002\0002\000\040\000O\000b\000j\000e\000c\000t\000\040\000O\000r\000i\000e\000n\000t\000a\000t\000i\000o\000n}{}% 149
\BOOKMARK [1][]{section.22.1}{\376\377\0002\0002\000.\0001\000\040\000O\000b\000j\000e\000c\000t\000\040\000o\000r\000i\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000i\000n\000\040\000A\000d\000a}{chapter.22}% 150
\BOOKMARK [1][]{section.22.2}{\376\377\0002\0002\000.\0002\000\040\000C\000l\000a\000s\000s\000\040\000n\000a\000m\000e\000s}{chapter.22}% 151
\BOOKMARK [1][]{section.22.3}{\376\377\0002\0002\000.\0003\000\040\000O\000b\000j\000e\000c\000t\000-\000O\000r\000i\000e\000n\000t\000e\000d\000\040\000A\000d\000a\000\040\000f\000o\000r\000\040\000C\000+\000+\000\040\000p\000r\000o\000g\000r\000a\000m\000m\000e\000r\000s}{chapter.22}% 152
\BOOKMARK [1][]{section.22.4}{\376\377\0002\0002\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.22}% 153
\BOOKMARK [0][]{chapter.23}{\376\377\0002\0003\000\040\000N\000e\000w\000\040\000i\000n\000\040\000A\000d\000a\000\040\0002\0000\0000\0005}{}% 154
\BOOKMARK [1][]{section.23.1}{\376\377\0002\0003\000.\0001\000\040\000L\000a\000n\000g\000u\000a\000g\000e\000\040\000f\000e\000a\000t\000u\000r\000e\000s}{chapter.23}% 155
\BOOKMARK [1][]{section.23.2}{\376\377\0002\0003\000.\0002\000\040\000L\000a\000n\000g\000u\000a\000g\000e\000\040\000l\000i\000b\000r\000a\000r\000y}{chapter.23}% 156
\BOOKMARK [1][]{section.23.3}{\376\377\0002\0003\000.\0003\000\040\000R\000e\000a\000l\000-\000T\000i\000m\000e\000\040\000a\000n\000d\000\040\000H\000i\000g\000h\000\040\000I\000n\000t\000e\000g\000r\000i\000t\000y\000\040\000S\000y\000s\000t\000e\000m\000s}{chapter.23}% 157
\BOOKMARK [1][]{section.23.4}{\376\377\0002\0003\000.\0004\000\040\000S\000u\000m\000m\000a\000r\000y\000\040\000o\000f\000\040\000w\000h\000a\000t\000\047\000s\000\040\000n\000e\000w}{chapter.23}% 158
\BOOKMARK [1][]{section.23.5}{\376\377\0002\0003\000.\0005\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.23}% 159
\BOOKMARK [1][]{section.23.6}{\376\377\0002\0003\000.\0006\000\040\000E\000x\000t\000e\000r\000n\000a\000l\000\040\000l\000i\000n\000k\000s}{chapter.23}% 160
\BOOKMARK [0][]{chapter.24}{\376\377\0002\0004\000\040\000C\000o\000n\000t\000a\000i\000n\000e\000r\000s}{}% 161
\BOOKMARK [1][]{section.24.1}{\376\377\0002\0004\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.24}% 162
\BOOKMARK [0][]{chapter.25}{\376\377\0002\0005\000\040\000I\000n\000t\000e\000r\000f\000a\000c\000i\000n\000g}{}% 163
\BOOKMARK [1][]{section.25.1}{\376\377\0002\0005\000.\0001\000\040\000I\000n\000t\000e\000r\000f\000a\000c\000i\000n\000g}{chapter.25}% 164
\BOOKMARK [1][]{section.25.2}{\376\377\0002\0005\000.\0002\000\040\000O\000t\000h\000e\000r\000\040\000p\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g\000\040\000l\000a\000n\000g\000u\000a\000g\000e\000s}{chapter.25}% 165
\BOOKMARK [1][]{section.25.3}{\376\377\0002\0005\000.\0003\000\040\000H\000a\000r\000d\000w\000a\000r\000e\000\040\000d\000e\000v\000i\000c\000e\000s}{chapter.25}% 166
\BOOKMARK [1][]{section.25.4}{\376\377\0002\0005\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.25}% 167
\BOOKMARK [0][]{chapter.26}{\376\377\0002\0006\000\040\000C\000o\000d\000i\000n\000g\000\040\000S\000t\000a\000n\000d\000a\000r\000d\000s}{}% 168
\BOOKMARK [1][]{section.26.1}{\376\377\0002\0006\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.26}% 169
\BOOKMARK [1][]{section.26.2}{\376\377\0002\0006\000.\0002\000\040\000T\000o\000o\000l\000s}{chapter.26}% 170
\BOOKMARK [1][]{section.26.3}{\376\377\0002\0006\000.\0003\000\040\000C\000o\000d\000i\000n\000g\000\040\000g\000u\000i\000d\000e\000l\000i\000n\000e\000s}{chapter.26}% 171
\BOOKMARK [1][]{section.26.4}{\376\377\0002\0006\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.26}% 172
\BOOKMARK [1][]{section.26.5}{\376\377\0002\0006\000.\0005\000\040\000E\000x\000t\000e\000r\000n\000a\000l\000\040\000l\000i\000n\000k\000s}{chapter.26}% 173
\BOOKMARK [0][]{chapter.27}{\376\377\0002\0007\000\040\000T\000i\000p\000s}{}% 174
\BOOKMARK [1][]{section.27.1}{\376\377\0002\0007\000.\0001\000\040\000F\000u\000l\000l\000\040\000d\000e\000c\000l\000a\000r\000a\000t\000i\000o\000n\000\040\000o\000f\000\040\000a\000\040\000t\000y\000p\000e\000\040\000c\000a\000n\000\040\000b\000e\000\040\000d\000e\000f\000e\000r\000r\000e\000d\000\040\000t\000o\000\040\000t\000h\000e\000\040\000u\000n\000i\000t\000\047\000s\000\040\000b\000o\000d\000y}{chapter.27}% 175
\BOOKMARK [1][]{section.27.2}{\376\377\0002\0007\000.\0002\000\040\000L\000a\000m\000b\000d\000a\000\040\000c\000a\000l\000c\000u\000l\000u\000s\000\040\000t\000h\000r\000o\000u\000g\000h\000\040\000g\000e\000n\000e\000r\000i\000c\000s}{chapter.27}% 176
\BOOKMARK [1][]{section.27.3}{\376\377\0002\0007\000.\0003\000\040\000C\000o\000m\000p\000i\000l\000e\000r\000\040\000M\000e\000s\000s\000a\000g\000e\000s}{chapter.27}% 177
\BOOKMARK [1][]{section.27.4}{\376\377\0002\0007\000.\0004\000\040\000U\000n\000i\000v\000e\000r\000s\000a\000l\000\040\000i\000n\000t\000e\000g\000e\000r\000s}{chapter.27}% 178
\BOOKMARK [1][]{section.27.5}{\376\377\0002\0007\000.\0005\000\040\000I\000/\000O}{chapter.27}% 179
\BOOKMARK [1][]{section.27.6}{\376\377\0002\0007\000.\0006\000\040\000Q\000u\000i\000r\000k\000s}{chapter.27}% 180
\BOOKMARK [1][]{section.27.7}{\376\377\0002\0007\000.\0007\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.27}% 181
\BOOKMARK [1][]{section.27.8}{\376\377\0002\0007\000.\0008\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.27}% 182
\BOOKMARK [0][]{chapter.28}{\376\377\0002\0008\000\040\000C\000o\000m\000m\000o\000n\000\040\000E\000r\000r\000o\000r\000s}{}% 183
\BOOKMARK [1][]{section.28.1}{\376\377\0002\0008\000.\0001\000\040\000p\000r\000a\000g\000m\000a\000\040\000A\000t\000o\000m\000i\000c\000\040\000\046\000\040\000V\000o\000l\000a\000t\000i\000l\000e}{chapter.28}% 184
\BOOKMARK [1][]{section.28.2}{\376\377\0002\0008\000.\0002\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.28}% 185
\BOOKMARK [1][]{section.28.3}{\376\377\0002\0008\000.\0003\000\040\000p\000r\000a\000g\000m\000a\000\040\000P\000a\000c\000k}{chapter.28}% 186
\BOOKMARK [1][]{section.28.4}{\376\377\0002\0008\000.\0004\000\040\000\047\000B\000i\000t\000\137\000O\000r\000d\000e\000r\000\040\000a\000t\000t\000r\000i\000b\000u\000t\000e}{chapter.28}% 187
\BOOKMARK [1][]{section.28.5}{\376\377\0002\0008\000.\0005\000\040\000\047\000S\000i\000z\000e\000\040\000a\000t\000t\000r\000i\000b\000u\000t\000e}{chapter.28}% 188
\BOOKMARK [1][]{section.28.6}{\376\377\0002\0008\000.\0006\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.28}% 189
\BOOKMARK [1][]{section.28.7}{\376\377\0002\0008\000.\0007\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.28}% 190
\BOOKMARK [0][]{chapter.29}{\376\377\0002\0009\000\040\000A\000l\000g\000o\000r\000i\000t\000h\000m\000s}{}% 191
\BOOKMARK [1][]{section.29.1}{\376\377\0002\0009\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.29}% 192
\BOOKMARK [1][]{section.29.2}{\376\377\0002\0009\000.\0002\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\000:\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.29}% 193
\BOOKMARK [1][]{section.29.3}{\376\377\0002\0009\000.\0003\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0006\000:\000\040\000D\000y\000n\000a\000m\000i\000c\000\040\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g}{chapter.29}% 194
\BOOKMARK [0][]{chapter.30}{\376\377\0003\0000\000\040\000F\000u\000n\000c\000t\000i\000o\000n\000\040\000o\000v\000e\000r\000l\000o\000a\000d\000i\000n\000g}{}% 195
\BOOKMARK [1][]{section.30.1}{\376\377\0003\0000\000.\0001\000\040\000F\000u\000n\000c\000t\000i\000o\000n\000\040\000o\000v\000e\000r\000l\000o\000a\000d\000i\000n\000g\000\040\000i\000n\000\040\000A\000d\000a}{chapter.30}% 196
\BOOKMARK [1][]{section.30.2}{\376\377\0003\0000\000.\0002\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.30}% 197
\BOOKMARK [0][]{chapter.31}{\376\377\0003\0001\000\040\000M\000a\000t\000h\000e\000m\000a\000t\000i\000c\000a\000l\000\040\000c\000a\000l\000c\000u\000l\000a\000t\000i\000o\000n\000s}{}% 198
\BOOKMARK [1][]{section.31.1}{\376\377\0003\0001\000.\0001\000\040\000S\000i\000m\000p\000l\000e\000\040\000c\000a\000l\000c\000u\000l\000a\000t\000i\000o\000n\000s}{chapter.31}% 199
\BOOKMARK [1][]{section.31.2}{\376\377\0003\0001\000.\0002\000\040\000E\000x\000p\000o\000n\000e\000n\000t\000i\000a\000l\000\040\000c\000a\000l\000c\000u\000l\000a\000t\000i\000o\000n\000s}{chapter.31}% 200
\BOOKMARK [1][]{section.31.3}{\376\377\0003\0001\000.\0003\000\040\000H\000i\000g\000h\000e\000r\000\040\000m\000a\000t\000h}{chapter.31}% 201
\BOOKMARK [1][]{section.31.4}{\376\377\0003\0001\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.31}% 202
\BOOKMARK [0][]{chapter.32}{\376\377\0003\0002\000\040\000S\000t\000a\000t\000e\000m\000e\000n\000t\000s}{}% 203
\BOOKMARK [0][]{chapter.33}{\376\377\0003\0003\000\040\000V\000a\000r\000i\000a\000b\000l\000e\000s}{}% 204
\BOOKMARK [1][]{section.33.1}{\376\377\0003\0003\000.\0001\000\040\000A\000s\000s\000i\000g\000n\000m\000e\000n\000t\000\040\000s\000t\000a\000t\000e\000m\000e\000n\000t\000s}{chapter.33}% 205
\BOOKMARK [1][]{section.33.2}{\376\377\0003\0003\000.\0002\000\040\000U\000s\000e\000s}{chapter.33}% 206
\BOOKMARK [1][]{section.33.3}{\376\377\0003\0003\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.33}% 207
\BOOKMARK [0][]{chapter.34}{\376\377\0003\0004\000\040\000L\000e\000x\000i\000c\000a\000l\000\040\000e\000l\000e\000m\000e\000n\000t\000s}{}% 208
\BOOKMARK [1][]{section.34.1}{\376\377\0003\0004\000.\0001\000\040\000C\000h\000a\000r\000a\000c\000t\000e\000r\000\040\000s\000e\000t}{chapter.34}% 209
\BOOKMARK [1][]{section.34.2}{\376\377\0003\0004\000.\0002\000\040\000L\000e\000x\000i\000c\000a\000l\000\040\000e\000l\000e\000m\000e\000n\000t\000s}{chapter.34}% 210
\BOOKMARK [1][]{section.34.3}{\376\377\0003\0004\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.34}% 211
\BOOKMARK [0][]{chapter.35}{\376\377\0003\0005\000\040\000K\000e\000y\000w\000o\000r\000d\000s}{}% 212
\BOOKMARK [1][]{section.35.1}{\376\377\0003\0005\000.\0001\000\040\000L\000a\000n\000g\000u\000a\000g\000e\000\040\000s\000u\000m\000m\000a\000r\000y\000\040\000k\000e\000y\000w\000o\000r\000d\000s}{chapter.35}% 213
\BOOKMARK [1][]{section.35.2}{\376\377\0003\0005\000.\0002\000\040\000L\000i\000s\000t\000\040\000o\000f\000\040\000k\000e\000y\000w\000o\000r\000d\000s}{chapter.35}% 214
\BOOKMARK [1][]{section.35.3}{\376\377\0003\0005\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.35}% 215
\BOOKMARK [0][]{chapter.36}{\376\377\0003\0006\000\040\000D\000e\000l\000i\000m\000i\000t\000e\000r\000s}{}% 216
\BOOKMARK [1][]{section.36.1}{\376\377\0003\0006\000.\0001\000\040\000S\000i\000n\000g\000l\000e\000\040\000c\000h\000a\000r\000a\000c\000t\000e\000r\000\040\000d\000e\000l\000i\000m\000i\000t\000e\000r\000s}{chapter.36}% 217
\BOOKMARK [1][]{section.36.2}{\376\377\0003\0006\000.\0002\000\040\000C\000o\000m\000p\000o\000u\000n\000d\000\040\000c\000h\000a\000r\000a\000c\000t\000e\000r\000\040\000d\000e\000l\000i\000m\000i\000t\000e\000r\000s}{chapter.36}% 218
\BOOKMARK [1][]{section.36.3}{\376\377\0003\0006\000.\0003\000\040\000O\000t\000h\000e\000r\000s}{chapter.36}% 219
\BOOKMARK [1][]{section.36.4}{\376\377\0003\0006\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.36}% 220
\BOOKMARK [0][]{chapter.37}{\376\377\0003\0007\000\040\000O\000p\000e\000r\000a\000t\000o\000r\000s}{}% 221
\BOOKMARK [1][]{section.37.1}{\376\377\0003\0007\000.\0001\000\040\000S\000t\000a\000n\000d\000a\000r\000d\000\040\000o\000p\000e\000r\000a\000t\000o\000r\000s}{chapter.37}% 222
\BOOKMARK [1][]{section.37.2}{\376\377\0003\0007\000.\0002\000\040\000S\000h\000o\000r\000t\000-\000c\000i\000r\000c\000u\000i\000t\000\040\000c\000o\000n\000t\000r\000o\000l\000\040\000f\000o\000r\000m\000s}{chapter.37}% 223
\BOOKMARK [1][]{section.37.3}{\376\377\0003\0007\000.\0003\000\040\000M\000e\000m\000b\000e\000r\000s\000h\000i\000p\000\040\000t\000e\000s\000t\000s}{chapter.37}% 224
\BOOKMARK [1][]{section.37.4}{\376\377\0003\0007\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.37}% 225
\BOOKMARK [0][]{chapter.38}{\376\377\0003\0008\000\040\000A\000t\000t\000r\000i\000b\000u\000t\000e\000s}{}% 226
\BOOKMARK [1][]{section.38.1}{\376\377\0003\0008\000.\0001\000\040\000L\000a\000n\000g\000u\000a\000g\000e\000\040\000s\000u\000m\000m\000a\000r\000y\000\040\000a\000t\000t\000r\000i\000b\000u\000t\000e\000s}{chapter.38}% 227
\BOOKMARK [1][]{section.38.2}{\376\377\0003\0008\000.\0002\000\040\000L\000i\000s\000t\000\040\000o\000f\000\040\000l\000a\000n\000g\000u\000a\000g\000e\000\040\000d\000e\000f\000i\000n\000e\000d\000\040\000a\000t\000t\000r\000i\000b\000u\000t\000e\000s}{chapter.38}% 228
\BOOKMARK [1][]{section.38.3}{\376\377\0003\0008\000.\0003\000\040\000L\000i\000s\000t\000\040\000o\000f\000\040\000i\000m\000p\000l\000e\000m\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000d\000e\000f\000i\000n\000e\000d\000\040\000a\000t\000t\000r\000i\000b\000u\000t\000e\000s}{chapter.38}% 229
\BOOKMARK [1][]{section.38.4}{\376\377\0003\0008\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.38}% 230
\BOOKMARK [1][]{section.38.5}{\376\377\0003\0008\000.\0005\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.38}% 231
\BOOKMARK [0][]{chapter.39}{\376\377\0003\0009\000\040\000P\000r\000a\000g\000m\000a\000s}{}% 232
\BOOKMARK [1][]{section.39.1}{\376\377\0003\0009\000.\0001\000\040\000D\000e\000s\000c\000r\000i\000p\000t\000i\000o\000n}{chapter.39}% 233
\BOOKMARK [1][]{section.39.2}{\376\377\0003\0009\000.\0002\000\040\000L\000i\000s\000t\000\040\000o\000f\000\040\000l\000a\000n\000g\000u\000a\000g\000e\000\040\000d\000e\000f\000i\000n\000e\000d\000\040\000p\000r\000a\000g\000m\000a\000s}{chapter.39}% 234
\BOOKMARK [1][]{section.39.3}{\376\377\0003\0009\000.\0003\000\040\000L\000i\000s\000t\000\040\000o\000f\000\040\000i\000m\000p\000l\000e\000m\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000d\000e\000f\000i\000n\000e\000d\000\040\000p\000r\000a\000g\000m\000a\000s}{chapter.39}% 235
\BOOKMARK [1][]{section.39.4}{\376\377\0003\0009\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.39}% 236
\BOOKMARK [1][]{section.39.5}{\376\377\0003\0009\000.\0005\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.39}% 237
\BOOKMARK [0][]{chapter.40}{\376\377\0004\0000\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s}{}% 238
\BOOKMARK [1][]{section.40.1}{\376\377\0004\0000\000.\0001\000\040\000P\000r\000e\000d\000e\000f\000i\000n\000e\000d\000\040\000L\000a\000n\000g\000u\000a\000g\000e\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s}{chapter.40}% 239
\BOOKMARK [1][]{section.40.2}{\376\377\0004\0000\000.\0002\000\040\000O\000t\000h\000e\000r\000\040\000L\000a\000n\000g\000u\000a\000g\000e\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s}{chapter.40}% 240
\BOOKMARK [1][]{section.40.3}{\376\377\0004\0000\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.40}% 241
\BOOKMARK [0][]{chapter.41}{\376\377\0004\0001\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000S\000t\000a\000n\000d\000a\000r\000d}{}% 242
\BOOKMARK [1][]{section.41.1}{\376\377\0004\0001\000.\0001\000\040\000I\000m\000p\000l\000e\000m\000e\000n\000t\000a\000t\000i\000o\000n}{chapter.41}% 243
\BOOKMARK [1][]{section.41.2}{\376\377\0004\0001\000.\0002\000\040\000P\000o\000r\000t\000a\000b\000i\000l\000i\000t\000y}{chapter.41}% 244
\BOOKMARK [1][]{section.41.3}{\376\377\0004\0001\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.41}% 245
\BOOKMARK [0][]{chapter.42}{\376\377\0004\0002\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000A\000d\000a}{}% 246
\BOOKMARK [1][]{section.42.1}{\376\377\0004\0002\000.\0001\000\040\000L\000i\000s\000t\000\040\000o\000f\000\040\000l\000a\000n\000g\000u\000a\000g\000e\000\040\000d\000e\000f\000i\000n\000e\000d\000\040\000c\000h\000i\000l\000d\000\040\000u\000n\000i\000t\000s}{chapter.42}% 247
\BOOKMARK [1][]{section.42.2}{\376\377\0004\0002\000.\0002\000\040\000L\000i\000s\000t\000\040\000o\000f\000\040\000i\000m\000p\000l\000e\000m\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000d\000e\000f\000i\000n\000e\000d\000\040\000c\000h\000i\000l\000d\000\040\000u\000n\000i\000t\000s}{chapter.42}% 248
\BOOKMARK [1][]{section.42.3}{\376\377\0004\0002\000.\0003\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.42}% 249
\BOOKMARK [0][]{chapter.43}{\376\377\0004\0003\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000I\000n\000t\000e\000r\000f\000a\000c\000e\000s}{}% 250
\BOOKMARK [1][]{section.43.1}{\376\377\0004\0003\000.\0001\000\040\000C\000h\000i\000l\000d\000\040\000P\000a\000c\000k\000a\000g\000e\000s}{chapter.43}% 251
\BOOKMARK [1][]{section.43.2}{\376\377\0004\0003\000.\0002\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.43}% 252
\BOOKMARK [0][]{chapter.44}{\376\377\0004\0004\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000S\000y\000s\000t\000e\000m}{}% 253
\BOOKMARK [0][]{chapter.45}{\376\377\0004\0005\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000G\000N\000A\000T}{}% 254
\BOOKMARK [1][]{section.45.1}{\376\377\0004\0005\000.\0001\000\040\000C\000h\000i\000l\000d\000\040\000p\000a\000c\000k\000a\000g\000e\000s}{chapter.45}% 255
\BOOKMARK [1][]{section.45.2}{\376\377\0004\0005\000.\0002\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.45}% 256
\BOOKMARK [0][]{chapter.46}{\376\377\0004\0006\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000M\000u\000l\000t\000i\000-\000P\000u\000r\000p\000o\000s\000e}{}% 257
\BOOKMARK [1][]{section.46.1}{\376\377\0004\0006\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.46}% 258
\BOOKMARK [0][]{chapter.47}{\376\377\0004\0007\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000C\000o\000n\000t\000a\000i\000n\000e\000r}{}% 259
\BOOKMARK [1][]{section.47.1}{\376\377\0004\0007\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.47}% 260
\BOOKMARK [0][]{chapter.48}{\376\377\0004\0008\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000G\000U\000I}{}% 261
\BOOKMARK [1][]{section.48.1}{\376\377\0004\0008\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.48}% 262
\BOOKMARK [0][]{chapter.49}{\376\377\0004\0009\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000D\000i\000s\000t\000r\000i\000b\000u\000t\000e\000d\000\040\000S\000y\000s\000t\000e\000m\000s}{}% 263
\BOOKMARK [1][]{section.49.1}{\376\377\0004\0009\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.49}% 264
\BOOKMARK [0][]{chapter.50}{\376\377\0005\0000\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000D\000a\000t\000a\000b\000a\000s\000e\000s}{}% 265
\BOOKMARK [0][]{chapter.51}{\376\377\0005\0001\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000W\000e\000b}{}% 266
\BOOKMARK [1][]{section.51.1}{\376\377\0005\0001\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.51}% 267
\BOOKMARK [0][]{chapter.52}{\376\377\0005\0002\000\040\000L\000i\000b\000r\000a\000r\000i\000e\000s\000:\000\040\000I\000n\000p\000u\000t\000\040\000O\000u\000t\000p\000u\000t}{}% 268
\BOOKMARK [1][]{section.52.1}{\376\377\0005\0002\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.52}% 269
\BOOKMARK [0][]{chapter.53}{\376\377\0005\0003\000\040\000P\000l\000a\000t\000f\000o\000r\000m\000\040\000S\000u\000p\000p\000o\000r\000t}{}% 270
\BOOKMARK [1][]{section.53.1}{\376\377\0005\0003\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.53}% 271
\BOOKMARK [0][]{chapter.54}{\376\377\0005\0004\000\040\000P\000l\000a\000t\000f\000o\000r\000m\000:\000\040\000L\000i\000n\000u\000x}{}% 272
\BOOKMARK [1][]{section.54.1}{\376\377\0005\0004\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.54}% 273
\BOOKMARK [0][]{chapter.55}{\376\377\0005\0005\000\040\000P\000l\000a\000t\000f\000o\000r\000m\000:\000\040\000W\000i\000n\000d\000o\000w\000s}{}% 274
\BOOKMARK [1][]{section.55.1}{\376\377\0005\0005\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.55}% 275
\BOOKMARK [0][]{chapter.56}{\376\377\0005\0006\000\040\000P\000l\000a\000t\000f\000o\000r\000m\000:\000\040\000V\000i\000r\000t\000u\000a\000l\000\040\000M\000a\000c\000h\000i\000n\000e\000s}{}% 276
\BOOKMARK [1][]{section.56.1}{\376\377\0005\0006\000.\0001\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.56}% 277
\BOOKMARK [0][]{chapter.57}{\376\377\0005\0007\000\040\000P\000o\000r\000t\000a\000l\000s}{}% 278
\BOOKMARK [1][]{section.57.1}{\376\377\0005\0007\000.\0001\000\040\000F\000o\000r\000g\000e\000s\000\040\000o\000f\000\040\000o\000p\000e\000n\000-\000s\000o\000u\000r\000c\000e\000\040\000p\000r\000o\000j\000e\000c\000t\000s}{chapter.57}% 279
\BOOKMARK [1][]{section.57.2}{\376\377\0005\0007\000.\0002\000\040\000D\000i\000r\000e\000c\000t\000o\000r\000i\000e\000s\000\040\000o\000f\000\040\000f\000r\000e\000e\000l\000y\000\040\000a\000v\000a\000i\000l\000a\000b\000l\000e\000\040\000t\000o\000o\000l\000s\000\040\000a\000n\000d\000\040\000l\000i\000b\000r\000a\000r\000i\000e\000s}{chapter.57}% 280
\BOOKMARK [1][]{section.57.3}{\376\377\0005\0007\000.\0003\000\040\000C\000o\000l\000l\000e\000c\000t\000i\000o\000n\000s\000\040\000o\000f\000\040\000A\000d\000a\000\040\000s\000o\000u\000r\000c\000e\000\040\000c\000o\000d\000e}{chapter.57}% 281
\BOOKMARK [1][]{section.57.4}{\376\377\0005\0007\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.57}% 282
\BOOKMARK [0][]{chapter.58}{\376\377\0005\0008\000\040\000T\000u\000t\000o\000r\000i\000a\000l\000s}{}% 283
\BOOKMARK [0][]{chapter.59}{\376\377\0005\0009\000\040\000W\000e\000b\000\040\0002\000.\0000}{}% 284
\BOOKMARK [0][]{chapter.60}{\376\377\0006\0000\000\040\000C\000o\000n\000t\000r\000i\000b\000u\000t\000o\000r\000s}{}% 285
\BOOKMARK [0][]{chapter*.66}{\376\377\000L\000i\000s\000t\000\040\000o\000f\000\040\000F\000i\000g\000u\000r\000e\000s}{}% 286
\BOOKMARK [0][]{chapter.61}{\376\377\0006\0001\000\040\000L\000i\000c\000e\000n\000s\000e\000s}{}% 287
\BOOKMARK [1][]{section.61.1}{\376\377\0006\0001\000.\0001\000\040\000G\000N\000U\000\040\000G\000E\000N\000E\000R\000A\000L\000\040\000P\000U\000B\000L\000I\000C\000\040\000L\000I\000C\000E\000N\000S\000E}{chapter.61}% 288
\BOOKMARK [1][]{section.61.2}{\376\377\0006\0001\000.\0002\000\040\000G\000N\000U\000\040\000F\000r\000e\000e\000\040\000D\000o\000c\000u\000m\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000L\000i\000c\000e\000n\000s\000e}{chapter.61}% 289
\BOOKMARK [1][]{section.61.3}{\376\377\0006\0001\000.\0003\000\040\000G\000N\000U\000\040\000L\000e\000s\000s\000e\000r\000\040\000G\000e\000n\000e\000r\000a\000l\000\040\000P\000u\000b\000l\000i\000c\000\040\000L\000i\000c\000e\000n\000s\000e}{chapter.61}% 290

main/main.aux

\relax
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\select@language{english}
\@writefile{toc}{\select@language{english}}
\@writefile{lof}{\select@language{english}}
\@writefile{lot}{\select@language{english}}
\tocstyle@set@width {unum}{toc}{}{30.4166pt}
\tocstyle@set@width {num}{toc}{0}{18.8887pt}
\tocstyle@set@width {skip}{toc}{0}{0.0pt}
\tocstyle@set@width {num}{toc}{1}{30.4166pt}
\tocstyle@set@width {skip}{toc}{1}{18.8887pt}
\newlabel{0}{{}{1}{\relax }{chapter*.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Basic Ada}{3}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{1}{{1}{3}{Basic Ada\relax }{chapter.1}{}}
\newlabel{2}{{1}{3}{Basic Ada\relax }{chapter.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}\char 34\relax Hello, world!\char 34\relax programs}{3}{section.1.1}}
\newlabel{3}{{1.1}{3}{\symbol {34}Hello, world!\symbol {34} programs\relax }{section.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}\char 34\relax Hello, world!\char 34\relax }{3}{subsection.1.1.1}}
\newlabel{4}{{1.1.1}{3}{\symbol {34}Hello, world!\symbol {34}\relax }{subsection.1.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.2}\char 34\relax Hello, world!\char 34\relax with renames}{4}{subsection.1.1.2}}
\newlabel{5}{{1.1.2}{4}{\symbol {34}Hello, world!\symbol {34} with renames\relax }{subsection.1.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.3}\char 34\relax Hello, world!\char 34\relax with use}{4}{subsection.1.1.3}}
\newlabel{6}{{1.1.3}{4}{\symbol {34}Hello, world!\symbol {34} with use\relax }{subsection.1.1.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Compiling the \char 34\relax Hello, world!\char 34\relax program}{5}{section.1.2}}
\newlabel{7}{{1.2}{5}{Compiling the \symbol {34}Hello, world!\symbol {34} program\relax }{section.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}FAQ: Why is \char 34\relax Hello, world!\char 34\relax so big?}{5}{subsection.1.2.1}}
\newlabel{8}{{1.2.1}{5}{FAQ: Why is \symbol {34}Hello, world!\symbol {34} so big?\relax }{subsection.1.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Things to look out for}{6}{section.1.3}}
\newlabel{9}{{1.3}{6}{Things to look out for\relax }{section.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}Comb Format}{6}{subsection.1.3.1}}
\newlabel{10}{{1.3.1}{6}{Comb Format\relax }{subsection.1.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}Type and subtype}{7}{subsection.1.3.2}}
\newlabel{11}{{1.3.2}{7}{Type and subtype\relax }{subsection.1.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.3}Constrained types and unconstrained types}{7}{subsection.1.3.3}}
\newlabel{12}{{1.3.3}{7}{Constrained types and unconstrained types\relax }{subsection.1.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.4}Dynamic types}{8}{subsection.1.3.4}}
\newlabel{13}{{1.3.4}{8}{Dynamic types\relax }{subsection.1.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.5}Separation of concerns}{8}{subsection.1.3.5}}
\newlabel{14}{{1.3.5}{8}{Separation of concerns\relax }{subsection.1.3.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.4}Where to ask for help}{8}{section.1.4}}
\newlabel{15}{{1.4}{8}{Where to ask for help\relax }{section.1.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Notes}{8}{section.1.5}}
\newlabel{16}{{1.5}{8}{Notes\relax }{section.1.5}{}}
\gdef \LT@i {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Installing}{9}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{17}{{2}{9}{Installing\relax }{chapter.2}{}}
\newlabel{18}{{2}{9}{Installing\relax }{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}AdaMagic from SofCheck}{9}{section.2.1}}
\newlabel{19}{{2.1}{9}{AdaMagic from SofCheck\relax }{section.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}AdaMULTI from Green Hills Software}{9}{section.2.2}}
\newlabel{20}{{2.2}{9}{AdaMULTI from Green Hills Software\relax }{section.2.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}DEC Ada from HP}{10}{section.2.3}}
\newlabel{21}{{2.3}{10}{DEC Ada from HP\relax }{section.2.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation}{10}{section.2.4}}
\newlabel{22}{{2.4}{10}{GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation\relax }{section.2.4}{}}
\gdef \LT@ii {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}GNAT GPL Edition}{11}{subsection.2.4.1}}
\newlabel{23}{{2.4.1}{11}{GNAT GPL Edition\relax }{subsection.2.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}GNAT Modified GPL releases}{11}{subsection.2.4.2}}
\newlabel{24}{{2.4.2}{11}{GNAT Modified GPL releases\relax }{subsection.2.4.2}{}}
\gdef \LT@iii {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\gdef \LT@iv {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsubsection}{GNAT 3.15p}{12}{section*.2}}
\newlabel{25}{{2.4.2}{12}{GNAT 3.15p\relax }{section*.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{GNAT Pro}{12}{section*.3}}
\newlabel{26}{{2.4.2}{12}{GNAT Pro\relax }{section*.3}{}}
\gdef \LT@v {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsubsection}{GCC}{13}{section*.4}}
\newlabel{27}{{2.4.2}{13}{GCC\relax }{section*.4}{}}
\gdef \LT@vi {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}The GNU Ada Project}{14}{subsection.2.4.3}}
\newlabel{28}{{2.4.3}{14}{The GNU Ada Project\relax }{subsection.2.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}A\# (A-{}Sharp, a.k.a. Ada for .NET)}{14}{subsection.2.4.4}}
\newlabel{29}{{2.4.4}{14}{A\# (A-{}Sharp, a.k.a. Ada for .NET)\relax }{subsection.2.4.4}{}}
\gdef \LT@vii {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\gdef \LT@viii {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.5}GNAT for AVR microcontrollers}{15}{subsection.2.4.5}}
\newlabel{30}{{2.4.5}{15}{GNAT for AVR microcontrollers\relax }{subsection.2.4.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.6}GNAT for LEON}{15}{subsection.2.4.6}}
\newlabel{31}{{2.4.6}{15}{GNAT for LEON\relax }{subsection.2.4.6}{}}
\gdef \LT@ix {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\gdef \LT@x {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.7}GNAT for Macintosh (Mac OS X)}{16}{subsection.2.4.7}}
\newlabel{32}{{2.4.7}{16}{GNAT for Macintosh (Mac OS X)\relax }{subsection.2.4.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.8}Prebuilt packages as part of larger distributions}{16}{subsection.2.4.8}}
\newlabel{33}{{2.4.8}{16}{Prebuilt packages as part of larger distributions\relax }{subsection.2.4.8}{}}
\@writefile{toc}{\contentsline {subsubsection}{AIDE (for Microsoft Windows)}{16}{section*.5}}
\newlabel{34}{{2.4.8}{16}{AIDE (for Microsoft Windows)\relax }{section*.5}{}}
\gdef \LT@xi {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\gdef \LT@xii {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsubsection}{Blastwave (for Solaris on SPARC and x86)}{17}{section*.6}}
\newlabel{35}{{2.4.8}{17}{Blastwave (for Solaris on SPARC and x86)\relax }{section*.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{OpenCSW (for Solaris on SPARC and x86)}{17}{section*.7}}
\newlabel{36}{{2.4.8}{17}{OpenCSW (for Solaris on SPARC and x86)\relax }{section*.7}{}}
\@writefile{toc}{\contentsline {subsubsection}{Cygwin (for Microsoft Windows)}{18}{section*.8}}
\newlabel{37}{{2.4.8}{18}{Cygwin (for Microsoft Windows)\relax }{section*.8}{}}
\@writefile{toc}{\contentsline {subsubsection}{Debian (GNU/Linux and GNU/kFreeBSD)}{18}{section*.9}}
\newlabel{38}{{2.4.8}{18}{Debian (GNU/Linux and GNU/kFreeBSD)\relax }{section*.9}{}}
\gdef \LT@xiii {\LT@entry
 {1}{98.71817pt}\LT@entry
 {1}{98.31818pt}\LT@entry
 {1}{97.41534pt}\LT@entry
 {1}{92.4051pt}\LT@entry
 {1}{92.4051pt}\LT@entry
 {2}{121.76173pt}}
\gdef \LT@xiv {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsubsection}{DJGPP (for MS-{}DOS)}{22}{section*.10}}
\newlabel{39}{{2.4.8}{22}{DJGPP (for MS-{}DOS)\relax }{section*.10}{}}
\@writefile{toc}{\contentsline {subsubsection}{FreeBSD}{22}{section*.11}}
\newlabel{40}{{2.4.8}{22}{FreeBSD\relax }{section*.11}{}}
\gdef \LT@xv {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {subsubsection}{Gentoo GNU/Linux}{23}{section*.12}}
\newlabel{41}{{2.4.8}{23}{Gentoo GNU/Linux\relax }{section*.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{Mandriva Linux}{23}{section*.13}}
\newlabel{42}{{2.4.8}{23}{Mandriva Linux\relax }{section*.13}{}}
\@writefile{toc}{\contentsline {subsubsection}{MinGW (for Microsoft Windows)}{23}{section*.14}}
\newlabel{43}{{2.4.8}{23}{MinGW (for Microsoft Windows)\relax }{section*.14}{}}
\@writefile{toc}{\contentsline {paragraph}{old instructions}{24}{section*.15}}
\newlabel{44}{{2.4.8}{24}{old instructions\relax }{section*.15}{}}
\@writefile{toc}{\contentsline {subsubsection}{SuSE Linux}{24}{section*.16}}
\newlabel{45}{{2.4.8}{24}{SuSE Linux\relax }{section*.16}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ubuntu}{25}{section*.17}}
\newlabel{46}{{2.4.8}{25}{Ubuntu\relax }{section*.17}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}ICC from Irvine Compiler Corporation}{25}{section.2.5}}
\newlabel{47}{{2.5}{25}{ICC from Irvine Compiler Corporation\relax }{section.2.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.6}Janus/Ada{\unhbox \voidb@x \hbox {$~$}}83 and 95 from RR Software}{25}{section.2.6}}
\newlabel{48}{{2.6}{25}{Janus/Ada{\mbox {$~$}}83 and 95 from RR Software\relax }{section.2.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.7}MAXAda from Concurrent}{25}{section.2.7}}
\newlabel{49}{{2.7}{25}{MAXAda from Concurrent\relax }{section.2.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.8}ObjectAda from Atego (formerly Aonix)}{26}{section.2.8}}
\newlabel{50}{{2.8}{26}{ObjectAda from Atego (formerly Aonix)\relax }{section.2.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.9}PowerAda from OC Systems}{26}{section.2.9}}
\newlabel{51}{{2.9}{26}{PowerAda from OC Systems\relax }{section.2.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.10}Rational Apex from Atego (formerly IBM Rational\let \reserved@d =[\def \par }{26}{section.2.10}}
\newlabel{52}{{2.10}{26}{Rational Apex from Atego (formerly IBM Rational\myfootnote { Atego acquires IBM Rational Apex Ada Developer product family})\relax }{section.2.10}{}}
\gdef \LT@xvi {\LT@entry
 {1}{168.66344pt}\LT@entry
 {1}{255.06586pt}}
\@writefile{toc}{\contentsline {section}{\numberline {2.11}SCORE from DDC-{}I}{27}{section.2.11}}
\newlabel{53}{{2.11}{27}{SCORE from DDC-{}I\relax }{section.2.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.12}XD Ada from SWEP-{}EDS}{27}{section.2.12}}
\newlabel{54}{{2.12}{27}{XD Ada from SWEP-{}EDS\relax }{section.2.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.13}XGC Ada from XGC Software}{27}{section.2.13}}
\newlabel{55}{{2.13}{27}{XGC Ada from XGC Software\relax }{section.2.13}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.14}References}{28}{section.2.14}}
\newlabel{56}{{2.14}{28}{References\relax }{section.2.14}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Building}{29}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{57}{{3}{29}{Building\relax }{chapter.3}{}}
\newlabel{58}{{3}{29}{Building\relax }{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Building with various compilers}{29}{section.3.1}}
\newlabel{59}{{3.1}{29}{Building with various compilers\relax }{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}GNAT}{29}{subsection.3.1.1}}
\newlabel{60}{{3.1.1}{29}{GNAT\relax }{subsection.3.1.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{GNAT command line}{29}{section*.18}}
\newlabel{61}{{3.1.1}{29}{GNAT command line\relax }{section*.18}{}}
\@writefile{toc}{\contentsline {subsubsection}{GNAT IDE}{30}{section*.19}}
\newlabel{62}{{3.1.1}{30}{GNAT IDE\relax }{section*.19}{}}
\@writefile{toc}{\contentsline {subsubsection}{GNAT with Xcode}{30}{section*.20}}
\newlabel{63}{{3.1.1}{30}{GNAT with Xcode\relax }{section*.20}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Rational APEX}{31}{subsection.3.1.2}}
\newlabel{64}{{3.1.2}{31}{Rational APEX\relax }{subsection.3.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}ObjectAda}{32}{subsection.3.1.3}}
\newlabel{65}{{3.1.3}{32}{ObjectAda\relax }{subsection.3.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}DEC Ada for VMS}{32}{subsection.3.1.4}}
\newlabel{66}{{3.1.4}{32}{DEC Ada for VMS\relax }{subsection.3.1.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{DEC Ada IDE}{33}{section*.21}}
\newlabel{67}{{3.1.4}{33}{DEC Ada IDE\relax }{section*.21}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Compiling our Demo Source}{33}{section.3.2}}
\newlabel{68}{{3.2}{33}{Compiling our Demo Source\relax }{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}GNAT}{34}{subsection.3.2.1}}
\newlabel{69}{{3.2.1}{34}{GNAT\relax }{subsection.3.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Rational APEX}{35}{subsection.3.2.2}}
\newlabel{70}{{3.2.2}{35}{Rational APEX\relax }{subsection.3.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}ObjectAda}{35}{subsection.3.2.3}}
\newlabel{71}{{3.2.3}{35}{ObjectAda\relax }{subsection.3.2.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{ObjectAda command-{}line}{35}{section*.22}}
\newlabel{72}{{3.2.3}{35}{ObjectAda command-{}line\relax }{section*.22}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}External links}{36}{section.3.3}}
\newlabel{73}{{3.3}{36}{External links\relax }{section.3.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Control Statements}{37}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{74}{{4}{37}{Control Statements\relax }{chapter.4}{}}
\newlabel{75}{{4}{37}{Control Statements\relax }{chapter.4}{}}
\newlabel{76}{{4}{37}{Control Statements\relax }{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Conditionals}{37}{section.4.1}}
\newlabel{77}{{4.1}{37}{Conditionals\relax }{section.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}{\itshape if}-{}{\itshape else}}{37}{subsection.4.1.1}}
\newlabel{78}{{4.1.1}{37}{{\itshape if}-{}{\itshape else}\relax }{subsection.4.1.1}{}}
\newlabel{79}{{4.1.1}{37}{{\itshape if}-{}{\itshape else}\relax }{subsection.4.1.1}{}}
\newlabel{80}{{4.1.1}{38}{{\itshape if}-{}{\itshape else}\relax }{subsection.4.1.1}{}}
\newlabel{81}{{4.1.1}{38}{{\itshape if}-{}{\itshape else}\relax }{subsection.4.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Optimizing hints}{38}{subsection.4.1.2}}
\newlabel{82}{{4.1.2}{38}{Optimizing hints\relax }{subsection.4.1.2}{}}
\newlabel{83}{{4.1.2}{38}{Optimizing hints\relax }{subsection.4.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.3}\itshape case}{39}{subsection.4.1.3}}
\newlabel{84}{{4.1.3}{39}{\itshape case\relax }{subsection.4.1.3}{}}
\newlabel{85}{{4.1.3}{39}{\itshape case\relax }{subsection.4.1.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Unconditionals}{39}{section.4.2}}
\newlabel{86}{{4.2}{39}{Unconditionals\relax }{section.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}\itshape return}{39}{subsection.4.2.1}}
\newlabel{87}{{4.2.1}{39}{\itshape return\relax }{subsection.4.2.1}{}}
\newlabel{88}{{4.2.1}{40}{\itshape return\relax }{subsection.4.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}\itshape goto}{40}{subsection.4.2.2}}
\newlabel{89}{{4.2.2}{40}{\itshape goto\relax }{subsection.4.2.2}{}}
\newlabel{90}{{4.2.2}{40}{\itshape goto\relax }{subsection.4.2.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Isn\textquotesingle {}t {\itshape goto} evil?}{40}{section*.23}}
\newlabel{91}{{4.2.2}{40}{Isn\textquotesingle {}t {\itshape goto} evil?\relax }{section*.23}{}}
\newlabel{92}{{4.2.2}{40}{Isn\textquotesingle {}t {\itshape goto} evil?\relax }{section*.23}{}}
\newlabel{93}{{4.2.2}{41}{Isn\textquotesingle {}t {\itshape goto} evil?\relax }{section*.23}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Loops}{41}{section.4.3}}
\newlabel{94}{{4.3}{41}{Loops\relax }{section.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Endless Loop}{41}{subsection.4.3.1}}
\newlabel{95}{{4.3.1}{41}{Endless Loop\relax }{subsection.4.3.1}{}}
\newlabel{96}{{4.3.1}{41}{Endless Loop\relax }{subsection.4.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Loop with condition at the beginning}{41}{subsection.4.3.2}}
\newlabel{97}{{4.3.2}{41}{Loop with condition at the beginning\relax }{subsection.4.3.2}{}}
\newlabel{98}{{4.3.2}{41}{Loop with condition at the beginning\relax }{subsection.4.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Loop with condition at the end}{42}{subsection.4.3.3}}
\newlabel{99}{{4.3.3}{42}{Loop with condition at the end\relax }{subsection.4.3.3}{}}
\newlabel{100}{{4.3.3}{42}{Loop with condition at the end\relax }{subsection.4.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Loop with condition in the middle}{42}{subsection.4.3.4}}
\newlabel{101}{{4.3.4}{42}{Loop with condition in the middle\relax }{subsection.4.3.4}{}}
\newlabel{102}{{4.3.4}{42}{Loop with condition in the middle\relax }{subsection.4.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}{\itshape for} loop}{42}{subsection.4.3.5}}
\newlabel{103}{{4.3.5}{42}{{\itshape for} loop\relax }{subsection.4.3.5}{}}
\newlabel{104}{{4.3.5}{43}{{\itshape for} loop\relax }{subsection.4.3.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{{\itshape for} loop on arrays}{43}{section*.24}}
\newlabel{105}{{4.3.5}{43}{{\itshape for} loop on arrays\relax }{section*.24}{}}
\@writefile{toc}{\contentsline {subsubsection}{Working Demo}{43}{section*.25}}
\newlabel{106}{{4.3.5}{43}{Working Demo\relax }{section*.25}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}See also}{44}{section.4.4}}
\newlabel{107}{{4.4}{44}{See also\relax }{section.4.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Wikibook}{44}{subsection.4.4.1}}
\newlabel{108}{{4.4.1}{44}{Wikibook\relax }{subsection.4.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Ada Reference Manual}{44}{subsection.4.4.2}}
\newlabel{109}{{4.4.2}{44}{Ada Reference Manual\relax }{subsection.4.4.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Type System}{45}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{110}{{5}{45}{Type System\relax }{chapter.5}{}}
\newlabel{111}{{5}{45}{Type System\relax }{chapter.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Predefined types}{45}{section.5.1}}
\newlabel{112}{{5.1}{45}{Predefined types\relax }{section.5.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}The Type Hierarchy}{47}{section.5.2}}
\newlabel{113}{{5.2}{47}{The Type Hierarchy\relax }{section.5.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}Classification of Types}{49}{subsection.5.2.1}}
\newlabel{114}{{5.2.1}{49}{Classification of Types\relax }{subsection.5.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}Concurrency Types}{50}{section.5.3}}
\newlabel{115}{{5.3}{50}{Concurrency Types\relax }{section.5.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.4}Limited Types}{50}{section.5.4}}
\newlabel{116}{{5.4}{50}{Limited Types\relax }{section.5.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.5}Defining new types and subtypes}{51}{section.5.5}}
\newlabel{117}{{5.5}{51}{Defining new types and subtypes\relax }{section.5.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.1}Creating subtypes}{51}{subsection.5.5.1}}
\newlabel{118}{{5.5.1}{51}{Creating subtypes\relax }{subsection.5.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.2}Derived types}{52}{subsection.5.5.2}}
\newlabel{119}{{5.5.2}{52}{Derived types\relax }{subsection.5.5.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.6}Subtype categories}{54}{section.5.6}}
\newlabel{120}{{5.6}{54}{Subtype categories\relax }{section.5.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6.1}Anonymous subtype}{54}{subsection.5.6.1}}
\newlabel{121}{{5.6.1}{54}{Anonymous subtype\relax }{subsection.5.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6.2}Base type}{54}{subsection.5.6.2}}
\newlabel{122}{{5.6.2}{54}{Base type\relax }{subsection.5.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6.3}Constrained subtype}{55}{subsection.5.6.3}}
\newlabel{123}{{5.6.3}{55}{Constrained subtype\relax }{subsection.5.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6.4}Definite subtype}{55}{subsection.5.6.4}}
\newlabel{124}{{5.6.4}{55}{Definite subtype\relax }{subsection.5.6.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6.5}Indefinite subtype}{55}{subsection.5.6.5}}
\newlabel{125}{{5.6.5}{55}{Indefinite subtype\relax }{subsection.5.6.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6.6}Named subtype}{56}{subsection.5.6.6}}
\newlabel{126}{{5.6.6}{56}{Named subtype\relax }{subsection.5.6.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6.7}Unconstrained subtype}{56}{subsection.5.6.7}}
\newlabel{127}{{5.6.7}{56}{Unconstrained subtype\relax }{subsection.5.6.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.7}Qualified expressions}{57}{section.5.7}}
\newlabel{128}{{5.7}{57}{Qualified expressions\relax }{section.5.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.8}Type conversions}{58}{section.5.8}}
\newlabel{129}{{5.8}{58}{Type conversions\relax }{section.5.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.1}Explicit type conversion}{58}{subsection.5.8.1}}
\newlabel{130}{{5.8.1}{58}{Explicit type conversion\relax }{subsection.5.8.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.2}Change of Representation}{60}{subsection.5.8.2}}
\newlabel{131}{{5.8.2}{60}{Change of Representation\relax }{subsection.5.8.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.3}Checked conversion for non-{}numeric types}{60}{subsection.5.8.3}}
\newlabel{132}{{5.8.3}{60}{Checked conversion for non-{}numeric types\relax }{subsection.5.8.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.4}View conversion, in object-{}oriented programming}{61}{subsection.5.8.4}}
\newlabel{133}{{5.8.4}{61}{View conversion, in object-{}oriented programming\relax }{subsection.5.8.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{View renaming}{62}{section*.26}}
\newlabel{134}{{5.8.4}{62}{View renaming\relax }{section*.26}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.5}Address conversion}{63}{subsection.5.8.5}}
\newlabel{135}{{5.8.5}{63}{Address conversion\relax }{subsection.5.8.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.6}Unchecked conversion}{63}{subsection.5.8.6}}
\newlabel{136}{{5.8.6}{63}{Unchecked conversion\relax }{subsection.5.8.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.7}Overlays}{64}{subsection.5.8.7}}
\newlabel{137}{{5.8.7}{64}{Overlays\relax }{subsection.5.8.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.8.8}Export / Import}{65}{subsection.5.8.8}}
\newlabel{138}{{5.8.8}{65}{Export / Import\relax }{subsection.5.8.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.9}Elaborated Discussion of Types for Signed Integer Types}{65}{section.5.9}}
\newlabel{139}{{5.9}{65}{Elaborated Discussion of Types for Signed Integer Types\relax }{section.5.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.10}Relations between types}{67}{section.5.10}}
\newlabel{140}{{5.10}{67}{Relations between types\relax }{section.5.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.11}See also}{67}{section.5.11}}
\newlabel{141}{{5.11}{67}{See also\relax }{section.5.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.11.1}Wikibook}{67}{subsection.5.11.1}}
\newlabel{142}{{5.11.1}{67}{Wikibook\relax }{subsection.5.11.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.11.2}Ada Reference Manual}{67}{subsection.5.11.2}}
\newlabel{143}{{5.11.2}{67}{Ada Reference Manual\relax }{subsection.5.11.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Integer types}{69}{chapter.6}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{144}{{6}{69}{Integer types\relax }{chapter.6}{}}
\newlabel{145}{{6}{69}{Integer types\relax }{chapter.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Working demo}{69}{section.6.1}}
\newlabel{146}{{6.1}{69}{Working demo\relax }{section.6.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}See also}{70}{section.6.2}}
\newlabel{147}{{6.2}{70}{See also\relax }{section.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Wikibook}{70}{subsection.6.2.1}}
\newlabel{148}{{6.2.1}{70}{Wikibook\relax }{subsection.6.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.2}Ada Reference Manual}{70}{subsection.6.2.2}}
\newlabel{149}{{6.2.2}{70}{Ada Reference Manual\relax }{subsection.6.2.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Unsigned integer types}{71}{chapter.7}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{150}{{7}{71}{Unsigned integer types\relax }{chapter.7}{}}
\newlabel{151}{{7}{71}{Unsigned integer types\relax }{chapter.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.1}Description}{71}{section.7.1}}
\newlabel{152}{{7.1}{71}{Description\relax }{section.7.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.2}See also}{72}{section.7.2}}
\newlabel{153}{{7.2}{72}{See also\relax }{section.7.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2.1}Wikibook}{72}{subsection.7.2.1}}
\newlabel{154}{{7.2.1}{72}{Wikibook\relax }{subsection.7.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2.2}Ada Reference Manual}{72}{subsection.7.2.2}}
\newlabel{155}{{7.2.2}{72}{Ada Reference Manual\relax }{subsection.7.2.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {8}Enumerations}{73}{chapter.8}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{156}{{8}{73}{Enumerations\relax }{chapter.8}{}}
\newlabel{157}{{8}{73}{Enumerations\relax }{chapter.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.1}Operators and attributes}{73}{section.8.1}}
\newlabel{158}{{8.1}{73}{Operators and attributes\relax }{section.8.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.2}Enumeration literals}{74}{section.8.2}}
\newlabel{159}{{8.2}{74}{Enumeration literals\relax }{section.8.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.2.1}Characters as enumeration literals}{74}{subsection.8.2.1}}
\newlabel{160}{{8.2.1}{74}{Characters as enumeration literals\relax }{subsection.8.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.2.2}Booleans as enumeration literals}{75}{subsection.8.2.2}}
\newlabel{161}{{8.2.2}{75}{Booleans as enumeration literals\relax }{subsection.8.2.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.3}Enumeration subtypes}{75}{section.8.3}}
\newlabel{162}{{8.3}{75}{Enumeration subtypes\relax }{section.8.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.4}See also}{76}{section.8.4}}
\newlabel{163}{{8.4}{76}{See also\relax }{section.8.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.4.1}Wikibook}{76}{subsection.8.4.1}}
\newlabel{164}{{8.4.1}{76}{Wikibook\relax }{subsection.8.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.4.2}Ada Reference Manual}{76}{subsection.8.4.2}}
\newlabel{165}{{8.4.2}{76}{Ada Reference Manual\relax }{subsection.8.4.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {9}Floating point types}{77}{chapter.9}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{166}{{9}{77}{Floating point types\relax }{chapter.9}{}}
\newlabel{167}{{9}{77}{Floating point types\relax }{chapter.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.1}Description}{77}{section.9.1}}
\newlabel{168}{{9.1}{77}{Description\relax }{section.9.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.2}See also}{77}{section.9.2}}
\newlabel{169}{{9.2}{77}{See also\relax }{section.9.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.1}Wikibook}{77}{subsection.9.2.1}}
\newlabel{170}{{9.2.1}{77}{Wikibook\relax }{subsection.9.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.2}Ada Reference Manual}{78}{subsection.9.2.2}}
\newlabel{171}{{9.2.2}{78}{Ada Reference Manual\relax }{subsection.9.2.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {10}Fixed point types}{79}{chapter.10}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{172}{{10}{79}{Fixed point types\relax }{chapter.10}{}}
\newlabel{173}{{10}{79}{Fixed point types\relax }{chapter.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.1}Description}{79}{section.10.1}}
\newlabel{174}{{10.1}{79}{Description\relax }{section.10.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.2}Ordinary Fixed Point}{79}{section.10.2}}
\newlabel{175}{{10.2}{79}{Ordinary Fixed Point\relax }{section.10.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.3}Decimal Fixed Point}{80}{section.10.3}}
\newlabel{176}{{10.3}{80}{Decimal Fixed Point\relax }{section.10.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.4}Differences between Ordinary and Decimal Fixed Point Types}{80}{section.10.4}}
\newlabel{177}{{10.4}{80}{Differences between Ordinary and Decimal Fixed Point Types\relax }{section.10.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.5}See also}{82}{section.10.5}}
\newlabel{178}{{10.5}{82}{See also\relax }{section.10.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.5.1}Wikibook}{82}{subsection.10.5.1}}
\newlabel{179}{{10.5.1}{82}{Wikibook\relax }{subsection.10.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.5.2}Ada 95 Reference Manual}{82}{subsection.10.5.2}}
\newlabel{180}{{10.5.2}{82}{Ada 95 Reference Manual\relax }{subsection.10.5.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.5.3}Ada 2005 Reference Manual}{82}{subsection.10.5.3}}
\newlabel{181}{{10.5.3}{82}{Ada 2005 Reference Manual\relax }{subsection.10.5.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {11}Arrays}{83}{chapter.11}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{182}{{11}{83}{Arrays\relax }{chapter.11}{}}
\newlabel{183}{{11}{83}{Arrays\relax }{chapter.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.1}Declaring arrays}{83}{section.11.1}}
\newlabel{184}{{11.1}{83}{Declaring arrays\relax }{section.11.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.1.1}Basic syntax}{83}{subsection.11.1.1}}
\newlabel{185}{{11.1.1}{83}{Basic syntax\relax }{subsection.11.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.1.2}With known subrange}{84}{subsection.11.1.2}}
\newlabel{186}{{11.1.2}{84}{With known subrange\relax }{subsection.11.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.1.3}With unknown subrange}{84}{subsection.11.1.3}}
\newlabel{187}{{11.1.3}{84}{With unknown subrange\relax }{subsection.11.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.1.4}With aliased elements}{85}{subsection.11.1.4}}
\newlabel{188}{{11.1.4}{85}{With aliased elements\relax }{subsection.11.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.1.5}Arrays with more than one dimension}{85}{subsection.11.1.5}}
\newlabel{189}{{11.1.5}{85}{Arrays with more than one dimension\relax }{subsection.11.1.5}{}}
\gdef \LT@xvii {\LT@entry
 {1}{115.56499pt}\LT@entry
 {1}{67.5351pt}\LT@entry
 {1}{64.74461pt}\LT@entry
 {1}{82.54549pt}\LT@entry
 {1}{78.30687pt}}
\@writefile{toc}{\contentsline {section}{\numberline {11.2}Using arrays}{87}{section.11.2}}
\newlabel{190}{{11.2}{87}{Using arrays\relax }{section.11.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.2.1}Assignment}{87}{subsection.11.2.1}}
\newlabel{191}{{11.2.1}{87}{Assignment\relax }{subsection.11.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.2.2}Concatenate}{87}{subsection.11.2.2}}
\newlabel{192}{{11.2.2}{87}{Concatenate\relax }{subsection.11.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.2.3}Array Attributes}{87}{subsection.11.2.3}}
\newlabel{193}{{11.2.3}{87}{Array Attributes\relax }{subsection.11.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.2.4}Empty or Null Arrays}{88}{subsection.11.2.4}}
\newlabel{194}{{11.2.4}{88}{Empty or Null Arrays\relax }{subsection.11.2.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.3}See also}{88}{section.11.3}}
\newlabel{195}{{11.3}{88}{See also\relax }{section.11.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.3.1}Wikibook}{88}{subsection.11.3.1}}
\newlabel{196}{{11.3.1}{88}{Wikibook\relax }{subsection.11.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.3.2}Ada 95 Reference Manual}{89}{subsection.11.3.2}}
\newlabel{197}{{11.3.2}{89}{Ada 95 Reference Manual\relax }{subsection.11.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.3.3}Ada 2005 Reference Manual}{89}{subsection.11.3.3}}
\newlabel{198}{{11.3.3}{89}{Ada 2005 Reference Manual\relax }{subsection.11.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.3.4}Ada Quality and Style Guide}{89}{subsection.11.3.4}}
\newlabel{199}{{11.3.4}{89}{Ada Quality and Style Guide\relax }{subsection.11.3.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {12}Records}{91}{chapter.12}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{200}{{12}{91}{Records\relax }{chapter.12}{}}
\newlabel{201}{{12}{91}{Records\relax }{chapter.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.1}Basic record}{91}{section.12.1}}
\newlabel{202}{{12.1}{91}{Basic record\relax }{section.12.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.2}Null record}{91}{section.12.2}}
\newlabel{203}{{12.2}{91}{Null record\relax }{section.12.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.3}Record Values}{91}{section.12.3}}
\newlabel{204}{{12.3}{91}{Record Values\relax }{section.12.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.4}Discriminated record}{93}{section.12.4}}
\newlabel{205}{{12.4}{93}{Discriminated record\relax }{section.12.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.5}Variant record}{93}{section.12.5}}
\newlabel{206}{{12.5}{93}{Variant record\relax }{section.12.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {12.5.1}Mutable and immutable variant records}{93}{subsection.12.5.1}}
\newlabel{207}{{12.5.1}{93}{Mutable and immutable variant records\relax }{subsection.12.5.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.6}Union}{95}{section.12.6}}
\newlabel{208}{{12.6}{95}{Union\relax }{section.12.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.7}Tagged record}{95}{section.12.7}}
\newlabel{209}{{12.7}{95}{Tagged record\relax }{section.12.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.8}Abstract tagged record}{96}{section.12.8}}
\newlabel{210}{{12.8}{96}{Abstract tagged record\relax }{section.12.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.9}With aliased elements}{96}{section.12.9}}
\newlabel{211}{{12.9}{96}{With aliased elements\relax }{section.12.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.10}Limited Records}{97}{section.12.10}}
\newlabel{212}{{12.10}{97}{Limited Records\relax }{section.12.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.11}See also}{97}{section.12.11}}
\newlabel{213}{{12.11}{97}{See also\relax }{section.12.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {12.11.1}Wikibook}{97}{subsection.12.11.1}}
\newlabel{214}{{12.11.1}{97}{Wikibook\relax }{subsection.12.11.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {12.11.2}Ada Reference Manual}{97}{subsection.12.11.2}}
\newlabel{215}{{12.11.2}{97}{Ada Reference Manual\relax }{subsection.12.11.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{97}{section*.27}}
\newlabel{216}{{12.11.2}{97}{Ada 95\relax }{section*.27}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{97}{section*.28}}
\newlabel{217}{{12.11.2}{97}{Ada 2005\relax }{section*.28}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada Issues}{98}{section*.29}}
\newlabel{218}{{12.11.2}{98}{Ada Issues\relax }{section*.29}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {13}Access types}{99}{chapter.13}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{219}{{13}{99}{Access types\relax }{chapter.13}{}}
\newlabel{220}{{13}{99}{Access types\relax }{chapter.13}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.1}What\textquotesingle {}s an Access Type?}{99}{section.13.1}}
\newlabel{221}{{13.1}{99}{What\textquotesingle {}s an Access Type?\relax }{section.13.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.2}Pool access}{99}{section.13.2}}
\newlabel{222}{{13.2}{99}{Pool access\relax }{section.13.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.2.1}Deleting objects from a storage pool}{101}{subsection.13.2.1}}
\newlabel{223}{{13.2.1}{101}{Deleting objects from a storage pool\relax }{subsection.13.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.2.2}Constructing Reference Counting Pointers}{102}{subsection.13.2.2}}
\newlabel{224}{{13.2.2}{102}{Constructing Reference Counting Pointers\relax }{subsection.13.2.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.3}General access}{102}{section.13.3}}
\newlabel{225}{{13.3}{102}{General access\relax }{section.13.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.3.1}Access to Variable}{102}{subsection.13.3.1}}
\newlabel{226}{{13.3.1}{102}{Access to Variable\relax }{subsection.13.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.3.2}Access to Constant}{103}{subsection.13.3.2}}
\newlabel{227}{{13.3.2}{103}{Access to Constant\relax }{subsection.13.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.3.3}Some examples}{103}{subsection.13.3.3}}
\newlabel{228}{{13.3.3}{103}{Some examples\relax }{subsection.13.3.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.4}Anonymous access}{103}{section.13.4}}
\newlabel{229}{{13.4}{103}{Anonymous access\relax }{section.13.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.5}Implicit Dereference}{104}{section.13.5}}
\newlabel{230}{{13.5}{104}{Implicit Dereference\relax }{section.13.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.6}Null exclusions}{105}{section.13.6}}
\newlabel{231}{{13.6}{105}{Null exclusions\relax }{section.13.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.7}Access to Subprogram}{106}{section.13.7}}
\newlabel{232}{{13.7}{106}{Access to Subprogram\relax }{section.13.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.7.1}Anonymous access to Subprogram}{106}{subsection.13.7.1}}
\newlabel{233}{{13.7.1}{106}{Anonymous access to Subprogram\relax }{subsection.13.7.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.8}Access FAQ}{106}{section.13.8}}
\newlabel{234}{{13.8}{106}{Access FAQ\relax }{section.13.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.8.1}Access vs. access all}{107}{subsection.13.8.1}}
\newlabel{235}{{13.8.1}{107}{Access vs. access all\relax }{subsection.13.8.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.8.2}Access vs. System.Address}{107}{subsection.13.8.2}}
\newlabel{236}{{13.8.2}{107}{Access vs. System.Address\relax }{subsection.13.8.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.8.3}C compatible pointer}{107}{subsection.13.8.3}}
\newlabel{237}{{13.8.3}{107}{C compatible pointer\relax }{subsection.13.8.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.8.4}Where is void*?}{108}{subsection.13.8.4}}
\newlabel{238}{{13.8.4}{108}{Where is void*?\relax }{subsection.13.8.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.9}Thin and Fat Access Types}{109}{section.13.9}}
\newlabel{239}{{13.9}{109}{Thin and Fat Access Types\relax }{section.13.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.9.1}Thin Pointers}{109}{subsection.13.9.1}}
\newlabel{240}{{13.9.1}{109}{Thin Pointers\relax }{subsection.13.9.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.9.2}Fat Pointers}{109}{subsection.13.9.2}}
\newlabel{241}{{13.9.2}{109}{Fat Pointers\relax }{subsection.13.9.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.9.3}Example}{110}{subsection.13.9.3}}
\newlabel{242}{{13.9.3}{110}{Example\relax }{subsection.13.9.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.10}See also}{110}{section.13.10}}
\newlabel{243}{{13.10}{110}{See also\relax }{section.13.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.10.1}Wikibook}{110}{subsection.13.10.1}}
\newlabel{244}{{13.10.1}{110}{Wikibook\relax }{subsection.13.10.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.10.2}Ada Reference Manual}{111}{subsection.13.10.2}}
\newlabel{245}{{13.10.2}{111}{Ada Reference Manual\relax }{subsection.13.10.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{111}{section*.30}}
\newlabel{246}{{13.10.2}{111}{Ada 95\relax }{section*.30}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{111}{section*.31}}
\newlabel{247}{{13.10.2}{111}{Ada 2005\relax }{section*.31}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.10.3}Ada Quality and Style Guide}{111}{subsection.13.10.3}}
\newlabel{248}{{13.10.3}{111}{Ada Quality and Style Guide\relax }{subsection.13.10.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {14}Limited types}{113}{chapter.14}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{249}{{14}{113}{Limited types\relax }{chapter.14}{}}
\newlabel{250}{{14}{113}{Limited types\relax }{chapter.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.1}Limited Types}{113}{section.14.1}}
\newlabel{251}{{14.1}{113}{Limited Types\relax }{section.14.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.2}Initialising Limited Types}{115}{section.14.2}}
\newlabel{252}{{14.2}{115}{Initialising Limited Types\relax }{section.14.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.3}See also}{116}{section.14.3}}
\newlabel{253}{{14.3}{116}{See also\relax }{section.14.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.3.1}Ada 95 Reference Manual}{116}{subsection.14.3.1}}
\newlabel{254}{{14.3.1}{116}{Ada 95 Reference Manual\relax }{subsection.14.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.3.2}Ada 2005 Reference Manual}{117}{subsection.14.3.2}}
\newlabel{255}{{14.3.2}{117}{Ada 2005 Reference Manual\relax }{subsection.14.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.3.3}Ada Quality and Style Guide}{117}{subsection.14.3.3}}
\newlabel{256}{{14.3.3}{117}{Ada Quality and Style Guide\relax }{subsection.14.3.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.4}References}{117}{section.14.4}}
\newlabel{257}{{14.4}{117}{References\relax }{section.14.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {15}Strings}{119}{chapter.15}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{258}{{15}{119}{Strings\relax }{chapter.15}{}}
\newlabel{259}{{15}{119}{Strings\relax }{chapter.15}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.1}Fixed-{}length string handling}{119}{section.15.1}}
\newlabel{260}{{15.1}{119}{Fixed-{}length string handling\relax }{section.15.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.2}Bounded-{}length string handling}{120}{section.15.2}}
\newlabel{261}{{15.2}{120}{Bounded-{}length string handling\relax }{section.15.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.3}Unbounded-{}length string handling}{122}{section.15.3}}
\newlabel{262}{{15.3}{122}{Unbounded-{}length string handling\relax }{section.15.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.4}See also}{123}{section.15.4}}
\newlabel{263}{{15.4}{123}{See also\relax }{section.15.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.4.1}Wikibook}{123}{subsection.15.4.1}}
\newlabel{264}{{15.4.1}{123}{Wikibook\relax }{subsection.15.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.4.2}Ada 95 Reference Manual}{123}{subsection.15.4.2}}
\newlabel{265}{{15.4.2}{123}{Ada 95 Reference Manual\relax }{subsection.15.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.4.3}Ada 2005 Reference Manual}{123}{subsection.15.4.3}}
\newlabel{266}{{15.4.3}{123}{Ada 2005 Reference Manual\relax }{subsection.15.4.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {16}Subprograms}{125}{chapter.16}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{267}{{16}{125}{Subprograms\relax }{chapter.16}{}}
\newlabel{268}{{16}{125}{Subprograms\relax }{chapter.16}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.1}Procedures}{126}{section.16.1}}
\newlabel{269}{{16.1}{126}{Procedures\relax }{section.16.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.2}Functions}{127}{section.16.2}}
\newlabel{270}{{16.2}{127}{Functions\relax }{section.16.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.3}Named parameters}{129}{section.16.3}}
\newlabel{271}{{16.3}{129}{Named parameters\relax }{section.16.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.4}Default parameters}{129}{section.16.4}}
\newlabel{272}{{16.4}{129}{Default parameters\relax }{section.16.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.5}Renaming}{130}{section.16.5}}
\newlabel{273}{{16.5}{130}{Renaming\relax }{section.16.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.6}See also}{131}{section.16.6}}
\newlabel{274}{{16.6}{131}{See also\relax }{section.16.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.6.1}Wikibook}{131}{subsection.16.6.1}}
\newlabel{275}{{16.6.1}{131}{Wikibook\relax }{subsection.16.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.6.2}Ada 95 Reference Manual}{131}{subsection.16.6.2}}
\newlabel{276}{{16.6.2}{131}{Ada 95 Reference Manual\relax }{subsection.16.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.6.3}Ada 2005 Reference Manual}{131}{subsection.16.6.3}}
\newlabel{277}{{16.6.3}{131}{Ada 2005 Reference Manual\relax }{subsection.16.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.6.4}Ada Quality and Style Guide}{132}{subsection.16.6.4}}
\newlabel{278}{{16.6.4}{132}{Ada Quality and Style Guide\relax }{subsection.16.6.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {17}Packages}{133}{chapter.17}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{279}{{17}{133}{Packages\relax }{chapter.17}{}}
\newlabel{280}{{17}{133}{Packages\relax }{chapter.17}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.1}Separate compilation}{133}{section.17.1}}
\newlabel{281}{{17.1}{133}{Separate compilation\relax }{section.17.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.2}Parts of a package}{134}{section.17.2}}
\newlabel{282}{{17.2}{134}{Parts of a package\relax }{section.17.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.2.1}The package specification {\unhbox \voidb@x \hbox {$\text {---}$}} the visible part}{135}{subsection.17.2.1}}
\newlabel{283}{{17.2.1}{135}{The package specification {\mbox {$\text {---}$}} the visible part\relax }{subsection.17.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.2.2}The private part}{135}{subsection.17.2.2}}
\newlabel{284}{{17.2.2}{135}{The private part\relax }{subsection.17.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.2.3}The package body}{135}{subsection.17.2.3}}
\newlabel{285}{{17.2.3}{135}{The package body\relax }{subsection.17.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.2.4}Two Flavors of Package}{136}{subsection.17.2.4}}
\newlabel{286}{{17.2.4}{136}{Two Flavors of Package\relax }{subsection.17.2.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.3}Using packages}{137}{section.17.3}}
\newlabel{287}{{17.3}{137}{Using packages\relax }{section.17.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.3.1}Standard with}{137}{subsection.17.3.1}}
\newlabel{288}{{17.3.1}{137}{Standard with\relax }{subsection.17.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.3.2}Private with}{138}{subsection.17.3.2}}
\newlabel{289}{{17.3.2}{138}{Private with\relax }{subsection.17.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.3.3}Limited with}{138}{subsection.17.3.3}}
\newlabel{290}{{17.3.3}{138}{Limited with\relax }{subsection.17.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.3.4}Making operators visible}{139}{subsection.17.3.4}}
\newlabel{291}{{17.3.4}{139}{Making operators visible\relax }{subsection.17.3.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.4}Package organisation}{141}{section.17.4}}
\newlabel{292}{{17.4}{141}{Package organisation\relax }{section.17.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.4.1}Nested packages}{141}{subsection.17.4.1}}
\newlabel{293}{{17.4.1}{141}{Nested packages\relax }{subsection.17.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.4.2}Child packages}{143}{subsection.17.4.2}}
\newlabel{294}{{17.4.2}{143}{Child packages\relax }{subsection.17.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.4.3}Subunits}{144}{subsection.17.4.3}}
\newlabel{295}{{17.4.3}{144}{Subunits\relax }{subsection.17.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.5}Notes}{145}{section.17.5}}
\newlabel{296}{{17.5}{145}{Notes\relax }{section.17.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.6}See also}{145}{section.17.6}}
\newlabel{297}{{17.6}{145}{See also\relax }{section.17.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.6.1}Wikibook}{145}{subsection.17.6.1}}
\newlabel{298}{{17.6.1}{145}{Wikibook\relax }{subsection.17.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.6.2}Wikipedia}{145}{subsection.17.6.2}}
\newlabel{299}{{17.6.2}{145}{Wikipedia\relax }{subsection.17.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.6.3}Ada 95 Reference Manual}{145}{subsection.17.6.3}}
\newlabel{300}{{17.6.3}{145}{Ada 95 Reference Manual\relax }{subsection.17.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.6.4}Ada 2005 Reference Manual}{145}{subsection.17.6.4}}
\newlabel{301}{{17.6.4}{145}{Ada 2005 Reference Manual\relax }{subsection.17.6.4}{}}
\gdef \LT@xviii {\LT@entry
 {1}{99.00066pt}\LT@entry
 {1}{86.63202pt}\LT@entry
 {1}{114.0541pt}\LT@entry
 {1}{129.05989pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {18}Input Output}{147}{chapter.18}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{302}{{18}{147}{Input Output\relax }{chapter.18}{}}
\newlabel{303}{{18}{147}{Input Output\relax }{chapter.18}{}}
\@writefile{toc}{\contentsline {section}{\numberline {18.1}Overview}{147}{section.18.1}}
\newlabel{304}{{18.1}{147}{Overview\relax }{section.18.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {18.2}Text I/O}{148}{section.18.2}}
\newlabel{305}{{18.2}{148}{Text I/O\relax }{section.18.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {18.3}Direct I/O}{148}{section.18.3}}
\newlabel{306}{{18.3}{148}{Direct I/O\relax }{section.18.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {18.4}Sequential I/O}{149}{section.18.4}}
\newlabel{307}{{18.4}{149}{Sequential I/O\relax }{section.18.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {18.5}Stream I/O}{149}{section.18.5}}
\newlabel{308}{{18.5}{149}{Stream I/O\relax }{section.18.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {18.6}See also}{150}{section.18.6}}
\newlabel{309}{{18.6}{150}{See also\relax }{section.18.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {18.6.1}Wikibook}{150}{subsection.18.6.1}}
\newlabel{310}{{18.6.1}{150}{Wikibook\relax }{subsection.18.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {18.6.2}Ada Reference Manual}{151}{subsection.18.6.2}}
\newlabel{311}{{18.6.2}{151}{Ada Reference Manual\relax }{subsection.18.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {18.6.3}Ada 95 Quality and Style Guide}{152}{subsection.18.6.3}}
\newlabel{312}{{18.6.3}{152}{Ada 95 Quality and Style Guide\relax }{subsection.18.6.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {19}Exceptions}{153}{chapter.19}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{313}{{19}{153}{Exceptions\relax }{chapter.19}{}}
\newlabel{314}{{19}{153}{Exceptions\relax }{chapter.19}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.1}Robustness}{153}{section.19.1}}
\newlabel{315}{{19.1}{153}{Robustness\relax }{section.19.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.2}Modules, preconditions and postconditions}{153}{section.19.2}}
\newlabel{316}{{19.2}{153}{Modules, preconditions and postconditions\relax }{section.19.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.3}Predefined exceptions}{154}{section.19.3}}
\newlabel{317}{{19.3}{154}{Predefined exceptions\relax }{section.19.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.4}Input-{}output exceptions}{156}{section.19.4}}
\newlabel{318}{{19.4}{156}{Input-{}output exceptions\relax }{section.19.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.5}Exception declarations}{156}{section.19.5}}
\newlabel{319}{{19.5}{156}{Exception declarations\relax }{section.19.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.6}Raising exceptions}{157}{section.19.6}}
\newlabel{320}{{19.6}{157}{Raising exceptions\relax }{section.19.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.7}Exception handling and propagation}{157}{section.19.7}}
\newlabel{321}{{19.7}{157}{Exception handling and propagation\relax }{section.19.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.8}Information about an exception occurrence}{158}{section.19.8}}
\newlabel{322}{{19.8}{158}{Information about an exception occurrence\relax }{section.19.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.9}See also}{159}{section.19.9}}
\newlabel{323}{{19.9}{159}{See also\relax }{section.19.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {19.9.1}Wikibook}{159}{subsection.19.9.1}}
\newlabel{324}{{19.9.1}{159}{Wikibook\relax }{subsection.19.9.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {19.9.2}Ada 95 Reference Manual}{160}{subsection.19.9.2}}
\newlabel{325}{{19.9.2}{160}{Ada 95 Reference Manual\relax }{subsection.19.9.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {19.9.3}Ada 2005 Reference Manual}{160}{subsection.19.9.3}}
\newlabel{326}{{19.9.3}{160}{Ada 2005 Reference Manual\relax }{subsection.19.9.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {19.9.4}Ada Quality and Style Guide}{160}{subsection.19.9.4}}
\newlabel{327}{{19.9.4}{160}{Ada Quality and Style Guide\relax }{subsection.19.9.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {20}Generics}{161}{chapter.20}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{328}{{20}{161}{Generics\relax }{chapter.20}{}}
\newlabel{329}{{20}{161}{Generics\relax }{chapter.20}{}}
\@writefile{toc}{\contentsline {section}{\numberline {20.1}Parametric polymorphism (generic units)}{161}{section.20.1}}
\newlabel{330}{{20.1}{161}{Parametric polymorphism (generic units)\relax }{section.20.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {20.2}Generic parameters}{162}{section.20.2}}
\newlabel{331}{{20.2}{162}{Generic parameters\relax }{section.20.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.2.1}Generic formal objects}{162}{subsection.20.2.1}}
\newlabel{332}{{20.2.1}{162}{Generic formal objects\relax }{subsection.20.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.2.2}Generic formal types}{163}{subsection.20.2.2}}
\newlabel{333}{{20.2.2}{163}{Generic formal types\relax }{subsection.20.2.2}{}}
\gdef \LT@xix {\LT@entry
 {1}{212.06795pt}\LT@entry
 {1}{211.66795pt}}
\gdef \LT@xx {\LT@entry
 {1}{144.87163pt}\LT@entry
 {1}{278.86429pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.2.3}Generic formal subprograms}{165}{subsection.20.2.3}}
\newlabel{334}{{20.2.3}{165}{Generic formal subprograms\relax }{subsection.20.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.2.4}Generic instances of other generic packages}{167}{subsection.20.2.4}}
\newlabel{335}{{20.2.4}{167}{Generic instances of other generic packages\relax }{subsection.20.2.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {20.3}Instantiating generics}{168}{section.20.3}}
\newlabel{336}{{20.3}{168}{Instantiating generics\relax }{section.20.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {20.4}Advanced generics}{168}{section.20.4}}
\newlabel{337}{{20.4}{168}{Advanced generics\relax }{section.20.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.4.1}Generics and nesting}{168}{subsection.20.4.1}}
\newlabel{338}{{20.4.1}{168}{Generics and nesting\relax }{subsection.20.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.4.2}Generics and child units}{170}{subsection.20.4.2}}
\newlabel{339}{{20.4.2}{170}{Generics and child units\relax }{subsection.20.4.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {20.5}See also}{172}{section.20.5}}
\newlabel{340}{{20.5}{172}{See also\relax }{section.20.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.5.1}Wikibook}{172}{subsection.20.5.1}}
\newlabel{341}{{20.5.1}{172}{Wikibook\relax }{subsection.20.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.5.2}Wikipedia}{172}{subsection.20.5.2}}
\newlabel{342}{{20.5.2}{172}{Wikipedia\relax }{subsection.20.5.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {20.5.3}Ada Reference Manual}{172}{subsection.20.5.3}}
\newlabel{343}{{20.5.3}{172}{Ada Reference Manual\relax }{subsection.20.5.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {21}Tasking}{173}{chapter.21}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{344}{{21}{173}{Tasking\relax }{chapter.21}{}}
\newlabel{345}{{21}{173}{Tasking\relax }{chapter.21}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.1}Tasks}{173}{section.21.1}}
\newlabel{346}{{21.1}{173}{Tasks\relax }{section.21.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {21.1.1}Rendezvous}{174}{subsection.21.1.1}}
\newlabel{347}{{21.1.1}{174}{Rendezvous\relax }{subsection.21.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {21.1.2}Selective Wait}{175}{subsection.21.1.2}}
\newlabel{348}{{21.1.2}{175}{Selective Wait\relax }{subsection.21.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {21.1.3}Guards}{176}{subsection.21.1.3}}
\newlabel{349}{{21.1.3}{176}{Guards\relax }{subsection.21.1.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.2}Protected types}{177}{section.21.2}}
\newlabel{350}{{21.2}{177}{Protected types\relax }{section.21.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.3}Entry families}{180}{section.21.3}}
\newlabel{351}{{21.3}{180}{Entry families\relax }{section.21.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.4}Termination}{180}{section.21.4}}
\newlabel{352}{{21.4}{180}{Termination\relax }{section.21.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.5}Timeout}{181}{section.21.5}}
\newlabel{353}{{21.5}{181}{Timeout\relax }{section.21.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.6}Conditional entry calls}{183}{section.21.6}}
\newlabel{354}{{21.6}{183}{Conditional entry calls\relax }{section.21.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.7}Requeue statements}{183}{section.21.7}}
\newlabel{355}{{21.7}{183}{Requeue statements\relax }{section.21.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.8}Scheduling}{184}{section.21.8}}
\newlabel{356}{{21.8}{184}{Scheduling\relax }{section.21.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.9}Interfaces}{184}{section.21.9}}
\newlabel{357}{{21.9}{184}{Interfaces\relax }{section.21.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.10}See also}{184}{section.21.10}}
\newlabel{358}{{21.10}{184}{See also\relax }{section.21.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {21.10.1}Wikibook}{184}{subsection.21.10.1}}
\newlabel{359}{{21.10.1}{184}{Wikibook\relax }{subsection.21.10.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {21.10.2}Ada Reference Manual}{184}{subsection.21.10.2}}
\newlabel{360}{{21.10.2}{184}{Ada Reference Manual\relax }{subsection.21.10.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{184}{section*.32}}
\newlabel{361}{{21.10.2}{184}{Ada 95\relax }{section*.32}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{184}{section*.33}}
\newlabel{362}{{21.10.2}{184}{Ada 2005\relax }{section*.33}{}}
\@writefile{toc}{\contentsline {section}{\numberline {21.11}Ada Quality and Style Guide}{185}{section.21.11}}
\newlabel{363}{{21.11}{185}{Ada Quality and Style Guide\relax }{section.21.11}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {22}Object Orientation}{187}{chapter.22}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{364}{{22}{187}{Object Orientation\relax }{chapter.22}{}}
\newlabel{365}{{22}{187}{Object Orientation\relax }{chapter.22}{}}
\@writefile{toc}{\contentsline {section}{\numberline {22.1}Object orientation in Ada}{187}{section.22.1}}
\newlabel{366}{{22.1}{187}{Object orientation in Ada\relax }{section.22.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.1}The simplest object: the Singleton}{188}{subsection.22.1.1}}
\newlabel{367}{{22.1.1}{188}{The simplest object: the Singleton\relax }{subsection.22.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.2}Primitive operations}{188}{subsection.22.1.2}}
\newlabel{368}{{22.1.2}{188}{Primitive operations\relax }{subsection.22.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.3}Derived types}{188}{subsection.22.1.3}}
\newlabel{369}{{22.1.3}{188}{Derived types\relax }{subsection.22.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.4}Type extensions}{189}{subsection.22.1.4}}
\newlabel{370}{{22.1.4}{189}{Type extensions\relax }{subsection.22.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.5}Overriding}{191}{subsection.22.1.5}}
\newlabel{371}{{22.1.5}{191}{Overriding\relax }{subsection.22.1.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.6}Polymorphism, class-{}wide programming and dynamic dispatching}{192}{subsection.22.1.6}}
\newlabel{372}{{22.1.6}{192}{Polymorphism, class-{}wide programming and dynamic dispatching\relax }{subsection.22.1.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{Advanced topic: How dynamic dispatching works}{193}{section*.34}}
\newlabel{373}{{22.1.6}{193}{Advanced topic: How dynamic dispatching works\relax }{section*.34}{}}
\@writefile{toc}{\contentsline {subsubsection}{Redispatching}{194}{section*.35}}
\newlabel{374}{{22.1.6}{194}{Redispatching\relax }{section*.35}{}}
\@writefile{toc}{\contentsline {subsubsection}{Run-{}time type identification}{195}{section*.36}}
\newlabel{375}{{22.1.6}{195}{Run-{}time type identification\relax }{section*.36}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.7}Creating Objects}{195}{subsection.22.1.7}}
\newlabel{376}{{22.1.7}{195}{Creating Objects\relax }{subsection.22.1.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.8}More details on primitive operations}{197}{subsection.22.1.8}}
\newlabel{377}{{22.1.8}{197}{More details on primitive operations\relax }{subsection.22.1.8}{}}
\@writefile{toc}{\contentsline {subsubsection}{Advanced topic: Freezing rules}{199}{section*.37}}
\newlabel{378}{{22.1.8}{199}{Advanced topic: Freezing rules\relax }{section*.37}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.9}New features of Ada 2005}{200}{subsection.22.1.9}}
\newlabel{379}{{22.1.9}{200}{New features of Ada 2005\relax }{subsection.22.1.9}{}}
\@writefile{toc}{\contentsline {subsubsection}{Overriding indicators}{200}{section*.38}}
\newlabel{380}{{22.1.9}{200}{Overriding indicators\relax }{section*.38}{}}
\@writefile{toc}{\contentsline {subsubsection}{Object.Method notation}{201}{section*.39}}
\newlabel{381}{{22.1.9}{201}{Object.Method notation\relax }{section*.39}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.10}Abstract types}{201}{subsection.22.1.10}}
\newlabel{382}{{22.1.10}{201}{Abstract types\relax }{subsection.22.1.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.11}Multiple Inheritance via Interfaces}{202}{subsection.22.1.11}}
\newlabel{383}{{22.1.11}{202}{Multiple Inheritance via Interfaces\relax }{subsection.22.1.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.1.12}Multiple Inheritance via Mix-{}in}{203}{subsection.22.1.12}}
\newlabel{384}{{22.1.12}{203}{Multiple Inheritance via Mix-{}in\relax }{subsection.22.1.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {22.2}Class names}{206}{section.22.2}}
\newlabel{385}{{22.2}{206}{Class names\relax }{section.22.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.2.1}Classes/Class}{206}{subsection.22.2.1}}
\newlabel{386}{{22.2.1}{206}{Classes/Class\relax }{subsection.22.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.2.2}Class/Object}{206}{subsection.22.2.2}}
\newlabel{387}{{22.2.2}{206}{Class/Object\relax }{subsection.22.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.2.3}Class/Class\@uscore .Type}{207}{subsection.22.2.3}}
\newlabel{388}{{22.2.3}{207}{Class/Class_Type\relax }{subsection.22.2.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {22.3}Object-{}Oriented Ada for C++ programmers}{207}{section.22.3}}
\newlabel{389}{{22.3}{207}{Object-{}Oriented Ada for C++ programmers\relax }{section.22.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.1}Static dispatching}{207}{subsection.22.3.1}}
\newlabel{390}{{22.3.1}{207}{Static dispatching\relax }{subsection.22.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.2}Dynamic dispatching}{208}{subsection.22.3.2}}
\newlabel{391}{{22.3.2}{208}{Dynamic dispatching\relax }{subsection.22.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.3}Class-{}wide and specific types}{209}{subsection.22.3.3}}
\newlabel{392}{{22.3.3}{209}{Class-{}wide and specific types\relax }{subsection.22.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.4}Constructors}{209}{subsection.22.3.4}}
\newlabel{393}{{22.3.4}{209}{Constructors\relax }{subsection.22.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.5}Destructors}{211}{subsection.22.3.5}}
\newlabel{394}{{22.3.5}{211}{Destructors\relax }{subsection.22.3.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.6}Encapsulation: public, private and protected members}{212}{subsection.22.3.6}}
\newlabel{395}{{22.3.6}{212}{Encapsulation: public, private and protected members\relax }{subsection.22.3.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.7}De-{}encapsulation: friends and stream input-{}output}{215}{subsection.22.3.7}}
\newlabel{396}{{22.3.7}{215}{De-{}encapsulation: friends and stream input-{}output\relax }{subsection.22.3.7}{}}
\gdef \LT@xxi {\LT@entry
 {1}{184.85748pt}\LT@entry
 {1}{238.87843pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.3.8}Terminology}{217}{subsection.22.3.8}}
\newlabel{397}{{22.3.8}{217}{Terminology\relax }{subsection.22.3.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {22.4}See also}{217}{section.22.4}}
\newlabel{398}{{22.4}{217}{See also\relax }{section.22.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.4.1}Wikibook}{217}{subsection.22.4.1}}
\newlabel{399}{{22.4.1}{217}{Wikibook\relax }{subsection.22.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.4.2}Wikipedia}{217}{subsection.22.4.2}}
\newlabel{400}{{22.4.2}{217}{Wikipedia\relax }{subsection.22.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.4.3}Ada Reference Manual}{218}{subsection.22.4.3}}
\newlabel{401}{{22.4.3}{218}{Ada Reference Manual\relax }{subsection.22.4.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{218}{section*.40}}
\newlabel{402}{{22.4.3}{218}{Ada 95\relax }{section*.40}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{218}{section*.41}}
\newlabel{403}{{22.4.3}{218}{Ada 2005\relax }{section*.41}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {22.4.4}Ada Quality and Style Guide}{218}{subsection.22.4.4}}
\newlabel{404}{{22.4.4}{218}{Ada Quality and Style Guide\relax }{subsection.22.4.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {23}New in Ada 2005}{219}{chapter.23}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{405}{{23}{219}{New in Ada 2005\relax }{chapter.23}{}}
\newlabel{406}{{23}{219}{New in Ada 2005\relax }{chapter.23}{}}
\@writefile{toc}{\contentsline {section}{\numberline {23.1}Language features}{219}{section.23.1}}
\newlabel{407}{{23.1}{219}{Language features\relax }{section.23.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.1.1}Character set}{219}{subsection.23.1.1}}
\newlabel{408}{{23.1.1}{219}{Character set\relax }{subsection.23.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.1.2}Interfaces}{220}{subsection.23.1.2}}
\newlabel{409}{{23.1.2}{220}{Interfaces\relax }{subsection.23.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.1.3}Union}{220}{subsection.23.1.3}}
\newlabel{410}{{23.1.3}{220}{Union\relax }{subsection.23.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.1.4}With}{221}{subsection.23.1.4}}
\newlabel{411}{{23.1.4}{221}{With\relax }{subsection.23.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.1.5}Access types}{221}{subsection.23.1.5}}
\newlabel{412}{{23.1.5}{221}{Access types\relax }{subsection.23.1.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{Not null access}{221}{section*.42}}
\newlabel{413}{{23.1.5}{221}{Not null access\relax }{section*.42}{}}
\@writefile{toc}{\contentsline {subsubsection}{Anonymous access}{221}{section*.43}}
\newlabel{414}{{23.1.5}{221}{Anonymous access\relax }{section*.43}{}}
\@writefile{toc}{\contentsline {section}{\numberline {23.2}Language library}{222}{section.23.2}}
\newlabel{415}{{23.2}{222}{Language library\relax }{section.23.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.2.1}Containers}{222}{subsection.23.2.1}}
\newlabel{416}{{23.2.1}{222}{Containers\relax }{subsection.23.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.2.2}Scan Filesystem Directories and Environment Variables}{222}{subsection.23.2.2}}
\newlabel{417}{{23.2.2}{222}{Scan Filesystem Directories and Environment Variables\relax }{subsection.23.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.2.3}Numerics}{223}{subsection.23.2.3}}
\newlabel{418}{{23.2.3}{223}{Numerics\relax }{subsection.23.2.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {23.3}Real-{}Time and High Integrity Systems}{223}{section.23.3}}
\newlabel{419}{{23.3}{223}{Real-{}Time and High Integrity Systems\relax }{section.23.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.3.1}Ravenscar profile}{223}{subsection.23.3.1}}
\newlabel{420}{{23.3.1}{223}{Ravenscar profile\relax }{subsection.23.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.3.2}New scheduling policies}{224}{subsection.23.3.2}}
\newlabel{421}{{23.3.2}{224}{New scheduling policies\relax }{subsection.23.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.3.3}Dynamic priorities for protected objects}{224}{subsection.23.3.3}}
\newlabel{422}{{23.3.3}{224}{Dynamic priorities for protected objects\relax }{subsection.23.3.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {23.4}Summary of what\textquotesingle {}s new}{224}{section.23.4}}
\newlabel{423}{{23.4}{224}{Summary of what\textquotesingle {}s new\relax }{section.23.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.4.1}New keywords}{224}{subsection.23.4.1}}
\newlabel{424}{{23.4.1}{224}{New keywords\relax }{subsection.23.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.4.2}New pragmas}{224}{subsection.23.4.2}}
\newlabel{425}{{23.4.2}{224}{New pragmas\relax }{subsection.23.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.4.3}New attributes}{225}{subsection.23.4.3}}
\newlabel{426}{{23.4.3}{225}{New attributes\relax }{subsection.23.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.4.4}New packages}{225}{subsection.23.4.4}}
\newlabel{427}{{23.4.4}{225}{New packages\relax }{subsection.23.4.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {23.5}See also}{227}{section.23.5}}
\newlabel{428}{{23.5}{227}{See also\relax }{section.23.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.5.1}Wikibook}{227}{subsection.23.5.1}}
\newlabel{429}{{23.5.1}{227}{Wikibook\relax }{subsection.23.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.5.2}Pages in the category Ada 2005}{227}{subsection.23.5.2}}
\newlabel{430}{{23.5.2}{227}{Pages in the category Ada 2005\relax }{subsection.23.5.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {23.6}External links}{228}{section.23.6}}
\newlabel{431}{{23.6}{228}{External links\relax }{section.23.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.6.1}Papers and presentations}{228}{subsection.23.6.1}}
\newlabel{432}{{23.6.1}{228}{Papers and presentations\relax }{subsection.23.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.6.2}Rationale}{228}{subsection.23.6.2}}
\newlabel{433}{{23.6.2}{228}{Rationale\relax }{subsection.23.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.6.3}Language Requirements}{228}{subsection.23.6.3}}
\newlabel{434}{{23.6.3}{228}{Language Requirements\relax }{subsection.23.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.6.4}Ada Reference Manual}{228}{subsection.23.6.4}}
\newlabel{435}{{23.6.4}{228}{Ada Reference Manual\relax }{subsection.23.6.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {23.6.5}Ada Issues}{229}{subsection.23.6.5}}
\newlabel{436}{{23.6.5}{229}{Ada Issues\relax }{subsection.23.6.5}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {24}Containers}{231}{chapter.24}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{437}{{24}{231}{Containers\relax }{chapter.24}{}}
\newlabel{438}{{24}{231}{Containers\relax }{chapter.24}{}}
\@writefile{toc}{\contentsline {subsubsection}{First Example: Maps}{231}{section*.44}}
\newlabel{439}{{24}{231}{First Example: Maps\relax }{section*.44}{}}
\@writefile{toc}{\contentsline {subsubsection}{A slight variation: picking an element}{233}{section*.45}}
\newlabel{440}{{24}{233}{A slight variation: picking an element\relax }{section*.45}{}}
\@writefile{toc}{\contentsline {subsubsection}{Second Example: Vectors and Maps}{234}{section*.46}}
\newlabel{441}{{24}{234}{Second Example: Vectors and Maps\relax }{section*.46}{}}
\@writefile{toc}{\contentsline {subsubsection}{All In Just One Map!}{237}{section*.47}}
\newlabel{442}{{24}{237}{All In Just One Map!\relax }{section*.47}{}}
\@writefile{toc}{\contentsline {section}{\numberline {24.1}See also}{240}{section.24.1}}
\newlabel{443}{{24.1}{240}{See also\relax }{section.24.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {24.1.1}Wikibook}{240}{subsection.24.1.1}}
\newlabel{444}{{24.1.1}{240}{Wikibook\relax }{subsection.24.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {24.1.2}Ada 2005 Reference Manual}{241}{subsection.24.1.2}}
\newlabel{445}{{24.1.2}{241}{Ada 2005 Reference Manual\relax }{subsection.24.1.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {25}Interfacing}{243}{chapter.25}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{446}{{25}{243}{Interfacing\relax }{chapter.25}{}}
\newlabel{447}{{25}{243}{Interfacing\relax }{chapter.25}{}}
\@writefile{toc}{\contentsline {section}{\numberline {25.1}Interfacing}{243}{section.25.1}}
\newlabel{448}{{25.1}{243}{Interfacing\relax }{section.25.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {25.2}Other programming languages}{243}{section.25.2}}
\newlabel{449}{{25.2}{243}{Other programming languages\relax }{section.25.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {25.3}Hardware devices}{243}{section.25.3}}
\newlabel{450}{{25.3}{243}{Hardware devices\relax }{section.25.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {25.4}See also}{244}{section.25.4}}
\newlabel{451}{{25.4}{244}{See also\relax }{section.25.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {25.4.1}Wikibook}{244}{subsection.25.4.1}}
\newlabel{452}{{25.4.1}{244}{Wikibook\relax }{subsection.25.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {25.4.2}Ada Reference Manual}{244}{subsection.25.4.2}}
\newlabel{453}{{25.4.2}{244}{Ada Reference Manual\relax }{subsection.25.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {25.4.3}Ada 95 Rationale}{244}{subsection.25.4.3}}
\newlabel{454}{{25.4.3}{244}{Ada 95 Rationale\relax }{subsection.25.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {25.4.4}Ada Quality and Style Guide}{244}{subsection.25.4.4}}
\newlabel{455}{{25.4.4}{244}{Ada Quality and Style Guide\relax }{subsection.25.4.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {26}Coding Standards}{245}{chapter.26}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{456}{{26}{245}{Coding Standards\relax }{chapter.26}{}}
\newlabel{457}{{26}{245}{Coding Standards\relax }{chapter.26}{}}
\@writefile{toc}{\contentsline {section}{\numberline {26.1}Introduction}{245}{section.26.1}}
\newlabel{458}{{26.1}{245}{Introduction\relax }{section.26.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {26.2}Tools}{245}{section.26.2}}
\newlabel{459}{{26.2}{245}{Tools\relax }{section.26.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {26.3}Coding guidelines}{246}{section.26.3}}
\newlabel{460}{{26.3}{246}{Coding guidelines\relax }{section.26.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {26.4}See also}{246}{section.26.4}}
\newlabel{461}{{26.4}{246}{See also\relax }{section.26.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {26.4.1}Other wikibooks}{246}{subsection.26.4.1}}
\newlabel{462}{{26.4.1}{246}{Other wikibooks\relax }{subsection.26.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {26.4.2}Wikibook}{247}{subsection.26.4.2}}
\newlabel{463}{{26.4.2}{247}{Wikibook\relax }{subsection.26.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {26.4.3}Ada Quality and Style Guide}{247}{subsection.26.4.3}}
\newlabel{464}{{26.4.3}{247}{Ada Quality and Style Guide\relax }{subsection.26.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {26.5}External links}{247}{section.26.5}}
\newlabel{465}{{26.5}{247}{External links\relax }{section.26.5}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {27}Tips}{249}{chapter.27}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{466}{{27}{249}{Tips\relax }{chapter.27}{}}
\newlabel{467}{{27}{249}{Tips\relax }{chapter.27}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.1}Full declaration of a type can be deferred to the unit\textquotesingle {}s body}{249}{section.27.1}}
\newlabel{468}{{27.1}{249}{Full declaration of a type can be deferred to the unit\textquotesingle {}s body\relax }{section.27.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.2}Lambda calculus through generics}{250}{section.27.2}}
\newlabel{469}{{27.2}{250}{Lambda calculus through generics\relax }{section.27.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.3}Compiler Messages}{250}{section.27.3}}
\newlabel{470}{{27.3}{250}{Compiler Messages\relax }{section.27.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.4}Universal integers}{251}{section.27.4}}
\newlabel{471}{{27.4}{251}{Universal integers\relax }{section.27.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.5}I/O}{253}{section.27.5}}
\newlabel{472}{{27.5}{253}{I/O\relax }{section.27.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {27.5.1}Text\@uscore .IO Issues}{253}{subsection.27.5.1}}
\newlabel{473}{{27.5.1}{253}{Text_IO Issues\relax }{subsection.27.5.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.6}Quirks}{253}{section.27.6}}
\newlabel{474}{{27.6}{253}{Quirks\relax }{section.27.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {27.6.1}Stack Size}{253}{subsection.27.6.1}}
\newlabel{475}{{27.6.1}{253}{Stack Size\relax }{subsection.27.6.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.7}References}{254}{section.27.7}}
\newlabel{476}{{27.7}{254}{References\relax }{section.27.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {27.8}See also}{254}{section.27.8}}
\newlabel{477}{{27.8}{254}{See also\relax }{section.27.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {27.8.1}Wikibook}{254}{subsection.27.8.1}}
\newlabel{478}{{27.8.1}{254}{Wikibook\relax }{subsection.27.8.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {27.8.2}Ada Reference Manual}{254}{subsection.27.8.2}}
\newlabel{479}{{27.8.2}{254}{Ada Reference Manual\relax }{subsection.27.8.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {28}Common Errors}{255}{chapter.28}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{480}{{28}{255}{Common Errors\relax }{chapter.28}{}}
\newlabel{481}{{28}{255}{Common Errors\relax }{chapter.28}{}}
\@writefile{toc}{\contentsline {section}{\numberline {28.1}pragma Atomic \& Volatile}{255}{section.28.1}}
\newlabel{482}{{28.1}{255}{pragma Atomic \& Volatile\relax }{section.28.1}{}}
\newlabel{483}{{28.1}{255}{pragma Atomic \& Volatile\relax }{section.28.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {28.2}References}{256}{section.28.2}}
\newlabel{484}{{28.2}{256}{References\relax }{section.28.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {28.3}pragma Pack}{256}{section.28.3}}
\newlabel{485}{{28.3}{256}{pragma Pack\relax }{section.28.3}{}}
\newlabel{486}{{28.3}{256}{pragma Pack\relax }{section.28.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {28.3.1}Exact data representation}{256}{subsection.28.3.1}}
\newlabel{487}{{28.3.1}{256}{Exact data representation\relax }{subsection.28.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {28.3.2}Bit-{}wise operations}{257}{subsection.28.3.2}}
\newlabel{488}{{28.3.2}{257}{Bit-{}wise operations\relax }{subsection.28.3.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {28.4}\textquotesingle {}Bit\@uscore .Order attribute}{257}{section.28.4}}
\newlabel{489}{{28.4}{257}{\textquotesingle {}Bit_Order attribute\relax }{section.28.4}{}}
\newlabel{490}{{28.4}{257}{\textquotesingle {}Bit_Order attribute\relax }{section.28.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {28.5}\textquotesingle {}Size attribute}{257}{section.28.5}}
\newlabel{491}{{28.5}{257}{\textquotesingle {}Size attribute\relax }{section.28.5}{}}
\newlabel{492}{{28.5}{257}{\textquotesingle {}Size attribute\relax }{section.28.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {28.6}See also}{258}{section.28.6}}
\newlabel{493}{{28.6}{258}{See also\relax }{section.28.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {28.6.1}Wikibook}{258}{subsection.28.6.1}}
\newlabel{494}{{28.6.1}{258}{Wikibook\relax }{subsection.28.6.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {28.7}References}{258}{section.28.7}}
\newlabel{495}{{28.7}{258}{References\relax }{section.28.7}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {29}Algorithms}{259}{chapter.29}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{496}{{29}{259}{Algorithms\relax }{chapter.29}{}}
\newlabel{497}{{29}{259}{Algorithms\relax }{chapter.29}{}}
\newlabel{498}{{29}{259}{Algorithms\relax }{chapter.29}{}}
\@writefile{toc}{\contentsline {section}{\numberline {29.1}Introduction}{259}{section.29.1}}
\newlabel{499}{{29.1}{259}{Introduction\relax }{section.29.1}{}}
\newlabel{500}{{29.1}{259}{Introduction\relax }{section.29.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {29.2}Chapter 1: Introduction}{259}{section.29.2}}
\newlabel{501}{{29.2}{259}{Chapter 1: Introduction\relax }{section.29.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {29.2.1}To Lower}{259}{subsection.29.2.1}}
\newlabel{502}{{29.2.1}{259}{To Lower\relax }{subsection.29.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {29.2.2}Equal Ignore Case}{260}{subsection.29.2.2}}
\newlabel{503}{{29.2.2}{260}{Equal Ignore Case\relax }{subsection.29.2.2}{}}
\newlabel{504}{{29.2.2}{260}{Equal Ignore Case\relax }{subsection.29.2.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {29.3}Chapter 6: Dynamic Programming}{261}{section.29.3}}
\newlabel{505}{{29.3}{261}{Chapter 6: Dynamic Programming\relax }{section.29.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {29.3.1}Fibonacci numbers}{261}{subsection.29.3.1}}
\newlabel{506}{{29.3.1}{261}{Fibonacci numbers\relax }{subsection.29.3.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{Simple Implementation}{261}{section*.48}}
\newlabel{507}{{29.3.1}{261}{Simple Implementation\relax }{section*.48}{}}
\@writefile{toc}{\contentsline {subsubsection}{Cached Implementation}{261}{section*.49}}
\newlabel{508}{{29.3.1}{261}{Cached Implementation\relax }{section*.49}{}}
\@writefile{toc}{\contentsline {subsubsection}{Memory Optimized Implementation}{265}{section*.50}}
\newlabel{509}{{}{265}{Memory Optimized Implementation\relax }{section*.50}{}}
\@writefile{toc}{\contentsline {subsubsection}{No 64 bit integers}{265}{section*.51}}
\newlabel{510}{{}{265}{No 64 bit integers\relax }{section*.51}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {30}Function overloading}{267}{chapter.30}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{511}{{30}{267}{Function overloading\relax }{chapter.30}{}}
\newlabel{512}{{30}{267}{Function overloading\relax }{chapter.30}{}}
\@writefile{toc}{\contentsline {section}{\numberline {30.1}Function overloading in Ada}{267}{section.30.1}}
\newlabel{513}{{30.1}{267}{Function overloading in Ada\relax }{section.30.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {30.2}See also}{268}{section.30.2}}
\newlabel{514}{{30.2}{268}{See also\relax }{section.30.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {30.2.1}Wikibook}{268}{subsection.30.2.1}}
\newlabel{515}{{30.2.1}{268}{Wikibook\relax }{subsection.30.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {30.2.2}Ada 95 Reference Manual}{268}{subsection.30.2.2}}
\newlabel{516}{{30.2.2}{268}{Ada 95 Reference Manual\relax }{subsection.30.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {30.2.3}Ada 2005 Reference Manual}{268}{subsection.30.2.3}}
\newlabel{517}{{30.2.3}{268}{Ada 2005 Reference Manual\relax }{subsection.30.2.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {31}Mathematical calculations}{269}{chapter.31}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{518}{{31}{269}{Mathematical calculations\relax }{chapter.31}{}}
\newlabel{519}{{31}{269}{Mathematical calculations\relax }{chapter.31}{}}
\@writefile{toc}{\contentsline {section}{\numberline {31.1}Simple calculations}{269}{section.31.1}}
\newlabel{520}{{31.1}{269}{Simple calculations\relax }{section.31.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.1.1}Addition}{269}{subsection.31.1.1}}
\newlabel{521}{{31.1.1}{269}{Addition\relax }{subsection.31.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.1.2}Subtraction}{270}{subsection.31.1.2}}
\newlabel{522}{{31.1.2}{270}{Subtraction\relax }{subsection.31.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.1.3}Multiplication}{271}{subsection.31.1.3}}
\newlabel{523}{{31.1.3}{271}{Multiplication\relax }{subsection.31.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.1.4}Division}{271}{subsection.31.1.4}}
\newlabel{524}{{31.1.4}{271}{Division\relax }{subsection.31.1.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {31.2}Exponential calculations}{272}{section.31.2}}
\newlabel{525}{{31.2}{272}{Exponential calculations\relax }{section.31.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.2.1}Power of}{272}{subsection.31.2.1}}
\newlabel{526}{{31.2.1}{272}{Power of\relax }{subsection.31.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.2.2}Root}{273}{subsection.31.2.2}}
\newlabel{527}{{31.2.2}{273}{Root\relax }{subsection.31.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.2.3}Logarithm}{273}{subsection.31.2.3}}
\newlabel{528}{{31.2.3}{273}{Logarithm\relax }{subsection.31.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.2.4}Demonstration}{273}{subsection.31.2.4}}
\newlabel{529}{{31.2.4}{273}{Demonstration\relax }{subsection.31.2.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {31.3}Higher math}{275}{section.31.3}}
\newlabel{530}{{31.3}{275}{Higher math\relax }{section.31.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.3.1}Trigonometric calculations}{275}{subsection.31.3.1}}
\newlabel{531}{{31.3.1}{275}{Trigonometric calculations\relax }{subsection.31.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.3.2}Hyperbolic calculations}{277}{subsection.31.3.2}}
\newlabel{532}{{31.3.2}{277}{Hyperbolic calculations\relax }{subsection.31.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.3.3}Complex arithmethic}{278}{subsection.31.3.3}}
\newlabel{533}{{31.3.3}{278}{Complex arithmethic\relax }{subsection.31.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.3.4}Vector and Matrix Arithmetic}{280}{subsection.31.3.4}}
\newlabel{534}{{31.3.4}{280}{Vector and Matrix Arithmetic\relax }{subsection.31.3.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {31.4}See also}{280}{section.31.4}}
\newlabel{535}{{31.4}{280}{See also\relax }{section.31.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.4.1}Wikibook}{280}{subsection.31.4.1}}
\newlabel{536}{{31.4.1}{280}{Wikibook\relax }{subsection.31.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.4.2}Ada 95 Reference Manual}{281}{subsection.31.4.2}}
\newlabel{537}{{31.4.2}{281}{Ada 95 Reference Manual\relax }{subsection.31.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {31.4.3}Ada 2005 Reference Manual}{281}{subsection.31.4.3}}
\newlabel{538}{{31.4.3}{281}{Ada 2005 Reference Manual\relax }{subsection.31.4.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {32}Statements}{283}{chapter.32}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{539}{{32}{283}{Statements\relax }{chapter.32}{}}
\newlabel{540}{{32}{283}{Statements\relax }{chapter.32}{}}
\newlabel{541}{{32}{283}{Statements\relax }{chapter.32}{}}
\newlabel{542}{{32}{283}{Statements\relax }{chapter.32}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {33}Variables}{285}{chapter.33}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{543}{{33}{285}{Variables\relax }{chapter.33}{}}
\newlabel{544}{{33}{285}{Variables\relax }{chapter.33}{}}
\newlabel{545}{{33}{285}{Variables\relax }{chapter.33}{}}
\@writefile{toc}{\contentsline {section}{\numberline {33.1}Assignment statements}{285}{section.33.1}}
\newlabel{546}{{33.1}{285}{Assignment statements\relax }{section.33.1}{}}
\newlabel{547}{{33.1}{285}{Assignment statements\relax }{section.33.1}{}}
\newlabel{548}{{33.1}{285}{Assignment statements\relax }{Item.40}{}}
\@writefile{toc}{\contentsline {section}{\numberline {33.2}Uses}{285}{section.33.2}}
\newlabel{549}{{33.2}{285}{Uses\relax }{section.33.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {33.3}See also}{286}{section.33.3}}
\newlabel{550}{{33.3}{286}{See also\relax }{section.33.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {33.3.1}Ada Reference Manual}{286}{subsection.33.3.1}}
\newlabel{551}{{33.3.1}{286}{Ada Reference Manual\relax }{subsection.33.3.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {34}Lexical elements}{287}{chapter.34}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{552}{{34}{287}{Lexical elements\relax }{chapter.34}{}}
\newlabel{553}{{34}{287}{Lexical elements\relax }{chapter.34}{}}
\@writefile{toc}{\contentsline {section}{\numberline {34.1}Character set}{287}{section.34.1}}
\newlabel{554}{{34.1}{287}{Character set\relax }{section.34.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {34.2}Lexical elements}{287}{section.34.2}}
\newlabel{555}{{34.2}{287}{Lexical elements\relax }{section.34.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.2.1}Identifiers}{288}{subsection.34.2.1}}
\newlabel{556}{{34.2.1}{288}{Identifiers\relax }{subsection.34.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.2.2}Numbers}{288}{subsection.34.2.2}}
\newlabel{557}{{34.2.2}{288}{Numbers\relax }{subsection.34.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.2.3}Character literals}{289}{subsection.34.2.3}}
\newlabel{558}{{34.2.3}{289}{Character literals\relax }{subsection.34.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.2.4}String literals}{289}{subsection.34.2.4}}
\newlabel{559}{{34.2.4}{289}{String literals\relax }{subsection.34.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.2.5}Delimiters}{289}{subsection.34.2.5}}
\newlabel{560}{{34.2.5}{289}{Delimiters\relax }{subsection.34.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.2.6}Comments}{289}{subsection.34.2.6}}
\newlabel{561}{{34.2.6}{289}{Comments\relax }{subsection.34.2.6}{}}
\gdef \LT@xxii {\LT@entry
 {1}{414.51692pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.2.7}Reserved words}{290}{subsection.34.2.7}}
\newlabel{562}{{34.2.7}{290}{Reserved words\relax }{subsection.34.2.7}{}}
\newlabel{563}{{34.2.7}{290}{Reserved words\relax }{subsection.34.2.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {34.3}See also}{291}{section.34.3}}
\newlabel{564}{{34.3}{291}{See also\relax }{section.34.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.3.1}Wikibook}{291}{subsection.34.3.1}}
\newlabel{565}{{34.3.1}{291}{Wikibook\relax }{subsection.34.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {34.3.2}Ada Reference Manual}{291}{subsection.34.3.2}}
\newlabel{566}{{34.3.2}{291}{Ada Reference Manual\relax }{subsection.34.3.2}{}}
\gdef \LT@xxiii {\LT@entry
 {1}{414.51692pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {35}Keywords}{293}{chapter.35}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{567}{{35}{293}{Keywords\relax }{chapter.35}{}}
\newlabel{568}{{35}{293}{Keywords\relax }{chapter.35}{}}
\@writefile{toc}{\contentsline {section}{\numberline {35.1}Language summary keywords}{293}{section.35.1}}
\newlabel{569}{{35.1}{293}{Language summary keywords\relax }{section.35.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {35.2}List of keywords}{293}{section.35.2}}
\newlabel{570}{{35.2}{293}{List of keywords\relax }{section.35.2}{}}
\newlabel{571}{{35.2}{293}{List of keywords\relax }{section.35.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {35.3}See also}{294}{section.35.3}}
\newlabel{572}{{35.3}{294}{See also\relax }{section.35.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {35.3.1}Wikibook}{294}{subsection.35.3.1}}
\newlabel{573}{{35.3.1}{294}{Wikibook\relax }{subsection.35.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {35.3.2}Ada Reference Manual}{295}{subsection.35.3.2}}
\newlabel{574}{{35.3.2}{295}{Ada Reference Manual\relax }{subsection.35.3.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 83}{295}{section*.52}}
\newlabel{575}{{35.3.2}{295}{Ada 83\relax }{section*.52}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{295}{section*.53}}
\newlabel{576}{{35.3.2}{295}{Ada 95\relax }{section*.53}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{295}{section*.54}}
\newlabel{577}{{35.3.2}{295}{Ada 2005\relax }{section*.54}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2012}{295}{section*.55}}
\newlabel{578}{{35.3.2}{295}{Ada 2012\relax }{section*.55}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {35.3.3}Ada Quality and Style Guide}{295}{subsection.35.3.3}}
\newlabel{579}{{35.3.3}{295}{Ada Quality and Style Guide\relax }{subsection.35.3.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {36}Delimiters}{297}{chapter.36}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{580}{{36}{297}{Delimiters\relax }{chapter.36}{}}
\newlabel{581}{{36}{297}{Delimiters\relax }{chapter.36}{}}
\@writefile{toc}{\contentsline {section}{\numberline {36.1}Single character delimiters}{297}{section.36.1}}
\newlabel{582}{{36.1}{297}{Single character delimiters\relax }{section.36.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {36.2}Compound character delimiters}{298}{section.36.2}}
\newlabel{583}{{36.2}{298}{Compound character delimiters\relax }{section.36.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {36.3}Others}{299}{section.36.3}}
\newlabel{584}{{36.3}{299}{Others\relax }{section.36.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {36.4}See also}{299}{section.36.4}}
\newlabel{585}{{36.4}{299}{See also\relax }{section.36.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {36.4.1}Wikibook}{299}{subsection.36.4.1}}
\newlabel{586}{{36.4.1}{299}{Wikibook\relax }{subsection.36.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {36.4.2}Ada 95 Reference Manual}{299}{subsection.36.4.2}}
\newlabel{587}{{36.4.2}{299}{Ada 95 Reference Manual\relax }{subsection.36.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {36.4.3}Ada 2005 Reference Manual}{299}{subsection.36.4.3}}
\newlabel{588}{{36.4.3}{299}{Ada 2005 Reference Manual\relax }{subsection.36.4.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {37}Operators}{301}{chapter.37}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{589}{{37}{301}{Operators\relax }{chapter.37}{}}
\newlabel{590}{{37}{301}{Operators\relax }{chapter.37}{}}
\@writefile{toc}{\contentsline {section}{\numberline {37.1}Standard operators}{301}{section.37.1}}
\newlabel{591}{{37.1}{301}{Standard operators\relax }{section.37.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.1.1}Logical operators}{301}{subsection.37.1.1}}
\newlabel{592}{{37.1.1}{301}{Logical operators\relax }{subsection.37.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.1.2}Relational operators}{301}{subsection.37.1.2}}
\newlabel{593}{{37.1.2}{301}{Relational operators\relax }{subsection.37.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.1.3}Binary adding operators}{302}{subsection.37.1.3}}
\newlabel{594}{{37.1.3}{302}{Binary adding operators\relax }{subsection.37.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.1.4}Unary adding operators}{302}{subsection.37.1.4}}
\newlabel{595}{{37.1.4}{302}{Unary adding operators\relax }{subsection.37.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.1.5}Multiplying operator}{302}{subsection.37.1.5}}
\newlabel{596}{{37.1.5}{302}{Multiplying operator\relax }{subsection.37.1.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.1.6}Highest precedence operator}{303}{subsection.37.1.6}}
\newlabel{597}{{37.1.6}{303}{Highest precedence operator\relax }{subsection.37.1.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {37.2}Short-{}circuit control forms}{303}{section.37.2}}
\newlabel{598}{{37.2}{303}{Short-{}circuit control forms\relax }{section.37.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {37.3}Membership tests}{303}{section.37.3}}
\newlabel{599}{{37.3}{303}{Membership tests\relax }{section.37.3}{}}
\gdef \LT@xxiv {\LT@entry
 {1}{414.51692pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.3.1}Range membership test}{304}{subsection.37.3.1}}
\newlabel{600}{{37.3.1}{304}{Range membership test\relax }{subsection.37.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.3.2}Subtype membership test}{304}{subsection.37.3.2}}
\newlabel{601}{{37.3.2}{304}{Subtype membership test\relax }{subsection.37.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.3.3}Class membership test}{304}{subsection.37.3.3}}
\newlabel{602}{{37.3.3}{304}{Class membership test\relax }{subsection.37.3.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {37.4}See also}{304}{section.37.4}}
\newlabel{603}{{37.4}{304}{See also\relax }{section.37.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.4.1}Wikibook}{304}{subsection.37.4.1}}
\newlabel{604}{{37.4.1}{304}{Wikibook\relax }{subsection.37.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.4.2}Ada 95 Reference Manual}{304}{subsection.37.4.2}}
\newlabel{605}{{37.4.2}{304}{Ada 95 Reference Manual\relax }{subsection.37.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.4.3}Ada 2005 Reference Manual}{304}{subsection.37.4.3}}
\newlabel{606}{{37.4.3}{304}{Ada 2005 Reference Manual\relax }{subsection.37.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {37.4.4}Ada Quality and Style Guide}{304}{subsection.37.4.4}}
\newlabel{607}{{37.4.4}{304}{Ada Quality and Style Guide\relax }{subsection.37.4.4}{}}
\newlabel{608}{{37.4.4}{304}{Ada Quality and Style Guide\relax }{subsection.37.4.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {38}Attributes}{305}{chapter.38}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{609}{{38}{305}{Attributes\relax }{chapter.38}{}}
\newlabel{610}{{38}{305}{Attributes\relax }{chapter.38}{}}
\@writefile{toc}{\contentsline {section}{\numberline {38.1}Language summary attributes}{305}{section.38.1}}
\newlabel{611}{{38.1}{305}{Language summary attributes\relax }{section.38.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {38.2}List of language defined attributes}{305}{section.38.2}}
\newlabel{612}{{38.2}{305}{List of language defined attributes\relax }{section.38.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.1}A {\unhbox \voidb@x \hbox {$-$}} B}{306}{subsection.38.2.1}}
\newlabel{613}{{38.2.1}{306}{A {\mbox {$-$}} B\relax }{subsection.38.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.2}C}{306}{subsection.38.2.2}}
\newlabel{614}{{38.2.2}{306}{C\relax }{subsection.38.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.3}D {\unhbox \voidb@x \hbox {$-$}} F}{306}{subsection.38.2.3}}
\newlabel{615}{{38.2.3}{306}{D {\mbox {$-$}} F\relax }{subsection.38.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.4}G {\unhbox \voidb@x \hbox {$-$}} L}{307}{subsection.38.2.4}}
\newlabel{616}{{38.2.4}{307}{G {\mbox {$-$}} L\relax }{subsection.38.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.5}M}{307}{subsection.38.2.5}}
\newlabel{617}{{38.2.5}{307}{M\relax }{subsection.38.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.6}O {\unhbox \voidb@x \hbox {$-$}} R}{308}{subsection.38.2.6}}
\newlabel{618}{{38.2.6}{308}{O {\mbox {$-$}} R\relax }{subsection.38.2.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.7}S}{309}{subsection.38.2.7}}
\newlabel{619}{{38.2.7}{309}{S\relax }{subsection.38.2.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.8}T {\unhbox \voidb@x \hbox {$-$}} V}{309}{subsection.38.2.8}}
\newlabel{620}{{38.2.8}{309}{T {\mbox {$-$}} V\relax }{subsection.38.2.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.2.9}W {\unhbox \voidb@x \hbox {$-$}} Z}{310}{subsection.38.2.9}}
\newlabel{621}{{38.2.9}{310}{W {\mbox {$-$}} Z\relax }{subsection.38.2.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {38.3}List of implementation defined attributes}{310}{section.38.3}}
\newlabel{622}{{38.3}{310}{List of implementation defined attributes\relax }{section.38.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.3.1}A {\unhbox \voidb@x \hbox {$-$}} D}{311}{subsection.38.3.1}}
\newlabel{623}{{38.3.1}{311}{A {\mbox {$-$}} D\relax }{subsection.38.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.3.2}E {\unhbox \voidb@x \hbox {$-$}} H}{312}{subsection.38.3.2}}
\newlabel{624}{{38.3.2}{312}{E {\mbox {$-$}} H\relax }{subsection.38.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.3.3}I {\unhbox \voidb@x \hbox {$-$}} N}{313}{subsection.38.3.3}}
\newlabel{625}{{38.3.3}{313}{I {\mbox {$-$}} N\relax }{subsection.38.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.3.4}O {\unhbox \voidb@x \hbox {$-$}} T}{313}{subsection.38.3.4}}
\newlabel{626}{{38.3.4}{313}{O {\mbox {$-$}} T\relax }{subsection.38.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.3.5}U {\unhbox \voidb@x \hbox {$-$}} Z}{314}{subsection.38.3.5}}
\newlabel{627}{{38.3.5}{314}{U {\mbox {$-$}} Z\relax }{subsection.38.3.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {38.4}See also}{314}{section.38.4}}
\newlabel{628}{{38.4}{314}{See also\relax }{section.38.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.4.1}Wikibook}{314}{subsection.38.4.1}}
\newlabel{629}{{38.4.1}{314}{Wikibook\relax }{subsection.38.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {38.4.2}Ada Reference Manual}{315}{subsection.38.4.2}}
\newlabel{630}{{38.4.2}{315}{Ada Reference Manual\relax }{subsection.38.4.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 83}{315}{section*.56}}
\newlabel{631}{{38.4.2}{315}{Ada 83\relax }{section*.56}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{315}{section*.57}}
\newlabel{632}{{38.4.2}{315}{Ada 95\relax }{section*.57}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{315}{section*.58}}
\newlabel{633}{{38.4.2}{315}{Ada 2005\relax }{section*.58}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2012}{315}{section*.59}}
\newlabel{634}{{38.4.2}{315}{Ada 2012\relax }{section*.59}{}}
\@writefile{toc}{\contentsline {section}{\numberline {38.5}References}{315}{section.38.5}}
\newlabel{635}{{38.5}{315}{References\relax }{section.38.5}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {39}Pragmas}{317}{chapter.39}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{636}{{39}{317}{Pragmas\relax }{chapter.39}{}}
\newlabel{637}{{39}{317}{Pragmas\relax }{chapter.39}{}}
\@writefile{toc}{\contentsline {section}{\numberline {39.1}Description}{317}{section.39.1}}
\newlabel{638}{{39.1}{317}{Description\relax }{section.39.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {39.2}List of language defined pragmas}{317}{section.39.2}}
\newlabel{639}{{39.2}{317}{List of language defined pragmas\relax }{section.39.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.2.1}A {\unhbox \voidb@x \hbox {$-$}} H}{317}{subsection.39.2.1}}
\newlabel{640}{{39.2.1}{317}{A {\mbox {$-$}} H\relax }{subsection.39.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.2.2}I {\unhbox \voidb@x \hbox {$-$}} O}{318}{subsection.39.2.2}}
\newlabel{641}{{39.2.2}{318}{I {\mbox {$-$}} O\relax }{subsection.39.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.2.3}P {\unhbox \voidb@x \hbox {$-$}} R}{319}{subsection.39.2.3}}
\newlabel{642}{{39.2.3}{319}{P {\mbox {$-$}} R\relax }{subsection.39.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.2.4}S {\unhbox \voidb@x \hbox {$-$}} Z}{319}{subsection.39.2.4}}
\newlabel{643}{{39.2.4}{319}{S {\mbox {$-$}} Z\relax }{subsection.39.2.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {39.3}List of implementation defined pragmas}{320}{section.39.3}}
\newlabel{644}{{39.3}{320}{List of implementation defined pragmas\relax }{section.39.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.3.1}A {\unhbox \voidb@x \hbox {$-$}} C}{320}{subsection.39.3.1}}
\newlabel{645}{{39.3.1}{320}{A {\mbox {$-$}} C\relax }{subsection.39.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.3.2}D {\unhbox \voidb@x \hbox {$-$}} H}{322}{subsection.39.3.2}}
\newlabel{646}{{39.3.2}{322}{D {\mbox {$-$}} H\relax }{subsection.39.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.3.3}I {\unhbox \voidb@x \hbox {$-$}} L}{323}{subsection.39.3.3}}
\newlabel{647}{{39.3.3}{323}{I {\mbox {$-$}} L\relax }{subsection.39.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.3.4}M {\unhbox \voidb@x \hbox {$-$}} P}{324}{subsection.39.3.4}}
\newlabel{648}{{39.3.4}{324}{M {\mbox {$-$}} P\relax }{subsection.39.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.3.5}R {\unhbox \voidb@x \hbox {$-$}} S}{326}{subsection.39.3.5}}
\newlabel{649}{{39.3.5}{326}{R {\mbox {$-$}} S\relax }{subsection.39.3.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.3.6}T {\unhbox \voidb@x \hbox {$-$}} Z}{327}{subsection.39.3.6}}
\newlabel{650}{{39.3.6}{327}{T {\mbox {$-$}} Z\relax }{subsection.39.3.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {39.4}See also}{328}{section.39.4}}
\newlabel{651}{{39.4}{328}{See also\relax }{section.39.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.4.1}Wikibook}{328}{subsection.39.4.1}}
\newlabel{652}{{39.4.1}{328}{Wikibook\relax }{subsection.39.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {39.4.2}Ada Reference Manual}{328}{subsection.39.4.2}}
\newlabel{653}{{39.4.2}{328}{Ada Reference Manual\relax }{subsection.39.4.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 83}{328}{section*.60}}
\newlabel{654}{{39.4.2}{328}{Ada 83\relax }{section*.60}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{328}{section*.61}}
\newlabel{655}{{39.4.2}{328}{Ada 95\relax }{section*.61}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{329}{section*.62}}
\newlabel{656}{{39.4.2}{329}{Ada 2005\relax }{section*.62}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2012}{329}{section*.63}}
\newlabel{657}{{39.4.2}{329}{Ada 2012\relax }{section*.63}{}}
\@writefile{toc}{\contentsline {section}{\numberline {39.5}References}{329}{section.39.5}}
\newlabel{658}{{39.5}{329}{References\relax }{section.39.5}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {40}Libraries}{331}{chapter.40}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{659}{{40}{331}{Libraries\relax }{chapter.40}{}}
\newlabel{660}{{40}{331}{Libraries\relax }{chapter.40}{}}
\@writefile{toc}{\contentsline {section}{\numberline {40.1}Predefined Language Libraries}{331}{section.40.1}}
\newlabel{661}{{40.1}{331}{Predefined Language Libraries\relax }{section.40.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {40.2}Other Language Libraries}{331}{section.40.2}}
\newlabel{662}{{40.2}{331}{Other Language Libraries\relax }{section.40.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {40.3}See also}{332}{section.40.3}}
\newlabel{663}{{40.3}{332}{See also\relax }{section.40.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {40.3.1}Wikibook}{332}{subsection.40.3.1}}
\newlabel{664}{{40.3.1}{332}{Wikibook\relax }{subsection.40.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {40.3.2}Ada Reference Manual}{332}{subsection.40.3.2}}
\newlabel{665}{{40.3.2}{332}{Ada Reference Manual\relax }{subsection.40.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {40.3.3}Resources}{332}{subsection.40.3.3}}
\newlabel{666}{{40.3.3}{332}{Resources\relax }{subsection.40.3.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {41}Libraries: Standard}{333}{chapter.41}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{667}{{41}{333}{Libraries: Standard\relax }{chapter.41}{}}
\newlabel{668}{{41}{333}{Libraries: Standard\relax }{chapter.41}{}}
\@writefile{toc}{\contentsline {section}{\numberline {41.1}Implementation}{333}{section.41.1}}
\newlabel{669}{{41.1}{333}{Implementation\relax }{section.41.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {41.2}Portability}{333}{section.41.2}}
\newlabel{670}{{41.2}{333}{Portability\relax }{section.41.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {41.3}See also}{334}{section.41.3}}
\newlabel{671}{{41.3}{334}{See also\relax }{section.41.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {41.3.1}Wikibook}{334}{subsection.41.3.1}}
\newlabel{672}{{41.3.1}{334}{Wikibook\relax }{subsection.41.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {41.3.2}Ada Reference Manual}{334}{subsection.41.3.2}}
\newlabel{673}{{41.3.2}{334}{Ada Reference Manual\relax }{subsection.41.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {41.3.3}Ada Quality and Style Guide}{335}{subsection.41.3.3}}
\newlabel{674}{{41.3.3}{335}{Ada Quality and Style Guide\relax }{subsection.41.3.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {42}Libraries: Ada}{337}{chapter.42}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{675}{{42}{337}{Libraries: Ada\relax }{chapter.42}{}}
\newlabel{676}{{42}{337}{Libraries: Ada\relax }{chapter.42}{}}
\@writefile{toc}{\contentsline {section}{\numberline {42.1}List of language defined child units}{337}{section.42.1}}
\newlabel{677}{{42.1}{337}{List of language defined child units\relax }{section.42.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.1.1}A {\unhbox \voidb@x \hbox {$-$}} C}{337}{subsection.42.1.1}}
\newlabel{678}{{42.1.1}{337}{A {\mbox {$-$}} C\relax }{subsection.42.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.1.2}D {\unhbox \voidb@x \hbox {$-$}} F}{338}{subsection.42.1.2}}
\newlabel{679}{{42.1.2}{338}{D {\mbox {$-$}} F\relax }{subsection.42.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.1.3}G {\unhbox \voidb@x \hbox {$-$}} R}{339}{subsection.42.1.3}}
\newlabel{680}{{42.1.3}{339}{G {\mbox {$-$}} R\relax }{subsection.42.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.1.4}R {\unhbox \voidb@x \hbox {$-$}} S}{340}{subsection.42.1.4}}
\newlabel{681}{{42.1.4}{340}{R {\mbox {$-$}} S\relax }{subsection.42.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.1.5}T {\unhbox \voidb@x \hbox {$-$}} U}{342}{subsection.42.1.5}}
\newlabel{682}{{42.1.5}{342}{T {\mbox {$-$}} U\relax }{subsection.42.1.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.1.6}W {\unhbox \voidb@x \hbox {$-$}} Z}{343}{subsection.42.1.6}}
\newlabel{683}{{42.1.6}{343}{W {\mbox {$-$}} Z\relax }{subsection.42.1.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {42.2}List of implementation defined child units}{344}{section.42.2}}
\newlabel{684}{{42.2}{344}{List of implementation defined child units\relax }{section.42.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.2.1}A {\unhbox \voidb@x \hbox {$-$}} K}{345}{subsection.42.2.1}}
\newlabel{685}{{42.2.1}{345}{A {\mbox {$-$}} K\relax }{subsection.42.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.2.2}L {\unhbox \voidb@x \hbox {$-$}} Q}{345}{subsection.42.2.2}}
\newlabel{686}{{42.2.2}{345}{L {\mbox {$-$}} Q\relax }{subsection.42.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.2.3}R {\unhbox \voidb@x \hbox {$-$}} Z}{346}{subsection.42.2.3}}
\newlabel{687}{{42.2.3}{346}{R {\mbox {$-$}} Z\relax }{subsection.42.2.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {42.3}See also}{347}{section.42.3}}
\newlabel{688}{{42.3}{347}{See also\relax }{section.42.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.3.1}Wikibook}{347}{subsection.42.3.1}}
\newlabel{689}{{42.3.1}{347}{Wikibook\relax }{subsection.42.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {42.3.2}Ada Reference Manual}{347}{subsection.42.3.2}}
\newlabel{690}{{42.3.2}{347}{Ada Reference Manual\relax }{subsection.42.3.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {43}Libraries: Interfaces}{349}{chapter.43}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{691}{{43}{349}{Libraries: Interfaces\relax }{chapter.43}{}}
\newlabel{692}{{43}{349}{Libraries: Interfaces\relax }{chapter.43}{}}
\@writefile{toc}{\contentsline {section}{\numberline {43.1}Child Packages}{349}{section.43.1}}
\newlabel{693}{{43.1}{349}{Child Packages\relax }{section.43.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {43.2}See also}{350}{section.43.2}}
\newlabel{694}{{43.2}{350}{See also\relax }{section.43.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {43.2.1}Wikibook}{350}{subsection.43.2.1}}
\newlabel{695}{{43.2.1}{350}{Wikibook\relax }{subsection.43.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {43.2.2}Ada Reference Manual}{350}{subsection.43.2.2}}
\newlabel{696}{{43.2.2}{350}{Ada Reference Manual\relax }{subsection.43.2.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 95}{350}{section*.64}}
\newlabel{697}{{43.2.2}{350}{Ada 95\relax }{section*.64}{}}
\@writefile{toc}{\contentsline {subsubsection}{Ada 2005}{350}{section*.65}}
\newlabel{698}{{43.2.2}{350}{Ada 2005\relax }{section*.65}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {44}Libraries: System}{351}{chapter.44}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{699}{{44}{351}{Libraries: System\relax }{chapter.44}{}}
\newlabel{700}{{44}{351}{Libraries: System\relax }{chapter.44}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {45}Libraries: GNAT}{353}{chapter.45}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{701}{{45}{353}{Libraries: GNAT\relax }{chapter.45}{}}
\newlabel{702}{{45}{353}{Libraries: GNAT\relax }{chapter.45}{}}
\@writefile{toc}{\contentsline {section}{\numberline {45.1}Child packages}{353}{section.45.1}}
\newlabel{703}{{45.1}{353}{Child packages\relax }{section.45.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {45.2}See also}{356}{section.45.2}}
\newlabel{704}{{45.2}{356}{See also\relax }{section.45.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {45.2.1}External links}{356}{subsection.45.2.1}}
\newlabel{705}{{45.2.1}{356}{External links\relax }{subsection.45.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {45.2.2}Wikibook}{356}{subsection.45.2.2}}
\newlabel{706}{{45.2.2}{356}{Wikibook\relax }{subsection.45.2.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {46}Libraries: Multi-{}Purpose}{357}{chapter.46}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{707}{{46}{357}{Libraries: Multi-{}Purpose\relax }{chapter.46}{}}
\newlabel{708}{{46}{357}{Libraries: Multi-{}Purpose\relax }{chapter.46}{}}
\@writefile{toc}{\contentsline {section}{\numberline {46.1}See also}{357}{section.46.1}}
\newlabel{709}{{46.1}{357}{See also\relax }{section.46.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {46.1.1}Wikibook}{357}{subsection.46.1.1}}
\newlabel{710}{{46.1.1}{357}{Wikibook\relax }{subsection.46.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {46.1.2}Ada Reference Manual}{357}{subsection.46.1.2}}
\newlabel{711}{{46.1.2}{357}{Ada Reference Manual\relax }{subsection.46.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {46.1.3}References}{357}{subsection.46.1.3}}
\newlabel{712}{{46.1.3}{357}{References\relax }{subsection.46.1.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {47}Libraries: Container}{359}{chapter.47}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{713}{{47}{359}{Libraries: Container\relax }{chapter.47}{}}
\newlabel{714}{{47}{359}{Libraries: Container\relax }{chapter.47}{}}
\@writefile{toc}{\contentsline {section}{\numberline {47.1}See also}{359}{section.47.1}}
\newlabel{715}{{47.1}{359}{See also\relax }{section.47.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {47.1.1}Wikibook}{359}{subsection.47.1.1}}
\newlabel{716}{{47.1.1}{359}{Wikibook\relax }{subsection.47.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {47.1.2}Ada Reference Manual}{359}{subsection.47.1.2}}
\newlabel{717}{{47.1.2}{359}{Ada Reference Manual\relax }{subsection.47.1.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {48}Libraries: GUI}{361}{chapter.48}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{718}{{48}{361}{Libraries: GUI\relax }{chapter.48}{}}
\newlabel{719}{{48}{361}{Libraries: GUI\relax }{chapter.48}{}}
\@writefile{toc}{\contentsline {section}{\numberline {48.1}See also}{361}{section.48.1}}
\newlabel{720}{{48.1}{361}{See also\relax }{section.48.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {48.1.1}Wikibook}{361}{subsection.48.1.1}}
\newlabel{721}{{48.1.1}{361}{Wikibook\relax }{subsection.48.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {48.1.2}Ada Reference Manual}{361}{subsection.48.1.2}}
\newlabel{722}{{48.1.2}{361}{Ada Reference Manual\relax }{subsection.48.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {48.1.3}External Links}{362}{subsection.48.1.3}}
\newlabel{723}{{48.1.3}{362}{External Links\relax }{subsection.48.1.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {49}Libraries: Distributed Systems}{363}{chapter.49}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{724}{{49}{363}{Libraries: Distributed Systems\relax }{chapter.49}{}}
\newlabel{725}{{49}{363}{Libraries: Distributed Systems\relax }{chapter.49}{}}
\@writefile{toc}{\contentsline {section}{\numberline {49.1}See also}{363}{section.49.1}}
\newlabel{726}{{49.1}{363}{See also\relax }{section.49.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {49.1.1}Wikibook}{363}{subsection.49.1.1}}
\newlabel{727}{{49.1.1}{363}{Wikibook\relax }{subsection.49.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {49.1.2}Ada Reference Manual}{363}{subsection.49.1.2}}
\newlabel{728}{{49.1.2}{363}{Ada Reference Manual\relax }{subsection.49.1.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {50}Libraries: Databases}{365}{chapter.50}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{729}{{50}{365}{Libraries: Databases\relax }{chapter.50}{}}
\newlabel{730}{{50}{365}{Libraries: Databases\relax }{chapter.50}{}}
\gdef \LT@xxv {\LT@entry
 {1}{49.95514pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}\LT@entry
 {1}{49.55515pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {51}Libraries: Web}{371}{chapter.51}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{731}{{51}{371}{Libraries: Web\relax }{chapter.51}{}}
\newlabel{732}{{51}{371}{Libraries: Web\relax }{chapter.51}{}}
\@writefile{toc}{\contentsline {section}{\numberline {51.1}See also}{371}{section.51.1}}
\newlabel{733}{{51.1}{371}{See also\relax }{section.51.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {51.1.1}Wikibook}{371}{subsection.51.1.1}}
\newlabel{734}{{51.1.1}{371}{Wikibook\relax }{subsection.51.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {51.1.2}Ada Reference Manual}{371}{subsection.51.1.2}}
\newlabel{735}{{51.1.2}{371}{Ada Reference Manual\relax }{subsection.51.1.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {52}Libraries: Input Output}{373}{chapter.52}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{736}{{52}{373}{Libraries: Input Output\relax }{chapter.52}{}}
\newlabel{737}{{52}{373}{Libraries: Input Output\relax }{chapter.52}{}}
\@writefile{toc}{\contentsline {section}{\numberline {52.1}See also}{373}{section.52.1}}
\newlabel{738}{{52.1}{373}{See also\relax }{section.52.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {52.1.1}Wikibook}{373}{subsection.52.1.1}}
\newlabel{739}{{52.1.1}{373}{Wikibook\relax }{subsection.52.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {52.1.2}Ada Reference Manual}{373}{subsection.52.1.2}}
\newlabel{740}{{52.1.2}{373}{Ada Reference Manual\relax }{subsection.52.1.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {53}Platform Support}{375}{chapter.53}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{741}{{53}{375}{Platform Support\relax }{chapter.53}{}}
\newlabel{742}{{53}{375}{Platform Support\relax }{chapter.53}{}}
\@writefile{toc}{\contentsline {section}{\numberline {53.1}See also}{375}{section.53.1}}
\newlabel{743}{{53.1}{375}{See also\relax }{section.53.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {53.1.1}Wikibook}{375}{subsection.53.1.1}}
\newlabel{744}{{53.1.1}{375}{Wikibook\relax }{subsection.53.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {53.1.2}Ada Reference Manual}{375}{subsection.53.1.2}}
\newlabel{745}{{53.1.2}{375}{Ada Reference Manual\relax }{subsection.53.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {53.1.3}Ada Quality and Style Guide}{375}{subsection.53.1.3}}
\newlabel{746}{{53.1.3}{375}{Ada Quality and Style Guide\relax }{subsection.53.1.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {54}Platform: Linux}{377}{chapter.54}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{747}{{54}{377}{Platform: Linux\relax }{chapter.54}{}}
\newlabel{748}{{54}{377}{Platform: Linux\relax }{chapter.54}{}}
\@writefile{toc}{\contentsline {section}{\numberline {54.1}See also}{377}{section.54.1}}
\newlabel{749}{{54.1}{377}{See also\relax }{section.54.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {54.1.1}Wikibook}{377}{subsection.54.1.1}}
\newlabel{750}{{54.1.1}{377}{Wikibook\relax }{subsection.54.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {54.1.2}Ada Reference Manual}{377}{subsection.54.1.2}}
\newlabel{751}{{54.1.2}{377}{Ada Reference Manual\relax }{subsection.54.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {54.1.3}External resources}{377}{subsection.54.1.3}}
\newlabel{752}{{54.1.3}{377}{External resources\relax }{subsection.54.1.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {55}Platform: Windows}{379}{chapter.55}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{753}{{55}{379}{Platform: Windows\relax }{chapter.55}{}}
\newlabel{754}{{55}{379}{Platform: Windows\relax }{chapter.55}{}}
\@writefile{toc}{\contentsline {section}{\numberline {55.1}See also}{379}{section.55.1}}
\newlabel{755}{{55.1}{379}{See also\relax }{section.55.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {55.1.1}Wikibook}{379}{subsection.55.1.1}}
\newlabel{756}{{55.1.1}{379}{Wikibook\relax }{subsection.55.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {55.1.2}Ada Reference Manual}{379}{subsection.55.1.2}}
\newlabel{757}{{55.1.2}{379}{Ada Reference Manual\relax }{subsection.55.1.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {56}Platform: Virtual Machines}{381}{chapter.56}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{758}{{56}{381}{Platform: Virtual Machines\relax }{chapter.56}{}}
\newlabel{759}{{56}{381}{Platform: Virtual Machines\relax }{chapter.56}{}}
\@writefile{toc}{\contentsline {section}{\numberline {56.1}See also}{381}{section.56.1}}
\newlabel{760}{{56.1}{381}{See also\relax }{section.56.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {56.1.1}Wikibook}{381}{subsection.56.1.1}}
\newlabel{761}{{56.1.1}{381}{Wikibook\relax }{subsection.56.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {56.1.2}Ada Reference Manual}{381}{subsection.56.1.2}}
\newlabel{762}{{56.1.2}{381}{Ada Reference Manual\relax }{subsection.56.1.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {57}Portals}{383}{chapter.57}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{763}{{57}{383}{Portals\relax }{chapter.57}{}}
\newlabel{764}{{57}{383}{Portals\relax }{chapter.57}{}}
\@writefile{toc}{\contentsline {section}{\numberline {57.1}Forges of open-{}source projects}{383}{section.57.1}}
\newlabel{765}{{57.1}{383}{Forges of open-{}source projects\relax }{section.57.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {57.2}Directories of freely available tools and libraries}{383}{section.57.2}}
\newlabel{766}{{57.2}{383}{Directories of freely available tools and libraries\relax }{section.57.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {57.3}Collections of Ada source code}{384}{section.57.3}}
\newlabel{767}{{57.3}{384}{Collections of Ada source code\relax }{section.57.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {57.4}See also}{384}{section.57.4}}
\newlabel{768}{{57.4}{384}{See also\relax }{section.57.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {57.4.1}Wikibook}{384}{subsection.57.4.1}}
\newlabel{769}{{57.4.1}{384}{Wikibook\relax }{subsection.57.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {57.4.2}Ada Reference Manual}{384}{subsection.57.4.2}}
\newlabel{770}{{57.4.2}{384}{Ada Reference Manual\relax }{subsection.57.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {57.4.3}Ada Quality and Style Guide}{385}{subsection.57.4.3}}
\newlabel{771}{{57.4.3}{385}{Ada Quality and Style Guide\relax }{subsection.57.4.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {58}Tutorials}{387}{chapter.58}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{772}{{58}{387}{Tutorials\relax }{chapter.58}{}}
\newlabel{773}{{58}{387}{Tutorials\relax }{chapter.58}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {59}Web 2.0}{389}{chapter.59}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{774}{{59}{389}{Web 2.0\relax }{chapter.59}{}}
\newlabel{775}{{59}{389}{Web 2.0\relax }{chapter.59}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {59.0.4}News \& Blogs}{389}{subsection.59.0.4}}
\newlabel{776}{{59.0.4}{389}{News \& Blogs\relax }{subsection.59.0.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {59.0.5}Forums \& developer rings}{389}{subsection.59.0.5}}
\newlabel{777}{{59.0.5}{389}{Forums \& developer rings\relax }{subsection.59.0.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {59.0.6}General Info}{390}{subsection.59.0.6}}
\newlabel{778}{{59.0.6}{390}{General Info\relax }{subsection.59.0.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {59.0.7}Wikimedia projects}{390}{subsection.59.0.7}}
\newlabel{779}{{59.0.7}{390}{Wikimedia projects\relax }{subsection.59.0.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {59.0.8}Source code}{391}{subsection.59.0.8}}
\newlabel{780}{{59.0.8}{391}{Source code\relax }{subsection.59.0.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {59.0.9}Projects}{391}{subsection.59.0.9}}
\newlabel{781}{{59.0.9}{391}{Projects\relax }{subsection.59.0.9}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {60}Contributors}{393}{chapter.60}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{Contributors}{{60}{393}{Contributors\relax }{chapter.60}{}}
\gdef \LT@xxvi {\LT@entry
 {1}{40.63092pt}\LT@entry
 {1}{263.62187pt}}
\@writefile{toc}{\contentsline {chapter}{List of Figures}{397}{chapter*.66}}
\newlabel{ListOfFigures}{{60}{397}{Contributors\relax }{chapter*.66}{}}
\gdef \LT@xxvii {\LT@entry
 {1}{34.46918pt}\LT@entry
 {1}{272.41708pt}\LT@entry
 {1}{77.40096pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {61}Licenses}{399}{chapter.61}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{Licenses}{{61}{399}{Licenses\relax }{chapter.61}{}}
\@writefile{toc}{\contentsline {section}{\numberline {61.1}GNU GENERAL PUBLIC LICENSE}{399}{section.61.1}}
\@writefile{toc}{\contentsline {section}{\numberline {61.2}GNU Free Documentation License}{400}{section.61.2}}
\@writefile{toc}{\contentsline {section}{\numberline {61.3}GNU Lesser General Public License}{401}{section.61.3}}

main/utf8plainenc.dfu

%%
%% This is file `utf8enc.dfu',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% utf8ienc.dtx (with options: `all')
%%
%% This is a generated file.
%%
%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the LaTeX base system.
%% --
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% http://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file has the LPPL maintenance status "maintained".
%%
%% This file may only be distributed together with a copy of the LaTeX
%% base system. You may however distribute the LaTeX base system without
%% such generated files.
%%
%% The list of all files belonging to the LaTeX base distribution is
%% given in the file `manifest.txt'. See also `legal.txt' for additional
%% information.
%%
%% The list of derived (unpacked) files belonging to the distribution
%% and covered by LPPL is defined by the unpacking scripts (with
%% extension .ins) which are part of the distribution.
 \ProvidesFile{utf8enc.dfu}
 [2008/04/05 v1.1m UTF-8 support for inputenc]
\DeclareUnicodeCharacter{00A1}{\textexclamdown}
\DeclareUnicodeCharacter{00A2}{\textcent}
\DeclareUnicodeCharacter{00A3}{\textsterling}
\DeclareUnicodeCharacter{00A4}{\textcurrency}
\DeclareUnicodeCharacter{00A5}{\textyen}
\DeclareUnicodeCharacter{00A6}{\textbrokenbar}
\DeclareUnicodeCharacter{00A7}{\textsection}
\DeclareUnicodeCharacter{00A8}{\textasciidieresis}
\DeclareUnicodeCharacter{00A9}{\textcopyright}
\DeclareUnicodeCharacter{00AA}{\textordfeminine}
\DeclareUnicodeCharacter{00AB}{\guillemotleft}
\DeclareUnicodeCharacter{00AC}{\textlnot}
\DeclareUnicodeCharacter{00AE}{\textregistered}
\DeclareUnicodeCharacter{00AF}{\textasciimacron}
\DeclareUnicodeCharacter{00B0}{\textdegree}
\DeclareUnicodeCharacter{00B1}{\textpm}
\DeclareUnicodeCharacter{00B2}{\texttwosuperior}
\DeclareUnicodeCharacter{00B3}{\textthreesuperior}
\DeclareUnicodeCharacter{00B4}{\textasciiacute}
\DeclareUnicodeCharacter{00B5}{\textmu} % micro sign
\DeclareUnicodeCharacter{00B6}{\textparagraph}
\DeclareUnicodeCharacter{00B7}{\textperiodcentered}
\DeclareUnicodeCharacter{00B8}{\c\ }
\DeclareUnicodeCharacter{00B9}{\textonesuperior}
\DeclareUnicodeCharacter{00BA}{\textordmasculine}
\DeclareUnicodeCharacter{00BB}{\guillemotright}
\DeclareUnicodeCharacter{00BC}{\textonequarter}
\DeclareUnicodeCharacter{00BD}{\textonehalf}
\DeclareUnicodeCharacter{00BE}{\textthreequarters}
\DeclareUnicodeCharacter{00BF}{\textquestiondown}
\DeclareUnicodeCharacter{00C0}{\@tabacckludge`A}
\DeclareUnicodeCharacter{00C1}{\@tabacckludge'A}
\DeclareUnicodeCharacter{00C2}{\^A}
\DeclareUnicodeCharacter{00C3}{\~A}
\DeclareUnicodeCharacter{00C4}{\"A}
\DeclareUnicodeCharacter{00C5}{\r A}
\DeclareUnicodeCharacter{00C6}{\AE}
\DeclareUnicodeCharacter{00C7}{\c C}
\DeclareUnicodeCharacter{00C8}{\@tabacckludge`E}
\DeclareUnicodeCharacter{00C9}{\@tabacckludge'E}
\DeclareUnicodeCharacter{00CA}{\^E}
\DeclareUnicodeCharacter{00CB}{\"E}
\DeclareUnicodeCharacter{00CC}{\@tabacckludge`I}
\DeclareUnicodeCharacter{00CD}{\@tabacckludge'I}
\DeclareUnicodeCharacter{00CE}{\^I}
\DeclareUnicodeCharacter{00CF}{\"I}
\DeclareUnicodeCharacter{00D0}{\DH}
\DeclareUnicodeCharacter{00D1}{\~N}
\DeclareUnicodeCharacter{00D2}{\@tabacckludge`O}
\DeclareUnicodeCharacter{00D3}{\@tabacckludge'O}
\DeclareUnicodeCharacter{00D4}{\^O}
\DeclareUnicodeCharacter{00D5}{\~O}
\DeclareUnicodeCharacter{00D6}{\"O}
\DeclareUnicodeCharacter{00D7}{\texttimes}
\DeclareUnicodeCharacter{00D8}{\O}
\DeclareUnicodeCharacter{00D9}{\@tabacckludge`U}
\DeclareUnicodeCharacter{00DA}{\@tabacckludge'U}
\DeclareUnicodeCharacter{00DB}{\^U}
\DeclareUnicodeCharacter{00DC}{\"U}
\DeclareUnicodeCharacter{00DD}{\@tabacckludge'Y}
\DeclareUnicodeCharacter{00DE}{\TH}
\DeclareUnicodeCharacter{00DF}{\ss}
\DeclareUnicodeCharacter{00E0}{\@tabacckludge`a}
\DeclareUnicodeCharacter{00E1}{\@tabacckludge'a}
\DeclareUnicodeCharacter{00E2}{\^a}
\DeclareUnicodeCharacter{00E3}{\~a}
\DeclareUnicodeCharacter{00E4}{\"a}
\DeclareUnicodeCharacter{00E5}{\r a}
\DeclareUnicodeCharacter{00E6}{\ae}
\DeclareUnicodeCharacter{00E7}{\c c}
\DeclareUnicodeCharacter{00E8}{\@tabacckludge`e}
\DeclareUnicodeCharacter{00E9}{\@tabacckludge'e}
\DeclareUnicodeCharacter{00EA}{\^e}
\DeclareUnicodeCharacter{00EB}{\"e}
\DeclareUnicodeCharacter{00EC}{\@tabacckludge`\i}
\DeclareUnicodeCharacter{00ED}{\@tabacckludge'\i}
\DeclareUnicodeCharacter{00EE}{\^\i}
\DeclareUnicodeCharacter{00EF}{\"\i}
\DeclareUnicodeCharacter{00F0}{\dh}
\DeclareUnicodeCharacter{00F1}{\~n}
\DeclareUnicodeCharacter{00F2}{\@tabacckludge`o}
\DeclareUnicodeCharacter{00F3}{\@tabacckludge'o}
\DeclareUnicodeCharacter{00F4}{\^o}
\DeclareUnicodeCharacter{00F5}{\~o}
\DeclareUnicodeCharacter{00F6}{\"o}
\DeclareUnicodeCharacter{00F7}{\textdiv}
\DeclareUnicodeCharacter{00F8}{\o}
\DeclareUnicodeCharacter{00F9}{\@tabacckludge`u}
\DeclareUnicodeCharacter{00FA}{\@tabacckludge'u}
\DeclareUnicodeCharacter{00FB}{\^u}
\DeclareUnicodeCharacter{00FC}{\"u}
\DeclareUnicodeCharacter{00FD}{\@tabacckludge'y}
\DeclareUnicodeCharacter{00FE}{\th}
\DeclareUnicodeCharacter{00FF}{\"y}
\DeclareUnicodeCharacter{0102}{\u A}
\DeclareUnicodeCharacter{0103}{\u a}
\DeclareUnicodeCharacter{0104}{\k A}
\DeclareUnicodeCharacter{0105}{\k a}
\DeclareUnicodeCharacter{0106}{\@tabacckludge'C}
\DeclareUnicodeCharacter{0107}{\@tabacckludge'c}
\DeclareUnicodeCharacter{010C}{\v C}
\DeclareUnicodeCharacter{010D}{\v c}
\DeclareUnicodeCharacter{010E}{\v D}
\DeclareUnicodeCharacter{010F}{\v d}
\DeclareUnicodeCharacter{0110}{\DJ}
\DeclareUnicodeCharacter{0111}{\dj}
\DeclareUnicodeCharacter{0118}{\k E}
\DeclareUnicodeCharacter{0119}{\k e}
\DeclareUnicodeCharacter{011A}{\v E}
\DeclareUnicodeCharacter{011B}{\v e}
\DeclareUnicodeCharacter{011E}{\u G}
\DeclareUnicodeCharacter{011F}{\u g}
\DeclareUnicodeCharacter{0130}{\.I}
\DeclareUnicodeCharacter{0131}{\i}
\DeclareUnicodeCharacter{0132}{\IJ}
\DeclareUnicodeCharacter{0133}{\ij}
\DeclareUnicodeCharacter{0139}{\@tabacckludge'L}
\DeclareUnicodeCharacter{013A}{\@tabacckludge'l}
\DeclareUnicodeCharacter{013D}{\v L}
\DeclareUnicodeCharacter{013E}{\v l}
\DeclareUnicodeCharacter{0141}{\L}
\DeclareUnicodeCharacter{0142}{\l}
\DeclareUnicodeCharacter{0143}{\@tabacckludge'N}
\DeclareUnicodeCharacter{0144}{\@tabacckludge'n}
\DeclareUnicodeCharacter{0147}{\v N}
\DeclareUnicodeCharacter{0148}{\v n}
\DeclareUnicodeCharacter{014A}{\NG}
\DeclareUnicodeCharacter{014B}{\ng}
\DeclareUnicodeCharacter{0150}{\H O}
\DeclareUnicodeCharacter{0151}{\H o}
\DeclareUnicodeCharacter{0152}{\OE}
\DeclareUnicodeCharacter{0153}{\oe}
\DeclareUnicodeCharacter{0154}{\@tabacckludge'R}
\DeclareUnicodeCharacter{0155}{\@tabacckludge'r}
\DeclareUnicodeCharacter{0158}{\v R}
\DeclareUnicodeCharacter{0159}{\v r}
\DeclareUnicodeCharacter{015A}{\@tabacckludge'S}
\DeclareUnicodeCharacter{015B}{\@tabacckludge's}
\DeclareUnicodeCharacter{015E}{\c S}
\DeclareUnicodeCharacter{015F}{\c s}
\DeclareUnicodeCharacter{0160}{\v S}
\DeclareUnicodeCharacter{0161}{\v s}
\DeclareUnicodeCharacter{0162}{\c T}
\DeclareUnicodeCharacter{0163}{\c t}
\DeclareUnicodeCharacter{0164}{\v T}
\DeclareUnicodeCharacter{0165}{\v t}
\DeclareUnicodeCharacter{016E}{\r U}
\DeclareUnicodeCharacter{016F}{\r u}
\DeclareUnicodeCharacter{0170}{\H U}
\DeclareUnicodeCharacter{0171}{\H u}
\DeclareUnicodeCharacter{0178}{\"Y}
\DeclareUnicodeCharacter{0179}{\@tabacckludge'Z}
\DeclareUnicodeCharacter{017A}{\@tabacckludge'z}
\DeclareUnicodeCharacter{017B}{\.Z}
\DeclareUnicodeCharacter{017C}{\.z}
\DeclareUnicodeCharacter{017D}{\v Z}
\DeclareUnicodeCharacter{017E}{\v z}
\DeclareUnicodeCharacter{0192}{\textflorin}
\DeclareUnicodeCharacter{02C6}{\textasciicircum}
\DeclareUnicodeCharacter{02C7}{\textasciicaron}
\DeclareUnicodeCharacter{02DC}{\textasciitilde}
\DeclareUnicodeCharacter{02D8}{\textasciibreve}
\DeclareUnicodeCharacter{02DD}{\textacutedbl}
\DeclareUnicodeCharacter{0E3F}{\textbaht}
\DeclareUnicodeCharacter{200C}{\textcompwordmark}
\DeclareUnicodeCharacter{2013}{\textendash}
\DeclareUnicodeCharacter{2014}{\textemdash}
\DeclareUnicodeCharacter{2016}{\textbardbl}
\DeclareUnicodeCharacter{2018}{\textquoteleft}
\DeclareUnicodeCharacter{2019}{\textquoteright}
\DeclareUnicodeCharacter{201A}{\quotesinglbase}
\DeclareUnicodeCharacter{201C}{\textquotedblleft}
\DeclareUnicodeCharacter{201D}{\textquotedblright}
\DeclareUnicodeCharacter{201E}{\quotedblbase}
\DeclareUnicodeCharacter{2020}{\textdagger}
\DeclareUnicodeCharacter{2021}{\textdaggerdbl}
\DeclareUnicodeCharacter{2022}{\textbullet}
\DeclareUnicodeCharacter{2026}{\textellipsis}
\DeclareUnicodeCharacter{2030}{\textperthousand}
\DeclareUnicodeCharacter{2031}{\textpertenthousand}
\DeclareUnicodeCharacter{2039}{\guilsinglleft}
\DeclareUnicodeCharacter{203A}{\guilsinglright}
\DeclareUnicodeCharacter{203B}{\textreferencemark}
\DeclareUnicodeCharacter{203D}{\textinterrobang}
\DeclareUnicodeCharacter{2044}{\textfractionsolidus}
\DeclareUnicodeCharacter{204E}{\textasteriskcentered} % LOW ASTERISK
\DeclareUnicodeCharacter{2052}{\textdiscount}
\DeclareUnicodeCharacter{20A1}{\textcolonmonetary}
\DeclareUnicodeCharacter{20A4}{\textlira}
\DeclareUnicodeCharacter{20A6}{\textnaira}
\DeclareUnicodeCharacter{20A9}{\textwon}
\DeclareUnicodeCharacter{20AB}{\textdong}
\DeclareUnicodeCharacter{20AC}{\texteuro}
\DeclareUnicodeCharacter{20B1}{\textpeso}
\DeclareUnicodeCharacter{2103}{\textcelsius}
\DeclareUnicodeCharacter{2116}{\textnumero}
\DeclareUnicodeCharacter{2117}{\textcircledP}
\DeclareUnicodeCharacter{211E}{\textrecipe}
\DeclareUnicodeCharacter{2120}{\textservicemark}
\DeclareUnicodeCharacter{2122}{\texttrademark}
\DeclareUnicodeCharacter{2126}{\textohm}
\DeclareUnicodeCharacter{2127}{\textmho}
\DeclareUnicodeCharacter{212E}{\textestimated}
\DeclareUnicodeCharacter{2190}{\textleftarrow}
\DeclareUnicodeCharacter{2191}{\textuparrow}
\DeclareUnicodeCharacter{2192}{\textrightarrow}
\DeclareUnicodeCharacter{2193}{\textdownarrow}
\DeclareUnicodeCharacter{2329}{\textlangle}
\DeclareUnicodeCharacter{232A}{\textrangle}
\DeclareUnicodeCharacter{2422}{\textblank}
\DeclareUnicodeCharacter{2423}{\textvisiblespace}
\DeclareUnicodeCharacter{25E6}{\textopenbullet}
\DeclareUnicodeCharacter{25EF}{\textbigcircle}
\DeclareUnicodeCharacter{266A}{\textmusicalnote}

\endinput
%%
%% End of file `utf8enc.dfu'.

images/1.info

main/main.lof

\select@language {english}
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }

main/main.log

This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2012.10.25) 22 MAR 2013 14:11
entering extended mode
 restricted \write18 enabled.
 %&-line parsing enabled.
**main.tex
(./main.tex
LaTeX2e <2011/06/27>
Babel <v3.8m> and hyphenation patterns for english, dumylang, nohyphenation, et
hiopic, farsi, arabic, pinyin, croatian, bulgarian, ukrainian, russian, slovak,
 czech, danish, dutch, usenglishmax, ukenglish, finnish, french, basque, ngerma
n, german, swissgerman, ngerman-x-2012-05-30, german-x-2012-05-30, monogreek, g
reek, ibycus, ancientgreek, hungarian, bengali, tamil, hindi, telugu, gujarati,
 sanskrit, malayalam, kannada, assamese, marathi, oriya, panjabi, italian, lati
n, latvian, lithuanian, mongolian, mongolianlmc, nynorsk, bokmal, indonesian, e
speranto, coptic, welsh, irish, interlingua, serbian, serbianc, slovenian, friu
lan, romansh, estonian, romanian, armenian, uppersorbian, turkish, afrikaans, i
celandic, kurmanji, polish, portuguese, galician, catalan, spanish, swedish, th
ai, loaded.
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hyphsubst.sty
Package: hyphsubst 2008/06/09 v0.2 Substitute hyphenation patterns (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
))
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrbook.cls
Document Class: scrbook 2012/05/15 v3.11 KOMA-Script document class (book)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrkbase.sty
Package: scrkbase 2012/05/15 v3.11 KOMA-Script package (KOMA-Script-dependent b
asics and keyval usage)

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrbase.sty
Package: scrbase 2012/05/15 v3.11 KOMA-Script package (KOMA-Script-independent
basics and keyval usage)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
\KV@toks@=\toks14
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrlfile.sty
Package: scrlfile 2011/03/09 v3.09 KOMA-Script package (loading files)

Package scrlfile, 2011/03/09 v3.09 KOMA-Script package (loading files)
 Copyright (C) Markus Kohm

))) (/usr/share/texlive/texmf-dist/tex/latex/koma-script/tocbasic.sty
Package: tocbasic 2012/04/04 v3.10b KOMA-Script package (handling toc-files)
)
Package tocbasic Info: omitting babel extension for `toc'
(tocbasic) because of feature `nobabel' available
(tocbasic) for `toc' on input line 117.
Package tocbasic Info: omitting babel extension for `lof'
(tocbasic) because of feature `nobabel' available
(tocbasic) for `lof' on input line 118.
Package tocbasic Info: omitting babel extension for `lot'
(tocbasic) because of feature `nobabel' available
(tocbasic) for `lot' on input line 119.
Class scrbook Info: File `scrsize11pt.clo' used to setup font sizes on input li
ne 1366.

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrsize11pt.clo
File: scrsize11pt.clo 2012/05/15 v3.11 KOMA-Script font size class option (11pt
)
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/typearea.sty
Package: typearea 2012/05/15 v3.11 KOMA-Script package (type area)

Package typearea, 2012/05/15 v3.11 KOMA-Script package (type area)
 Copyright (C) Frank Neukam, 1992-1994
 Copyright (C) Markus Kohm, 1994-

\ta@bcor=\skip41
\ta@div=\count79
\ta@hblk=\skip42
\ta@vblk=\skip43
\ta@temp=\skip44
Package typearea Info: These are the values describing the layout:
(typearea) DIV = 13
(typearea) BCOR = 34.1433pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 433.35742pt
(typearea) DIV departure = -10%
(typearea) \evensidemargin = 14.40149pt
(typearea) \oddsidemargin = 5.20905pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 650.20029pt
(typearea) \topmargin = -44.6664pt
(typearea) \headheight = 17.0pt
(typearea) \headsep = 20.40001pt
(typearea) \topskip = 11.0pt
(typearea) \footskip = 47.60002pt
(typearea) \baselineskip = 13.6pt
(typearea) on input line 1211.
)
\c@part=\count80
\c@chapter=\count81
\c@section=\count82
\c@subsection=\count83
\c@subsubsection=\count84
\c@paragraph=\count85
\c@subparagraph=\count86
\abovecaptionskip=\skip45
\belowcaptionskip=\skip46
\c@pti@nb@sid@b@x=\box26
\c@figure=\count87
\c@table=\count88
\bibindent=\dimen102
) (../headers/paper.tex) (../headers/packages1.tex
(/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty
Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package color Info: Driver file: pdftex.def on input line 130.

(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
)
\Gread@gobject=\count89
))
(/usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty
Package: textcomp 2005/09/27 v1.99g Standard LaTeX package
Package textcomp Info: Sub-encoding information:
(textcomp) 5 = only ISO-Adobe without \textcurrency
(textcomp) 4 = 5 + \texteuro
(textcomp) 3 = 4 + \textohm
(textcomp) 2 = 3 + \textestimated + \textcurrency
(textcomp) 1 = TS1 - \textcircled - \t
(textcomp) 0 = TS1 (full)
(textcomp) Font families with sub-encoding setting implement
(textcomp) only a restricted character set as indicated.
(textcomp) Family '?' is the default used for unknown fonts.
(textcomp) See the documentation for details.
Package textcomp Info: Setting ? sub-encoding to TS1/1 on input line 71.

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1enc.def
File: ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file
)
LaTeX Info: Redefining \oldstylenums on input line 266.
Package textcomp Info: Setting cmr sub-encoding to TS1/0 on input line 281.
Package textcomp Info: Setting cmss sub-encoding to TS1/0 on input line 282.
Package textcomp Info: Setting cmtt sub-encoding to TS1/0 on input line 283.
Package textcomp Info: Setting cmvtt sub-encoding to TS1/0 on input line 284.
Package textcomp Info: Setting cmbr sub-encoding to TS1/0 on input line 285.
Package textcomp Info: Setting cmtl sub-encoding to TS1/0 on input line 286.
Package textcomp Info: Setting ccr sub-encoding to TS1/0 on input line 287.
Package textcomp Info: Setting ptm sub-encoding to TS1/4 on input line 288.
Package textcomp Info: Setting pcr sub-encoding to TS1/4 on input line 289.
Package textcomp Info: Setting phv sub-encoding to TS1/4 on input line 290.
Package textcomp Info: Setting ppl sub-encoding to TS1/3 on input line 291.
Package textcomp Info: Setting pag sub-encoding to TS1/4 on input line 292.
Package textcomp Info: Setting pbk sub-encoding to TS1/4 on input line 293.
Package textcomp Info: Setting pnc sub-encoding to TS1/4 on input line 294.
Package textcomp Info: Setting pzc sub-encoding to TS1/4 on input line 295.
Package textcomp Info: Setting bch sub-encoding to TS1/4 on input line 296.
Package textcomp Info: Setting put sub-encoding to TS1/5 on input line 297.
Package textcomp Info: Setting uag sub-encoding to TS1/5 on input line 298.
Package textcomp Info: Setting ugq sub-encoding to TS1/5 on input line 299.
Package textcomp Info: Setting ul8 sub-encoding to TS1/4 on input line 300.
Package textcomp Info: Setting ul9 sub-encoding to TS1/4 on input line 301.
Package textcomp Info: Setting augie sub-encoding to TS1/5 on input line 302.
Package textcomp Info: Setting dayrom sub-encoding to TS1/3 on input line 303.
Package textcomp Info: Setting dayroms sub-encoding to TS1/3 on input line 304.

Package textcomp Info: Setting pxr sub-encoding to TS1/0 on input line 305.
Package textcomp Info: Setting pxss sub-encoding to TS1/0 on input line 306.
Package textcomp Info: Setting pxtt sub-encoding to TS1/0 on input line 307.
Package textcomp Info: Setting txr sub-encoding to TS1/0 on input line 308.
Package textcomp Info: Setting txss sub-encoding to TS1/0 on input line 309.
Package textcomp Info: Setting txtt sub-encoding to TS1/0 on input line 310.
Package textcomp Info: Setting lmr sub-encoding to TS1/0 on input line 311.
Package textcomp Info: Setting lmdh sub-encoding to TS1/0 on input line 312.
Package textcomp Info: Setting lmss sub-encoding to TS1/0 on input line 313.
Package textcomp Info: Setting lmssq sub-encoding to TS1/0 on input line 314.
Package textcomp Info: Setting lmvtt sub-encoding to TS1/0 on input line 315.
Package textcomp Info: Setting qhv sub-encoding to TS1/0 on input line 316.
Package textcomp Info: Setting qag sub-encoding to TS1/0 on input line 317.
Package textcomp Info: Setting qbk sub-encoding to TS1/0 on input line 318.
Package textcomp Info: Setting qcr sub-encoding to TS1/0 on input line 319.
Package textcomp Info: Setting qcs sub-encoding to TS1/0 on input line 320.
Package textcomp Info: Setting qpl sub-encoding to TS1/0 on input line 321.
Package textcomp Info: Setting qtm sub-encoding to TS1/0 on input line 322.
Package textcomp Info: Setting qzc sub-encoding to TS1/0 on input line 323.
Package textcomp Info: Setting qhvc sub-encoding to TS1/0 on input line 324.
Package textcomp Info: Setting futs sub-encoding to TS1/4 on input line 325.
Package textcomp Info: Setting futx sub-encoding to TS1/4 on input line 326.
Package textcomp Info: Setting futj sub-encoding to TS1/4 on input line 327.
Package textcomp Info: Setting hlh sub-encoding to TS1/3 on input line 328.
Package textcomp Info: Setting hls sub-encoding to TS1/3 on input line 329.
Package textcomp Info: Setting hlst sub-encoding to TS1/3 on input line 330.
Package textcomp Info: Setting hlct sub-encoding to TS1/5 on input line 331.
Package textcomp Info: Setting hlx sub-encoding to TS1/5 on input line 332.
Package textcomp Info: Setting hlce sub-encoding to TS1/5 on input line 333.
Package textcomp Info: Setting hlcn sub-encoding to TS1/5 on input line 334.
Package textcomp Info: Setting hlcw sub-encoding to TS1/5 on input line 335.
Package textcomp Info: Setting hlcf sub-encoding to TS1/5 on input line 336.
Package textcomp Info: Setting pplx sub-encoding to TS1/3 on input line 337.
Package textcomp Info: Setting pplj sub-encoding to TS1/3 on input line 338.
Package textcomp Info: Setting ptmx sub-encoding to TS1/4 on input line 339.
Package textcomp Info: Setting ptmj sub-encoding to TS1/4 on input line 340.
)
(/usr/share/texlive/texmf-dist/tex/latex/base/alltt.sty
Package: alltt 1997/06/16 v2.0g defines alltt environment
)
(/usr/share/texlive/texmf-dist/tex/latex/mdwtools/syntax.sty
Package: syntax 1996/05/17 1.07 Syntax typesetting (MDW)
\grammarparsep=\skip47
\grammarindent=\dimen103
\sdstartspace=\skip48
\sdendspace=\skip49
\sdmidskip=\skip50
\sdtokskip=\skip51
\sdfinalskip=\skip52
\sdrulewidth=\dimen104
\sdcirclediam=\dimen105
\sdindent=\dimen106
)
(/usr/share/texlive/texmf-dist/tex/latex/parskip/parskip.sty
Package: parskip 2001/04/09 non-zero parskip adjustments
)
(/usr/share/texlive/texmf-dist/tex/generic/ulem/ulem.sty
\UL@box=\box27
\UL@hyphenbox=\box28
\UL@skip=\skip53
\UL@hook=\toks15
\UL@height=\dimen107
\UL@pe=\count90
\UL@pixel=\dimen108
\ULC@box=\box29
Package: ulem 2012/05/18
\ULdepth=\dimen109
)
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO)
Package hobsub Info: Skipping package `infwarerr' (already loaded).
Package hobsub Info: Skipping package `ltxcmds' (already loaded).
Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
Package ifluatex Info: LuaTeX not detected.
Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
Package ifvtex Info: VTeX not detected.
Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO)
Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
Package ifpdf Info: pdfTeX in PDF mode is detected.
Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds) That can mean that you are not using pdfTeX 1.50 or
(etexcmds) that some package has redefined \expanded.
(etexcmds) In the latter case, load this package earlier.
Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)
Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO
)
Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO)
Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO)
)
Package hobsub Info: Skipping package `hobsub' (already loaded).
Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO)
Package: xcolor-patch 2011/01/30 xcolor patch
Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO)
Package atveryend Info: \enddocument detected (standard20110627).
Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO)
Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO)
Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
)
(/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)
)
\@linkdim=\dimen110
\Hy@linkcounter=\count91
\Hy@pagecounter=\count92

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO)
)
\Hy@SavedSpaceFactor=\count93

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg
File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
)
Package hyperref Info: Option `unicode' set `true' on input line 3941.

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/puenc.def
File: puenc.def 2012/05/13 v6.82q Hyperref: PDF Unicode definition (HO)
)
Package hyperref Info: Hyper figures OFF on input line 4062.
Package hyperref Info: Link nesting OFF on input line 4067.
Package hyperref Info: Hyper index ON on input line 4070.
Package hyperref Info: Plain pages OFF on input line 4077.
Package hyperref Info: Backreferencing OFF on input line 4082.
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
Package hyperref Info: Bookmarks ON on input line 4300.
\c@Hy@tempcnt=\count94

(/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
\Urlmuskip=\muskip10
Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc.
)
LaTeX Info: Redefining \url on input line 4653.
\Fld@menulength=\count95
\Field@Width=\dimen111
\Fld@charsize=\dimen112
Package hyperref Info: Hyper figures OFF on input line 5773.
Package hyperref Info: Link nesting OFF on input line 5778.
Package hyperref Info: Hyper index ON on input line 5781.
Package hyperref Info: backreferencing OFF on input line 5788.
Package hyperref Info: Link coloring OFF on input line 5793.
Package hyperref Info: Link coloring with OCG OFF on input line 5798.
Package hyperref Info: PDF/A mode OFF on input line 5803.
LaTeX Info: Redefining \ref on input line 5843.
LaTeX Info: Redefining \pageref on input line 5847.
\Hy@abspage=\count96
\c@Item=\count97
\c@Hfootnote=\count98
)

Package hyperref Message: Driver: hpdftex.

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX
\Fld@listcount=\count99
\c@bookmark@seq@number=\count100

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
82.
)
\Hy@SectionHShift=\skip54
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/tocstyle.sty
Package: tocstyle 2009/11/09 v0.2d-alpha LaTeX2e KOMA-Script package (versatile
 toc styles)

Package tocstyle Warning: THIS IS AN ALPHA VERSION!
(tocstyle) USAGE OF THIS VERSION IS ON YOUR OWN RISK!
(tocstyle) EVERYTHING MAY HAPPEN!
(tocstyle) EVERYTHING MAY CHANGE IN FUTURE!
(tocstyle) THERE IS NO SUPPORT, IF YOU USE THIS PACKAGE!
(tocstyle) Maybe it would be better, not to load this package.

\tocstyle@indentstyle=\count101
Package tocstyle Info: no tocstyle.cfg found on input line 838.
) (/usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty
Package: paralist 2002/03/18 v2.3b Extended list environments (BS)
\pltopsep=\skip55
\plpartopsep=\skip56
\plitemsep=\skip57
\plparsep=\skip58
\pl@lab=\toks16
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/trace.sty
Package: trace 2003/04/30 v1.1c trace LaTeX code
)
(/usr/share/texlive/texmf-dist/tex/latex/multirow/bigstrut.sty
\bigstrutjot=\dimen113
)
(/usr/share/texlive/texmf-dist/tex/latex/keystroke/keystroke.sty
Package: keystroke 2010/04/23 v1.6 3D keystrokes (SuSE GmbH/RN)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg
File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
)
Package graphics Info: Driver file: pdftex.def on input line 91.
)
\suse@key=\box30
\keystroke@left=\box31
\keystroke@right=\box32
\keystroke@middle=\box33

<keystroke_left.pdf, id=1, 42.1575pt x 195.73125pt>
File: keystroke_left.pdf Graphic file (type pdf)
 <use keystroke_left.pdf>
Package pdftex.def Info: keystroke_left.pdf used on input line 171.
(pdftex.def) Requested size: 42.15738pt x 195.73076pt.

<keystroke_middle.pdf, id=2, 116.435pt x 195.73125pt>
File: keystroke_middle.pdf Graphic file (type pdf)

<use keystroke_middle.pdf>
Package pdftex.def Info: keystroke_middle.pdf used on input line 172.
(pdftex.def) Requested size: 116.43471pt x 195.73076pt.

<keystroke_right.pdf, id=3, 42.1575pt x 195.73125pt>
File: keystroke_right.pdf Graphic file (type pdf)
 <use keystroke_right.pdf>
Package pdftex.def Info: keystroke_right.pdf used on input line 173.
(pdftex.def) Requested size: 42.15738pt x 195.73076pt.
) (/usr/share/texlive/texmf-dist/tex/latex/supertabular/supertabular.sty
Package: supertabular 2004/02/20 v4.1e the supertabular environment
\c@tracingst=\count102
\ST@wd=\dimen114
\ST@rightskip=\skip59
\ST@leftskip=\skip60
\ST@parfillskip=\skip61
\ST@pageleft=\dimen115
\ST@headht=\dimen116
\ST@tailht=\dimen117
\ST@pagesofar=\dimen118
\ST@pboxht=\dimen119
\ST@lineht=\dimen120
\ST@stretchht=\dimen121
\ST@prevht=\dimen122
\ST@toadd=\dimen123
\ST@dimen=\dimen124
\ST@pbox=\box34
)
(/usr/share/texlive/texmf-dist/tex/latex/wrapfig/wrapfig.sty
\wrapoverhang=\dimen125
\WF@size=\dimen126
\c@WF@wrappedlines=\count103
\WF@box=\box35
\WF@everypar=\toks17
Package: wrapfig 2003/01/31 v 3.6
))
(../headers/babel.tex (/var/lib/texmf/tex/generic/babel/babel.sty
Package: babel 2008/07/08 v3.8m The Babel package

(/usr/share/texlive/texmf-dist/tex/generic/babel/english.ldf
Language: english 2005/03/30 v3.3o English support from the babel system

(/usr/share/texlive/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2008/07/08 v3.8m Babel common definitions
\babel@savecnt=\count104
\U@D=\dimen127
)
\l@canadian = a dialect from \language\l@american
\l@australian = a dialect from \language\l@british
\l@newzealand = a dialect from \language\l@british
)))
(../headers/svg.tex) (../headers/packages2.tex
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/mathptmx.sty
Package: mathptmx 2005/04/12 PSNFSS-v9.2a Times w/ Math, improved (SPQR, WaS)
LaTeX Font Info: Redeclaring symbol font `operators' on input line 28.
LaTeX Font Info: Overwriting symbol font `operators' in version `normal'
(Font) OT1/cmr/m/n --> OT1/ztmcm/m/n on input line 28.
LaTeX Font Info: Overwriting symbol font `operators' in version `bold'
(Font) OT1/cmr/bx/n --> OT1/ztmcm/m/n on input line 28.
LaTeX Font Info: Redeclaring symbol font `letters' on input line 29.
LaTeX Font Info: Overwriting symbol font `letters' in version `normal'
(Font) OML/cmm/m/it --> OML/ztmcm/m/it on input line 29.
LaTeX Font Info: Overwriting symbol font `letters' in version `bold'
(Font) OML/cmm/b/it --> OML/ztmcm/m/it on input line 29.
LaTeX Font Info: Redeclaring symbol font `symbols' on input line 30.
LaTeX Font Info: Overwriting symbol font `symbols' in version `normal'
(Font) OMS/cmsy/m/n --> OMS/ztmcm/m/n on input line 30.
LaTeX Font Info: Overwriting symbol font `symbols' in version `bold'
(Font) OMS/cmsy/b/n --> OMS/ztmcm/m/n on input line 30.
LaTeX Font Info: Redeclaring symbol font `largesymbols' on input line 31.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal'
(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold'
(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31.
\symbold=\mathgroup4
\symitalic=\mathgroup5
LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 34.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal'
(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold'
(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34.
LaTeX Font Info: Redeclaring math alphabet \mathit on input line 35.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal'
(Font) OT1/cmr/m/it --> OT1/ptm/m/it on input line 35.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold'
(Font) OT1/cmr/bx/it --> OT1/ptm/m/it on input line 35.
LaTeX Info: Redefining \hbar on input line 50.
)
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/helvet.sty
Package: helvet 2005/04/12 PSNFSS-v9.2a (WaS)
)
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/courier.sty
Package: courier 2005/04/12 PSNFSS-v9.2a (WaS)
)
(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package

(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.def
File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
LaTeX Font Info: Redeclaring font encoding T1 on input line 43.
))
(/usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty)
(/usr/share/texlive/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2011/06/27 v1.7a multicolumn formatting (FMi)
\c@tracingmulticols=\count105
\mult@box=\box36
\multicol@leftmargin=\dimen128
\c@unbalance=\count106
\c@collectmore=\count107
\doublecol@number=\count108
\multicoltolerance=\count109
\multicolpretolerance=\count110
\full@width=\dimen129
\page@free=\dimen130
\premulticols=\dimen131
\postmulticols=\dimen132
\multicolsep=\skip62
\multicolbaselineskip=\skip63
\partial@page=\box37
\last@line=\box38
\mult@rightbox=\box39
\mult@grightbox=\box40
\mult@gfirstbox=\box41
\mult@firstbox=\box42
\@tempa=\box43
\@tempa=\box44
\@tempa=\box45
\@tempa=\box46
\@tempa=\box47
\@tempa=\box48
\@tempa=\box49
\@tempa=\box50
\@tempa=\box51
\@tempa=\box52
\@tempa=\box53
\@tempa=\box54
\@tempa=\box55
\@tempa=\box56
\@tempa=\box57
\@tempa=\box58
\@tempa=\box59
\c@columnbadness=\count111
\c@finalcolumnbadness=\count112
\last@try=\dimen133
\multicolovershoot=\dimen134
\multicolundershoot=\dimen135
\mult@nat@firstbox=\box60
\colbreak@box=\box61
\multicol@sort@counter=\count113
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
Package: array 2008/09/09 v2.4c Tabular extension package (FMi)
\col@sep=\dimen136
\extrarowheight=\dimen137
\NC@list=\toks18
\extratabsurround=\skip64
\backup@length=\skip65
)
(/usr/share/texlive/texmf-dist/tex/latex/ms/ragged2e.sty
Package: ragged2e 2009/05/21 v2.1 ragged2e Package (MS)

(/usr/share/texlive/texmf-dist/tex/latex/ms/everysel.sty
Package: everysel 2011/10/28 v1.2 EverySelectfont Package (MS)
)
\CenteringLeftskip=\skip66
\RaggedLeftLeftskip=\skip67
\RaggedRightLeftskip=\skip68
\CenteringRightskip=\skip69
\RaggedLeftRightskip=\skip70
\RaggedRightRightskip=\skip71
\CenteringParfillskip=\skip72
\RaggedLeftParfillskip=\skip73
\RaggedRightParfillskip=\skip74
\JustifyingParfillskip=\skip75
\CenteringParindent=\skip76
\RaggedLeftParindent=\skip77
\RaggedRightParindent=\skip78
\JustifyingParindent=\skip79
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/longtable.sty
Package: longtable 2004/02/01 v4.11 Multi-page Table package (DPC)
\LTleft=\skip80
\LTright=\skip81
\LTpre=\skip82
\LTpost=\skip83
\LTchunksize=\count114
\LTcapwidth=\dimen138
\LT@head=\box62
\LT@firsthead=\box63
\LT@foot=\box64
\LT@lastfoot=\box65
\LT@cols=\count115
\LT@rows=\count116
\c@LT@tables=\count117
\c@LT@chunks=\count118
\LT@p@ftn=\toks19
)
Class scrbook Info: longtable captions redefined on input line 17.

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrpage2.sty
Package: scrpage2 2010/04/22 v2.5 LaTeX2e KOMA-Script package
LaTeX Info: Redefining \pagemark on input line 176.
)
(/usr/share/texlive/texmf-dist/tex/latex/mdwtools/footnote.sty
Package: footnote 1997/01/28 1.13 Save footnotes around boxes
\fn@notes=\box66
\fn@width=\dimen139
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/verbatim.sty
Package: verbatim 2003/08/22 v1.5q LaTeX2e package for verbatim enhancements
\every@verbatim=\toks20
\verbatim@line=\toks21
\verbatim@in@stream=\read1
)
(/usr/share/texlive/texmf-dist/tex/latex/framed/framed.sty
Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks
\OuterFrameSep=\skip84
\fb@frw=\dimen140
\fb@frh=\dimen141
\FrameRule=\dimen142
\FrameSep=\dimen143
) (./mdframed.sty
Package: mdframed 2010/12/22 v0.6a: mdframed

(/usr/share/texlive/texmf-dist/tex/latex/etex-pkg/etex.sty
Package: etex 1998/03/26 v2.0 eTeX basic definition package (PEB)
\et@xins=\count119
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
Package: calc 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)
\calc@Acount=\count120
\calc@Bcount=\count121
\calc@Adimen=\dimen144
\calc@Bdimen=\dimen145
\calc@Askip=\skip85
\calc@Bskip=\skip86
LaTeX Info: Redefining \setlength on input line 76.
LaTeX Info: Redefining \addtolength on input line 77.
\calc@Ccount=\count122
\calc@Cskip=\skip87
) (./etoolbox.sty
Package: etoolbox 2011/01/03 v2.1 e-TeX tools for LaTeX
\etb@tempcnta=\count123
)
\md@templength=\skip88
\mdf@skipabove@length=\skip89
\mdf@skipbelow@length=\skip90
\mdf@leftmargin@length=\skip91
\mdf@rightmargin@length=\skip92
\mdf@margin@length=\skip93
\mdf@innerleftmargin@length=\skip94
\mdf@innerrightmargin@length=\skip95
\mdf@innertopmargin@length=\skip96
\mdf@innerbottommargin@length=\skip97
\mdf@splittopskip@length=\skip98
\mdf@splitbottomskip@length=\skip99
\mdf@linewidth@length=\skip100
\mdf@innerlinewidth@length=\skip101
\mdf@middlelinewidth@length=\skip102
\mdf@outerlinewidth@length=\skip103
\mdf@roundcorner@length=\skip104

(./md-frame-0.mdf
File: md-frame-3.mdf 2010/12/22 v0.6a: md-frame-0
)
\md@temp@skip@a=\skip105
\md@verticalmarginwhole@length=\skip106
\mdf@xmargin@length=\skip107
\mdf@ymargin@length=\skip108
\mdfboxheight=\skip109
\mdfboxwidth=\skip110
\mdfboundingboxheight=\skip111
\mdfboundingboxwidth=\skip112
\mdfpositionx=\skip113
\mdfpositiony=\skip114
\md@freevspace@length=\skip115
\md@horizontalspaceofbox=\skip116
\md@temp@frame@hsize=\skip117
\md@temp@frame@vsize=\skip118
)
(/usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty
\lst@mode=\count124
\lst@gtempboxa=\box67
\lst@token=\toks22
\lst@length=\count125
\lst@currlwidth=\dimen146
\lst@column=\count126
\lst@pos=\count127
\lst@lostspace=\dimen147
\lst@width=\dimen148
\lst@newlines=\count128
\lst@lineno=\count129
\lst@maxwidth=\dimen149

(/usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty
File: lstmisc.sty 2007/02/22 1.4 (Carsten Heinz)
\c@lstnumber=\count130
\lst@skipnumbers=\count131
\lst@framebox=\box68
)
(/usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg
File: listings.cfg 2007/02/22 1.4 listings configuration
))
Package: listings 2007/02/22 1.4 (Carsten Heinz)

(/usr/share/texlive/texmf-dist/tex/latex/lineno/lineno.sty
Package: lineno 2005/11/02 line numbers on paragraphs v4.41
\linenopenalty=\count132
\output=\toks23
\linenoprevgraf=\count133
\linenumbersep=\dimen150
\linenumberwidth=\dimen151
\c@linenumber=\count134
\c@pagewiselinenumber=\count135
\c@LN@truepage=\count136
\c@internallinenumber=\count137
\c@internallinenumbers=\count138
\quotelinenumbersep=\dimen152
\bframerule=\dimen153
\bframesep=\dimen154
\bframebox=\box69
LaTeX Info: Redefining \\ on input line 3056.
)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2000/07/18 v2.13 AMS math features
\@mathmargin=\skip119

For additional information on amsmath, use the `?' option.
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
Package: amstext 2000/06/29 v2.01

(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0
\@emptytoks=\toks24
\ex@=\dimen155
))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d
\pmbraise@=\dimen156
)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
Package: amsopn 1999/12/14 v2.01 operator names
)
\inf@bad=\count139
LaTeX Info: Redefining \frac on input line 211.
\uproot@=\count140
\leftroot@=\count141
LaTeX Info: Redefining \overline on input line 307.
\classnum@=\count142
\DOTSCASE@=\count143
LaTeX Info: Redefining \ldots on input line 379.
LaTeX Info: Redefining \dots on input line 382.
LaTeX Info: Redefining \cdots on input line 467.
\Mathstrutbox@=\box70
\strutbox@=\box71
\big@size=\dimen157
LaTeX Font Info: Redeclaring font encoding OML on input line 567.
LaTeX Font Info: Redeclaring font encoding OMS on input line 568.
\macc@depth=\count144
\c@MaxMatrixCols=\count145
\dotsspace@=\muskip11
\c@parentequation=\count146
\dspbrk@lvl=\count147
\tag@help=\toks25
\row@=\count148
\column@=\count149
\maxfields@=\count150
\andhelp@=\toks26
\eqnshift@=\dimen158
\alignsep@=\dimen159
\tagshift@=\dimen160
\tagwidth@=\dimen161
\totwidth@=\dimen162
\lineht@=\dimen163
\@envbody=\toks27
\multlinegap=\skip120
\multlinetaggap=\skip121
\mathdisplay@stack=\toks28
LaTeX Info: Redefining \[on input line 2666.
LaTeX Info: Redefining \] on input line 2667.
)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
Package: amssymb 2009/06/22 v3.00

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support
\symAMSa=\mathgroup6
\symAMSb=\mathgroup7
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 96.
))
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/pifont.sty
Package: pifont 2005/04/12 PSNFSS-v9.2a Pi font support (SPQR)
LaTeX Font Info: Try loading font information for U+pzd on input line 63.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/upzd.fd
File: upzd.fd 2001/06/04 font definitions for U/pzd.
)
LaTeX Font Info: Try loading font information for U+psy on input line 64.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/upsy.fd
File: upsy.fd 2001/06/04 font definitions for U/psy.
))
(/usr/share/texlive/texmf-dist/tex/latex/marvosym/marvosym.sty
Package: marvosym 2011/07/20 v2.2 Martin Vogel's Symbols font definitions
)
(/usr/share/texlive/texmf-dist/tex/latex/fourier/fourier-orns.sty
Package: fourier-orns 2004/01/30 1.1 fourier-ornaments package
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
\Gin@req@height=\dimen164
\Gin@req@width=\dimen165
)
(/usr/share/texlive/texmf-dist/tex/latex/wasysym/wasysym.sty
Package: wasysym 2003/10/30 v2.0 Wasy-2 symbol support package
\symwasy=\mathgroup8
LaTeX Font Info: Overwriting symbol font `wasy' in version `bold'
(Font) U/wasy/m/n --> U/wasy/b/n on input line 90.
)
(/usr/share/texlive/texmf-dist/tex/latex/bbm-macros/bbm.sty
Package: bbm 1999/03/15 V 1.2 provides fonts for set symbols - TH
LaTeX Font Info: Overwriting math alphabet `\mathbbm' in version `bold'
(Font) U/bbm/m/n --> U/bbm/bx/n on input line 33.
LaTeX Font Info: Overwriting math alphabet `\mathbbmss' in version `bold'
(Font) U/bbmss/m/n --> U/bbmss/bx/n on input line 35.
)
(/usr/share/texlive/texmf-dist/tex/latex/skull/skull.sty
Package: skull 2002/01/23 v0.1 (c) Henrik Christian Grove <grove@math.ku.dk>
\symSKULL=\mathgroup9
)
(/usr/share/texmf/tex/latex/tipa/tipa.sty
Package: tipa 2002/08/08 TIPA version 1.1

(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package

(/usr/share/texmf/tex/latex/tipa/t3enc.def
File: t3enc.def 2001/12/31 T3 encoding
LaTeX Font Info: Try loading font information for T1+phv on input line 357.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/t1phv.fd
File: t1phv.fd 2001/06/04 scalable font definitions for T1/phv.
)
LaTeX Font Info: Font shape `T1/phv/m/n' will be
(Font) scaled to size 10.07397pt on input line 357.
)
(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.def
File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
LaTeX Font Info: Redeclaring font encoding T1 on input line 43.
)))
(/usr/share/texlive/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty
Package: fancyvrb 2008/02/07

Style option: `fancyvrb' v2.7a, with DG/SPQR fixes, and firstline=lastline fix
<2008/02/07> (tvz)
\FV@CodeLineNo=\count151
\FV@InFile=\read2
\FV@TabBox=\box72
\c@FancyVerbLine=\count152
\FV@StepNumber=\count153
\FV@OutFile=\write3
) (/usr/share/texlive/texmf-dist/tex/latex/bbding/bbding.sty
Package: bbding 1999/04/15 v1.01 Dingbats symbols
) (/usr/share/texmf/tex/latex/xcolor/xcolor.sty
Package: xcolor 2007/01/21 v2.11 LaTeX color extensions (UK)

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package xcolor Info: Driver file: pdftex.def on input line 225.

(/usr/share/texlive/texmf-dist/tex/latex/colortbl/colortbl.sty
Package: colortbl 2012/02/13 v1.0a Color table columns (DPC)
\everycr=\toks29
\minrowclearance=\skip122
)
LaTeX Info: Redefining \color on input line 702.
\rownum=\count154
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1337.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1341.
Package xcolor Info: Model `RGB' extended on input line 1353.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1355.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1356.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1357.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1358.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1359.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1360.
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/microtype.sty
Package: microtype 2010/01/10 v2.4 Micro-typography with pdfTeX (RS)
\MT@toks=\toks30
\MT@count=\count155
LaTeX Info: Redefining \lsstyle on input line 1597.
LaTeX Info: Redefining \lslig on input line 1597.
\MT@outer@space=\skip123
LaTeX Info: Redefining \textls on input line 1605.
\MT@outer@kern=\dimen166
LaTeX Info: Redefining \textmicrotypecontext on input line 2156.
Package microtype Info: Loading configuration file microtype.cfg.

(/usr/share/texlive/texmf-dist/tex/latex/microtype/microtype.cfg
File: microtype.cfg 2010/01/10 v2.4 microtype main configuration file (RS)
))
(/usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
Package: lscape 2000/10/22 v3.01 Landscape Pages (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty
Package: amsthm 2009/07/02 v2.20.1
\thm@style=\toks31
\thm@bodyfont=\toks32
\thm@headfont=\toks33
\thm@notefont=\toks34
\thm@headpunct=\toks35
\thm@preskip=\skip124
\thm@postskip=\skip125
\thm@headsep=\skip126
\dth@everypar=\toks36
))
(../headers/defaultcolors.tex) (../headers/hyphenation.tex)
(../headers/commands.tex
\fnwidth=\skip127
\mylength=\skip128
\myhight=\skip129
\myshadingheight=\skip130
) (/usr/share/texmf/tex/latex/cm-super/type1ec.sty
Package: type1ec 2002/09/07 v1.1 Type1 EC font definitions (for CM-Super fonts)

(/usr/share/texlive/texmf-dist/tex/latex/base/t1cmr.fd
File: t1cmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
))
(/usr/share/texmf/tex/latex/CJK/CJKutf8.sty
Package: CJKutf8 2012/05/07 4.8.3

(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
Package: inputenc 2008/03/30 v1.1d Input encoding file
\inpenc@prehook=\toks37
\inpenc@posthook=\toks38

(/usr/share/texlive/texmf-dist/tex/latex/base/utf8.def
File: utf8.def 2008/04/05 v1.1m UTF-8 support for inputenc
Now handling font encoding OML ...
... no UTF-8 mapping file for font encoding OML
Now handling font encoding T1 ...
... processing UTF-8 mapping file for font encoding T1

(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.dfu
File: t1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A1 (decimal 161)
 defining Unicode char U+00A3 (decimal 163)
 defining Unicode char U+00AB (decimal 171)
 defining Unicode char U+00BB (decimal 187)
 defining Unicode char U+00BF (decimal 191)
 defining Unicode char U+00C0 (decimal 192)
 defining Unicode char U+00C1 (decimal 193)
 defining Unicode char U+00C2 (decimal 194)
 defining Unicode char U+00C3 (decimal 195)
 defining Unicode char U+00C4 (decimal 196)
 defining Unicode char U+00C5 (decimal 197)
 defining Unicode char U+00C6 (decimal 198)
 defining Unicode char U+00C7 (decimal 199)
 defining Unicode char U+00C8 (decimal 200)
 defining Unicode char U+00C9 (decimal 201)
 defining Unicode char U+00CA (decimal 202)
 defining Unicode char U+00CB (decimal 203)
 defining Unicode char U+00CC (decimal 204)
 defining Unicode char U+00CD (decimal 205)
 defining Unicode char U+00CE (decimal 206)
 defining Unicode char U+00CF (decimal 207)
 defining Unicode char U+00D0 (decimal 208)
 defining Unicode char U+00D1 (decimal 209)
 defining Unicode char U+00D2 (decimal 210)
 defining Unicode char U+00D3 (decimal 211)
 defining Unicode char U+00D4 (decimal 212)
 defining Unicode char U+00D5 (decimal 213)
 defining Unicode char U+00D6 (decimal 214)
 defining Unicode char U+00D8 (decimal 216)
 defining Unicode char U+00D9 (decimal 217)
 defining Unicode char U+00DA (decimal 218)
 defining Unicode char U+00DB (decimal 219)
 defining Unicode char U+00DC (decimal 220)
 defining Unicode char U+00DD (decimal 221)
 defining Unicode char U+00DE (decimal 222)
 defining Unicode char U+00DF (decimal 223)
 defining Unicode char U+00E0 (decimal 224)
 defining Unicode char U+00E1 (decimal 225)
 defining Unicode char U+00E2 (decimal 226)
 defining Unicode char U+00E3 (decimal 227)
 defining Unicode char U+00E4 (decimal 228)
 defining Unicode char U+00E5 (decimal 229)
 defining Unicode char U+00E6 (decimal 230)
 defining Unicode char U+00E7 (decimal 231)
 defining Unicode char U+00E8 (decimal 232)
 defining Unicode char U+00E9 (decimal 233)
 defining Unicode char U+00EA (decimal 234)
 defining Unicode char U+00EB (decimal 235)
 defining Unicode char U+00EC (decimal 236)
 defining Unicode char U+00ED (decimal 237)
 defining Unicode char U+00EE (decimal 238)
 defining Unicode char U+00EF (decimal 239)
 defining Unicode char U+00F0 (decimal 240)
 defining Unicode char U+00F1 (decimal 241)
 defining Unicode char U+00F2 (decimal 242)
 defining Unicode char U+00F3 (decimal 243)
 defining Unicode char U+00F4 (decimal 244)
 defining Unicode char U+00F5 (decimal 245)
 defining Unicode char U+00F6 (decimal 246)
 defining Unicode char U+00F8 (decimal 248)
 defining Unicode char U+00F9 (decimal 249)
 defining Unicode char U+00FA (decimal 250)
 defining Unicode char U+00FB (decimal 251)
 defining Unicode char U+00FC (decimal 252)
 defining Unicode char U+00FD (decimal 253)
 defining Unicode char U+00FE (decimal 254)
 defining Unicode char U+00FF (decimal 255)
 defining Unicode char U+0102 (decimal 258)
 defining Unicode char U+0103 (decimal 259)
 defining Unicode char U+0104 (decimal 260)
 defining Unicode char U+0105 (decimal 261)
 defining Unicode char U+0106 (decimal 262)
 defining Unicode char U+0107 (decimal 263)
 defining Unicode char U+010C (decimal 268)
 defining Unicode char U+010D (decimal 269)
 defining Unicode char U+010E (decimal 270)
 defining Unicode char U+010F (decimal 271)
 defining Unicode char U+0110 (decimal 272)
 defining Unicode char U+0111 (decimal 273)
 defining Unicode char U+0118 (decimal 280)
 defining Unicode char U+0119 (decimal 281)
 defining Unicode char U+011A (decimal 282)
 defining Unicode char U+011B (decimal 283)
 defining Unicode char U+011E (decimal 286)
 defining Unicode char U+011F (decimal 287)
 defining Unicode char U+0130 (decimal 304)
 defining Unicode char U+0131 (decimal 305)
 defining Unicode char U+0132 (decimal 306)
 defining Unicode char U+0133 (decimal 307)
 defining Unicode char U+0139 (decimal 313)
 defining Unicode char U+013A (decimal 314)
 defining Unicode char U+013D (decimal 317)
 defining Unicode char U+013E (decimal 318)
 defining Unicode char U+0141 (decimal 321)
 defining Unicode char U+0142 (decimal 322)
 defining Unicode char U+0143 (decimal 323)
 defining Unicode char U+0144 (decimal 324)
 defining Unicode char U+0147 (decimal 327)
 defining Unicode char U+0148 (decimal 328)
 defining Unicode char U+014A (decimal 330)
 defining Unicode char U+014B (decimal 331)
 defining Unicode char U+0150 (decimal 336)
 defining Unicode char U+0151 (decimal 337)
 defining Unicode char U+0152 (decimal 338)
 defining Unicode char U+0153 (decimal 339)
 defining Unicode char U+0154 (decimal 340)
 defining Unicode char U+0155 (decimal 341)
 defining Unicode char U+0158 (decimal 344)
 defining Unicode char U+0159 (decimal 345)
 defining Unicode char U+015A (decimal 346)
 defining Unicode char U+015B (decimal 347)
 defining Unicode char U+015E (decimal 350)
 defining Unicode char U+015F (decimal 351)
 defining Unicode char U+0160 (decimal 352)
 defining Unicode char U+0161 (decimal 353)
 defining Unicode char U+0162 (decimal 354)
 defining Unicode char U+0163 (decimal 355)
 defining Unicode char U+0164 (decimal 356)
 defining Unicode char U+0165 (decimal 357)
 defining Unicode char U+016E (decimal 366)
 defining Unicode char U+016F (decimal 367)
 defining Unicode char U+0170 (decimal 368)
 defining Unicode char U+0171 (decimal 369)
 defining Unicode char U+0178 (decimal 376)
 defining Unicode char U+0179 (decimal 377)
 defining Unicode char U+017A (decimal 378)
 defining Unicode char U+017B (decimal 379)
 defining Unicode char U+017C (decimal 380)
 defining Unicode char U+017D (decimal 381)
 defining Unicode char U+017E (decimal 382)
 defining Unicode char U+200C (decimal 8204)
 defining Unicode char U+2013 (decimal 8211)
 defining Unicode char U+2014 (decimal 8212)
 defining Unicode char U+2018 (decimal 8216)
 defining Unicode char U+2019 (decimal 8217)
 defining Unicode char U+201A (decimal 8218)
 defining Unicode char U+201C (decimal 8220)
 defining Unicode char U+201D (decimal 8221)
 defining Unicode char U+201E (decimal 8222)
 defining Unicode char U+2030 (decimal 8240)
 defining Unicode char U+2031 (decimal 8241)
 defining Unicode char U+2039 (decimal 8249)
 defining Unicode char U+203A (decimal 8250)
 defining Unicode char U+2423 (decimal 9251)
)
Now handling font encoding OT1 ...
... processing UTF-8 mapping file for font encoding OT1

(/usr/share/texlive/texmf-dist/tex/latex/base/ot1enc.dfu
File: ot1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A1 (decimal 161)
 defining Unicode char U+00A3 (decimal 163)
 defining Unicode char U+00B8 (decimal 184)
 defining Unicode char U+00BF (decimal 191)
 defining Unicode char U+00C5 (decimal 197)
 defining Unicode char U+00C6 (decimal 198)
 defining Unicode char U+00D8 (decimal 216)
 defining Unicode char U+00DF (decimal 223)
 defining Unicode char U+00E6 (decimal 230)
 defining Unicode char U+00EC (decimal 236)
 defining Unicode char U+00ED (decimal 237)
 defining Unicode char U+00EE (decimal 238)
 defining Unicode char U+00EF (decimal 239)
 defining Unicode char U+00F8 (decimal 248)
 defining Unicode char U+0131 (decimal 305)
 defining Unicode char U+0141 (decimal 321)
 defining Unicode char U+0142 (decimal 322)
 defining Unicode char U+0152 (decimal 338)
 defining Unicode char U+0153 (decimal 339)
 defining Unicode char U+2013 (decimal 8211)
 defining Unicode char U+2014 (decimal 8212)
 defining Unicode char U+2018 (decimal 8216)
 defining Unicode char U+2019 (decimal 8217)
 defining Unicode char U+201C (decimal 8220)
 defining Unicode char U+201D (decimal 8221)
)
Now handling font encoding OMS ...
... processing UTF-8 mapping file for font encoding OMS

(/usr/share/texlive/texmf-dist/tex/latex/base/omsenc.dfu
File: omsenc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A7 (decimal 167)
 defining Unicode char U+00B6 (decimal 182)
 defining Unicode char U+00B7 (decimal 183)
 defining Unicode char U+2020 (decimal 8224)
 defining Unicode char U+2021 (decimal 8225)
 defining Unicode char U+2022 (decimal 8226)
)
Now handling font encoding OMX ...
... no UTF-8 mapping file for font encoding OMX
Now handling font encoding U ...
... no UTF-8 mapping file for font encoding U
Now handling font encoding TS1 ...
... processing UTF-8 mapping file for font encoding TS1

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1enc.dfu
File: ts1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A2 (decimal 162)
 defining Unicode char U+00A3 (decimal 163)
 defining Unicode char U+00A4 (decimal 164)
 defining Unicode char U+00A5 (decimal 165)
 defining Unicode char U+00A6 (decimal 166)
 defining Unicode char U+00A7 (decimal 167)
 defining Unicode char U+00A8 (decimal 168)
 defining Unicode char U+00A9 (decimal 169)
 defining Unicode char U+00AA (decimal 170)
 defining Unicode char U+00AC (decimal 172)
 defining Unicode char U+00AE (decimal 174)
 defining Unicode char U+00AF (decimal 175)
 defining Unicode char U+00B0 (decimal 176)
 defining Unicode char U+00B1 (decimal 177)
 defining Unicode char U+00B2 (decimal 178)
 defining Unicode char U+00B3 (decimal 179)
 defining Unicode char U+00B4 (decimal 180)
 defining Unicode char U+00B5 (decimal 181)
 defining Unicode char U+00B6 (decimal 182)
 defining Unicode char U+00B7 (decimal 183)
 defining Unicode char U+00B9 (decimal 185)
 defining Unicode char U+00BA (decimal 186)
 defining Unicode char U+00BC (decimal 188)
 defining Unicode char U+00BD (decimal 189)
 defining Unicode char U+00BE (decimal 190)
 defining Unicode char U+00D7 (decimal 215)
 defining Unicode char U+00F7 (decimal 247)
 defining Unicode char U+0192 (decimal 402)
 defining Unicode char U+02C7 (decimal 711)
 defining Unicode char U+02D8 (decimal 728)
 defining Unicode char U+02DD (decimal 733)
 defining Unicode char U+0E3F (decimal 3647)
 defining Unicode char U+2016 (decimal 8214)
 defining Unicode char U+2020 (decimal 8224)
 defining Unicode char U+2021 (decimal 8225)
 defining Unicode char U+2022 (decimal 8226)
 defining Unicode char U+2030 (decimal 8240)
 defining Unicode char U+2031 (decimal 8241)
 defining Unicode char U+203B (decimal 8251)
 defining Unicode char U+203D (decimal 8253)
 defining Unicode char U+2044 (decimal 8260)
 defining Unicode char U+204E (decimal 8270)
 defining Unicode char U+2052 (decimal 8274)
 defining Unicode char U+20A1 (decimal 8353)
 defining Unicode char U+20A4 (decimal 8356)
 defining Unicode char U+20A6 (decimal 8358)
 defining Unicode char U+20A9 (decimal 8361)
 defining Unicode char U+20AB (decimal 8363)
 defining Unicode char U+20AC (decimal 8364)
 defining Unicode char U+20B1 (decimal 8369)
 defining Unicode char U+2103 (decimal 8451)
 defining Unicode char U+2116 (decimal 8470)
 defining Unicode char U+2117 (decimal 8471)
 defining Unicode char U+211E (decimal 8478)
 defining Unicode char U+2120 (decimal 8480)
 defining Unicode char U+2122 (decimal 8482)
 defining Unicode char U+2126 (decimal 8486)
 defining Unicode char U+2127 (decimal 8487)
 defining Unicode char U+212E (decimal 8494)
 defining Unicode char U+2190 (decimal 8592)
 defining Unicode char U+2191 (decimal 8593)
 defining Unicode char U+2192 (decimal 8594)
 defining Unicode char U+2193 (decimal 8595)
 defining Unicode char U+2329 (decimal 9001)
 defining Unicode char U+232A (decimal 9002)
 defining Unicode char U+2422 (decimal 9250)
 defining Unicode char U+25E6 (decimal 9702)
 defining Unicode char U+25EF (decimal 9711)
 defining Unicode char U+266A (decimal 9834)
)
Now handling font encoding PD1 ...
... no UTF-8 mapping file for font encoding PD1
Now handling font encoding PU ...
... no UTF-8 mapping file for font encoding PU
Now handling font encoding T3 ...
... no UTF-8 mapping file for font encoding T3
 defining Unicode char U+00A9 (decimal 169)
 defining Unicode char U+00AA (decimal 170)
 defining Unicode char U+00AE (decimal 174)
 defining Unicode char U+00BA (decimal 186)
 defining Unicode char U+02C6 (decimal 710)
 defining Unicode char U+02DC (decimal 732)
 defining Unicode char U+200C (decimal 8204)
 defining Unicode char U+2026 (decimal 8230)
 defining Unicode char U+2122 (decimal 8482)
 defining Unicode char U+2423 (decimal 9251)
))
(/usr/share/texmf/tex/latex/CJK/CJK.sty
Package: CJK 2012/05/07 4.8.3

(/usr/share/texmf/tex/latex/CJK/mule/MULEenc.sty
Package: MULEenc 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/CJK.enc
File: CJK.enc 2012/05/07 4.8.3
Now handling font encoding C00 ...
... no UTF-8 mapping file for font encoding C00
Now handling font encoding C05 ...
... no UTF-8 mapping file for font encoding C05
Now handling font encoding C09 ...
... no UTF-8 mapping file for font encoding C09
Now handling font encoding C10 ...
... no UTF-8 mapping file for font encoding C10
Now handling font encoding C20 ...
... no UTF-8 mapping file for font encoding C20
Now handling font encoding C19 ...
... no UTF-8 mapping file for font encoding C19
Now handling font encoding C40 ...
... no UTF-8 mapping file for font encoding C40
Now handling font encoding C42 ...
... no UTF-8 mapping file for font encoding C42
Now handling font encoding C43 ...
... no UTF-8 mapping file for font encoding C43
Now handling font encoding C50 ...
... no UTF-8 mapping file for font encoding C50
Now handling font encoding C52 ...
... no UTF-8 mapping file for font encoding C52
Now handling font encoding C49 ...
... no UTF-8 mapping file for font encoding C49
Now handling font encoding C60 ...
... no UTF-8 mapping file for font encoding C60
Now handling font encoding C61 ...
... no UTF-8 mapping file for font encoding C61
Now handling font encoding C63 ...
... no UTF-8 mapping file for font encoding C63
Now handling font encoding C64 ...
... no UTF-8 mapping file for font encoding C64
Now handling font encoding C65 ...
... no UTF-8 mapping file for font encoding C65
Now handling font encoding C70 ...
... no UTF-8 mapping file for font encoding C70
Now handling font encoding C31 ...
... no UTF-8 mapping file for font encoding C31
Now handling font encoding C32 ...
... no UTF-8 mapping file for font encoding C32
Now handling font encoding C33 ...
... no UTF-8 mapping file for font encoding C33
Now handling font encoding C34 ...
... no UTF-8 mapping file for font encoding C34
Now handling font encoding C35 ...
... no UTF-8 mapping file for font encoding C35
Now handling font encoding C36 ...
... no UTF-8 mapping file for font encoding C36
Now handling font encoding C37 ...
... no UTF-8 mapping file for font encoding C37
Now handling font encoding C80 ...
... no UTF-8 mapping file for font encoding C80
Now handling font encoding C81 ...
... no UTF-8 mapping file for font encoding C81
Now handling font encoding C01 ...
... no UTF-8 mapping file for font encoding C01
Now handling font encoding C11 ...
... no UTF-8 mapping file for font encoding C11
Now handling font encoding C21 ...
... no UTF-8 mapping file for font encoding C21
Now handling font encoding C41 ...
... no UTF-8 mapping file for font encoding C41
Now handling font encoding C62 ...
... no UTF-8 mapping file for font encoding C62
)
LaTeX Info: Redefining \selectfont on input line 755.
\CJK@indent=\box73
)
(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package
))
(/usr/share/texmf/tex/latex/CJK/ruby.sty
Package: ruby 2012/05/07 4.8.3
\ruby@width=\dimen167
)
(/usr/share/texmf/tex/latex/CJK/CJKulem.sty
Package: CJKulem 2012/05/07 4.8.3
\UL@lastkern=\dimen168
\CJK@skip=\skip131
) (../headers/title.tex)
(../headers/options.tex
LaTeX Font Info: Try loading font information for T1+ptm on input line 13.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/t1ptm.fd
File: t1ptm.fd 2001/06/04 font definitions for T1/ptm.
)

Package typearea Warning: Bad type area settings!
(typearea) The detected line width is about 18%
(typearea) larger than the heuristically detected line width.
(typearea) You should e.g. decrease DIV, increase fontsize
(typearea) or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea) DIV = 13
(typearea) BCOR = 34.1433pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 433.35742pt
(typearea) DIV departure = -18%
(typearea) \evensidemargin = 14.40149pt
(typearea) \oddsidemargin = 5.20905pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 650.20029pt
(typearea) \topmargin = -44.6664pt
(typearea) \headheight = 17.0pt
(typearea) \headsep = 20.40001pt
(typearea) \topskip = 11.0pt
(typearea) \footskip = 47.60002pt
(typearea) \baselineskip = 13.6pt
(typearea) on input line 13.
) (../headers/formattings.tex
Package hyperref Info: Option `breaklinks' set `true' on input line 17.
Package hyperref Info: Option `colorlinks' set `false' on input line 17.
Package hyperref Info: Option `bookmarksopen' set `true' on input line 17.
Package hyperref Info: Option `bookmarksnumbered' set `true' on input line 17.
Package hyperref Info: Option `frenchlinks' set `false' on input line 17.
) (../headers/unicodes.tex)
(../headers/templates.tex
\wbtemplengtha=\skip132
\wbtemplengthb=\skip133
\wbtemplengthc=\skip134
\wbtemplengthd=\skip135
\wbtemplengthe=\skip136
\wbtempcounta=\count156
\wbtempcountb=\count157
\wbtempcountc=\count158

! LaTeX Error: Command \AdaSGOne already defined.
 Or name \end... illegal, see p.192 of the manual.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.222 ...GOne}[2]{\myfnhref{_#1/}{Chapter #1: #2}}

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: Command \PDFLink already defined.
 Or name \end... illegal, see p.192 of the manual.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.653 \newcommand{\PDFLink}[1]{#1 PDF}

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

\c@satz=\count159
\c@beweis=\count160
\c@beispiel=\count161
\c@mydef=\count162
) (../headers/templates-dirk.tex) (../headers/templates-chemie.tex)
(/usr/share/texmf/tex/latex/lm/lmodern.sty
Package: lmodern 2009/10/30 v1.6 Latin Modern Fonts
LaTeX Font Info: Overwriting symbol font `operators' in version `normal'
(Font) OT1/ztmcm/m/n --> OT1/lmr/m/n on input line 22.
LaTeX Font Info: Overwriting symbol font `letters' in version `normal'
(Font) OML/ztmcm/m/it --> OML/lmm/m/it on input line 23.
LaTeX Font Info: Overwriting symbol font `symbols' in version `normal'
(Font) OMS/ztmcm/m/n --> OMS/lmsy/m/n on input line 24.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal'
(Font) OMX/ztmcm/m/n --> OMX/lmex/m/n on input line 25.
LaTeX Font Info: Overwriting symbol font `operators' in version `bold'
(Font) OT1/ztmcm/m/n --> OT1/lmr/bx/n on input line 26.
LaTeX Font Info: Overwriting symbol font `letters' in version `bold'
(Font) OML/ztmcm/m/it --> OML/lmm/b/it on input line 27.
LaTeX Font Info: Overwriting symbol font `symbols' in version `bold'
(Font) OMS/ztmcm/m/n --> OMS/lmsy/b/n on input line 28.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold'
(Font) OMX/ztmcm/m/n --> OMX/lmex/m/n on input line 29.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal'
(Font) OT1/ptm/bx/n --> OT1/lmr/bx/n on input line 31.
LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal'
(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal'
(Font) OT1/ptm/m/it --> OT1/lmr/m/it on input line 33.
LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal'
(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold'
(Font) OT1/ptm/bx/n --> OT1/lmr/bx/n on input line 35.
LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold'
(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold'
(Font) OT1/ptm/m/it --> OT1/lmr/bx/it on input line 37.
LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold'
(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38.
) (./main.aux)
\openout1 = `main.aux'.

LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 23.
LaTeX Font Info: Try loading font information for TS1+cmr on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1cmr.fd
File: ts1cmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for T3/cmr/m/n on input line 23.
LaTeX Font Info: Try loading font information for T3+cmr on input line 23.

(/usr/share/texmf/tex/latex/tipa/t3cmr.fd
File: t3cmr.fd 2001/12/31 TIPA font definitions
)
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C00/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C05/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C09/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C10/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C20/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C19/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C40/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C42/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C43/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C50/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C52/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C49/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C60/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C61/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C63/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C64/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C65/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C70/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C31/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C32/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C33/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C34/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C35/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C36/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C37/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C80/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C81/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C01/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C11/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C21/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C41/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C62/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Try loading font information for T1+lmr on input line 23.

(/usr/share/texmf/tex/latex/lm/t1lmr.fd
File: t1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
(/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count163
\scratchdimen=\dimen169
\scratchbox=\box74
\nofMPsegments=\count164
\nofMParguments=\count165
\everyMPshowfont=\toks39
\MPscratchCnt=\count166
\MPscratchDim=\dimen170
\MPnumerator=\count167
\makeMPintoPDFobject=\count168
\everyMPtoPDFconversion=\toks40
)
\AtBeginShipoutBox=\box75
Package hyperref Info: Link coloring OFF on input line 23.
 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO)
)
\c@section@level=\count169
)
LaTeX Info: Redefining \ref on input line 23.
LaTeX Info: Redefining \pageref on input line 23.
LaTeX Info: Redefining \nameref on input line 23.

(./main.out) (./main.out)
\@outlinefile=\write4
\openout4 = `main.out'.

LaTeX Font Info: Try loading font information for T1+lmss on input line 23.
 (/usr/share/texmf/tex/latex/lm/t1lmss.fd
File: t1lmss.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
Package tocstyle Info: prepare \l@part for redefinition on input line 23.
Package tocstyle Info: prepare \l@chapter for redefinition on input line 23.
Package tocstyle Info: prepare \l@section for redefinition on input line 23.
LaTeX Font Info: Try loading font information for OT1+lmr on input line 23.

(/usr/share/texmf/tex/latex/lm/ot1lmr.fd
File: ot1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: Try loading font information for OML+lmm on input line 23.

(/usr/share/texmf/tex/latex/lm/omllmm.fd
File: omllmm.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: Try loading font information for OMS+lmsy on input line 23.

(/usr/share/texmf/tex/latex/lm/omslmsy.fd
File: omslmsy.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: Try loading font information for OMX+lmex on input line 23.

(/usr/share/texmf/tex/latex/lm/omxlmex.fd
File: omxlmex.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <10.95> on input line 23.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <8> on input line 23.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <6> on input line 23.
LaTeX Font Info: Try loading font information for OT1+ptm on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
)
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10.95> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <8> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <6> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info: Try loading font information for U+msa on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2009/06/22 v3.00 AMS symbols A
)
LaTeX Font Info: Try loading font information for U+msb on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
File: umsb.fd 2009/06/22 v3.00 AMS symbols B
)
LaTeX Font Info: Try loading font information for U+wasy on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/wasysym/uwasy.fd
File: uwasy.fd 2003/10/30 v2.0 Wasy-2 symbol font definitions
)
Package tocstyle Info: prepare \l@subsection for redefinition on input line 23.

Package tocstyle Info: prepare \l@table for redefinition on input line 23.
Package tocstyle Info: prepare \l@figure for redefinition on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO)
)
Package grfext Info: Graphics extension search list:
(grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
G,.JBIG2,.JB2,.eps]
(grfext) \AppendGraphicsExtensions on input line 452.

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))

Class scrbook Warning: discard change of \selectfont.

ABD: EverySelectfont initializing macros

LaTeX Warning: Command \selectfont has changed.
 Check if current package is valid.

LaTeX Info: Redefining \selectfont on input line 23.
\c@lstlisting=\count170
LaTeX Info: Redefining \microtypecontext on input line 23.
Package microtype Info: Generating PDF output.
Package microtype Info: Character protrusion enabled (level 2).
Package microtype Info: Using default protrusion set `alltext'.
Package microtype Info: Automatic font expansion enabled (level 2),
(microtype) stretch: 20, shrink: 20, step: 1, non-selected.
Package microtype Info: Using default expansion set `basictext'.
Package microtype Info: No tracking.
Package microtype Info: No adjustment of interword spacing.
Package microtype Info: No adjustment of character kerning.
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-cmr.cfg
File: mt-cmr.cfg 2009/11/09 v2.0 microtype config. file: Computer Modern Roman
(RS)
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.bdg
File: UTF8.bdg 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.enc
File: UTF8.enc 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.chr
File: UTF8.chr 2012/05/07 4.8.3
)
exclude:
exclude:
exclude:
exclude:
exclude:
exclude:
exclude:
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <14.4> on input line 34.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <14.4> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-ptm.cfg
File: mt-ptm.cfg 2006/04/20 v1.7 microtype config. file: Times (RS)
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-msa.cfg
File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS)
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-msb.cfg
File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS)
)

LaTeX Warning: No \author given.

[1

{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <10> on input line 34.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <7.4> on input line 34.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 34.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7.4> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 34.
LaTeX Font Info: Try loading font information for T1+lmtt on input line 34.

(/usr/share/texmf/tex/latex/lm/t1lmtt.fd
File: t1lmtt.fd 2009/10/30 v1.6 Font defs for Latin Modern
) [2

]
Package tocbasic Info: character protrusion at toc deactivated on input line 37
.
 (./main.toc
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
Runaway argument?
{\numberline {2.10}Rational Apex from Atego (formerly IBM Rational\let \ETC.
! Paragraph ended before \contentsline was complete.
<to be read again>
 \par
l.51 ...y IBM Rational\let \reserved@d =[\def \par
 }{26}{section.2.10}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
l.51 ...IBM Rational\let \reserved@d =[\def \par }
 {26}{section.2.10}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
[3

]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
[4]
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
LaTeX Font Info: Try loading font information for TS1+lmr on input line 194.

(/usr/share/texmf/tex/latex/lm/ts1lmr.fd
File: ts1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
[5]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
[6]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
[7]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
[8]
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
[9]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 18.8887pt
)
\tf@toc=\write5
\openout5 = `main.toc'.

 [1] [2

]
Chapter 1.

Class scrbook Warning: \float@addtolists detected!
(scrbook) You should use the features of package `tocbasic'
(scrbook) instead of \float@addtolists.
(scrbook) Support for \float@addtolists may be removed from
(scrbook) `scrbook' soon .

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\char' on input line 59.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\char' on input line 59.

LaTeX Font Info: External font `lmex10' loaded for size
(Font) <9> on input line 64.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <7> on input line 64.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <5> on input line 64.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 64.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 64.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <5> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 64.

Underfull \hbox (badness 10000) in paragraph at lines 64--66

 []

LaTeX Font Info: Font shape `T1/lmtt/bx/n' in size <8> not available
(Font) Font shape `T1/lmtt/b/n' tried instead on input line 74.

Overfull \hbox (8.5pt too wide) in paragraph at lines 74--74
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 77--89

 []

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \itshape invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathit instead of the \itshape command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \itshape invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathit instead of the \itshape command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! LaTeX Error: Command \itshape invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathit instead of the \itshape command.

! LaTeX Error: Command \bfseries invalid in math mode.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

Please use the math alphabet \mathbf instead of the \bfseries command.

! Missing $ inserted.
<inserted text>
 $
l.107 ...plate{.}Text_IO\LaTeXIdentityTemplate{;}}

I've inserted a begin-math/end-math symbol since I think
you left one out. Proceed, with fingers crossed.

[3]
Underfull \hbox (badness 10000) in paragraph at lines 129--133

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 144--144
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 149--151

 []

[4]
Overfull \hbox (8.5pt too wide) in paragraph at lines 162--162
[]$[]$ $[]$
 []

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\char' on input line 166.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\char' on input line 166.

Underfull \hbox (badness 10000) in paragraph at lines 176--178

 []

Underfull \hbox (badness 10000) in paragraph at lines 189--191

 []

[5]
Underfull \hbox (badness 10000) in paragraph at lines 206--208

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.218

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.224

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.230

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.240

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[6]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.250

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.260

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.268

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.278

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 284--286

 []

[7]
Underfull \hbox (badness 1038) in paragraph at lines 308--309
\T1/lmr/m/n/10.95 (+20) Most Ada ex-perts lurk on the Usenet news-groups[][][]
\T1/lmr/m/it/10.95 (+20) comp.lang.ada \T1/lmr/m/n/10.95 (+20) (En-glish) and
 []

[8]
Chapter 2.

Underfull \vbox (badness 10000) detected at line 355
 []

[9

] [10]
Underfull \vbox (badness 10000) detected at line 404
 []

[11]
Underfull \hbox (badness 1917) in paragraph at lines 420--420
[]|| | \T1/lmr/m/n/10.95 (+20) ftp://ftp.cs.kuleuven.ac.be/pub/Ada-
 []

Underfull \vbox (badness 10000) detected at line 421
 []

Underfull \vbox (badness 10000) detected at line 430
 []

[12]
Underfull \vbox (badness 10000) detected at line 449
 []

[13]
Underfull \vbox (badness 10000) detected at line 461
 []

[14]
Underfull \vbox (badness 10000) detected at line 472
 []

Underfull \vbox (badness 10000) detected at line 481
 []

Underfull \vbox (badness 10000) detected at line 490
 []

[15]
Underfull \hbox (badness 7099) in paragraph at lines 510--510
[]|| | []$\T1/lmtt/m/n/10.95 http : / / www . ada-[]france . org /
 []

Underfull \vbox (badness 10000) detected at line 511
 []

[16]
Underfull \vbox (badness 10000) detected at line 520
 []

Underfull \vbox (badness 10000) detected at line 529
 []

[17]
Underfull \hbox (badness 10000) in paragraph at lines 540--542

 []

[18]
Underfull \vbox (badness 10000) detected at line 560
 []

[19

] [20] [21]
Underfull \vbox (badness 10000) detected at line 589
 []

Underfull \hbox (badness 10000) in paragraph at lines 594--596

 []

[22

]
Underfull \vbox (badness 10000) detected at line 606
 []

Underfull \hbox (badness 10000) in paragraph at lines 611--613

 []

[23]
Underfull \hbox (badness 10000) in paragraph at lines 667--669

 []

Underfull \hbox (badness 10000) in paragraph at lines 674--675

 []

Underfull \hbox (badness 10000) in paragraph at lines 680--682

 []

[24]

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `math shift' on input line 696.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `math shift' on input line 696.

[25]
Overfull \hbox (8.93327pt too wide) in paragraph at lines 714--714
[][]$\T1/lmtt/m/n/9 http : / / www . atego . com / pressreleases / pressitem /
aonix-[]shatters-[]ada-[]price-[]barrier-[]for-[]linux$[]
 []

! Argument of \@sect has an extra }.
<inserted text>
 \par
l.732 ...onal Apex Ada Developer product family})}

I've run across a `}' that doesn't seem to match anything.
For example, `\def\a#1{...}' and `\a}' would produce
this error. If you simply proceed now, the `\par' that
I've just inserted will cause me to report a runaway
argument that might be the root of the problem. But if
your `}' was spurious, just type `2' and it will go away.

Runaway argument?
{\ifnum \scr@compatibility >\@nameuse {scr@v@2.96}\relax \setlength {\ETC.
! Paragraph ended before \@sect was complete.
<to be read again>
 \par
l.732 ...onal Apex Ada Developer product family})}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\@ifnextchar' on input line 732.

! Argument of \@sect has an extra }.
<inserted text>
 \par
l.732 ...onal Apex Ada Developer product family})}

I've run across a `}' that doesn't seem to match anything.
For example, `\def\a#1{...}' and `\a}' would produce
this error. If you simply proceed now, the `\par' that
I've just inserted will cause me to report a runaway
argument that might be the root of the problem. But if
your `}' was spurious, just type `2' and it will go away.

Runaway argument?
{\ifnum \scr@compatibility >\@nameuse {scr@v@2.96}\relax \setlength {\ETC.
! Paragraph ended before \@sect was complete.
<to be read again>
 \par
l.732 ...onal Apex Ada Developer product family})}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

[26]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.738 \section{SCORE from DDC-{}I}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.738 \section{SCORE from DDC-{}I}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.738 \section{SCORE from DDC-{}I}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.744 \section{XD Ada from SWEP-{}EDS}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.744 \section{XD Ada from SWEP-{}EDS}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.744 \section{XD Ada from SWEP-{}EDS}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.750 \section{XGC Ada from XGC Software}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.750 \section{XGC Ada from XGC Software}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.750 \section{XGC Ada from XGC Software}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 10000) detected at line 759
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.759 \end{longtable}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.759 \end{longtable}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [27]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.761 \section{References}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.761 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.761 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[28]
Chapter 3.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.781 \section{Building with various compilers}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.781 \section{Building with various compilers}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.781 \section{Building with various compilers}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 791--793

 []

Underfull \hbox (badness 10000) in paragraph at lines 801--803

 []

[29

] [30]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.865

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.865

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [31]
Underfull \hbox (badness 10000) in paragraph at lines 874--876

 []

Underfull \hbox (badness 10000) in paragraph at lines 881--883

 []

Underfull \hbox (badness 10000) in paragraph at lines 887--889

 []

[32]
Underfull \hbox (badness 10000) in paragraph at lines 895--897

 []

Underfull \hbox (badness 10000) in paragraph at lines 903--905

 []

Underfull \hbox (badness 10000) in paragraph at lines 909--911

 []

Underfull \hbox (badness 10000) in paragraph at lines 915--917

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.926 \section{Compiling our Demo Source}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.926 \section{Compiling our Demo Source}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.926 \section{Compiling our Demo Source}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.932

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.932

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [33]
Underfull \hbox (badness 10000) in paragraph at lines 937--939

 []

Underfull \hbox (badness 10000) in paragraph at lines 943--945

 []

Underfull \hbox (badness 10000) in paragraph at lines 970--972

 []

Underfull \hbox (badness 10000) in paragraph at lines 976--978

 []

[34]
Underfull \hbox (badness 10000) in paragraph at lines 982--984

 []

Underfull \hbox (badness 10000) in paragraph at lines 1004--1006

 []

Underfull \hbox (badness 10000) in paragraph at lines 1010--1011
[]\T1/lmr/m/n/10.95 (+20) A min-i-mal Ob-jec-tAda project can have just one sou
rce
 []

Underfull \hbox (badness 10000) in paragraph at lines 1010--1011
\T1/lmr/m/n/10.95 (+20) file. like the Hello World pro-gram pro-vided in
 []

Underfull \hbox (badness 10000) in paragraph at lines 1010--1011

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1016 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1016 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [35]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1019

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1030

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1040

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 1048--1050

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1055 \section{External links}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1055 \section{External links}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1055 \section{External links}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[36]
Chapter 4.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1084 \label{76}\section{Conditionals}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1084 \label{76}\section{Conditionals}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1084 \label{76}\section{Conditionals}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1094

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1106

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1123

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[37

]
LaTeX Font Info: Try loading font information for TS1+lmtt on input line 114
4.
 (/usr/share/texmf/tex/latex/lm/ts1lmtt.fd
File: ts1lmtt.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
Package microtype Info: Character `texttrademark ' is missing
(microtype) in font `TS1/lmtt/m/n/8'.
(microtype) Ignoring protrusion settings for this character.
LaTeX Font Info: Font shape `T1/lmtt/bx/n' in size <10.95> not available
(Font) Font shape `T1/lmtt/b/n' tried instead on input line 1155.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1163

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[38]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1188 \label{85}\section{Unconditionals}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1188 \label{85}\section{Unconditionals}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1188 \label{85}\section{Unconditionals}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 1198--1200

 []

Underfull \hbox (badness 10000) in paragraph at lines 1204--1206

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1207 ... }${}\LaTeXBF{return}$\text{ }${}Value;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1207 ... }${}\LaTeXBF{return}$\text{ }${}Value;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [39]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1216

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1233

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1248

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1268

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[40]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1283 \label{93}\section{Loops}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1283 \label{93}\section{Loops}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1283 \label{93}\section{Loops}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1294

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1312

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1327

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1334 ...loop} {}{\itshape Until_Loop};}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1334 ...loop} {}{\itshape Until_Loop};}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [41]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1343

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1365

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[42]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1384

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

LaTeX Font Info: Font shape `T1/lmtt/bx/n' in size <6> not available
(Font) Font shape `T1/lmtt/b/n' tried instead on input line 1403.
LaTeX Font Info: Font shape `T1/lmtt/bx/n' in size <5> not available
(Font) Font shape `T1/lmtt/b/n' tried instead on input line 1403.

Underfull \hbox (badness 10000) in paragraph at lines 1412--1414

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 1437--1437
[]$[]$ $[]$
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1437 ...{ }${}\LaTeXBF{end}$\text{ }${}Range_1;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1437 ...{ }${}\LaTeXBF{end}$\text{ }${}Range_1;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [43]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1439 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1439 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1439 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 3333) in paragraph at lines 1451--1452
[]\T1/lmr/m/n/10.95 (+20) 5.3 If State-ments ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 10000) in paragraph at lines 1457--1458
[]\T1/lmr/m/n/10.95 (+20) 6.5 Re-turn State-ments ^^B{[]$\T1/lmtt/m/n/10.95 htt
p : / / www . adaic . org / resources / add _ content /
 []

[44]
Chapter 5.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1484 \section{Predefined types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1484 \section{Predefined types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1484 \section{Predefined types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[45

]
Underfull \hbox (badness 1515) in paragraph at lines 1506--1507
[]\T1/lmr/m/n/10.95 (+20) A fixed point type[][][] used for tim-ing. It rep-re-
sents a pe-riod of time in sec-
 []

Underfull \hbox (badness 1142) in paragraph at lines 1506--1507
\T1/lmr/m/n/10.95 (+20) onds (RM A.1 (43) ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
www . adaic . org / resources / add _ content / standards /
 []

[46]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1560 \section{The Type Hierarchy}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1560 \section{The Type Hierarchy}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1560 \section{The Type Hierarchy}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

<../images/1.png, id=2388, 1305.11118pt x 1088.30118pt>
File: ../images/1.png Graphic file (type png)
 <use ../images/1.png>
Package pdftex.def Info: ../images/1.png used on input line 1569.
(pdftex.def) Requested size: 433.35655pt x 361.36572pt.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1578 ...scription} \mylref{145}{Signed Integers}
 {\small }({\bfseries int}...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1578 ...scription} \mylref{145}{Signed Integers}
 {\small }({\bfseries int}...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [47 <../images/1.png>] [48]
Underfull \hbox (badness 10000) in paragraph at lines 1643--1645

 []

Underfull \hbox (badness 10000) in paragraph at lines 1654--1656

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1661

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 1666--1668

 []

Underfull \hbox (badness 10000) in paragraph at lines 1677--1679

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.1684

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 1690--1692

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1697 ...pression {}as {}above}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1697 ...pression {}as {}above}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [49]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1703 \section{Concurrency Types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1703 \section{Concurrency Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1703 \section{Concurrency Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1714 \section{Limited Types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1714 \section{Limited Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1714 \section{Limited Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 1717--1721

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1731 \section{Defining new types and subtypes}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1731 \section{Defining new types and subtypes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1731 \section{Defining new types and subtypes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 1734--1736

 []

[50]
Package microtype Info: Character `texttrademark ' is missing
(microtype) in font `TS1/lmtt/m/n/10.95'.
(microtype) Ignoring protrusion settings for this character.

Underfull \hbox (badness 10000) in paragraph at lines 1747--1749

 []

Underfull \hbox (badness 10000) in paragraph at lines 1760--1762

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1776 T
 here are a few predefined subtypes which are very useful:
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1776 T
 here are a few predefined subtypes which are very useful:
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [51]
Underfull \hbox (badness 10000) in paragraph at lines 1776--1778

 []

Underfull \hbox (badness 10000) in paragraph at lines 1785--1787

 []

Underfull \hbox (badness 10000) in paragraph at lines 1794--1796

 []

Package microtype Info: Character `texttrademark ' is missing
(microtype) in font `TS1/lmtt/m/it/8'.
(microtype) Ignoring protrusion settings for this character.

Underfull \hbox (badness 10000) in paragraph at lines 1823--1825

 []

[52]
Underfull \hbox (badness 10000) in paragraph at lines 1856--1858

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.1884 \section{Subtype categories}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.1884 \section{Subtype categories}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.1884 \section{Subtype categories}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1884 \section{Subtype categories}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1884 \section{Subtype categories}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [53]
Underfull \hbox (badness 10000) in paragraph at lines 1891--1893

 []

Underfull \hbox (badness 10000) in paragraph at lines 1897--1899

 []

Underfull \hbox (badness 10000) in paragraph at lines 1907--1911

 []

Underfull \hbox (badness 10000) in paragraph at lines 1915--1917

 []

Underfull \hbox (badness 10000) in paragraph at lines 1926--1928

 []

[54]
Underfull \hbox (badness 10000) in paragraph at lines 1932--1934

 []

Underfull \hbox (badness 10000) in paragraph at lines 1952--1954

 []

Underfull \hbox (badness 10000) in paragraph at lines 1960--1962

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.1963 ...a.Command_Line.Argument {}(1);}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.1963 ...a.Command_Line.Argument {}(1);}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [55]
Underfull \hbox (badness 10000) in paragraph at lines 1970--1972

 []

Underfull \hbox (badness 10000) in paragraph at lines 1976--1979

 []

Underfull \hbox (badness 10000) in paragraph at lines 1983--1985

 []

Underfull \hbox (badness 10000) in paragraph at lines 1991--1993

 []

Underfull \hbox (badness 10000) in paragraph at lines 2003--2005

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2011 \section{Qualified expressions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2011 \section{Qualified expressions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2011 \section{Qualified expressions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[56]
Underfull \hbox (badness 10000) in paragraph at lines 2014--2016

 []

Underfull \hbox (badness 10000) in paragraph at lines 2021--2023

 []

Underfull \hbox (badness 10000) in paragraph at lines 2034--2036

 []

Underfull \hbox (badness 10000) in paragraph at lines 2040--2042

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 2060--2060
[]$[]$ $[]$
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2062 \section{Type conversions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2062 \section{Type conversions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2062 \section{Type conversions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2066

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2066

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [57]
Underfull \hbox (badness 10000) in paragraph at lines 2071--2073

 []

Underfull \hbox (badness 10000) in paragraph at lines 2089--2091

 []

Underfull \hbox (badness 10000) in paragraph at lines 2098--2100

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 2125--2125
[]$[]$ $[]$
 []

[58]
Underfull \hbox (badness 10000) in paragraph at lines 2130--2132

 []

Underfull \hbox (badness 10000) in paragraph at lines 2146--2148

 []

Underfull \hbox (badness 10000) in paragraph at lines 2163--2165

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2168 ... }${}(11$\text{ }${}..$\text{ }${}20));}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2168 ... }${}(11$\text{ }${}..$\text{ }${}20));}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [59]
Underfull \hbox (badness 10000) in paragraph at lines 2175--2177

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.2188

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 2208--2210

 []

[60]
Underfull \hbox (badness 10000) in paragraph at lines 2223--2225

 []

Underfull \hbox (badness 10000) in paragraph at lines 2260--2262

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2269 ...arent_Type {}(Child_Instance);}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2269 ...arent_Type {}(Child_Instance);}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [61]
Underfull \hbox (badness 10000) in paragraph at lines 2274--2276

 []

Underfull \hbox (badness 10000) in paragraph at lines 2289--2291

 []

[62]
Underfull \hbox (badness 10000) in paragraph at lines 2312--2314

 []

Underfull \hbox (badness 10000) in paragraph at lines 2323--2325

 []

Underfull \hbox (badness 10000) in paragraph at lines 2338--2340

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2374 ...eXBF{end} {}Convert_Unchecked;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2374 ...eXBF{end} {}Convert_Unchecked;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [63]
Overfull \hbox (8.5pt too wide) in paragraph at lines 2374--2374
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 2381--2383

 []

[64]
Underfull \hbox (badness 10000) in paragraph at lines 2394--2396

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 2425--2425
[]$[]$ $[]$
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2431 ...ssion of Types for Signed Integer Types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2431 ...ssion of Types for Signed Integer Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2431 ...ssion of Types for Signed Integer Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2434--2436

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2437 ...ext{ }${}1$\text{ }${}..$\text{ }${}10;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2437 ...ext{ }${}1$\text{ }${}..$\text{ }${}10;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [65]
Underfull \hbox (badness 10000) in paragraph at lines 2444--2446

 []

Underfull \hbox (badness 10000) in paragraph at lines 2459--2461

 []

Underfull \hbox (badness 10000) in paragraph at lines 2470--2472

 []

[66]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2480 \section{Relations between types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2480 \section{Relations between types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2480 \section{Relations between types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2483--2485

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2493 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2493 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2493 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2506--2507
[]\T1/lmr/m/n/10.95 (+20) 3.2.1 Type Dec-la-ra-tions ^^B{[]$\T1/lmtt/m/n/10.95
http : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 8038) in paragraph at lines 2508--2509
[]\T1/lmr/m/n/10.95 (+20) 3.7 Dis-crim-i-nants ^^B{[]$\T1/lmtt/m/n/10.95 http :
 / / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 1199) in paragraph at lines 2509--2510
[]\T1/lmr/m/n/10.95 (+20) 3.10 Ac-cess Types ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 2865) in paragraph at lines 2513--2514
[]\T1/lmr/m/n/10.95 (+20) Annex K (in-for-ma-tive) Language-Defined At-tributes
 ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . adaic . org /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2514 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2514 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [67]
[68]
Chapter 6.

Underfull \hbox (badness 10000) in paragraph at lines 2529--2531

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2540 \section{Working demo}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2540 \section{Working demo}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2540 \section{Working demo}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2543--2545

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 2569--2569
[]$[]$ $[]$
 []

[69

]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2571 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2571 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2571 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[70]
Chapter 7.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2604 \section{Description}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2604 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2604 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2606--2608

 []

Underfull \hbox (badness 10000) in paragraph at lines 2616--2618

 []

Underfull \hbox (badness 10000) in paragraph at lines 2624--2626

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2632 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2632 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2632 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[71

] [72]
Chapter 8.

Underfull \hbox (badness 10000) in paragraph at lines 2663--2665

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2670 \section{Operators and attributes}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2670 \section{Operators and attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2670 \section{Operators and attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2673--2675

 []

Underfull \hbox (badness 10000) in paragraph at lines 2680--2682

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2688 \section{Enumeration literals}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2688 \section{Enumeration literals}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2688 \section{Enumeration literals}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2690--2692

 []

[73

]
Underfull \hbox (badness 10000) in paragraph at lines 2696--2698

 []

Underfull \hbox (badness 10000) in paragraph at lines 2702--2704

 []

Underfull \hbox (badness 10000) in paragraph at lines 2713--2715

 []

Underfull \hbox (badness 10000) in paragraph at lines 2721--2723

 []

[74]
Underfull \hbox (badness 10000) in paragraph at lines 2737--2739

 []

Underfull \hbox (badness 10000) in paragraph at lines 2745--2747

 []

Underfull \hbox (badness 10000) in paragraph at lines 2754--2756

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2762 \section{Enumeration subtypes}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2762 \section{Enumeration subtypes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2762 \section{Enumeration subtypes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2765--2767

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.2771

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2777 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2777 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2777 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2784 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FT...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2784 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FT...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [75]
Underfull \hbox (badness 10000) in paragraph at lines 2792--2793
[]\T1/lmr/m/n/10.95 (+20) 3.5.1 Enu-mer-a-tion Types ^^B{[]$\T1/lmtt/m/n/10.95
http : / / www . adaic . org / resources / add _ content /
 []

[76]
Chapter 9.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2809 \section{Description}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2809 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2809 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2813--2815

 []

Underfull \hbox (badness 10000) in paragraph at lines 2819--2821

 []

Overfull \hbox (12.75255pt too wide) in paragraph at lines 2822--2822
[][][] $[]$|
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2835 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2835 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2835 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[77

]
Underfull \hbox (badness 5652) in paragraph at lines 2853--2854
[]\T1/lmr/m/n/10.95 (+20) 3.5.7 Float-ing Point Types ^^B{[]$\T1/lmtt/m/n/10.95
 http : / / www . adaic . org / resources / add _ content /
 []

[78]
Chapter 10.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2869 \section{Description}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2869 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2869 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2883 \section{Ordinary Fixed Point}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2883 \section{Ordinary Fixed Point}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2883 \section{Ordinary Fixed Point}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2886--2888

 []

Underfull \hbox (badness 10000) in paragraph at lines 2892--2894

 []

[79

]
Underfull \hbox (badness 10000) in paragraph at lines 2902--2904

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2910 \section{Decimal Fixed Point}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2910 \section{Decimal Fixed Point}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2910 \section{Decimal Fixed Point}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2913--2915

 []

Underfull \hbox (badness 10000) in paragraph at lines 2919--2921

 []

Underfull \hbox (badness 10000) in paragraph at lines 2926--2928

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2931 ... Ordinary and Decimal Fixed Point Types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2931 ... Ordinary and Decimal Fixed Point Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2931 ... Ordinary and Decimal Fixed Point Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 2934--2936

 []

[80]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.2942

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 6575) in paragraph at lines 2966--2967
\T1/lmr/m/n/10.95 (+20) 3.5.10 (10) ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www .
adaic . org / resources / add _ content / standards / 95lrm /
 []

Underfull \hbox (badness 2334) in paragraph at lines 2966--2967
\T1/lmr/m/n/10.95 (+20) in-di-cates the po-si-tion of the point rel-a-tive to t
he right-most sig-nif-i-cant dig-
 []

Underfull \hbox (badness 2310) in paragraph at lines 2971--2972
[]\T1/lmr/m/n/10.95 (+20) Package Dec-i-mal (RM F.2 ^^B{[]$\T1/lmtt/m/n/10.95
http : / / www . adaic . org / resources / add _ content /
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.2987 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.2987 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.2987 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.2987 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.2987 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [81]
Underfull \hbox (badness 10000) in paragraph at lines 3006--3007
[]\T1/lmr/m/n/10.95 (+20) 3.5.9 Fixed Point Types ^^B{[]$\T1/lmtt/m/n/10.95 htt
p : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 10000) in paragraph at lines 3013--3014
[]\T1/lmr/m/n/10.95 (+20) 3.5.9 Fixed Point Types ^^B{[]$\T1/lmtt/m/n/10.95 htt
p : / / www . adaic . org / resources / add _ content /
 []

[82]
Chapter 11.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3032 \section{Declaring arrays}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3032 \section{Declaring arrays}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3032 \section{Declaring arrays}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3039--3041

 []

Underfull \hbox (badness 10000) in paragraph at lines 3045--3047

 []

Underfull \hbox (badness 10000) in paragraph at lines 3055--3057

 []

[83

]
Underfull \hbox (badness 10000) in paragraph at lines 3063--3065

 []

Underfull \hbox (badness 10000) in paragraph at lines 3069--3071

 []

Underfull \hbox (badness 10000) in paragraph at lines 3077--3079

 []

Underfull \hbox (badness 10000) in paragraph at lines 3085--3087

 []

Underfull \hbox (badness 10000) in paragraph at lines 3093--3095

 []

Underfull \hbox (badness 10000) in paragraph at lines 3099--3101

 []

[84]
Underfull \hbox (badness 10000) in paragraph at lines 3113--3115

 []

Underfull \hbox (badness 10000) in paragraph at lines 3123--3125

 []

Underfull \hbox (badness 10000) in paragraph at lines 3132--3134

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3136 ... }${}Character\LaTeXIdentityTemplate{;}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3136 ... }${}Character\LaTeXIdentityTemplate{;}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [85]
Underfull \hbox (badness 10000) in paragraph at lines 3139--3142

 []

Underfull \hbox (badness 10000) in paragraph at lines 3151--3153

 []

Underfull \hbox (badness 10000) in paragraph at lines 3162--3166

 []

Underfull \hbox (badness 10000) in paragraph at lines 3174--3176

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3184 \section{Using arrays}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3184 \section{Using arrays}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3184 \section{Using arrays}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3189--3191

 []

[86]
Underfull \hbox (badness 10000) in paragraph at lines 3201--3203

 []

Underfull \hbox (badness 10000) in paragraph at lines 3213--3215

 []

Underfull \vbox (badness 10000) detected at line 3225
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3233 \item{
 } And last the assumption that X\textquotesingle{}Last >{}= X\...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3233 \item{
 } And last the assumption that X\textquotesingle{}Last >{}= X\...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [87]
Underfull \hbox (badness 10000) in paragraph at lines 3237--3239

 []

Underfull \hbox (badness 10000) in paragraph at lines 3243--3246

 []

Underfull \hbox (badness 10000) in paragraph at lines 3256--3258

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3265 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3265 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3265 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 6141) in paragraph at lines 3281--3282
[]\T1/lmr/m/n/10.95 (+20) 3.6 Ar-ray Types ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
 www . adaic . org / resources / add _ content / standards /
 []

[88]
Underfull \hbox (badness 6141) in paragraph at lines 3288--3289
[]\T1/lmr/m/n/10.95 (+20) 3.6 Ar-ray Types ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
 www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 4013) in paragraph at lines 3295--3296
[]\T1/lmr/m/n/10.95 (+20) 10.5.7 Packed Boolean Ar-ray Shifts ^^B{[]$\T1/lmtt/m
/n/10.95 http : / / www . adaic . org / resources / add _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3301 ...ogramaciÃ³n en Ada/Tipos/Arrays}\chapter
 {Records}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3301 ...ogramaciÃ³n en Ada/Tipos/Arrays}\chapter
 {Records}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [89]
[90

]
Chapter 12.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3314 \section{Basic record}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3314 \section{Basic record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3314 \section{Basic record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3317

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3323 \section{Null record}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3323 \section{Null record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3323 \section{Null record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3326--3328

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3335

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3340 \section{Record Values}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3340 \section{Record Values}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3340 \section{Record Values}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3343--3345

 []

[91]
Underfull \hbox (badness 10000) in paragraph at lines 3352--3354

 []

Underfull \hbox (badness 10000) in paragraph at lines 3364--3366

 []

Underfull \hbox (badness 10000) in paragraph at lines 3378--3391

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3401 \section{Discriminated record}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3401 \section{Discriminated record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3401 \section{Discriminated record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[92]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3404

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3410 \section{Variant record}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3410 \section{Variant record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3410 \section{Variant record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3413--3415

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3444

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 3488--3488
[]$$[]$\T1/lmtt/b/n/8 type$[]$\T1/lmtt/m/n/8 Mutable_-Variant_-Record$[]$(Optio
n$[]$:$[]$Traffic_-Light$[]$:=$[]$Red)$[]$\T1/lmtt/b/n/8 is$[]$$[]$$[]$$[]$$[]$
$[]$\T1/lmtt/m/it/8 --the discriminant must
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3488 ...sed} {}Mutable_Variant_Record;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3488 ...sed} {}Mutable_Variant_Record;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [93]
Underfull \hbox (badness 10000) in paragraph at lines 3492--3494

 []

Underfull \hbox (badness 10000) in paragraph at lines 3517--3517
[]$$[]$\T1/lmtt/b/n/8 type$[]$\T1/lmtt/m/n/8 Immutable_-Variant_-Record$[]$(Opt
ion$[]$:$[]$Traffic_-Light)$[]$\T1/lmtt/b/n/8 is$[]$\T1/lmtt/m/it/8 --no defaul
t value makes the record
 []

Underfull \vbox (badness 7238) detected at line 3517
 []

[94]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3519 \section{Union}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3519 \section{Union}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3519 \section{Union}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3522--3524

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3548 \section{Tagged record}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3548 \section{Tagged record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3548 \section{Tagged record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3551--3553

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3558 ...TeXBF{end} {}\LaTeXBF{record};}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3558 ...TeXBF{end} {}\LaTeXBF{record};}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [95]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3561

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 3568--3570

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3578 \section{Abstract tagged record}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3578 \section{Abstract tagged record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3578 \section{Abstract tagged record}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3582 \section{With aliased elements}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3582 \section{With aliased elements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3582 \section{With aliased elements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3585--3587

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3595 \section{Limited Records}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3595 \section{Limited Records}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3595 \section{Limited Records}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[96]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3604 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3604 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3604 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 2302) in paragraph at lines 3626--3627
[]\T1/lmr/m/n/10.95 (+20) 3.8 Record Types ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
 www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 2302) in paragraph at lines 3633--3634
[]\T1/lmr/m/n/10.95 (+20) 3.8 Record Types ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
 www . adaic . org / resources / add _ content / standards /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3642 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3642 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [97]
[98]
Chapter 13.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3656 ...What\textquotesingle{}s an Access Type?}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3656 ...What\textquotesingle{}s an Access Type?}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3656 ...What\textquotesingle{}s an Access Type?}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3666 \section{Pool access}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3666 \section{Pool access}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3666 \section{Pool access}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3669--3671

 []

Underfull \hbox (badness 10000) in paragraph at lines 3680--3682

 []

[99

]
Underfull \hbox (badness 10000) in paragraph at lines 3686--3688

 []

Underfull \hbox (badness 10000) in paragraph at lines 3692--3694

 []

Underfull \hbox (badness 10000) in paragraph at lines 3701--3703

 []

Underfull \hbox (badness 10000) in paragraph at lines 3708--3710

 []

Underfull \hbox (badness 10000) in paragraph at lines 3721--3723

 []

[100]
Underfull \hbox (badness 10000) in paragraph at lines 3735--3737

 []

Underfull \hbox (badness 10000) in paragraph at lines 3770--3770
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FMultiPurpose % 2FAdaCL %
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3775

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3775

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [101]
Overfull \hbox (41.79947pt too wide) in paragraph at lines 3780--3780
[][]$\T1/lmtt/m/n/9 http : / / www . adacore . com / 2011 / 06 / 06 / gem-[]107
-[]preventing-[]deallocation-[]for-[]reference-[]counted-[]types/$[]
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3783 \section{General access}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3783 \section{General access}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3783 \section{General access}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3792--3794

 []

Underfull \hbox (badness 10000) in paragraph at lines 3801--3803

 []

[102]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3810

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3824 \section{Anonymous access}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3824 \section{Anonymous access}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3824 \section{Anonymous access}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3829--3831

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3836

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.3842

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 3852--3854

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3862 ...${}\LaTeXBF{constant}$\text{ }${}Float;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3862 ...${}\LaTeXBF{constant}$\text{ }${}Float;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [103]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3863 \section{Implicit Dereference}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3863 \section{Implicit Dereference}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3863 \section{Implicit Dereference}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3867--3869

 []

Underfull \hbox (badness 10000) in paragraph at lines 3876--3878

 []

Underfull \hbox (badness 10000) in paragraph at lines 3882--3884

 []

Underfull \hbox (badness 10000) in paragraph at lines 3888--3890

 []

Underfull \hbox (badness 10000) in paragraph at lines 3897--3899

 []

Underfull \hbox (badness 10000) in paragraph at lines 3904--3906

 []

[104]
Underfull \hbox (badness 10000) in paragraph at lines 3910--3912

 []

Underfull \hbox (badness 10000) in paragraph at lines 3917--3919

 []

Underfull \hbox (badness 10000) in paragraph at lines 3924--3926

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3932 \section{Null exclusions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3932 \section{Null exclusions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3932 \section{Null exclusions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 3937--3939

 []

Underfull \hbox (badness 10000) in paragraph at lines 3944--3946

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3951 \section{Access to Subprogram}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3951 \section{Access to Subprogram}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3951 \section{Access to Subprogram}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.3951 \section{Access to Subprogram}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.3951 \section{Access to Subprogram}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [105]
Underfull \hbox (badness 10000) in paragraph at lines 3954--3956

 []

Underfull \hbox (badness 10000) in paragraph at lines 3963--3965

 []

Underfull \hbox (badness 10000) in paragraph at lines 3974--3976

 []

Underfull \hbox (badness 10000) in paragraph at lines 3980--3982

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.3987 \section{Access FAQ}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.3987 \section{Access FAQ}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.3987 \section{Access FAQ}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[106]
Underfull \hbox (badness 10000) in paragraph at lines 4000--4002

 []

Underfull \hbox (badness 10000) in paragraph at lines 4030--4032

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4042 ...{}=>{} {}Day_Of_Month_Access);}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4042 ...{}=>{} {}Day_Of_Month_Access);}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [107]
Underfull \hbox (badness 10000) in paragraph at lines 4047--4049

 []

Underfull \hbox (badness 10000) in paragraph at lines 4057--4059

 []

Underfull \hbox (badness 10000) in paragraph at lines 4084--4086

 []

Underfull \hbox (badness 10000) in paragraph at lines 4091--4093

 []

[108]
Underfull \hbox (badness 10000) in paragraph at lines 4098--4100

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4107 \section{Thin and Fat Access Types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4107 \section{Thin and Fat Access Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4107 \section{Thin and Fat Access Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4116--4118

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.4132

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4139 F
 or pointers of this kind, {\ttfamily System.Address_to_Access_Conver...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4139 F
 or pointers of this kind, {\ttfamily System.Address_to_Access_Conver...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [109]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.4143

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 4148--4150

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4161 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4161 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4161 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[110]
Underfull \hbox (badness 10000) in paragraph at lines 4178--4179
[]\T1/lmr/m/n/10.95 (+20) 13.11 Stor-age Man-age-ment ^^B{[]$\T1/lmtt/m/n/10.95
 http : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 8038) in paragraph at lines 4180--4181
[]\T1/lmr/m/n/10.95 (+20) 3.7 Dis-crim-i-nants ^^B{[]$\T1/lmtt/m/n/10.95 http :
 / / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 1199) in paragraph at lines 4181--4182
[]\T1/lmr/m/n/10.95 (+20) 3.10 Ac-cess Types ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 2753) in paragraph at lines 4182--4183
[]\T1/lmr/m/n/10.95 (+20) 6.1 Sub-pro-gram Dec-la-ra-tions ^^B{[]$\T1/lmtt/m/n/
10.95 http : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 10000) in paragraph at lines 4191--4192
[]\T1/lmr/m/n/10.95 (+20) 13.11 Stor-age Man-age-ment ^^B{[]$\T1/lmtt/m/n/10.95
 http : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 8038) in paragraph at lines 4193--4194
[]\T1/lmr/m/n/10.95 (+20) 3.7 Dis-crim-i-nants ^^B{[]$\T1/lmtt/m/n/10.95 http :
 / / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 1199) in paragraph at lines 4194--4195
[]\T1/lmr/m/n/10.95 (+20) 3.10 Ac-cess Types ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 2753) in paragraph at lines 4195--4196
[]\T1/lmr/m/n/10.95 (+20) 6.1 Sub-pro-gram Dec-la-ra-tions ^^B{[]$\T1/lmtt/m/n/
10.95 http : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 10000) in paragraph at lines 4203--4204
[]\T1/lmr/m/n/10.95 (+20) 5.4.5 Dy-namic Data ^^B{[]$\T1/lmtt/m/n/10.95 http :
/ / www . adaic . org / resources / add _ content / docs /
 []

Underfull \hbox (badness 2245) in paragraph at lines 4204--4205
[]\T1/lmr/m/n/10.95 (+20) 5.9.2 Unchecked Deal-lo-ca-tion ^^B{[]$\T1/lmtt/m/n/1
0.95 http : / / www . adaic . org / resources / add _ content /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4208 \chapter
 {Limited types}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4208 \chapter
 {Limited types}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [111]
[112

]
Chapter 14.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4219 \section{Limited Types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4219 \section{Limited Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4219 \section{Limited Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4236--4238

 []

Underfull \hbox (badness 10000) in paragraph at lines 4252--4254

 []

Underfull \hbox (badness 10000) in paragraph at lines 4263--4269

 []

[113]
Underfull \hbox (badness 10000) in paragraph at lines 4288--4305

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4328 \section{Initialising Limited Types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4328 \section{Initialising Limited Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4328 \section{Initialising Limited Types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[114]
Underfull \hbox (badness 10000) in paragraph at lines 4331--4333

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.4372

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.4395

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4416 {}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4416 {}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [115]
Underfull \hbox (badness 10000) in paragraph at lines 4420--4422

 []

Underfull \hbox (badness 10000) in paragraph at lines 4426--4430

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4436 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4436 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4436 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 1024) in paragraph at lines 4442--4443
[]\T1/lmr/m/n/10.95 (+20) 7.5 Lim-ited Types ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 1024) in paragraph at lines 4449--4450
[]\T1/lmr/m/n/10.95 (+20) 7.5 Lim-ited Types ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

[116]
Underfull \hbox (badness 10000) in paragraph at lines 4456--4457
[]\T1/lmr/m/n/10.95 (+20) 5.3.3 Pri-vate Types ^^B{[]$\T1/lmtt/m/n/10.95 http :
 / / www . adaic . org / resources / add _ content / docs /
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4460 \section{References}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4460 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4460 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4464 \chapter
 {Strings}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4464 \chapter
 {Strings}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [117]
[118

]
Chapter 15.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4479 \section{Fixed-{}length string handling}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4479 \section{Fixed-{}length string handling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4479 \section{Fixed-{}length string handling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4482--4484

 []

Underfull \hbox (badness 10000) in paragraph at lines 4488--4490

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 4511--4511
[]$[]$ $[]$
 []

[119]
Underfull \hbox (badness 10000) in paragraph at lines 4518--4520

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 4521--4521
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 4521--4521

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.4524

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4553 \section{Bounded-{}length string handling}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4553 \section{Bounded-{}length string handling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4553 \section{Bounded-{}length string handling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4558--4560

 []

[120]
Overfull \hbox (8.5pt too wide) in paragraph at lines 4607--4607
[]$[]$ $[]$
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4611 \section
 {Unbounded-{}length string handling}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4611 \section
 {Unbounded-{}length string handling}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [121]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4611 ...tion{Unbounded-{}length string handling}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4611 ...tion{Unbounded-{}length string handling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4611 ...tion{Unbounded-{}length string handling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4616--4618

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 4619--4619
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 4619--4619

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.4622

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4648 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4648 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4648 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[122]
Underfull \hbox (badness 1264) in paragraph at lines 4661--4662
[]\T1/lmr/m/n/10.95 (+20) 2.6 String Lit-er-als ^^B{[]$\T1/lmtt/m/n/10.95 http
: / / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 5374) in paragraph at lines 4663--4664
[]\T1/lmr/m/n/10.95 (+20) A.4.3 Fixed-Length String Han-dling ^^B{[]$\T1/lmtt/m
/n/10.95 http : / / www . adaic . org / resources / add _
 []

Underfull \hbox (badness 1264) in paragraph at lines 4672--4673
[]\T1/lmr/m/n/10.95 (+20) 2.6 String Lit-er-als ^^B{[]$\T1/lmtt/m/n/10.95 http
: / / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 5374) in paragraph at lines 4674--4675
[]\T1/lmr/m/n/10.95 (+20) A.4.3 Fixed-Length String Han-dling ^^B{[]$\T1/lmtt/m
/n/10.95 http : / / www . adaic . org / resources / add _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4680 \chapter
 {Subprograms}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4680 \chapter
 {Subprograms}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [123]
[124

]
Chapter 16.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4731 \section{Procedures}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4731 \section{Procedures}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4731 \section{Procedures}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[125]
Underfull \hbox (badness 10000) in paragraph at lines 4736--4738

 []

Underfull \hbox (badness 10000) in paragraph at lines 4745--4746

 []

Underfull \hbox (badness 10000) in paragraph at lines 4755--4757

 []

[126]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4782 \section{Functions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4782 \section{Functions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4782 \section{Functions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4787--4789

 []

Underfull \hbox (badness 10000) in paragraph at lines 4800--4802

 []

Underfull \hbox (badness 10000) in paragraph at lines 4809--4811

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4821 E
 very call to a function produces a new copy of any object declared w...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4821 E
 very call to a function produces a new copy of any object declared w...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [127]
Underfull \hbox (badness 10000) in paragraph at lines 4821--4823

 []

Underfull \hbox (badness 10000) in paragraph at lines 4838--4842

 []

Underfull \hbox (badness 10000) in paragraph at lines 4855--4860

 []

Underfull \hbox (badness 10000) in paragraph at lines 4867--4869

 []

[128]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4883 \section{Named parameters}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4883 \section{Named parameters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4883 \section{Named parameters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4886--4889

 []

Underfull \hbox (badness 10000) in paragraph at lines 4895--4897

 []

Underfull \hbox (badness 10000) in paragraph at lines 4904--4906

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4911 \section{Default parameters}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4911 \section{Default parameters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4911 \section{Default parameters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4914--4916

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.4917 ...${}Integer$\text{ }${}:=$\text{ }${}0);}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.4917 ...${}Integer$\text{ }${}:=$\text{ }${}0);}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [129]
Underfull \hbox (badness 10000) in paragraph at lines 4920--4922

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4933 \section{Renaming}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4933 \section{Renaming}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4933 \section{Renaming}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4936--4938

 []

Underfull \hbox (badness 10000) in paragraph at lines 4945--4947

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.4954

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 4966--4966
[]$$[]$$[]$| [] | [] | [] | [] | []$[]$$[]$\T1/lmtt/m/it/8 --
thus taking \TS1/lmtt/m/it/8 '\T1/lmtt/m/it/8 Access should be illegal; GNAT
 []

Underfull \hbox (badness 10000) in paragraph at lines 4966--4966
[]$$[]$$[]$\T1/lmtt/m/n/8 Print;$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]
$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$\T1/lmtt/m/it/8 --Message.
Print is a parameterless procedure and can be renamed
 []

Underfull \hbox (badness 10000) in paragraph at lines 4966--4966
[]$$[]$$[]$| []$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[
]$\T1/lmtt/m/it/8 --GNAT GPL 2012 allows illegal call via an access to the rena
med
 []

Underfull \hbox (badness 10000) in paragraph at lines 4966--4966
[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$
$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$$[]$\T1/lmtt/m/it/8 --This
has been corrected in the current version (as of Nov 22,
 []

Overfull \vbox (0.94748pt too high) detected at line 4966
 []

[130]
Underfull \hbox (badness 10000) in paragraph at lines 4971--4973

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.4977 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.4977 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.4977 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 4991--4992
[]\T1/lmr/m/n/10.95 (+20) Section 6: Sub-pro-grams ^^B{[]$\T1/lmtt/m/n/10.95 ht
tp : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 10000) in paragraph at lines 4999--5000
[]\T1/lmr/m/n/10.95 (+20) Section 6: Sub-pro-grams ^^B{[]$\T1/lmtt/m/n/10.95 ht
tp : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 10000) in paragraph at lines 5007--5008
[]\T1/lmr/m/n/10.95 (+20) 4.1.3 Sub-pro-grams ^^B{[]$\T1/lmtt/m/n/10.95 http :
/ / www . adaic . org / resources / add _ content / docs /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5008 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5008 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [131]
[132]
Chapter 17.

Underfull \hbox (badness 2469) in paragraph at lines 5044--5045
\T1/lmr/m/n/10.95 (+20) 7(1) ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . adaic .
 org / resources / add _ content / standards / 05rm / html / RM-[]7-[] .
 []

Underfull \hbox (badness 10000) in paragraph at lines 5046--5047

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5047 \section{Separate compilation}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5047 \section{Separate compilation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5047 \section{Separate compilation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[133

]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5057 \section{Parts of a package}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5057 \section{Parts of a package}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5057 \section{Parts of a package}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[134]
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <12> on input line 5067.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <12> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 5067.

Underfull \hbox (badness 10000) in paragraph at lines 5070--5072

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.5089

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 5103--5104

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5126 ...eXBF{end} {}Package_With_Body;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5126 ...eXBF{end} {}Package_With_Body;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [135]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.5129

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 5163--5173

 []

[136]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.5187

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5217 \section{Using packages}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5217 \section{Using packages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5217 \section{Using packages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 5232--5234

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5262 ...}\LaTeXBF{end} {}Private_With;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5262 ...}\LaTeXBF{end} {}Private_With;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [137]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.5265

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 5287--5289

 []

[138]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.5307

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 5323--5325

 []

Underfull \hbox (badness 10000) in paragraph at lines 5338--5340

 []

Underfull \hbox (badness 10000) in paragraph at lines 5350--5352

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5360 ...} {}P\LaTeXIdentityTemplate{;}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5360 ...} {}P\LaTeXIdentityTemplate{;}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [139]
Underfull \hbox (badness 10000) in paragraph at lines 5360--5360
[]$$[]$$[]$\T1/lmtt/b/n/8 function$[]$\T1/lmtt/m/n/8 "/"$[]$(Left, $[]$Right:
$[]$Universe. T) $[]$\T1/lmtt/b/n/8 return$[]$\T1/lmtt/m/n/8 Universe. T$[]$\T1
/lmtt/b/n/8 renames$[]$\T1/lmtt/m/n/8 Universe. "*";
 []

Underfull \hbox (badness 10000) in paragraph at lines 5363--5365

 []

Underfull \hbox (badness 10000) in paragraph at lines 5374--5376

 []

Underfull \hbox (badness 10000) in paragraph at lines 5386--5388

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.5395

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 5409--5411

 []

[140]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5420 \section{Package organisation}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5420 \section{Package organisation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5420 \section{Package organisation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 5427--5434

 []

Underfull \hbox (badness 10000) in paragraph at lines 5465--5470

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5542 ...ext{ }${}Shelf\LaTeXIdentityTemplate{;}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5542 ...ext{ }${}Shelf\LaTeXIdentityTemplate{;}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [141]
Underfull \vbox (badness 10000) detected at line 5542
 []

[142]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.5561

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 5586--5589

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5611 ...mplate{.}Books\LaTeXIdentityTemplate{;}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5611 ...mplate{.}Books\LaTeXIdentityTemplate{;}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [143]
Underfull \hbox (badness 10000) in paragraph at lines 5621--5625

 []

Underfull \hbox (badness 10000) in paragraph at lines 5645--5647

 []

[144]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5659 \section{Notes}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5659 \section{Notes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5659 \section{Notes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5663 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5663 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5663 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5694 \chapter
 {Input Output}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5694 \chapter
 {Input Output}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [145]
[146

]
Chapter 18.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5705 \section{Overview}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5705 \section{Overview}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5705 \section{Overview}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 10000) detected at line 5734
 []

[147]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5738 \section{Text I/O}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5738 \section{Text I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5738 \section{Text I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 5741--5743

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5761 \section{Direct I/O}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5761 \section{Direct I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5761 \section{Direct I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5765 \section{Sequential I/O}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5765 \section{Sequential I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5765 \section{Sequential I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[148]
Underfull \hbox (badness 10000) in paragraph at lines 5768--5768
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / ada % 20Programmin
g % 2FSubtypes % 23Ada % 20Programming %
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5769 \section{Stream I/O}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5769 \section{Stream I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5769 \section{Stream I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5781 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5781 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5781 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5788 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FL...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5788 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2FL...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [149]
Underfull \hbox (badness 10000) in paragraph at lines 5798--5798
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Text _ IO . Enumeration _
 []

[150]
Underfull \hbox (badness 10000) in paragraph at lines 5817--5817
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Environment _
 []

Underfull \hbox (badness 5161) in paragraph at lines 5838--5839
[]\T1/lmr/m/n/10.95 (+20) A.6 Input-Output ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
 www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 2035) in paragraph at lines 5839--5840
[]\T1/lmr/m/n/10.95 (+20) A.7 Ex-ter-nal Files and File Ob-jects ^^B{[]$\T1/lmt
t/m/n/10.95 http : / / www . adaic . org / resources / add _
 []

Underfull \hbox (badness 10000) in paragraph at lines 5841--5842
[]\T1/lmr/m/n/10.95 (+20) A.10 Text Input-Output ^^B{[]$\T1/lmtt/m/n/10.95 http
 : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 10000) in paragraph at lines 5843--5844
[]\T1/lmr/m/n/10.95 (+20) A.12 Stream Input-Output ^^B{[]$\T1/lmtt/m/n/10.95 ht
tp : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 2197) in paragraph at lines 5845--5846
[]\T1/lmr/m/n/10.95 (+20) A.14 File Shar-ing ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.5854 \item{
 } \AdaSGThree{7}{7}{1}{Name and Form Parameters}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.5854 \item{
 } \AdaSGThree{7}{7}{1}{Name and Form Parameters}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [151]
Underfull \hbox (badness 2126) in paragraph at lines 5854--5855
[]\T1/lmr/m/n/10.95 (+20) 7.7.1 Name and Form Pa-ram-e-ters ^^B{[]$\T1/lmtt/m/n
/10.95 http : / / www . adaic . org / resources / add _
 []

Underfull \hbox (badness 10000) in paragraph at lines 5855--5856
[]\T1/lmr/m/n/10.95 (+20) 7.7.2 File Clos-ing ^^B{[]$\T1/lmtt/m/n/10.95 http :
/ / www . adaic . org / resources / add _ content / docs /
 []

[152]
Chapter 19.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5875 \section{Robustness}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5875 \section{Robustness}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5875 \section{Robustness}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5886 ...dules, preconditions and postconditions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5886 ...dules, preconditions and postconditions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5886 ...dules, preconditions and postconditions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[153

]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.5906 \section{Predefined exceptions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.5906 \section{Predefined exceptions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.5906 \section{Predefined exceptions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 5919--5921

 []

Underfull \hbox (badness 10000) in paragraph at lines 5928--5930

 []

Underfull \hbox (badness 10000) in paragraph at lines 5937--5939

 []

LaTeX Font Info: Try loading font information for C70+megafont on input line
 5966.
(/home/dirk/.texmf-var/tex/latex/megafont/c70megafont.fd
File: c70megafont.fd
)

LaTeX Font Warning: Font shape `C70/megafont/m/it' undefined
(Font) using `C70/megafont/m/n' instead on input line 5966.

[154]
Underfull \hbox (badness 10000) in paragraph at lines 5971--5973

 []

Underfull \hbox (badness 10000) in paragraph at lines 5998--6000

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6011 \section{Input-{}output exceptions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6011 \section{Input-{}output exceptions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6011 \section{Input-{}output exceptions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6016 \item{
 } {\ttfamily End_Error}, raised by Get, Skip_Line, etc., if en...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6016 \item{
 } {\ttfamily End_Error}, raised by Get, Skip_Line, etc., if en...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [155]
Underfull \hbox (badness 10000) in paragraph at lines 6023--6024

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6044 \section{Exception declarations}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6044 \section{Exception declarations}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6044 \section{Exception declarations}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6049--6051

 []

Underfull \hbox (badness 10000) in paragraph at lines 6055--6057

 []

[156]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6072 \section{Raising exceptions}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6072 \section{Raising exceptions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6072 \section{Raising exceptions}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6077--6079

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6112 ...tion{Exception handling and propagation}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6112 ...tion{Exception handling and propagation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6112 ...tion{Exception handling and propagation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6118 \item{
 } by executing a {\bfseries return} statement;
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6118 \item{
 } by executing a {\bfseries return} statement;
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [157]
Underfull \hbox (badness 10000) in paragraph at lines 6133--6135

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6149 ...formation about an exception occurrence}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6149 ...formation about an exception occurrence}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6149 ...formation about an exception occurrence}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6161--6163

 []

[158]
Underfull \hbox (badness 10000) in paragraph at lines 6179--6181

 []

Underfull \hbox (badness 10000) in paragraph at lines 6197--6198

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6215 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6215 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6215 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6228--6229
[]\T1/lmr/m/n/10.95 (+20) Section 11: Ex-cep-tions ^^B{[]$\T1/lmtt/m/n/10.95 ht
tp : / / www . adaic . org / resources / add _ content /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6229 \item{
 } \AdaNiveFiveRMThree{11}{4}{1}{The Package Exceptions}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6229 \item{
 } \AdaNiveFiveRMThree{11}{4}{1}{The Package Exceptions}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [159]
Underfull \hbox (badness 10000) in paragraph at lines 6236--6237
[]\T1/lmr/m/n/10.95 (+20) Section 11: Ex-cep-tions ^^B{[]$\T1/lmtt/m/n/10.95 ht
tp : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 1412) in paragraph at lines 6259--6260
[]\T1/lmr/m/n/10.95 (+20) 5.8 Us-ing Ex-cep-tions ^^B{[]$\T1/lmtt/m/n/10.95 htt
p : / / www . adaic . org / resources / add _ content / docs /
 []

Underfull \hbox (badness 7504) in paragraph at lines 6263--6264
[]\T1/lmr/m/n/10.95 (+20) 5.8.3 Prop-a-ga-tion ^^B{[]$\T1/lmtt/m/n/10.95 http :
 / / www . adaic . org / resources / add _ content / docs /
 []

Underfull \hbox (badness 4967) in paragraph at lines 6277--6278
[]\T1/lmr/m/n/10.95 (+20) 7.5.1 Pre-de-fined and User-Defined Ex-cep-tions ^^B{
[]$\T1/lmtt/m/n/10.95 http : / / www . adaic . org /
 []

[160]
Chapter 20.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6297 ...Parametric polymorphism (generic units)}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6297 ...Parametric polymorphism (generic units)}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6297 ...Parametric polymorphism (generic units)}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6304--6306

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.6312

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 6323--6325

 []

Underfull \hbox (badness 10000) in paragraph at lines 6331--6333

 []

[161

]
Underfull \hbox (badness 10000) in paragraph at lines 6339--6341

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.6351

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 6359--6361

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6370 \section{Generic parameters}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6370 \section{Generic parameters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6370 \section{Generic parameters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6387--6390

 []

[162]
Underfull \hbox (badness 10000) in paragraph at lines 6397--6399

 []

Underfull \hbox (badness 10000) in paragraph at lines 6418--6420

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6435 ...t{ }${}formal_interface_type_definition}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6435 ...t{ }${}formal_interface_type_definition}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [163]
Underfull \vbox (badness 10000) detected at line 6442
 []

[164]
Underfull \vbox (badness 10000) detected at line 6451
 []

Underfull \hbox (badness 10000) in paragraph at lines 6461--6464

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6468 ...}\LaTeXBF{return} {}Element_T;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6468 ...}\LaTeXBF{return} {}Element_T;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [165]
Underfull \hbox (badness 10000) in paragraph at lines 6471--6474

 []

Underfull \hbox (badness 10000) in paragraph at lines 6481--6483

 []

Underfull \hbox (badness 10000) in paragraph at lines 6495--6497

 []

Underfull \hbox (badness 10000) in paragraph at lines 6507--6509

 []

Overfull \hbox (17.0pt too wide) in paragraph at lines 6510--6510
[]$[]$$[]$$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 6510--6510

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.6513

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[166]
Underfull \hbox (badness 10000) in paragraph at lines 6532--6534

 []

Underfull \hbox (badness 10000) in paragraph at lines 6539--6541

 []

Underfull \hbox (badness 10000) in paragraph at lines 6557--6559

 []

Underfull \hbox (badness 10000) in paragraph at lines 6566--6568

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6570 ...xt{ }${}\LaTeXBF{package}$\text{ }${}A;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6570 ...xt{ }${}\LaTeXBF{package}$\text{ }${}A;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [167]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6574 \section{Instantiating generics}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6574 \section{Instantiating generics}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6574 \section{Instantiating generics}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6577--6579

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6602 \section{Advanced generics}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6602 \section{Advanced generics}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6602 \section{Advanced generics}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6609--6611

 []

[168]
Underfull \hbox (badness 10000) in paragraph at lines 6622--6624

 []

Underfull \hbox (badness 10000) in paragraph at lines 6638--6640

 []

Underfull \hbox (badness 10000) in paragraph at lines 6655--6657

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6668 ...}${}\LaTeXBF{end}$\text{ }${}Example_2;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6668 ...}${}\LaTeXBF{end}$\text{ }${}Example_2;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [169]
Underfull \hbox (badness 10000) in paragraph at lines 6675--6677

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.6698

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 6712--6714

 []

[170]
Underfull \hbox (badness 10000) in paragraph at lines 6742--6744

 []

Underfull \hbox (badness 10000) in paragraph at lines 6756--6758

 []

Underfull \hbox (badness 10000) in paragraph at lines 6766--6768

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6783 ...}${}\LaTeXBF{end}$\text{ }${}Example_5;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6783 ...}${}\LaTeXBF{end}$\text{ }${}Example_5;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [171]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6785 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6785 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6785 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 4686) in paragraph at lines 6806--6807
[]\T1/lmr/m/n/10.95 (+20) Section 12: Generic Units ^^B{[]$\T1/lmtt/m/n/10.95 h
ttp : / / www . adaic . org / resources / add _ content /
 []

[172]
Chapter 21.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.6823 \section{Tasks}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.6823 \section{Tasks}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.6823 \section{Tasks}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 6830--6832

 []

Underfull \hbox (badness 10000) in paragraph at lines 6842--6844

 []

Underfull \hbox (badness 10000) in paragraph at lines 6848--6850

 []

[173

]
Underfull \hbox (badness 10000) in paragraph at lines 6870--6872

 []

Underfull \hbox (badness 10000) in paragraph at lines 6891--6894

 []

[174]
Underfull \hbox (badness 10000) in paragraph at lines 6928--6930

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.6953 ...t{ }${}Encapsulated_Variable_Task_Type;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.6953 ...t{ }${}Encapsulated_Variable_Task_Type;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [175]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.6956

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 6960--6962

 []

Underfull \hbox (badness 10000) in paragraph at lines 6978--6980

 []

[176]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7012 \section{Protected types}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7012 \section{Protected types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7012 \section{Protected types}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 7025--7028

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7050 ...{end} {}Protected_Buffer_Type;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7050 ...{end} {}Protected_Buffer_Type;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [177]
Underfull \hbox (badness 10000) in paragraph at lines 7058--7061

 []

[178]
Underfull \hbox (badness 10000) in paragraph at lines 7088--7090

 []

Underfull \hbox (badness 10000) in paragraph at lines 7100--7103

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7130 \section{Entry families}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7130 \section{Entry families}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7130 \section{Entry families}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7135 E
 x. 8
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7135 E
 x. 8
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [179]
Underfull \hbox (badness 10000) in paragraph at lines 7135--7138

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7175 \section{Termination}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7175 \section{Termination}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7175 \section{Termination}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 7181--7183

 []

[180]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7222 \section{Timeout}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7222 \section{Timeout}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7222 \section{Timeout}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 7227--7229

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7245 ...TeXBF{end} {}\LaTeXBF{select};}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7245 ...TeXBF{end} {}\LaTeXBF{select};}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [181]
Underfull \hbox (badness 10000) in paragraph at lines 7250--7252

 []

Underfull \hbox (badness 10000) in paragraph at lines 7275--7277

 []

[182]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7304 \section{Conditional entry calls}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7304 \section{Conditional entry calls}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7304 \section{Conditional entry calls}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 7307--7309

 []

Underfull \hbox (badness 10000) in paragraph at lines 7317--7319

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7329 \section{Requeue statements}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7329 \section{Requeue statements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7329 \section{Requeue statements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7333 \section{Scheduling}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7333 \section{Scheduling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7333 \section{Scheduling}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7337 \section
 {Interfaces}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7337 \section
 {Interfaces}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [183]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7337 \section{Interfaces}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7337 \section{Interfaces}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7337 \section{Interfaces}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 7342--7344

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7355 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7355 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7355 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[184]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7382 \section{Ada Quality and Style Guide}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7382 \section{Ada Quality and Style Guide}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7382 \section{Ada Quality and Style Guide}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 7981) in paragraph at lines 7387--7388
[]\T1/lmr/m/n/10.95 (+20) 4.1.9 Tasks ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www
. adaic . org / resources / add _ content / docs / 95style /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7397 ...{es:ProgramaciÃ³n en Ada/Tareas}\chapter
 {Object Orientation}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7397 ...{es:ProgramaciÃ³n en Ada/Tareas}\chapter
 {Object Orientation}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [185]
[186

]
Chapter 22.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.7408 \section{Object orientation in Ada}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.7408 \section{Object orientation in Ada}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.7408 \section{Object orientation in Ada}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.7449

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[187]
Underfull \hbox (badness 10000) in paragraph at lines 7480--7482

 []

Underfull \hbox (badness 10000) in paragraph at lines 7492--7494

 []

[188]
Underfull \hbox (badness 10000) in paragraph at lines 7511--7513

 []

Underfull \hbox (badness 10000) in paragraph at lines 7520--7522

 []

Underfull \hbox (badness 10000) in paragraph at lines 7531--7534

 []

Underfull \hbox (badness 10000) in paragraph at lines 7548--7550

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7558 ...t{ }${}\LaTeXBF{end}$\text{ }${}Person;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7558 ...t{ }${}\LaTeXBF{end}$\text{ }${}Person;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [189]
Underfull \hbox (badness 10000) in paragraph at lines 7561--7563

 []

Underfull \hbox (badness 10000) in paragraph at lines 7576--7578

 []

Underfull \hbox (badness 10000) in paragraph at lines 7590--7592

 []

[190]
Underfull \hbox (badness 10000) in paragraph at lines 7610--7612

 []

Underfull \hbox (badness 10000) in paragraph at lines 7624--7626

 []

Underfull \hbox (badness 10000) in paragraph at lines 7636--7638

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7657 ...${}\LaTeXBF{end}$\text{ }${}Programmer;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7657 ...${}\LaTeXBF{end}$\text{ }${}Programmer;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [191]
Underfull \hbox (badness 10000) in paragraph at lines 7680--7682

 []

[192]
Underfull \hbox (badness 10000) in paragraph at lines 7702--7704

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7734 E
 ach time the program calls a primitive operation, the compiler inser...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7734 E
 ach time the program calls a primitive operation, the compiler inser...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [193]
Underfull \hbox (badness 10000) in paragraph at lines 7747--7749

 []

[194]
Underfull \hbox (badness 10000) in paragraph at lines 7781--7783

 []

Underfull \hbox (badness 10000) in paragraph at lines 7795--7797

 []

Overfull \hbox (116.79616pt too wide) in paragraph at lines 7821--7823
[]\T1/lmr/m/n/10.95 (-20) The LRM sec-tion starts, $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 7821--7823

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7835

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7835

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [195]
Underfull \hbox (badness 10000) in paragraph at lines 7836--7842

 []

Underfull \hbox (badness 10000) in paragraph at lines 7850--7857

 []

Underfull \hbox (badness 10000) in paragraph at lines 7874--7882

 []

[196]
Underfull \hbox (badness 10000) in paragraph at lines 7901--7911

 []

Underfull \hbox (badness 10000) in paragraph at lines 7919--7925

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.7956 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.7956 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [197]
Underfull \hbox (badness 10000) in paragraph at lines 7961--7963

 []

Underfull \hbox (badness 10000) in paragraph at lines 7978--7980

 []

Underfull \hbox (badness 10000) in paragraph at lines 7990--7992

 []

Underfull \hbox (badness 2591) in paragraph at lines 8011--8017
\T1/lmr/m/n/10.95 (+20) Freezing rules ([]$\T1/lmtt/m/n/10.95 http : / / www .
adaic . com / standards / 05rm / html / RM-[]13-[]14 . html$[] \T1/lmr/m/n/10.9
5 (+20) ARM
 []

[198]
Underfull \hbox (badness 10000) in paragraph at lines 8025--8027

 []

Underfull \hbox (badness 10000) in paragraph at lines 8049--8051

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8068 \item{
 } The completion ({\itshape not} the declaration, if any) of a...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8068 \item{
 } The completion ({\itshape not} the declaration, if any) of a...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [199]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.8072

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 8102--8104

 []

[200]
Underfull \hbox (badness 10000) in paragraph at lines 8124--8126

 []

Underfull \hbox (badness 10000) in paragraph at lines 8140--8142

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.8150

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 8163--8165

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8179 T
 he difference with a non-{}abstract tagged type is that you cannot d...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8179 T
 he difference with a non-{}abstract tagged type is that you cannot d...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [201]
Underfull \hbox (badness 10000) in paragraph at lines 8187--8189

 []

Underfull \hbox (badness 10000) in paragraph at lines 8200--8202

 []

Underfull \hbox (badness 10000) in paragraph at lines 8225--8227

 []

[202]
Underfull \hbox (badness 10000) in paragraph at lines 8235--8237

 []

Underfull \hbox (badness 10000) in paragraph at lines 8242--8244

 []

Underfull \hbox (badness 10000) in paragraph at lines 8252--8254

 []

Underfull \hbox (badness 10000) in paragraph at lines 8270--8272

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8277 ...${}\LaTeXBF{end}$\text{ }${}Initialize;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8277 ...${}\LaTeXBF{end}$\text{ }${}Initialize;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [203]
Underfull \hbox (badness 10000) in paragraph at lines 8282--8284

 []

Underfull \hbox (badness 10000) in paragraph at lines 8290--8292

 []

Underfull \hbox (badness 10000) in paragraph at lines 8299--8301

 []

Underfull \hbox (badness 10000) in paragraph at lines 8325--8327

 []

[204]
Underfull \hbox (badness 10000) in paragraph at lines 8340--8342

 []

Underfull \hbox (badness 10000) in paragraph at lines 8350--8353

 []

Underfull \hbox (badness 10000) in paragraph at lines 8373--8375

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.8381 \section{Class names}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.8381 \section{Class names}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.8381 \section{Class names}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8385 \subsection
 {Classes/Class}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8385 \subsection
 {Classes/Class}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [205]
Underfull \hbox (badness 10000) in paragraph at lines 8388--8390

 []

Underfull \hbox (badness 10000) in paragraph at lines 8408--8410

 []

Underfull \hbox (badness 10000) in paragraph at lines 8428--8430

 []

[206]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.8443 ...ject-{}Oriented Ada for C++ programmers}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.8443 ...ject-{}Oriented Ada for C++ programmers}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.8443 ...ject-{}Oriented Ada for C++ programmers}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 8446--8448

 []

Underfull \hbox (badness 10000) in paragraph at lines 8456--8458

 []

Underfull \hbox (badness 10000) in paragraph at lines 8481--8483

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8486 {}object.w();}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8486 {}object.w();}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [207]
Underfull \hbox (badness 10000) in paragraph at lines 8489--8491

 []

Underfull \hbox (badness 10000) in paragraph at lines 8510--8512

 []

Underfull \hbox (badness 10000) in paragraph at lines 8529--8531

 []

[208]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.8564

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.8573

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 8591--8593

 []

Underfull \hbox (badness 10000) in paragraph at lines 8601--8603

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8603

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8603

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [209]
Underfull \hbox (badness 10000) in paragraph at lines 8616--8618

 []

Underfull \hbox (badness 10000) in paragraph at lines 8626--8628

 []

Underfull \hbox (badness 10000) in paragraph at lines 8634--8636

 []

Underfull \hbox (badness 10000) in paragraph at lines 8648--8650

 []

[210]
Underfull \hbox (badness 10000) in paragraph at lines 8658--8660

 []

Underfull \hbox (badness 10000) in paragraph at lines 8684--8686

 []

Underfull \hbox (badness 10000) in paragraph at lines 8694--8696

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8704 {}\LaTeXBF{end} {}P;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8704 {}\LaTeXBF{end} {}P;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [211]
Underfull \hbox (badness 10000) in paragraph at lines 8711--8713

 []

Underfull \hbox (badness 10000) in paragraph at lines 8727--8729

 []

[212]
Underfull \hbox (badness 10000) in paragraph at lines 8771--8773

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8822 {}\LaTeXBF{end} {}CPP;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8822 {}\LaTeXBF{end} {}CPP;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [213]
Underfull \hbox (badness 10000) in paragraph at lines 8827--8829

 []

Underfull \hbox (badness 10000) in paragraph at lines 8837--8839

 []

Underfull \hbox (badness 10000) in paragraph at lines 8854--8856

 []

Underfull \hbox (badness 10000) in paragraph at lines 8879--8881

 []

[214]
Underfull \hbox (badness 10000) in paragraph at lines 8921--8923

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.8935

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.8941 {}\};}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.8941 {}\};}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [215]
Underfull \hbox (badness 10000) in paragraph at lines 8944--8946

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.8958

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 8970--8972

 []

[216]
Underfull \vbox (badness 10000) detected at line 8998
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.9000 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.9000 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.9000 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 2302) in paragraph at lines 9026--9027
[]\T1/lmr/m/n/10.95 (+20) 3.8 Record Types ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
 www . adaic . org / resources / add _ content / standards /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9027 \item{
 } \AdaRMNineFive{3}{9}{Tagged Types and Type Extensions}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9027 \item{
 } \AdaRMNineFive{3}{9}{Tagged Types and Type Extensions}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [217]
Underfull \hbox (badness 1199) in paragraph at lines 9031--9032
[]\T1/lmr/m/n/10.95 (+20) 3.10 Ac-cess Types ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 2302) in paragraph at lines 9038--9039
[]\T1/lmr/m/n/10.95 (+20) 3.8 Record Types ^^B{[]$\T1/lmtt/m/n/10.95 http : / /
 www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 1199) in paragraph at lines 9044--9045
[]\T1/lmr/m/n/10.95 (+20) 3.10 Ac-cess Types ^^B{[]$\T1/lmtt/m/n/10.95 http : /
 / www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 1590) in paragraph at lines 9051--9052
[]\T1/lmr/m/n/10.95 (+20) Chapter 9: Object-Oriented Fea-tures ^^B{[]$\T1/lmtt/
m/n/10.95 http : / / www . adaic . org / resources / add _
 []

[218]
Chapter 23.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.9079 \section{Language features}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.9079 \section{Language features}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.9079 \section{Language features}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 9084--9086

 []

[219

] [220]
Underfull \hbox (badness 10000) in paragraph at lines 9152--9154

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9166 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9166 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [221]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.9168 \section{Language library}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.9168 \section{Language library}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.9168 \section{Language library}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[222]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.9223 ...{Real-{}Time and High Integrity Systems}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.9223 ...{Real-{}Time and High Integrity Systems}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.9223 ...{Real-{}Time and High Integrity Systems}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9246 \subsection
 {New scheduling policies}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9246 \subsection
 {New scheduling policies}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [223]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.9260 ...{Summary of what\textquotesingle{}s new}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.9260 ...{Summary of what\textquotesingle{}s new}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.9260 ...{Summary of what\textquotesingle{}s new}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[224]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9369 \item{
 } \LaTeXIdentityTemplate{Ada.Strings.Wide_Hash} {\small }(gene...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9369 \item{
 } \LaTeXIdentityTemplate{Ada.Strings.Wide_Hash} {\small }(gene...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [225]
[226]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.9474 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.9474 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.9474 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.9502 \section{External links}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.9502 \section{External links}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.9502 \section{External links}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 9508--9508
[][]$\T1/lmtt/m/n/9 http : / / www . sigada . org / conf / sigada2004 / SIGAda2
004-[]CDROM / SIGAda2004-[]Proceedings /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9509 \item{
 } \myhref{http://www.adacore.com/wp-content/files/attachments/A...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9509 \item{
 } \myhref{http://www.adacore.com/wp-content/files/attachments/A...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [227]
[228]
Underfull \hbox (badness 1178) in paragraph at lines 9571--9572
[]\T1/lmr/m/n/10.95 (+20) AI95-00326-01 In-com-plete types ^^B{[]$\T1/lmtt/m/n/
10.95 http : / / www . ada-[]auth . org / cgi-[]bin / cvsweb .
 []

Underfull \hbox (badness 1009) in paragraph at lines 9580--9581
[]\T1/lmr/m/n/10.95 (+20) AI95-00328-01 Pre-in-stan-ti-a-tions of Complex_-IO ^
^B{[]$\T1/lmtt/m/n/10.95 http : / / www . ada-[]auth . org /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9584 \item{
 } \ADANFAI{267}{Fast float-{}to-{}integer conversions}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9584 \item{
 } \ADANFAI{267}{Fast float-{}to-{}integer conversions}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [229]
Underfull \hbox (badness 3568) in paragraph at lines 9584--9585
[]\T1/lmr/m/n/10.95 (+20) AI95-00267-01 Fast float-to-integer con-ver-sions ^^B
{[]$\T1/lmtt/m/n/10.95 http : / / www . ada-[]auth . org /
 []

Underfull \hbox (badness 1043) in paragraph at lines 9585--9586
[]\T1/lmr/m/n/10.95 (+20) AI95-00321-01 Def-i-ni-tion of dis-patch-ing poli-cie
s ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . ada-[]auth . org /
 []

Underfull \hbox (badness 2426) in paragraph at lines 9588--9589
[]\T1/lmr/m/n/10.95 (+20) AI95-00351-01 Time op-er-a-tions ^^B{[]$\T1/lmtt/m/n/
10.95 http : / / www . ada-[]auth . org / cgi-[]bin / cvsweb .
 []

[230]
Chapter 24.

Underfull \hbox (badness 10000) in paragraph at lines 9623--9629

 []

Overfull \hbox (12.75pt too wide) in paragraph at lines 9630--9630
[]$[]$$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9630--9630

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9633

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 9657--9659

 []

[231

]
Overfull \hbox (8.5pt too wide) in paragraph at lines 9660--9660
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9660--9660

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9663

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 9702--9705

 []

Underfull \hbox (badness 10000) in paragraph at lines 9711--9722

 []

[232]
Underfull \hbox (badness 10000) in paragraph at lines 9746--9753

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 9754--9754
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9754--9754

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9757

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9788

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9788

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [233]
Underfull \hbox (badness 10000) in paragraph at lines 9789--9794

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 9795--9795
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9795--9795

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9798

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 9831--9836

 []

Underfull \hbox (badness 10000) in paragraph at lines 9846--9849

 []

[234]
Overfull \hbox (8.5pt too wide) in paragraph at lines 9850--9850
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9850--9850

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9853

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 9900--9904

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 9905--9905
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9905--9905

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9908

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.9939 ...average_weight\LaTeXIdentityTemplate{;}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.9939 ...average_weight\LaTeXIdentityTemplate{;}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [235]
Underfull \hbox (badness 10000) in paragraph at lines 9951--9957

 []

Underfull \hbox (badness 10000) in paragraph at lines 9963--9967

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 9968--9968
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9968--9968

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9971

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[236]
Underfull \hbox (badness 10000) in paragraph at lines 9988--9990

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 9991--9991
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 9991--9991

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.9994

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10044 T
 he Beans package in this example instantiates another
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10044 T
 he Beans package in this example instantiates another
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [237]
Underfull \hbox (badness 10000) in paragraph at lines 10044--10053

 []

Underfull \hbox (badness 10000) in paragraph at lines 10068--10072

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 10073--10073
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 10073--10073

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10076

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Overfull \vbox (0.71753pt too high) detected at line 10196
 []

[238]
Underfull \vbox (badness 10000) detected at line 10196
 []

Underfull \vbox (badness 10000) detected at line 10196
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10196 ...bean_counting\LaTeXIdentityTemplate{;}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10196 ...bean_counting\LaTeXIdentityTemplate{;}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [239]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10220 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10220 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10220 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[240]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10238 \chapter
 {Interfacing}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10238 \chapter
 {Interfacing}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [241]
[242

]
Chapter 25.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10249 \section{Interfacing}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10249 \section{Interfacing}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10249 \section{Interfacing}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10253 \section{Other programming languages}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10253 \section{Other programming languages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10253 \section{Other programming languages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10259 \section{Hardware devices}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10259 \section{Hardware devices}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10259 \section{Hardware devices}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10263 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10263 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10263 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[243]
! Undefined control sequence.
l.10285 \item{} \AdaNineFiveR
 {b}{Interface to Other Languages}{3}
The control sequence at the end of the top line
of your error message was never \def'ed. If you have
misspelled it (e.g., `\hobx'), type `I' and the correct
spelling (e.g., `I\hbox'). Otherwise just continue,
and I'll forget about whatever was undefined.

[244]
Chapter 26.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10306 \section{Introduction}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10306 \section{Introduction}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10306 \section{Introduction}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10312 \section{Tools}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10312 \section{Tools}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10312 \section{Tools}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10325 \section{Coding guidelines}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10325 \section{Coding guidelines}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10325 \section{Coding guidelines}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[245

]
Underfull \hbox (badness 10000) in paragraph at lines 10331--10332

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10338

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 10352--10352

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10361 }
 . . Retrieved (\myhref{http://gcc.gnu.org/onlinedocs/gnat-style.p...

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10362 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10362 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10362 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[246]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10384 \section{External links}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10384 \section{External links}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10384 \section{External links}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 10387--10387
[][]$\T1/lmtt/m/n/9 http : / / geekswithblogs . net / sdorman / archive / 2007
/ 06 / 13 / Introduction-[]to-[]Coding-[]Standards .
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10391 \chapter
 {Tips}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10391 \chapter
 {Tips}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [247]
[248

]
Chapter 27.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10402 ...ed to the unit\textquotesingle{}s body}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10402 ...ed to the unit\textquotesingle{}s body}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10402 ...ed to the unit\textquotesingle{}s body}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 10411--10413

 []

[249]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10429 \section{Lambda calculus through generics}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10429 \section{Lambda calculus through generics}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10429 \section{Lambda calculus through generics}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 10434--10436

 []

Underfull \hbox (badness 10000) in paragraph at lines 10448--10448
[][][] \T1/lmr/m/n/9 (+20) Func-tional Pro-gram-ming in...Ada? ^^B{[]$\T1/lmtt/
m/n/9 http : / / okasaki . blogspot . com / 2008 / 07 /
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10449 \section{Compiler Messages}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10449 \section{Compiler Messages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10449 \section{Compiler Messages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[250]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10467

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10478 \section{Universal integers}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10478 \section{Universal integers}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10478 \section{Universal integers}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 10481--10483

 []

Underfull \hbox (badness 10000) in paragraph at lines 10489--10491

 []

Underfull \hbox (badness 10000) in paragraph at lines 10496--10498

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10518 ...ext{ }${}$\text{ }${}{\mbox{$\ldots$}}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10518 ...ext{ }${}$\text{ }${}{\mbox{$\ldots$}}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [251]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10541

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10552

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 3679) in paragraph at lines 10563--10564
[]\T1/lmr/m/n/10.95 (+20) 4.5.2 Re-la-tional Op-er-a-tors and Mem-ber-ship Test
s ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . adaic . org /
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10569 \section{I/O}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10569 \section{I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10569 \section{I/O}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[252]
Underfull \hbox (badness 10000) in paragraph at lines 10580--10582

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10596 \section{Quirks}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10596 \section{Quirks}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10596 \section{Quirks}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 10599--10606

 []

Underfull \hbox (badness 10000) in paragraph at lines 10614--10616

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10617 ...[}$}some$\text{ }${}number{$\text{]}$}}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10617 ...[}$}some$\text{ }${}number{$\text{]}$}}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [253]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10621 \section{References}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10621 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10621 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10625 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10625 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10625 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 3942) in paragraph at lines 10639--10640
[]\T1/lmr/m/n/10.95 (+20) 3.10.1 In-com-plete Type Dec-la-ra-tions ^^B{[]$\T1/l
mtt/m/n/10.95 http : / / www . adaic . org / resources / add _
 []

[254]
Chapter 28.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10657 \section{pragma Atomic \& Volatile}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10657 \section{pragma Atomic \& Volatile}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10657 \section{pragma Atomic \& Volatile}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 10671--10673

 []

Underfull \hbox (badness 10000) in paragraph at lines 10677--10682

 []

Underfull \hbox (badness 10000) in paragraph at lines 10696--10698

 []

[255

]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10718 \section{References}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10718 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10718 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10721 \section{pragma Pack}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10721 \section{pragma Pack}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10721 \section{pragma Pack}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[256]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10736 ...{\textquotesingle{}Bit_Order attribute}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10736 ...{\textquotesingle{}Bit_Order attribute}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10736 ...{\textquotesingle{}Bit_Order attribute}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\@ifnextchar' on input line 10736.

! Illegal parameter number in definition of \Hy@tempa.
<to be read again>
 1
l.10748 }{}. . Retrieved }

You meant to type ## instead of #, right?
Or maybe a } was forgotten somewhere earlier, and things
are all screwed up? I'm going to assume that you meant ##.

! Illegal parameter number in definition of \Hy@tempa.
<to be read again>
 1
l.10748 }{}. . Retrieved }

You meant to type ## instead of #, right?
Or maybe a } was forgotten somewhere earlier, and things
are all screwed up? I'm going to assume that you meant ##.

Underfull \hbox (badness 10000) in paragraph at lines 10748--10748
[][]$\T1/lmtt/m/n/9 |title = Gem # 140 : BridgingtheEndiannessGap | accessdate
= 2013-[]01-[]31 |
 []

Underfull \hbox (badness 10000) in paragraph at lines 10748--10748
\T1/lmtt/m/n/9 author = ThomasQuinot | year = 2013 | month = January | publishe
r = AdaCore | quote =
 []

Overfull \hbox (19.872pt too wide) in paragraph at lines 10748--10748
\T1/lmtt/m/n/9 theorderinwhichthebytesthatconstitutemachinescalarsarewrittentom
emoryisnotchangedbytheBit _
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10751 \section{\textquotesingle{}Size attribute}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10751 \section{\textquotesingle{}Size attribute}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10751 \section{\textquotesingle{}Size attribute}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10757 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10757 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10757 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10764 \item{
 } \mylref{467}{Ada Programming/Tips}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10764 \item{
 } \mylref{467}{Ada Programming/Tips}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [257]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10767 \section{References}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10767 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10767 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[258]
Chapter 29.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10785 \label{498}\section{Introduction}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10785 \label{498}\section{Introduction}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10785 \label{498}\section{Introduction}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10806 \section{Chapter 1: Introduction}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10806 \section{Chapter 1: Introduction}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10806 \section{Chapter 1: Introduction}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 10813--10815

 []

[259

]
Overfull \hbox (8.5pt too wide) in paragraph at lines 10829--10829
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 10836--10838

 []

Underfull \hbox (badness 10000) in paragraph at lines 10836--10838

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.10867 \section{Chapter 6: Dynamic Programming}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.10867 \section{Chapter 6: Dynamic Programming}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.10867 \section{Chapter 6: Dynamic Programming}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[260]
Underfull \hbox (badness 10000) in paragraph at lines 10876--10878

 []

Underfull \hbox (badness 10000) in paragraph at lines 10876--10878

 []

Underfull \hbox (badness 10000) in paragraph at lines 10882--10884

 []

Underfull \hbox (badness 10000) in paragraph at lines 10888--10890

 []

Underfull \hbox (badness 10000) in paragraph at lines 10907--10908

 []

Underfull \hbox (badness 10000) in paragraph at lines 10912--10914

 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10915 {}999_999_999_999_999_999;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
<argument> ...tional\let \reserved@d =[\def \par }

l.10915 {}999_999_999_999_999_999;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \vbox (10.2pt too high) has occurred while \output is active []

 [261]
Underfull \hbox (badness 10000) in paragraph at lines 10918--10920

 []

Underfull \hbox (badness 10000) in paragraph at lines 10925--10927

 []

Underfull \hbox (badness 10000) in paragraph at lines 10932--10934

 []

Underfull \hbox (badness 10000) in paragraph at lines 10939--10941

 []

Underfull \hbox (badness 10000) in paragraph at lines 10945--10947

 []

Underfull \hbox (badness 10000) in paragraph at lines 10965--10966

 []

Underfull \hbox (badness 10000) in paragraph at lines 10967--10969

 []

[262]
Underfull \hbox (badness 10000) in paragraph at lines 10979--10981

 []

Runaway argument?
\@empty
! Paragraph ended before \UL@word was complete.
<to be read again>
 \par
l.10989 }

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\UL@stop ...z@ \else \UL@putbox \fi \else \egroup
 \egroup \UL@putbox \fi \if...
l.10989 }

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\UL@stop ... \UL@putbox \fi \else \egroup \egroup
 \UL@putbox \fi \ifnum \UL@...
l.10989 }

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Missing } inserted.
<inserted text>
 }
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Missing } inserted.
<inserted text>
 }
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Missing \endgroup inserted.
<inserted text>
 \endgroup
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Missing \endgroup inserted.
<inserted text>
 \endgroup
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Missing \endgroup inserted.
<inserted text>
 \endgroup
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Missing } inserted.
<inserted text>
 }
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Missing } inserted.
<inserted text>
 }
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

Underfull \hbox (badness 10000) in paragraph at lines 10989--10989

 []

! Missing } inserted.
<inserted text>
 }
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Missing } inserted.
<inserted text>
 }
l.10989 }

I've inserted something that you may have forgotten.
(See the <inserted text> above.)
With luck, this will get me unwedged. But if you
really didn't forget anything, try typing `2' now; then
my insertion and my current dilemma will both disappear.

! Undefined control sequence.
\MakeFramed ...skip 2\baselineskip \vskip \height
 \penalty 9999 \vskip -2\ba...
l.10989 }

The control sequence at the end of the top line
of your error message was never \def'ed. If you have
misspelled it (e.g., `\hobx'), type `I' and the correct
spelling (e.g., `I\hbox'). Otherwise just continue,
and I'll forget about whatever was undefined.

! Missing number, treated as zero.
<to be read again>
 \penalty
l.10989 }

A number should have been here; I inserted `0'.
(If you can't figure out why I needed to see a number,
look up `weird error' in the index to The TeXbook.)

! Illegal unit of measure (pt inserted).
<to be read again>
 \penalty
l.10989 }

Dimensions can be in units of em, ex, in, pt, pc,
cm, mm, dd, cc, nd, nc, bp, or sp; but yours is a new one!
I'll assume that you meant to say pt, for printer's points.
To recover gracefully from this error, it's best to
delete the erroneous units; e.g., type `2' to delete
two letters. (See Chapter 27 of The TeXbook.)

! Undefined control sequence.
\MakeFramed ...ip -2\baselineskip \vskip -\height
 \penalty 9999 \fb@adjheigh...
l.10989 }

The control sequence at the end of the top line
of your error message was never \def'ed. If you have
misspelled it (e.g., `\hobx'), type `I' and the correct
spelling (e.g., `I\hbox'). Otherwise just continue,
and I'll forget about whatever was undefined.

! Missing number, treated as zero.
<to be read again>
 \penalty
l.10989 }

A number should have been here; I inserted `0'.
(If you can't figure out why I needed to see a number,
look up `weird error' in the index to The TeXbook.)

! Illegal unit of measure (pt inserted).
<to be read again>
 \penalty
l.10989 }

Dimensions can be in units of em, ex, in, pt, pc,
cm, mm, dd, cc, nd, nc, bp, or sp; but yours is a new one!
I'll assume that you meant to say pt, for printer's points.
To recover gracefully from this error, it's best to
delete the erroneous units; e.g., type `2' to delete
two letters. (See Chapter 27 of The TeXbook.)

! Undefined control sequence.
<argument> \advance \hsize -\width
 \FrameRestore
l.10989 }

The control sequence at the end of the top line
of your error message was never \def'ed. If you have
misspelled it (e.g., `\hobx'), type `I' and the correct
spelling (e.g., `I\hbox'). Otherwise just continue,
and I'll forget about whatever was undefined.

! Missing number, treated as zero.
<to be read again>
 \let
l.10989 }

A number should have been here; I inserted `0'.
(If you can't figure out why I needed to see a number,
look up `weird error' in the index to The TeXbook.)

! Illegal unit of measure (pt inserted).
<to be read again>
 \let
l.10989 }

Dimensions can be in units of em, ex, in, pt, pc,
cm, mm, dd, cc, nd, nc, bp, or sp; but yours is a new one!
I'll assume that you meant to say pt, for printer's points.
To recover gracefully from this error, it's best to
delete the erroneous units; e.g., type `2' to delete
two letters. (See Chapter 27 of The TeXbook.)

! LaTeX Error: \begin{scriptsize} on input line 10989 ended by \end{framed}.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10989 }

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: \begin{CJK} on input line 24 ended by \end{scriptsize}.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10989 }

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! Improper \spacefactor.
\UL@on ...#1\xdef \UL@spfactor {\the \spacefactor
 } \UL@end *
l.10989 }

You can refer to \spacefactor only in horizontal mode;
you can refer to \prevdepth only in vertical mode; and
neither of these is meaningful inside \write. So
I'm forgetting what you said and using zero instead.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10989 }

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \vbox (badness 10000) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.10989 }

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.10989 }

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[263]
! Too many }'s.
\endMakeFramed ...eight \z@ \penalty -100 \egroup
 \begingroup \fb@put@frame ...
l.10989 }

You've closed more groups than you opened.
Such booboos are generally harmless, so keep going.

! Dimension too large.
\XC@frameb@x ...ule }}}\@tempdima \wd \@tempboxa
 \edef \@tempa {{\the \@tem...
l.10989 }

I can't work with sizes bigger than about 19 feet.
Continue and I'll use the largest value I can.

! LaTeX Error: \begin{document} ended by \end{framed}.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10989 }

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! Extra \endgroup.
<recently read> \endgroup

l.10989 }

Things are pretty mixed up, but I think the worst is over.

! LaTeX Error: \begin{document} ended by \end{scriptsize}.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.10989 }

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! Extra \endgroup.
<recently read> \endgroup

l.10989 }

Things are pretty mixed up, but I think the worst is over.

Underfull \vbox (badness 10000) has occurred while \output is active []

 [264]
Underfull \hbox (badness 10000) in paragraph at lines 10998--11000

 []

Underfull \hbox (badness 10000) in paragraph at lines 10998--11000

 []

Underfull \hbox (badness 10000) in paragraph at lines 11023--11025

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 11026--11026
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 11026--11026

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.11029

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.11038 \chapter
 {Function overloading}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.11038 \chapter
 {Function overloading}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[265] [266

]
Chapter 30.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.11050

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Overfull \hbox (8.5pt too wide) in paragraph at lines 11074--11074
[]$[]$ $[]$
 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.11077

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.11081

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11084 \section{Function overloading in Ada}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11084 \section{Function overloading in Ada}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11084 \section{Function overloading in Ada}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 11087--11089

 []

Underfull \hbox (badness 10000) in paragraph at lines 11094--11096

 []

Underfull \vbox (badness 2165) has occurred while \output is active []

 [267]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11122 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11122 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11122 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 1147) in paragraph at lines 11136--11137
[]\T1/lmr/m/n/10.95 (+20) 6.6 Over-load-ing of Op-er-a-tors ^^B{[]$\T1/lmtt/m/n
/10.95 http : / / www . adaic . org / resources / add _ content /
 []

Underfull \hbox (badness 1147) in paragraph at lines 11144--11145
[]\T1/lmr/m/n/10.95 (+20) 6.6 Over-load-ing of Op-er-a-tors ^^B{[]$\T1/lmtt/m/n
/10.95 http : / / www . adaic . org / resources / add _ content /
 []

[268]
Chapter 31.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11162 \section{Simple calculations}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11162 \section{Simple calculations}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11162 \section{Simple calculations}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 11167--11169

 []

Overfull \hbox (12.75255pt too wide) in paragraph at lines 11196--11196
[][][] $[]$|
 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 11196--11196
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 11201--11203

 []

[269

]
Overfull \hbox (12.75255pt too wide) in paragraph at lines 11254--11254
[][][] $[]$|
 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 11254--11254
[]$[]$ $[]$
 []

Underfull \vbox (badness 10000) has occurred while \output is active []

 [270]
Underfull \hbox (badness 10000) in paragraph at lines 11269--11271

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 11342--11342
[]$[]$ $[]$
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.11342 ...${}\LaTeXBF{end}$\text{ }${}Numeric_3;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.11342 ...${}\LaTeXBF{end}$\text{ }${}Numeric_3;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[271]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11344 \section{Exponential calculations}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11344 \section{Exponential calculations}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11344 \section{Exponential calculations}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 1953) has occurred while \output is active []

 [272]
Underfull \hbox (badness 10000) in paragraph at lines 11365--11367

 []

Overfull \hbox (8.5pt too wide) in paragraph at lines 11464--11464
[]$[]$ $[]$
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.11464 ...${}\LaTeXBF{end}$\text{ }${}Numeric_4;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.11464 ...${}\LaTeXBF{end}$\text{ }${}Numeric_4;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[273]
Underfull \vbox (badness 10000) detected at line 11464
 []

Underfull \vbox (badness 10000) detected at line 11464
 []

[274]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11466 \section{Higher math}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11466 \section{Higher math}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11466 \section{Higher math}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Package inputenc Error: Unicode char \u8:Ï� not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.11471 ...Ada}. All functions are defined for 2Ï�
 and an arbitrary cycle va...

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 11475--11477

 []

Underfull \hbox (badness 10000) in paragraph at lines 11475--11477

 []

! Package inputenc Error: Unicode char \u8:Ï� not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.11575 ...${}\LaTeXBF{end}$\text{ }${}Numeric_5;}

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.11575 ...${}\LaTeXBF{end}$\text{ }${}Numeric_5;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.11575 ...${}\LaTeXBF{end}$\text{ }${}Numeric_5;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[275]
Underfull \hbox (badness 10000) in paragraph at lines 11583--11585

 []

Underfull \vbox (badness 10000) has occurred while \output is active []

 [276]
Overfull \hbox (8.5pt too wide) in paragraph at lines 11586--11586
[]$[]$ $[]$
 []

Underfull \hbox (badness 10000) in paragraph at lines 11586--11586

 []

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.11589

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \vbox (badness 10000) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.11646 \subsection
 {Complex arithmethic}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.11646 \subsection
 {Complex arithmethic}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[277]
Underfull \hbox (badness 10000) in paragraph at lines 11667--11669

 []

Underfull \hbox (badness 10000) in paragraph at lines 11667--11669

 []

! Package inputenc Error: Unicode char \u8:Ï� not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.11771 ...${}\LaTeXBF{end}$\text{ }${}Numeric_7;}

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[278]
Underfull \vbox (badness 10000) detected at line 11771
 []

Underfull \vbox (badness 10000) detected at line 11771
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.11771 ...${}\LaTeXBF{end}$\text{ }${}Numeric_7;}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.11771 ...${}\LaTeXBF{end}$\text{ }${}Numeric_7;}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[279]
Underfull \hbox (badness 10000) in paragraph at lines 11782--11786

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11786 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11786 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11786 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[280]
Underfull \hbox (badness 10000) in paragraph at lines 11794--11794
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 11795--11795
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 11802--11803
[]\T1/lmr/m/n/10.95 (+20) 4.4 Ex-pres-sions ^^B{[]$\T1/lmtt/m/n/10.95 http : /
/ www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 8038) in paragraph at lines 11803--11804
[]\T1/lmr/m/n/10.95 (+20) Annex A.5-1 El-e-men-tary Func-tions ^^B{[]$\T1/lmtt/
m/n/10.95 http : / / www . adaic . org / resources / add _
 []

Underfull \hbox (badness 1694) in paragraph at lines 11804--11805
[]\T1/lmr/m/n/10.95 (+20) Annex A.10-1 The Pack-age Text_-IO ^^B{[]$\T1/lmtt/m/
n/10.95 http : / / www . adaic . org / resources / add _
 []

Underfull \hbox (badness 10000) in paragraph at lines 11806--11808
\T1/lmr/m/n/10.95 (+20) u-la-tion ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . ad
aic . org / resources / add _ content / standards / 95lrm / ARM _
 []

Underfull \hbox (badness 3503) in paragraph at lines 11813--11814
[]\T1/lmr/m/n/10.95 (+20) 4.4 Ex-pres-sions ^^B{[]$\T1/lmtt/m/n/10.95 http : /
/ www . adaic . org / resources / add _ content / standards /
 []

Underfull \hbox (badness 1533) in paragraph at lines 11814--11815
[]\T1/lmr/m/n/10.95 (+20) Annex A.5.1 El-e-men-tary Func-tions ^^B{[]$\T1/lmtt/
m/n/10.95 http : / / www . adaic . org / resources / add _
 []

! Undefined control sequence.
l.11816 \item{} \ADARMATWO
 {G}{1}{Complex Arithmetic}
The control sequence at the end of the top line
of your error message was never \def'ed. If you have
misspelled it (e.g., `\hobx'), type `I' and the correct
spelling (e.g., `I\hbox'). Otherwise just continue,
and I'll forget about whatever was undefined.

! Undefined control sequence.
l.11817 \item{} \ADARMATWO
 {G}{3}{Vector and Matrix Manipulation}
The control sequence at the end of the top line
of your error message was never \def'ed. If you have
misspelled it (e.g., `\hobx'), type `I' and the correct
spelling (e.g., `I\hbox'). Otherwise just continue,
and I'll forget about whatever was undefined.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.11821 \chapter
 {Statements}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.11821 \chapter
 {Statements}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[281] [282

]
Chapter 32.

Underfull \hbox (badness 10000) in paragraph at lines 11835--11837

 []

Underfull \hbox (badness 10000) in paragraph at lines 11844--11846

 []

[283] [284

]
Chapter 33.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11872 \section{Assignment statements}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11872 \section{Assignment statements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11872 \section{Assignment statements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 11878--11880

 []

Overfull \hbox (12.75255pt too wide) in paragraph at lines 11881--11881
[][][] $[]$|
 []

Underfull \hbox (badness 10000) in paragraph at lines 11890--11892

 []

Overfull \hbox (12.75255pt too wide) in paragraph at lines 11897--11897
[][][] $[]$|
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11900 \label{548}\section{Uses}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11900 \label{548}\section{Uses}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11900 \label{548}\section{Uses}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11904 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11904 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11904 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 2726) in paragraph at lines 11909--11910
[]\T1/lmr/m/n/10.95 (+20) 3.3 Ob-jects and Named Num-bers ^^B{[]$\T1/lmtt/m/n/1
0.95 http : / / www . adaic . org / resources / add _
 []

[285] [286]
Chapter 34.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11924 \section{Character set}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11924 \section{Character set}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11924 \section{Character set}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.11941 \section{Lexical elements}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.11941 \section{Lexical elements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.11941 \section{Lexical elements}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 11957--11959

 []

[287

]
Underfull \hbox (badness 10000) in paragraph at lines 11976--11978

 []

Underfull \hbox (badness 10000) in paragraph at lines 11989--11990

 []

Underfull \hbox (badness 10000) in paragraph at lines 11994--11995

 []

[288]
Underfull \hbox (badness 10000) in paragraph at lines 12029--12031

 []

Underfull \hbox (badness 10000) in paragraph at lines 12040--12042

 []

Underfull \hbox (badness 10000) in paragraph at lines 12048--12050

 []

Underfull \hbox (badness 10000) in paragraph at lines 12055--12056

 []

Underfull \hbox (badness 10000) in paragraph at lines 12064--12066

 []

Underfull \vbox (badness 1147) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12079 I
 n Ada some keywords have a different meaning depending on context. ...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12079 I
 n Ada some keywords have a different meaning depending on context. ...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[289]
Overfull \hbox (1.33325pt too wide) in paragraph at lines 12087--12087
[]|| | \T1/lmtt/b/n/10.95 synchronized
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12093 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12093 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12093 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 10000) has occurred while \output is active []

 [290]
Underfull \hbox (badness 2197) in paragraph at lines 12110--12111
[]\T1/lmr/m/n/10.95 (+20) 2.2 Lex-i-cal El-e-ments, Sep-a-ra-tors, and De-lim-i
ters ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . adaic . org /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12116 ... en Ada/Elementos del lenguaje}\chapter
 {Keywords}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12116 ... en Ada/Elementos del lenguaje}\chapter
 {Keywords}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[291] [292

]
Chapter 35.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12127 \section{Language summary keywords}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12127 \section{Language summary keywords}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12127 \section{Language summary keywords}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12133 \section{List of keywords}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12133 \section{List of keywords}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12133 \section{List of keywords}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Overfull \hbox (1.33325pt too wide) in paragraph at lines 12142--12142
[]|| | \T1/lmtt/b/n/10.95 synchronized
 []

[293]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12148 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12148 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12148 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 1377) has occurred while \output is active []

 [294]
Underfull \hbox (badness 10000) in paragraph at lines 12198--12199
[]\T1/lmr/m/n/10.95 (+20) 3.1.3 Cap-i-tal-iza-tion ^^B{[]$\T1/lmtt/m/n/10.95 ht
tp : / / www . adaic . org / resources / add _ content / docs /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12202 \chapter
 {Delimiters}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12202 \chapter
 {Delimiters}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[295] [296

]
Chapter 36.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12213 \section{Single character delimiters}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12213 \section{Single character delimiters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12213 \section{Single character delimiters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[297]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12312 \section{Compound character delimiters}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12312 \section{Compound character delimiters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12312 \section{Compound character delimiters}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 12345--12345
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FDelimiters % 2Fgreater % 20than % 20or %
 []

Underfull \hbox (badness 10000) in paragraph at lines 12351--12351
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FDelimiters % 2Fless % 20than % 20or %
 []

[298]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12375 \section{Others}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12375 \section{Others}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12375 \section{Others}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12419 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12419 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12419 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 2197) in paragraph at lines 12433--12434
[]\T1/lmr/m/n/10.95 (+20) 2.2 Lex-i-cal El-e-ments, Sep-a-ra-tors, and De-lim-i
ters ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . adaic . org /
 []

Underfull \hbox (badness 2197) in paragraph at lines 12441--12442
[]\T1/lmr/m/n/10.95 (+20) 2.2 Lex-i-cal El-e-ments, Sep-a-ra-tors, and De-lim-i
ters ^^B{[]$\T1/lmtt/m/n/10.95 http : / / www . adaic . org /
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12445 \chapter
 {Operators}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12445 \chapter
 {Operators}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[299] [300

]
Chapter 37.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12456 \section{Standard operators}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12456 \section{Standard operators}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12456 \section{Standard operators}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[301]
Underfull \hbox (badness 10000) in paragraph at lines 12508--12508
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FOperators % 2Fless % 20than % 20or %
 []

Underfull \hbox (badness 10000) in paragraph at lines 12511--12511
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FDelimiters % 2Fless % 20than % 20or %
 []

Underfull \hbox (badness 10000) in paragraph at lines 12520--12520
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FOperators % 2Fgreater % 20than % 20or %
 []

Underfull \hbox (badness 10000) in paragraph at lines 12523--12523
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FDelimiters % 2Fgreater % 20than % 20or %
 []

[302]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12610 \section{Short-{}circuit control forms}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12610 \section{Short-{}circuit control forms}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12610 \section{Short-{}circuit control forms}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 12615--12615
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FOperators % 2Fand % 23Boolean _ shortcut _
 []

Underfull \hbox (badness 10000) in paragraph at lines 12621--12621
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FOperators % 2For % 23Boolean _ shortcut _
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12627 \section{Membership tests}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12627 \section{Membership tests}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12627 \section{Membership tests}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12642 \end{myquote}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12642 \end{myquote}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[303]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.12647

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.12654

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.12660

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12663 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12663 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12663 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 12702--12702
[][][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programm
ing % 2FKeywords % 2Fand % 23Boolean % 20shortcut %
 []

Underfull \hbox (badness 10000) in paragraph at lines 12702--12702
[][][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programm
ing % 2FKeywords % 2For % 23Boolean % 20shortcut %
 []

Underfull \hbox (badness 10000) in paragraph at lines 12702--12702
[][][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programm
ing % 2FDelimiters % 2Fgreater % 20than % 20or %
 []

Underfull \hbox (badness 10000) in paragraph at lines 12702--12702
[][][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programm
ing % 2FDelimiters % 2Fless % 20than % 20or % 20equal %
 []

[304]
Chapter 38.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12720 \section{Language summary attributes}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12720 \section{Language summary attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12720 \section{Language summary attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 12723--12725

 []

Overfull \hbox (12.75255pt too wide) in paragraph at lines 12726--12726
[][][] $[]$|
 []

Underfull \hbox (badness 10000) in paragraph at lines 12729--12731

 []

Underfull \hbox (badness 10000) in paragraph at lines 12737--12739

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12743 ...on{List of language defined attributes}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12743 ...on{List of language defined attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12743 ...on{List of language defined attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 6842) has occurred while \output is active []

 [305

]
[306]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12837 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12837 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[307]
Underfull \hbox (badness 10000) in paragraph at lines 12841--12841
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FAttributes % 2F % 27Max _ Aligment _ For _
 []

Underfull \hbox (badness 10000) in paragraph at lines 12842--12842
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FAttributes % 2F % 27Max _ Size _ In _ Storage _
 []

[308]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12900 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12900 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[309]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.12922 ...t of implementation defined attributes}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.12922 ...t of implementation defined attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.12922 ...t of implementation defined attributes}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 2384) has occurred while \output is active []

 [310]
Underfull \hbox (badness 10000) in paragraph at lines 12956--12956
[][]$\T1/lmtt/m/n/9 http : / / docs . sun . com / app / docs / doc / 802-[]3641
 / 6i7h8si5i ? a = view # F .
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.12979 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.12979 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[311] [312]
Underfull \hbox (badness 10000) in paragraph at lines 13022--13022
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FAttributes % 2F % 27Max _ Interrupt _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13043 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13043 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[313]
Underfull \hbox (badness 10000) in paragraph at lines 13056--13056
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FAttributes % 2F % 27Universal _ Literal _
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13064 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13064 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13064 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 6825) has occurred while \output is active []

 [314]
Underfull \hbox (badness 10000) in paragraph at lines 13082--13083
[]\T1/lmr/m/n/10.95 (+20) Annex A: Pre-de-fined Lan-guage At-tributes ^^B{[]$\T
1/lmtt/m/n/10.95 http : / / archive . adaic . com /
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13109 \section{References}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13109 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13109 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13113 \chapter
 {Pragmas}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13113 \chapter
 {Pragmas}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[315] [316

]
Chapter 39.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13124 \section{Description}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13124 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13124 \section{Description}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 13127--13129

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13134 \section{List of language defined pragmas}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13134 \section{List of language defined pragmas}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13134 \section{List of language defined pragmas}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[317] [318]
Underfull \hbox (badness 10000) in paragraph at lines 13208--13208
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FPragmas % 2FPartition _ Elaboration _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13209--13209
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FPragmas % 2FPreelaborable _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13212--13212
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FPragmas % 2FPriority _ Specific _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13233 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13233 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[319]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13240 ...List of implementation defined pragmas}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13240 ...List of implementation defined pragmas}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13240 ...List of implementation defined pragmas}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 13274--13274
[][]$\T1/lmtt/m/n/9 http : / / docs . sun . com / app / docs / doc / 802-[]3641
 / 6i7h8si5i ? a = view # F .
 []

Underfull \hbox (badness 6348) in paragraph at lines 13274--13275
[]\T1/lmr/m/n/10.95 (+20) Implementation de-fined pragma[][][] of Sun\TS1/lmr/m
/n/10.95 '\T1/lmr/m/n/10.95 (+20) s SPAR-Com-piler Ada[][][].[]$\T1/lmtt/m/n/1
0.95 http : / /
 []

[320]
Underfull \vbox (badness 10000) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13308 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13308 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[321] [322]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13368 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13368 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[323] [324]
Underfull \vbox (badness 10000) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13423 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13423 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[325] [326]
Underfull \hbox (badness 10000) in paragraph at lines 13457--13457
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FPragmas % 2FSuppress _ Elaboration _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13458--13458
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FPragmas % 2FSuppress _ Exception _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13482 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13482 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[327]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13493 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13493 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13493 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[328]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13535 \section{References}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13535 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13535 \section{References}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13539 \chapter
 {Libraries}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13539 \chapter
 {Libraries}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[329] [330

]
Chapter 40.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13550 \section{Predefined Language Libraries}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13550 \section{Predefined Language Libraries}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13550 \section{Predefined Language Libraries}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13563 \section{Other Language Libraries}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13563 \section{Other Language Libraries}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13563 \section{Other Language Libraries}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13578 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13578 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13578 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 4582) has occurred while \output is active []

 [331]
[332]
Chapter 41.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13625 \section{Implementation}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13625 \section{Implementation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13625 \section{Implementation}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13638 \section{Portability}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13638 \section{Portability}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13638 \section{Portability}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[333

]
Underfull \hbox (badness 10000) in paragraph at lines 13645--13647

 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13654 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13654 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13654 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 2269) in paragraph at lines 13677--13678
[]\T1/lmr/m/n/10.95 (+20) 7.1.1 Ob-so-les-cent Fea-tures ^^B{[]$\T1/lmtt/m/n/10
.95 http : / / www . adaic . org / resources / add _ content /
 []

Underfull \vbox (badness 4792) has occurred while \output is active []

 [334]
Underfull \hbox (badness 10000) in paragraph at lines 13678--13679
[]\T1/lmr/m/n/10.95 (+20) 7.2.1 Pre-de-fined Nu-meric Types ^^B{[]$\T1/lmtt/m/n
/10.95 http : / / www . adaic . org / resources / add _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13682 \chapter
 {Libraries: Ada}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13682 \chapter
 {Libraries: Ada}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[335] [336

]
Chapter 42.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13695 ...n{List of language defined child units}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13695 ...n{List of language defined child units}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13695 ...n{List of language defined child units}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 13711--13711
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Asynchronous _ Task _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13717--13717
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Characters .
 []

[337]
Underfull \hbox (badness 10000) in paragraph at lines 13723--13723
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers . Doubly _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13724--13724
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13725--13725
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13726--13726
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers . Hashed _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13727--13727
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers . Hashed _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13728--13728
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13729--13729
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13730--13730
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13731--13731
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13732--13732
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13733--13733
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13734--13734
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers . Ordered _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13735--13735
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Containers . Ordered _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13746--13746
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Directories .
 []

[338]
Underfull \hbox (badness 10000) in paragraph at lines 13749--13749
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Dispatching . Round _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13751--13751
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Environment _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13754--13754
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Execution _ Time .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13755--13755
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Execution _ Time .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13759--13759
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Float _ Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13768--13768
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Integer _ Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13773--13773
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Complex _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13774--13774
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Complex _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13775--13775
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Complex _
 []

Underfull \vbox (badness 1742) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13776 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13776 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[339]
Underfull \hbox (badness 10000) in paragraph at lines 13776--13776
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Discrete _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13777--13777
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Elementary _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13778--13778
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Float _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13779--13779
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13780--13780
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13781--13781
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13782--13782
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13783--13783
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13792--13792
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Real _ Time . Timing _
 []

[340]
Underfull \hbox (badness 10000) in paragraph at lines 13804--13804
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Maps .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13806--13806
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Unbounded .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13808--13808
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Bounded .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13810--13810
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Fixed .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13813--13813
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Maps .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13814--13814
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13815--13815
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13816--13816
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13817--13817
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13818--13818
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13819--13819
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13820--13820
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13821--13821
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13822--13822
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13823--13823
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \vbox (badness 10000) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13824 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13824 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[341]
Underfull \hbox (badness 10000) in paragraph at lines 13824--13824
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13829--13829
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Synchronous _ Task _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13837--13837
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Tags . Generic _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13846--13846
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Text _ IO . Enumeration _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13854--13854
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Unchecked _
 []

Underfull \vbox (badness 1137) has occurred while \output is active []

 [342]
Underfull \hbox (badness 10000) in paragraph at lines 13863--13863
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13864--13864
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13865--13865
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13867--13867
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13868--13868
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO . Fixed _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13869--13869
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO . Float _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13870--13870
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13871--13871
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13872--13872
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO . Text _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13873--13873
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13876--13876
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13877--13877
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13878--13878
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13879--13879
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13880 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13880 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[343]
Underfull \hbox (badness 10000) in paragraph at lines 13880--13880
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13881--13881
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13882--13882
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13883--13883
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13884--13884
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13885--13885
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13886--13886
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO .
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13889 ... of implementation defined child units}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13889 ... of implementation defined child units}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13889 ... of implementation defined child units}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 10000) has occurred while \output is active []

 [344]
Underfull \hbox (badness 10000) in paragraph at lines 13919--13919
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Characters . Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13920--13920
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Characters . Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13921--13921
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Characters . Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13922--13922
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Characters . Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13923--13923
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Command _ Line .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13926--13926
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Exceptions . Is _ Null _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13935--13935
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Long _ Float _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13937--13937
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Long _ Integer _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13938--13938
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Long _ Long _ Float _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13939--13939
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Long _ Long _ Float _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13940--13940
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Long _ Long _ Integer _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13941--13941
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Long _ Long _ Integer _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13942--13942
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Long _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13943--13943
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Long _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13944 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13944 \item{
 } \myhref{http://en.wikibooks.org/wiki/Ada\%20Programming\%2F...
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[345]
Underfull \hbox (badness 10000) in paragraph at lines 13944--13944
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Long _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13945--13945
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Long _ Long _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13946--13946
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Long _ Long _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13947--13947
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Long _ Long _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13948--13948
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Short _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13949--13949
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Short _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13950--13950
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Numerics . Short _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13957--13957
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Sequential _ IO . C _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13959--13959
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Short _ Float _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13960--13960
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Short _ Integer _ Text _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13961--13961
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Short _ Integer _ Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13962--13962
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Short _ Short _ Integer _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13963--13963
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Short _ Short _ Integer _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13964--13964
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Streams . Stream _ IO . C _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13965--13965
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Unbounded .
 []

Underfull \hbox (badness 10000) in paragraph at lines 13966--13966
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13967--13967
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Strings . Wide _ Wide _
 []

Underfull \vbox (badness 2080) has occurred while \output is active []

 [346]
Underfull \hbox (badness 10000) in paragraph at lines 13969--13969
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Text _ IO . C _
 []

Underfull \hbox (badness 10000) in paragraph at lines 13970--13970
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FAda . Wide _ Wide _ Text _ IO . C _
 []

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.13973 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.13973 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.13973 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.13991 \chapter
 {Libraries: Interfaces}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.13991 \chapter
 {Libraries: Interfaces}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[347] [348

]
Chapter 43.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14006 \section{Child Packages}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14006 \section{Child Packages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14006 \section{Child Packages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 14024--14024
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FInterfaces . OS2Lib .
 []

Underfull \hbox (badness 10000) in paragraph at lines 14025--14025
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FInterfaces . OS2Lib .
 []

Underfull \hbox (badness 10000) in paragraph at lines 14028--14028
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FInterfaces . Packed _
 []

[349]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14036 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14036 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14036 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[350]
Chapter 44.
[351

] [352

]
Chapter 45.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14093 \section{Child packages}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14093 \section{Child packages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14093 \section{Child packages}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[353]
Underfull \hbox (badness 10000) in paragraph at lines 14124--14124
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Directory _
 []

Underfull \hbox (badness 10000) in paragraph at lines 14126--14126
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Directory _
 []

Underfull \hbox (badness 10000) in paragraph at lines 14145--14145
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Most _ Recent _
 []

Underfull \hbox (badness 10000) in paragraph at lines 14147--14147
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Perfect _ Hash _
 []

Underfull \vbox (badness 6348) has occurred while \output is active []

 [354]
Underfull \hbox (badness 10000) in paragraph at lines 14151--14151
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Secondary _ Stack _
 []

Underfull \hbox (badness 10000) in paragraph at lines 14157--14157
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Sockets . Linker _
 []

Underfull \hbox (badness 10000) in paragraph at lines 14166--14166
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Spitbol . Table _
 []

Underfull \hbox (badness 10000) in paragraph at lines 14167--14167
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Spitbol . Table _
 []

Underfull \hbox (badness 10000) in paragraph at lines 14168--14168
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Ada % 20Programmin
g % 2FLibraries % 2FGNAT . Spitbol . Table _
 []

Underfull \vbox (badness 10000) has occurred while \output is active []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.14179 \end{myitemize}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.14179 \end{myitemize}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[355]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14184 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14184 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14184 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[356]
Chapter 46.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14234 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14234 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14234 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[357

] [358

]
Chapter 47.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14303 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14303 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14303 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[359] [360

]
Chapter 48.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14376 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14376 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14376 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[361]
Underfull \hbox (badness 10000) in paragraph at lines 14394--14394
[][]$\T1/lmtt/m/n/9 http : / / www . adapower . com / index . php ? Command = C
lass&ClassID = GUIExamples&Title = GUI +
 []

[362]
Chapter 49.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14424 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14424 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14424 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[363

] [364

]
Chapter 50.
[365]
Overfull \hbox (9.67233pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/bx/n/10.95 MySQL|
 []

Overfull \hbox (4.21153pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/bx/n/10.95 ODBC|
 []

Overfull \hbox (4.12848pt too wide) in paragraph at lines 14459--14459
\T1/lmr/bx/n/10.95 greSQL|
 []

Overfull \hbox (5.23865pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/bx/n/10.95 SQLite
 []

Overfull \hbox (4.54004pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/bx/n/10.95 Sybase|
 []

Overfull \hbox (10.83537pt too wide) in paragraph at lines 14459--14459
\T1/lmr/bx/n/10.95 database|
 []

Overfull \hbox (7.183pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) GMGPL|
 []

Overfull \hbox (2.25417pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) Thread-
 []

Overfull \hbox (10.16232pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) GNADE
 []

Overfull \hbox (6.27583pt too wide) in paragraph at lines 14459--14459
\T1/lmr/m/n/10.95 (-20) Database
 []

Overfull \hbox (7.183pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) GMGPL|
 []

Overfull \hbox (17.22269pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) gnadelite[][][]|
 []

Overfull \hbox (3.24771pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) GNAT-
 []

Overfull \hbox (6.93216pt too wide) in paragraph at lines 14459--14459
\T1/lmr/m/n/10.95 (-20) (database
 []

Underfull \hbox (badness 10000) in paragraph at lines 14459--14459
[][]$\T1/lmtt/m/n/9 http : / / www . adacore . com / wp-[]content / files / aut
o _ update / gnatcoll-[]docs / gnatcoll . html #
 []

Overfull \hbox (4.45975pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) GPL/G-
 []

Overfull \hbox (13.2538pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) gnatcoll_-
 []

Overfull \hbox (4.04002pt too wide) in paragraph at lines 14459--14459
\T1/lmr/m/n/10.95 (-20) database
 []

Overfull \hbox (11.03947pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) ODBC[][][]|
 []

Overfull \hbox (12.91675pt too wide) in paragraph at lines 14459--14459
\T1/lmr/m/n/10.95 (-20) Win32Ada.
 []

Overfull \hbox (1.73582pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) QtAda
 []

Overfull \hbox (4.45975pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) GPL/G-
 []

Overfull \hbox (1.14883pt too wide) in paragraph at lines 14459--14459
\T1/lmr/m/n/10.95 (-20) SQLite2|
 []

Overfull \hbox (7.183pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) GMGPL|
 []

Overfull \hbox (0.87509pt too wide) in paragraph at lines 14459--14459
\T1/lmr/m/n/10.95 (-20) SQLite3
 []

Overfull \hbox (10.19717pt too wide) in paragraph at lines 14459--14459
[]|| | \T1/lmr/m/n/10.95 (-20) SQLite3-
 []

Underfull \vbox (badness 10000) detected at line 14460
 []

[366

]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.14460 \end{longtable}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.14460 \end{longtable}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[367] [368]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.14462 \end{landscape}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.14462 \end{landscape}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[369] [370

]
Chapter 51.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14502 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14502 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14502 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[371] [372

]
Chapter 52.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14548 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14548 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14548 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[373] [374

]
Chapter 53.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14589 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14589 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14589 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[375] [376

]
Chapter 54.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14648 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14648 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14648 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \hbox (badness 10000) in paragraph at lines 14667--14667
[][]$\T1/lmtt/m/n/9 http : / / www . cs . kuleuven . be / ~dirk / ada-[]belgium
 / events / 06 / 060226-[]fosdem-[]4-[]ada-[]in-[]debian .
 []

[377] [378

]
Chapter 55.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14722 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14722 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14722 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[379] [380

]
Chapter 56.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14763 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14763 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14763 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[381] [382

]
Chapter 57.
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14789 \section{Forges of open-{}source projects}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14789 \section{Forges of open-{}source projects}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14789 \section{Forges of open-{}source projects}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14828 ...f freely available tools and libraries}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14828 ...f freely available tools and libraries}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14828 ...f freely available tools and libraries}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14849 \section{Collections of Ada source code}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14849 \section{Collections of Ada source code}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14849 \section{Collections of Ada source code}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

Underfull \vbox (badness 1005) has occurred while \output is active []

 [383]
Runaway argument?
{\protect \foreignlanguage {english}{\protect \bbl@restore@actives Ra\ETC.
! Paragraph ended before \@markright was complete.
<to be read again>
 \par
l.14881 \section{See also}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@themark ...ational\let \reserved@d =[\def \par }
 }
l.14881 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

! Extra }, or forgotten \endgroup.
\@themark ...tional\let \reserved@d =[\def \par }}

l.14881 \section{See also}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[384]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.14901 \chapter
 {Tutorials}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.14901 \chapter
 {Tutorials}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[385] [386

]
Chapter 58.
[387] [388

]
Chapter 59.

Underfull \vbox (badness 10000) has occurred while \output is active []

 [389]
[390]
Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.15049 \chapter
 {Contributors}
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.15049 \chapter
 {Contributors}
I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[391] [392

]
Chapter 60.
[393] [394]

! Package inputenc Error: Unicode char \u8:ã�¿ not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.15147 ...\%E3\%83\%9E_robot}{ã�¿ã��ã�³ã�� robot}
 \\
Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! Package inputenc Error: Unicode char \u8:ã�� not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.15147 ...\%E3\%83\%9E_robot}{ã�¿ã��ã�³ã�� robot}
 \\
Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! Package inputenc Error: Unicode char \u8:ã�³ not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.15147 ...\%E3\%83\%9E_robot}{ã�¿ã��ã�³ã�� robot}
 \\
Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! Package inputenc Error: Unicode char \u8:ã�� not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.15147 ...\%E3\%83\%9E_robot}{ã�¿ã��ã�³ã�� robot}
 \\
Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Underfull \hbox (badness 10000) in paragraph at lines 15148--15148
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / w / index . php ? title =
 User : %E3 % 82 % BF % E3 % 83 % 81 % E3 % 82 % B3 % E3 % 83 % 9E _
 []

Runaway argument?
{\protect \bbl@restore@actives Rational Apex from Atego (formerly IBM\ETC.
! Paragraph ended before \foreignlanguage was complete.
<to be read again>
 \par
l.15148 \end{longtable}

I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

! Extra }, or forgotten \endgroup.
\@outputpage ...or \hb@xt@ \textwidth {\@thehead }
 \color@endbox }\dp \@tempb...
l.15148 \end{longtable}

I've deleted a group-closing symbol because it seems to be
spurious, as in `$x}$'. But perhaps the } is legitimate and
you forgot something else, as in `\hbox{$x}'. In such cases
the way to recover is to insert both the forgotten and the
deleted material, e.g., by typing `I$}'.

[395]
Underfull \vbox (badness 3482) has occurred while \output is active []

 [396]
Package tocbasic Info: character protrusion at lof deactivated on input line 15
150.

(./main.lof)
\tf@lof=\write6
\openout6 = `main.lof'.

Underfull \vbox (badness 10000) has occurred while \output is active []

 [397

]
Underfull \vbox (badness 10000) detected at line 15181
 []

Underfull \vbox (badness 10000) has occurred while \output is active []

 [398]

Class scrbook Warning: Using fallback calculation to setup font sizes
(scrbook) for basic size `9pt' on input line 15182.

Package typearea Warning: \typearea used at group level 3.
(typearea) Using \typearea inside any group, e.g.
(typearea) environments, math mode, boxes, etc. may result in
(typearea) many type setting problems.
(typearea) You should move the command \typearea
(typearea) outside all groups on input line 15182.

Package typearea Warning: Bad type area settings!
(typearea) The detected line width is about 66%
(typearea) larger than the heuristically detected line width.
(typearea) You should e.g. decrease DIV, increase fontsize
(typearea) or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea) DIV = 90
(typearea) BCOR = 34.1433pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 544.58585pt
(typearea) DIV departure = -66%
(typearea) \evensidemargin = -59.7508pt
(typearea) \oddsidemargin = -31.8671pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 818.99794pt
(typearea) \topmargin = -92.58049pt
(typearea) \headheight = 13.49995pt
(typearea) \headsep = 16.19995pt
(typearea) \topskip = 9.0pt
(typearea) \footskip = 37.7999pt
(typearea) \baselineskip = 10.79997pt
(typearea) on input line 15182.

Package typearea Warning: Typearea changed!
(typearea) You should do this only at preamble, because only
(typearea) \begin{document} calculates output dimensions!
(typearea) Trying to calculate new output dimensions, but
(typearea) this is only a dirty hack on input line 15182.

Package typearea Warning: \typearea used at group level 3.
(typearea) Using \typearea inside any group, e.g.
(typearea) environments, math mode, boxes, etc. may result in
(typearea) many type setting problems.
(typearea) You should move the command \typearea
(typearea) outside all groups on input line 15182.

Package typearea Warning: Bad type area settings!
(typearea) The detected line width is about 76%
(typearea) larger than the heuristically detected line width.
(typearea) You should e.g. decrease DIV, increase fontsize
(typearea) or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea) DIV = 90
(typearea) BCOR = 0.0pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 577.591pt
(typearea) DIV departure = -76%
(typearea) \evensidemargin = -58.99203pt
(typearea) \oddsidemargin = -65.63101pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 818.99794pt
(typearea) \topmargin = -92.58049pt
(typearea) \headheight = 13.49995pt
(typearea) \headsep = 16.19995pt
(typearea) \topskip = 9.0pt
(typearea) \footskip = 37.7999pt
(typearea) \baselineskip = 10.79997pt
(typearea) on input line 15182.

Package typearea Warning: Typearea changed!
(typearea) You should do this only at preamble, because only
(typearea) \begin{document} calculates output dimensions!
(typearea) Trying to calculate new output dimensions, but
(typearea) this is only a dirty hack on input line 15182.

Chapter 61.
[399

] [400]
Underfull \hbox (badness 7433) in paragraph at lines 15532--15533
[]\T1/lmr/m/n/4.5 "Massive Mul-ti-au-thor Col-lab-o-ra-tion Site" (or
 []

Underfull \hbox (badness 10000) in paragraph at lines 15534--15535
[]\T1/lmr/m/n/4.5 "CC-BY-SA" means the Cre-ative Com-mons
 []

Underfull \vbox (badness 10000) has occurred while \output is active []

 [401]

! LaTeX Error: \begin{compactitem} on input line 11801 ended by \end{CJK}.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.15635 \end{CJK}

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

! LaTeX Error: \begin{myitemize} on input line 11801 ended by \end{document}.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.15636 \end{document}

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

Package atveryend Info: Empty hook `BeforeClearDocument' on input line 15636.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 15636.
(./main.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 15636.

Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 15636
.
Package rerunfilecheck Info: File `main.out' has not changed.
(rerunfilecheck) Checksum: 6A22AD8D42C783504F6304A59D5C3420;48807.

LaTeX Font Warning: Some font shapes were not available, defaults substituted.

Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 15636.
)
(\end occurred inside a group at level 1)

semi simple group (level 1) entered at line 11801 (\begingroup)
bottom level
Here is how much of TeX's memory you used:
 24091 strings out of 493485
 337367 string characters out of 3143525
 755038 words of memory out of 3000000
 23615 multiletter control sequences out of 15000+200000
 205711 words of font info for 294 fonts, out of 3000000 for 9000
 990 hyphenation exceptions out of 8191
 48i,20n,47p,18852b,1264s stack positions out of 5000i,500n,10000p,200000b,50000s
pdfTeX warning (dest): name{Hfootnote.1762} has been referenced
 but does not exist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1760} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1759} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1758} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1757} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1756} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1755} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1754} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1753} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1752} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1751} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1750} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1749} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1748} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1747} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1746} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1745} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1744} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1743} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1742} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1741} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1740} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1739} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1738} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1737} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1736} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1735} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1734} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1733} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1732} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1731} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1730} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1729} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1728} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1727} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1726} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1725} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1724} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1723} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1722} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1721} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1720} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1719} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1718} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1717} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1716} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1715} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1714} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1713} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1712} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1711} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1710} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1709} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1708} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1707} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1706} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1705} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1704} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1703} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1702} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1701} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1700} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1699} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1698} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1697} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1696} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1695} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1694} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1693} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1692} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1691} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1690} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1689} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1688} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1687} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1686} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1685} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1684} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1683} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1682} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1681} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1680} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1679} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1678} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1677} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1676} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1675} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1674} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1673} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1672} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1671} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1670} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1669} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1668} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1667} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1666} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1535} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1534} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1533} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1532} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1531} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1530} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1529} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1528} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1527} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1526} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1525} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1524} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1523} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1522} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1521} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.1484} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.693} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.691} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.690} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.689} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.688} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.687} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.686} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.685} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.684} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.683} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.682} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.681} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.680} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.679} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.678} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.677} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.676} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.675} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.674} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.673} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.672} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.671} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.670} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.669} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.668} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.566} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.559} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.547} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.545} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.532} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.531} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.516} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.502} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.498} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.496} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.369} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.368} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.367} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.366} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.365} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.364} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.363} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.362} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.361} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.219} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.113} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.112} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.111} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.110} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.109} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.108} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.86} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.77} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.54} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.47} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.46} has been referenced but does not exis
t, replaced by a fixed one

{/usr/share/texmf/fonts/enc/dvips/lm/lm-ts1.enc}{/usr/share/texmf/fonts/enc/dvi
ps/lm/lm-ec.enc}{/usr/share/texmf/fonts/enc/dvips/lm/lm-mathsy.enc} </home/dirk
/.texmf-var/fonts/pk/modeless/megafont/megafont03.480pk> </home/dirk/.texmf-var
/fonts/pk/modeless/megafont/megafont03.657pk> </home/dirk/.texmf-var/fonts/pk/m
odeless/megafont/megafont22.480pk>{/usr/share/texmf/fonts/enc/dvips/lm/lm-mathi
t.enc}{/usr/share/texmf/fonts/enc/dvips/lm/lm-rm.enc}</usr/share/texmf/fonts/ty
pe1/public/lm/lmbx10.pfb></usr/share/texmf/fonts/type1/public/lm/lmbx12.pfb></u
sr/share/texmf/fonts/type1/public/lm/lmbx8.pfb></usr/share/texmf/fonts/type1/pu
blic/lm/lmbx9.pfb></usr/share/texmf/fonts/type1/public/lm/lmbxi10.pfb></usr/sha
re/texmf/fonts/type1/public/lm/lmmi10.pfb></usr/share/texmf/fonts/type1/public/
lm/lmmi6.pfb></usr/share/texmf/fonts/type1/public/lm/lmmi8.pfb></usr/share/texm
f/fonts/type1/public/lm/lmr10.pfb></usr/share/texmf/fonts/type1/public/lm/lmr12
.pfb></usr/share/texmf/fonts/type1/public/lm/lmr5.pfb></usr/share/texmf/fonts/t
ype1/public/lm/lmr6.pfb></usr/share/texmf/fonts/type1/public/lm/lmr7.pfb></usr/
share/texmf/fonts/type1/public/lm/lmr8.pfb></usr/share/texmf/fonts/type1/public
/lm/lmr9.pfb></usr/share/texmf/fonts/type1/public/lm/lmri10.pfb></usr/share/tex
mf/fonts/type1/public/lm/lmri8.pfb></usr/share/texmf/fonts/type1/public/lm/lmri
9.pfb></usr/share/texmf/fonts/type1/public/lm/lmsy10.pfb></usr/share/texmf/font
s/type1/public/lm/lmsy8.pfb></usr/share/texmf/fonts/type1/public/lm/lmsy9.pfb><
/usr/share/texmf/fonts/type1/public/lm/lmtk10.pfb></usr/share/texmf/fonts/type1
/public/lm/lmtt10.pfb></usr/share/texmf/fonts/type1/public/lm/lmtt8.pfb></usr/s
hare/texmf/fonts/type1/public/lm/lmtt9.pfb></usr/share/texmf/fonts/type1/public
/lm/lmtti10.pfb>
Output written on main.pdf (410 pages, 1642085 bytes).
PDF statistics:
 10724 PDF objects out of 12825 (max. 8388607)
 10124 compressed objects within 102 object streams
 2947 named destinations out of 2984 (max. 500000)
 66861 words of extra memory for PDF output out of 74296 (max. 10000000)

main/etoolbox.sty

% $Id: etoolbox.sty,v 2.1 2011/01/03 19:14:10 lehman stable $

% Copyright (c) 2007-2011 Philipp Lehman.
%
% Permission is granted to copy, distribute and/or modify this
% software under the terms of the LaTeX Project Public License
% (LPPL), version 1.3.
%
% The LPPL maintenance status of this software is
% 'author-maintained'.
%
% This software is provided 'as is', without warranty of any kind,
% either expressed or implied, including, but not limited to, the
% implied warranties of merchantability and fitness for a
% particular purpose.

\def\etb@rcsid$#1: #2 #3 #4 #5${#4 v#3}

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{etoolbox}
[\etb@rcsid $Id: etoolbox.sty,v 2.1 2011/01/03 19:14:10 lehman stable $
 e-TeX tools for LaTeX]

\begingroup
\@ifundefined{eTeXversion}
 {\PackageError{etoolbox}
 {Not running under e-TeX}
 {This package requires e-TeX. Try compiling the document
 with\MessageBreak 'elatex' instead of 'latex'. When using
 pdfTeX, try 'pdfelatex'\MessageBreak instead of 'pdflatex'.
 This is a fatal error. I'm aborting now.}%
 \aftergroup\endinput}
 {}
\endgroup

\RequirePackage{etex}

\def\etb@catcodes{\do\&\do\|\do\:\do\-\do\=\do\<\do\>}
\def\do#1{\catcode\number`#1=\the\catcode`#1\relax}
\edef\etb@catcodes{\etb@catcodes}
\let\do\noexpand
\AtEndOfPackage{\etb@catcodes\undef\etb@catcodes}

\catcode`\&=3
\catcode`\|=3
\@makeother\:
\@makeother\-
\@makeother\=
\@makeother\<
\@makeother\>

\protected\def\etb@error{\PackageError{etoolbox}}
\protected\def\etb@warning{\PackageWarning{etoolbox}}
\protected\def\etb@info{\PackageInfo{etoolbox}}
\newcount\etb@tempcnta

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newcommand*{\newrobustcmd}{}
\protected\def\newrobustcmd{\@star@or@long\etb@new@command}

\def\etb@new@command#1{\@testopt{\etb@newcommand#1}0}

\def\etb@newcommand#1[#2]{%
 \@ifnextchar[%]
 {\etb@xargdef#1[#2]}
 {\ifx\l@ngrel@x\relax
 \let\l@ngrel@x\protected
 \else
 \protected\def\l@ngrel@x{\protected\long}%
 \fi
 \@argdef#1[#2]}}

\long\def\etb@xargdef#1[#2][#3]#4{%
 \@ifdefinable#1{%
 \expandafter\protected
 \expandafter\def
 \expandafter#1%
 \expandafter{%
 \expandafter\@testopt
 \csname\string#1\endcsname{#3}}%
 \expandafter\@yargdef\csname\string#1\endcsname\tw@{#2}{#4}}}

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newrobustcmd*{\renewrobustcmd}{\@star@or@long\etb@renew@command}

\def\etb@renew@command#1{%
 \ifundef{#1}
 {\etb@error{\string#1 undefined}\@ehc}
 {}%
 \let\@ifdefinable\@rc@ifdefinable
 \etb@new@command#1}

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newrobustcmd*{\providerobustcmd}{\@star@or@long\etb@provide@command}

\def\etb@provide@command#1{%
 \ifundef{#1}
 {\def\reserved@a{\etb@new@command#1}}
 {\def\reserved@a{\etb@renew@command\reserved@a}}%
 \reserved@a}

% {<csname>}

\newrobustcmd*{\csshow}[1]{%
 \begingroup\expandafter\endgroup
 \expandafter\show\csname#1\endcsname}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdef}[1]{%
 \ifdefined#1%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifundef}[1]{%
 \ifdefined#1%
 \ifx#1\relax
 \expandafter\expandafter
 \expandafter\@firstoftwo
 \else
 \expandafter\expandafter
 \expandafter\@secondoftwo
 \fi
 \else
 \expandafter\@firstoftwo
 \fi}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsdef}[1]{%
 \ifcsname#1\endcsname
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsundef}[1]{%
 \ifcsname#1\endcsname
 \expandafter\ifx\csname#1\endcsname\relax
 \expandafter\expandafter
 \expandafter\@firstoftwo
 \else
 \expandafter\expandafter
 \expandafter\@secondoftwo
 \fi
 \else
 \expandafter\@firstoftwo
 \fi}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefmacro}{}
\long\edef\ifdefmacro#1{%
 \noexpand\expandafter\noexpand\etb@ifdefmacro
 \noexpand\meaning#1\detokenize{macro}:&}
\edef\etb@ifdefmacro{%
 \def\noexpand\etb@ifdefmacro##1\detokenize{macro}:##2&}
\etb@ifdefmacro{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsmacro}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefmacro\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefprefix}[1]{%
 \ifdefmacro{#1}
 {\etb@ifdefprefix{#1}}
 {\@secondoftwo}}
\long\edef\etb@ifdefprefix#1{%
 \noexpand\expandafter\noexpand\etb@ifdefprefix@i
 \noexpand\meaning#1\detokenize{macro}:&}
\edef\etb@ifdefprefix@i{%
 \def\noexpand\etb@ifdefprefix@i##1\detokenize{macro}:##2&}
\etb@ifdefprefix@i{\notblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsprefix}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefprefix\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefparam}{}
\long\edef\ifdefparam#1{%
 \noexpand\expandafter\noexpand\etb@ifdefparam
 \noexpand\meaning#1\detokenize{macro}:->&}
\edef\etb@ifdefparam{%
 \def\noexpand\etb@ifdefparam##1\detokenize{macro}:##2->##3&}
\etb@ifdefparam{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsparam}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefparam\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefprotected}{}
\long\edef\ifdefprotected#1{%
 \noexpand\expandafter\noexpand\etb@ifdefprotected
 \noexpand\meaning#1\string\protected&}
\edef\etb@ifdefprotected{%
 \def\noexpand\etb@ifdefprotected##1\string\protected##2&}
\etb@ifdefprotected{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsprotected}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefprotected\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newrobustcmd{\ifdefltxprotect}[1]{%
 \begingroup
 \edef\etb@resrvda{%
 \noexpand\protect\expandafter\noexpand
 \csname\expandafter\@gobble\string#1 \endcsname}%
 \expandafter\endgroup\ifx#1\etb@resrvda
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<csname>}{<true>}{<false>}

\newrobustcmd*{\ifcsltxprotect}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefltxprotect\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdefempty}[1]{%
 \ifundef{#1}
 {\@secondoftwo}
 {\ifdefmacro{#1}
 {\ifdefparam{#1}
	 {\@secondoftwo}
	 {\etb@ifdefempty{#1}}}
 {\@secondoftwo}}}

\def\etb@ifdefempty#1{%
 \expandafter\expandafter
 \expandafter\ifblank
 \expandafter\expandafter
 \expandafter{%
 \expandafter\strip@prefix\meaning#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsempty}[1]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\expandafter\ifdefparam\csname#1\endcsname
 {\@secondoftwo}
 {\expandafter\etb@ifdefempty\csname#1\endcsname}}}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdefvoid}[1]{%
 \ifundef{#1}
 {\@firstoftwo}
 {\ifdefmacro{#1}
 {\ifdefparam{#1}
	 {\@secondoftwo}
	 {\etb@ifdefempty{#1}}}
 {\@secondoftwo}}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsvoid}[1]{%
 \ifcsundef{#1}
 {\@firstoftwo}
 {\expandafter\ifdefparam\csname#1\endcsname
 {\@secondoftwo}
 {\expandafter\etb@ifdefempty\csname#1\endcsname}}}

% {<cstoken1>}{<cstoken2>}{<true>}{<false>}

\newcommand{\ifdefequal}[2]{%
 \ifundef{#1}
 {\@secondoftwo}
 {\ifundef{#2}
 {\@secondoftwo}
 {\ifx#1#2%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}}}

% {<csname1>}{<csname2>}{<true>}{<false>}

\newcommand*{\ifcsequal}[2]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\ifcsundef{#2}
 {\@secondoftwo}
 {\expandafter\ifx
 \csname#1\expandafter\endcsname
 \csname#2\endcsname
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}}}

% {<cstoken1>}{<cstoken2>}{<true>}{<false>}

\newrobustcmd{\ifdefstrequal}[2]{%
 \ifdefmacro{#1}
 {\ifdefmacro{#2}
 {\begingroup
	\edef\etb@tempa{\expandafter\strip@prefix\meaning#1}%
	\edef\etb@tempb{\expandafter\strip@prefix\meaning#2}%
	\ifx\etb@tempa\etb@tempb
	 \aftergroup\@firstoftwo
	\else
	 \aftergroup\@secondoftwo
	\fi
	\endgroup}
 {\@secondoftwo}}
 {\@secondoftwo}}

% {<csname1>}{<csname2>}{<true>}{<false>}

\newcommand*{\ifcsstrequal}[2]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\ifcsundef{#2}
 {\@secondoftwo}
 {\expandafter\ifdefstrequal
 \csname#1\expandafter\endcsname
	\csname#2\endcsname}}}

% {<cstoken>}{<string>}{<true>}{<false>}

\newrobustcmd{\ifdefstring}[2]{%
 \ifdefmacro{#1}
 {\begingroup
 \edef\etb@tempa{\expandafter\strip@prefix\meaning#1}%
 \edef\etb@tempb{\detokenize{#2}}%
 \ifx\etb@tempa\etb@tempb
 \aftergroup\@firstoftwo
 \else
 \aftergroup\@secondoftwo
 \fi
 \endgroup}
 {\@secondoftwo}}

% {<csname>}{<string>}{<true>}{<false>}

\newrobustcmd{\ifcsstring}[2]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\expandafter\ifdefstring\csname#1\endcsname{#2}}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefcounter}[1]{\etb@ifcounter#1&}
\long\def\etb@ifcounter#1#2&{%
 \ifx\count#1%
 \expandafter\@secondoftwo
 \else
 \expandafter\etb@ifcounter@i\meaning#1:%
 \fi}
\edef\etb@ifcounter@i#1:#2\fi{\noexpand\fi
 \noexpand\etb@ifcounter@ii#1\string\count&}
\edef\etb@ifcounter@ii{%
 \def\noexpand\etb@ifcounter@ii##1\string\count##2&}
\etb@ifcounter@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcscounter}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefcounter\csname#1\endcsname}
 {\@secondoftwo}}

% {<name>}{<true>}{<false>}

\newcommand*{\ifltxcounter}[1]{%
 \ifcsdef{c@#1}
 {\expandafter\ifdefcounter\csname c@#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdeflength}[1]{\etb@iflength#1&}
\long\def\etb@iflength#1#2&{%
 \ifx\skip#1%
 \expandafter\@secondoftwo
 \else
 \expandafter\etb@iflength@i\meaning#1:%
 \fi}
\edef\etb@iflength@i#1:#2\fi{\noexpand\fi
 \noexpand\etb@iflength@ii#1\string\skip&}
\edef\etb@iflength@ii{%
 \def\noexpand\etb@iflength@ii##1\string\skip##2&}
\etb@iflength@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcslength}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdeflength\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefdimen}[1]{\etb@ifdimen#1&}
\long\def\etb@ifdimen#1#2&{%
 \ifx\dimen#1%
 \expandafter\@secondoftwo
 \else
 \expandafter\etb@ifdimen@i\meaning#1:%
 \fi}
\edef\etb@ifdimen@i#1:#2\fi{\noexpand\fi
 \noexpand\etb@ifdimen@ii#1\string\dimen&}
\edef\etb@ifdimen@ii{%
 \def\noexpand\etb@ifdimen@ii##1\string\dimen##2&}
\etb@ifdimen@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsdimen}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefdimen\csname#1\endcsname}
 {\@secondoftwo}}

% {<string1>}{<string2>}{<true>}{<false>}

\newrobustcmd{\ifstrequal}[2]{%
 \begingroup
 \edef\etb@tempa{\detokenize{#1}}%
 \edef\etb@tempb{\detokenize{#2}}%
 \ifx\etb@tempa\etb@tempb
 \aftergroup\@firstoftwo
 \else
 \aftergroup\@secondoftwo
 \fi
 \endgroup}

% {<string>}{<true>}{<false>}

\newcommand{\ifstrempty}[1]{%
 \expandafter\ifx\expandafter&\detokenize{#1}&%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<string>}{<true>}{<false>}

\newcommand{\ifblank}[1]{% from url.sty
 \etb@ifblank@i#1&&\@secondoftwo\@firstoftwo:}
\long\def\etb@ifblank@i#1#2#4#5:{#4}

\newcommand{\notblank}[1]{%
 \etb@ifblank@i#1&&\@firstoftwo\@secondoftwo:}

% {<numexpr>}{<comp>}{<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumcomp}[3]{%
 \ifnum\numexpr#1\relax#2\numexpr#3\relax
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<numexpr>}{<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumequal}[1]{%
 \ifnumcomp{#1}=}

\newcommand*{\ifnumgreater}[1]{%
 \ifnumcomp{#1}>}

\newcommand*{\ifnumless}[1]{%
 \ifnumcomp{#1}<}

% {<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumodd}[1]{%
 \ifodd\numexpr#1\relax
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<dimexpr>}{<comp>}{<dimexpr>}{<true>}{<false>}

\newcommand*{\ifdimcomp}[3]{%
 \ifdim\dimexpr#1\relax#2\dimexpr#3\relax
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<dimexpr>}{<dimexpr>}{<true>}{<false>}

\newcommand*{\ifdimequal}[1]{%
 \ifdimcomp{#1}=}

\newcommand*{\ifdimgreater}[1]{%
 \ifdimcomp{#1}>}

\newcommand*{\ifdimless}[1]{%
 \ifdimcomp{#1}<}

% {<expr>}{<true>}{<false>}

\newcommand{\ifboolexpe}[1]{%
 \etb@be@beg\etb@be@bgroup#1(&\etb@be@end}

\let\etb@be@true\@empty
\def\etb@be@false{-\@ne}

\def\etb@be@beg{%
 \ifnum\numexpr\z@\ifnum\numexpr\z@}

\def\etb@be@end{%
 <\z@
 \expandafter\etb@be@false
 \fi
 <\z@
 \expandafter\@secondoftwo
 \else
 \expandafter\@firstoftwo
 \fi}

\long\def\etb@be@bgroup#1(#2&{%
 \etb@be@egroup#1)&%
 \ifblank{#2}
 {}
 {\etb@be@beg
 \etb@be@bgroup#2&}}

\long\def\etb@be@egroup#1)#2&{%
 \etb@be@and#1and&%
 \ifblank{#2}
 {}
 {\etb@be@end\etb@be@true\etb@be@false
 \etb@be@egroup#2&}}

\long\def\etb@be@and#1and#2&{%
 \etb@be@or#1or&%
 \ifblank{#2}
 {}
 {<\z@
 \expandafter\@firstofone
 \else
 \expandafter\@gobble
 \fi
 {=\z@\fi\ifnum\numexpr\m@ne}%
 \ifnum\numexpr\z@
 \etb@be@and#2&}}

\long\def\etb@be@or#1or#2&{%
 \etb@be@not#1not&%
 \ifblank{#2}
 {}
 {<\z@
 \expandafter\@secondoftwo
 \else
 \expandafter\@firstoftwo
 \fi
 {=\z@\fi\ifnum\numexpr\z@
 \ifnum\numexpr\@ne}
 {=\z@\fi\ifnum\numexpr\z@
 \ifnum\numexpr\z@}%
 \etb@be@or#2&}}

\long\def\etb@be@not#1not#2&{%
 \etb@be@togl#1togl&%
 \ifblank{#2}
 {}
 {>\z@
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {\unless\ifnum\numexpr\m@ne}
 {\unless\ifnum\numexpr\z@}%
 \etb@be@not#2&}}

\long\def\etb@be@togl#1togl#2&{%
 \etb@be@bool#1bool&%
 \ifblank{#2}
 {}
 {\etb@be@togl@i#2&}}

\long\def\etb@be@togl@i#1#2&{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname\etb@be@true\etb@be@false}
 {\etb@be@err{Toggle '#1' undefined}{}}%
 \etb@be@togl#2&}

\long\def\etb@be@bool#1bool#2&{%
 \etb@be@test#1test&%
 \ifblank{#2}
 {}
 {\etb@be@bool@i#2&}}

\long\def\etb@be@bool@i#1#2&{%
 \ifcsundef{if#1}
 {\etb@be@err{Boolean '#1' undefined}{}}
 {\csname if#1\endcsname
 \else
 \etb@be@false
 \fi}%
 \etb@be@bool#2&}

\long\def\etb@be@test#1test#2&{%
 \ifblank{#1}
 {}
 {\etb@be@err{The invalid part is: '\detokenize{#1}'}{}}%
 \ifblank{#2}
 {}
 {\etb@be@test@i#2&}}

\long\def\etb@be@test@i#1#2&{%
 #1\etb@be@true\etb@be@false
 \etb@be@test#2&}

\long\def\etb@be@err#1#2{%
 \expandafter\ifnum\the\numexpr
 \expandafter\ifnum\the\currentiftype=-3
 \expandafter\thr@@
 \else
 \expandafter\currentiftype
 \fi
 =\thr@@
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {=\z@\fi
 \etb@be@err{#1}{#2\ifnum\numexpr\m@ne}}
 {\etb@err@expr{#1}#2}}

% {<expr>}{<true>}{<false>}

\newrobustcmd{\ifboolexpr}[1]{\etb@boolexpr{#1}}

\long\def\etb@boolexpr#1{%
 \begingroup
 \let\etb@br@neg\@firstoftwo
 \etb@tempcnta\z@
 \etb@br@beg
 \etb@br@bgroup#1(&%
 \etb@br@end
 \etb@br@eval}

\def\etb@br@beg{%
 \begingroup
 \let\etb@br@neg\@firstoftwo
 \etb@tempcnta\z@}

\def\etb@br@end{%
 \etb@br@eval\etb@br@true\etb@br@false}

\def\etb@br@eval{%
 \ifnum\etb@tempcnta<\z@
 \aftergroup\@secondoftwo
 \else
 \aftergroup\@firstoftwo
 \fi
 \endgroup}

\def\etb@br@true{%
 \advance\etb@tempcnta\etb@br@neg\z@\m@ne
 \let\etb@br@neg\@firstoftwo}

\def\etb@br@false{%
 \advance\etb@tempcnta\etb@br@neg\m@ne\z@
 \let\etb@br@neg\@firstoftwo}

\long\def\etb@br@bgroup#1(#2&{%
 \etb@br@egroup#1)&%
 \ifblank{#2}
 {}
 {\etb@br@beg
 \etb@br@bgroup#2&}}

\long\def\etb@br@egroup#1)#2&{%
 \etb@br@and#1and&%
 \ifblank{#2}
 {}
 {\etb@br@end
 \etb@br@egroup#2&}}

\long\def\etb@br@and#1and#2&{%
 \etb@br@or#1or&%
 \ifblank{#2}
 {}
 {\ifnum\etb@tempcnta<\z@
 \etb@tempcnta\m@ne
 \else
 \etb@tempcnta\z@
 \fi
 \etb@br@and#2&}}

\long\def\etb@br@or#1or#2&{%
 \etb@br@not#1not&%
 \ifblank{#2}
 {}
 {\ifnum\etb@tempcnta<\z@
 \etb@tempcnta\z@
 \else
 \etb@tempcnta\@ne
 \fi
 \etb@br@or#2&}}

\long\def\etb@br@not#1not#2&{%
 \etb@br@togl#1togl&%
 \ifblank{#2}
 {}
 {\let\etb@br@neg\@secondoftwo
 \etb@br@not#2&}}

\long\def\etb@br@togl#1togl#2&{%
 \etb@br@bool#1bool&%
 \ifblank{#2}
 {}
 {\etb@br@togl@i#2&}}

\long\def\etb@br@togl@i#1#2&{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname\etb@br@true\etb@br@false}
 {\etb@err@expr{Toggle '#1' undefined}\etb@br@false}%
 \etb@br@togl#2&}

\long\def\etb@br@bool#1bool#2&{%
 \etb@br@test#1test&%
 \ifblank{#2}
 {}
 {\etb@br@bool@i#2&}}

\long\def\etb@br@bool@i#1#2&{%
 \ifcsundef{if#1}
 {\etb@err@expr{Boolean '#1' undefined}\etb@br@false}
 {\csname if#1\endcsname
 \etb@br@true
 \else
 \etb@br@false
 \fi}%
 \etb@br@bool#2&}

\long\def\etb@br@test#1test#2&{%
 \ifblank{#1}
 {}
 {\etb@err@expr{The invalid part is: '\detokenize{#1}'}}%
 \ifblank{#2}
 {}
 {\etb@br@test@i#2&}}

\long\def\etb@br@test@i#1#2&{%
 \ignorespaces#1\etb@br@true\etb@br@false
 \etb@br@test#2&}

\long\def\etb@err@expr#1{%
 \etb@error
 {Invalid boolean expression}
 {#1.}}

% {<expr>}{<code>}

\newrobustcmd{\whileboolexpr}[2]{%
 \etb@boolexpr{#1}{#2\whileboolexpr{#1}{#2}}{}}

% {<expr>}{<code>}

\newrobustcmd{\unlessboolexpr}[2]{%
 \etb@boolexpr{#1}{}{#2\unlessboolexpr{#1}{#2}}}

% {<cstoken>}

\newcommand{\expandonce}[1]{%
 \unexpanded\expandafter{#1}}

% {<csname>}

\newcommand*{\csexpandonce}[1]{%
 \expandafter\expandonce\csname#1\endcsname}

% {<code>}

\newcommand*{\protecting}{}
\def\protecting#{%
 \ifx\protect\@typeset@protect
 \etb@protecting\@firstofone
 \fi
 \ifx\protect\@unexpandable@protect
 \etb@protecting\etb@unexpandable
 \fi
 \ifx\protect\noexpand
 \etb@protecting\unexpanded
 \fi
 \ifx\protect\string
 \etb@protecting\detokenize
 \fi
 \relax\@firstofone}

\def\etb@protecting#1#2\relax\@firstofone{\fi#1}
\long\def\etb@unexpandable#1{\unexpanded{\protecting{#1}}}

% {<csname>}

\newrobustcmd*{\csdef}[1]{\expandafter\def\csname#1\endcsname}
\newrobustcmd*{\csedef}[1]{\expandafter\edef\csname#1\endcsname}
\newrobustcmd*{\csgdef}[1]{\expandafter\gdef\csname#1\endcsname}
\newrobustcmd*{\csxdef}[1]{\expandafter\xdef\csname#1\endcsname}
\newrobustcmd*{\protected@csedef}{\etb@protected\csedef}
\newrobustcmd*{\protected@csxdef}{\etb@protected\csxdef}

\def\etb@protected{%
 \let\@@protect\protect
 \let\protect\@unexpandable@protect
 \afterassignment\restore@protect}

% {<csname>}{<cstoken>}

\newrobustcmd{\cslet}[2]{%
 \expandafter\let\csname#1\endcsname#2}

% {<cstoken>}{<csname>}

\newrobustcmd{\letcs}[2]{%
 \ifcsdef{#2}
 {\expandafter\let\expandafter#1\csname#2\endcsname}
 {\undef#1}}

% {<csname>}{<csname>}

\newrobustcmd*{\csletcs}[2]{%
 \ifcsdef{#2}
 {\expandafter\let
 \csname#1\expandafter\endcsname
 \csname#2\endcsname}
 {\csundef{#1}}}

% {<csname>}

\newcommand*{\csuse}[1]{%
 \ifcsname#1\endcsname
 \csname#1\expandafter\endcsname
 \fi}

% {<cstoken>}

\newrobustcmd{\undef}[1]{\let#1\etb@undefined}

% {<csname>}

\newrobustcmd*{\csundef}[1]{\cslet{#1}\etb@undefined}

% {<cstoken>}{<code>}

\newrobustcmd{\appto}[2]{%
 \ifundef{#1}
 {\edef#1{\unexpanded{#2}}}
 {\edef#1{\expandonce#1\unexpanded{#2}}}}
\newrobustcmd{\eappto}[2]{%
 \ifundef{#1}
 {\edef#1{#2}}
 {\edef#1{\expandonce#1#2}}}
\newrobustcmd{\gappto}[2]{%
 \ifundef{#1}
 {\xdef#1{\unexpanded{#2}}}
 {\xdef#1{\expandonce#1\unexpanded{#2}}}}
\newrobustcmd{\xappto}[2]{%
 \ifundef{#1}
 {\xdef#1{#2}}
 {\xdef#1{\expandonce#1#2}}}

\newrobustcmd*{\protected@eappto}{\etb@protected\eappto}
\newrobustcmd*{\protected@xappto}{\etb@protected\xappto}

% {<cstoken>}{<code>}

\newrobustcmd{\preto}[2]{%
 \ifundef{#1}
 {\edef#1{\unexpanded{#2}}}
 {\edef#1{\unexpanded{#2}\expandonce#1}}}
\newrobustcmd{\epreto}[2]{%
 \ifundef{#1}
 {\edef#1{#2}}
 {\edef#1{#2\expandonce#1}}}
\newrobustcmd{\gpreto}[2]{%
 \ifundef{#1}
 {\xdef#1{\unexpanded{#2}}}
 {\xdef#1{\unexpanded{#2}\expandonce#1}}}
\newrobustcmd{\xpreto}[2]{%
 \ifundef{#1}
 {\xdef#1{#2}}
 {\xdef#1{#2\expandonce#1}}}

\newrobustcmd*{\protected@epreto}{\etb@protected\epreto}
\newrobustcmd*{\protected@xpreto}{\etb@protected\xpreto}

% {<csname>}{<code>}

\newrobustcmd*{\csappto}[1]{\expandafter\appto\csname#1\endcsname}
\newrobustcmd*{\cseappto}[1]{\expandafter\eappto\csname#1\endcsname}
\newrobustcmd*{\csgappto}[1]{\expandafter\gappto\csname#1\endcsname}
\newrobustcmd*{\csxappto}[1]{\expandafter\xappto\csname#1\endcsname}
\newrobustcmd*{\protected@cseappto}{\etb@protected\cseappto}
\newrobustcmd*{\protected@csxappto}{\etb@protected\csxappto}

% {<csname>}{<code>}

\newrobustcmd*{\cspreto}[1]{\expandafter\preto\csname#1\endcsname}
\newrobustcmd*{\csepreto}[1]{\expandafter\epreto\csname#1\endcsname}
\newrobustcmd*{\csgpreto}[1]{\expandafter\gpreto\csname#1\endcsname}
\newrobustcmd*{\csxpreto}[1]{\expandafter\xpreto\csname#1\endcsname}
\newrobustcmd*{\protected@csepreto}{\etb@protected\csepreto}
\newrobustcmd*{\protected@csxpreto}{\etb@protected\csxpreto}

% {<cstoken>}{<numexpr>}

\newrobustcmd*{\numdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \edef#1{\the\numexpr#2}}
\newrobustcmd*{\numgdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \xdef#1{\the\numexpr#2}}

% {<csname>}{<numexpr>}

\newrobustcmd*{\csnumdef}[1]{%
 \expandafter\numdef\csname#1\endcsname}
\newrobustcmd*{\csnumgdef}[1]{%
 \expandafter\numgdef\csname#1\endcsname}

% {<cstoken>}{<dimexpr>}

\newrobustcmd*{\dimdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \edef#1{\the\dimexpr#2}}
\newrobustcmd*{\dimgdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \xdef#1{\the\dimexpr#2}}

% {<csname>}{<dimexpr>}

\newrobustcmd*{\csdimdef}[1]{%
 \expandafter\dimdef\csname#1\endcsname}
\newrobustcmd*{\csdimgdef}[1]{%
 \expandafter\dimgdef\csname#1\endcsname}

% {<cstoken>}{<glueexpr>}

\newrobustcmd*{\gluedef}[2]{%
 \ifundef#1{\let#1\z@skip}{}%
 \edef#1{\the\glueexpr#2}}
\newrobustcmd*{\gluegdef}[2]{%
 \ifundef#1{\let#1\z@skip}{}%
 \xdef#1{\the\glueexpr#2}}

% {<csname>}{<glueexpr>}

\newrobustcmd*{\csgluedef}[1]{%
 \expandafter\gluedef\csname#1\endcsname}
\newrobustcmd*{\csgluegdef}[1]{%
 \expandafter\gluegdef\csname#1\endcsname}

% {<cstoken>}{<muexpr>}

\newrobustcmd*{\mudef}[2]{%
 \ifundef#1{\def#1{0mu}}{}%
 \edef#1{\the\muexpr#2}}
\newrobustcmd*{\mugdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \xdef#1{\the\muexpr#2}}

% {<csname>}{<muexpr>}

\newrobustcmd*{\csmudef}[1]{%
 \expandafter\mudef\csname#1\endcsname}
\newrobustcmd*{\csmugdef}[1]{%
 \expandafter\mugdef\csname#1\endcsname}

% {<counter>}{<numexpr>}

\newrobustcmd*{\defcounter}[2]{%
 \ifcsundef{c@#1}
 {\etb@noglobal\@nocounterr{#1}}%
 {\csname c@#1\endcsname\numexpr#2\relax}}

% {<length>}{<glueexpr>}

\newrobustcmd*{\deflength}[2]{%
 \ifundef{#1}
 {\etb@noglobal\etb@err@nolen{#1}}%
 {#1\glueexpr#2\relax}}

\protected\def\etb@err@nolen#1{%
 \etb@error{Length '\string#1' undefined}\@eha}

% {<name>}

\newrobustcmd*{\newbool}[1]{%
 \expandafter\@ifdefinable\csname if#1\endcsname{%
 \expandafter\newif\csname if#1\endcsname}}

% {<name>}

\newrobustcmd*{\providebool}[1]{%
 \ifcsundef{if#1}
 {\expandafter\newif\csname if#1\endcsname}
 {\begingroup
 \edef\@tempa{\expandafter\meaning\csname if#1\endcsname}%
 \ifx\@tempa\etb@isfalse
 \else
 \ifx\@tempa\etb@istrue
 \else
 \etb@error{\@backslashchar if#1 not a boolean}\@eha
 \fi
 \fi
 \endgroup}}

% {<name>}{<true>|<false>}

\newrobustcmd*{\setbool}[2]{%
 \ifcsundef{if#1}
 {\etb@noglobal\etb@err@nobool{#1}}
 {\ifcsundef{#1#2}
 {\etb@noglobal\etb@err@boolval{#2}}
 {\csname#1#2\endcsname}}}

% {<name>}

\newrobustcmd*{\booltrue}[1]{%
 \ifcsundef{if#1}
 {\etb@noglobal\etb@err@nobool{#1}}
 {\csname#1true\endcsname}}

% {<name>}

\newrobustcmd*{\boolfalse}[1]{%
 \ifcsundef{if#1}
 {\etb@noglobal\etb@err@nobool{#1}}
 {\csname#1false\endcsname}}

\edef\etb@istrue{\meaning\iftrue}
\edef\etb@isfalse{\meaning\iffalse}
\protected\def\etb@noglobal{\let\relax\relax}

% {<name>}{<true}{<false>}

\newcommand*{\ifbool}[1]{%
 \ifcsundef{if#1}
 {\etb@err@nobool{#1}\@gobbletwo}
 {\csname if#1\endcsname
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}}

% {<name>}{<not true}{<not false>}

\newcommand*{\notbool}[1]{%
 \ifcsundef{if#1}
 {\etb@err@nobool{#1}\@gobbletwo}
 {\csname if#1\endcsname
 \expandafter\@secondoftwo
 \else
 \expandafter\@firstoftwo
 \fi}}

\protected\def\etb@err@nobool#1{%
 \etb@error{Boolean '\@backslashchar if#1' undefined}\@eha}

\def\etb@err@boolval#1{%
 \etb@error
 {Invalid boolean value '#1'}
 {Valid boolean values are 'true' and 'false'.}}

% {<name>}

\newrobustcmd*{\newtoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\etb@error{Toggle '#1' already defined}\@eha}
 {\cslet{etb@tgl@#1}\@secondoftwo}}

% {<name>}

\newrobustcmd*{\providetoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {}
 {\cslet{etb@tgl@#1}\@secondoftwo}}

% {<name>}{<true>|<false>}

\newrobustcmd*{\settoggle}[2]{%
 \ifcsdef{etb@tgl@#1}
 {\ifcsdef{etb@toggle#2}
 {\csletcs{etb@tgl@#1}{etb@toggle#2}}
 {\etb@noglobal\etb@err@boolval{#2}}}
 {\etb@noglobal\etb@err@notoggle{#1}}}

% {<name>}

\newrobustcmd*{\toggletrue}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\cslet{etb@tgl@#1}\etb@toggletrue}
 {\etb@noglobal\etb@err@notoggle{#1}}}

% {<name>}

\newrobustcmd*{\togglefalse}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\cslet{etb@tgl@#1}\etb@togglefalse}
 {\etb@noglobal\etb@err@notoggle{#1}}}

\let\etb@toggletrue\@firstoftwo
\let\etb@togglefalse\@secondoftwo

% {<name>}{<true}{<false>}

\newcommand*{\iftoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname}
 {\etb@err@notoggle{#1}\@gobbletwo}}

% {<name>}{<not true}{<not false>}

\newcommand*{\nottoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname\@secondoftwo\@firstoftwo}
 {\etb@err@notoggle{#1}\@gobbletwo}}

\protected\def\etb@err@notoggle#1{%
 \etb@error{Toggle '#1' undefined}\@eha}

% {<cstoken>}{<true}{<false>}

\protected\def\etb@ifscanable#1{%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{macro}:####2->####3&{%
 ####1\def\string\etb@resrvda####2{####3}}%
 \edef\noexpand\etb@resrvda{\noexpand\etb@resrvda\meaning#1&}}%
 \etb@resrvda
 \makeatletter
 \scantokens\expandafter{\etb@resrvda}%
 \expandafter\endgroup\ifx#1\etb@resrvda
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<cstoken>}{<search>}{<true}{<false>}

\protected\long\def\etb@ifpattern#1#2{%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{#2}####2&{%
 \endgroup\noexpand\noexpand\noexpand\ifblank{####2}}%
 \edef\noexpand\etb@resrvda{\noexpand\etb@resrvda
 \expandafter\strip@prefix\meaning#1\detokenize{#2}&}%
 \noexpand\etb@resrvda}
 \etb@resrvda\@secondoftwo\@firstoftwo}

% {<string>}{<true}{<false>}

\protected\long\def\etb@ifhashcheck#1{%
 \begingroup
 \edef\etb@resrvda{\detokenize{#1}}%
 \expandafter\endgroup
 \expandafter\etb@ifhashcheck@i\meaning\etb@resrvda&}

\edef\etb@ifhashcheck@i#1&{%
 \noexpand\expandafter
 \noexpand\etb@ifhashcheck@ii
 \noexpand\strip@prefix#1\string#\string#&}

\edef\etb@ifhashcheck@ii{%
 \def\noexpand\etb@ifhashcheck@ii##1\string#\string###2&}
\etb@ifhashcheck@ii{\ifblank{#2}}

% {<cstoken>}

\newrobustcmd*{\robustify}[1]{%
 \ifundef{#1}
 {\etb@error{\string#1 undefined}\@eha}
 {\ifdefmacro{#1}
 {\ifdefltxprotect{#1}
 {\letcs\etb@resrvda{\expandafter\@gobble\string#1 }%
 \@tempswatrue}
 {\let\etb@resrvda#1%
 \@tempswafalse}%
 \ifdefparam\etb@resrvda
 {\etb@ifscanable\etb@resrvda
 {\etb@robustify\etb@resrvda
 \let#1\etb@resrvda}
 {\etb@error{Failed to robustify \string#1}
 {The command is special and cannot be
 handled by \string\robustify.}%
 \@tempswafalse}}
 {\protected\edef#1{\expandonce\etb@resrvda}}
 \if@tempswa
 \ifcsdef{\string#1 }
 {}
 {\csundef{\expandafter\@gobble\string#1 }}%
 \fi
 \undef\etb@resrvda}
 {\etb@error{\string#1 not a macro}\@eha}}}

\def\etb@robustify#1{%
 \begingroup
 \edef\etb@resrvdb{%
 \def\noexpand\etb@resrvdb####1\detokenize{macro}:####2->####3&{%
 \protected####1\def\string#1\space####2{####3}}%
 \edef\noexpand\etb@resrvdb{%
 \noexpand\etb@resrvdb\meaning#1&}}%
 \etb@resrvdb
 \etb@patchcmd@scantoks\etb@resrvdb}

% {<cstoken>}{<search>}{<true}{<false>}
% *{<cstoken>}{<true}{<false>}

\newrobustcmd{\ifpatchable}{%
 \etb@dbg@trce\ifpatchable
 \begingroup
 \@makeother\#%
 \@ifstar\etb@ifpatchable@i\etb@ifpatchable}

\long\def\etb@ifpatchable#1#2{%
 \endgroup
 \etb@dbg@init#1%
 \ifundef{#1}
 {\etb@dbg@fail{def}\@secondoftwo}
 {\etb@dbg@info{def}%
 \ifdefmacro{#1}
 {\etb@dbg@info{mac}%
 \etb@ifscanable{#1}
 {\etb@ifhashcheck{#2}
 {\etb@dbg@info{tok}%
 \etb@ifpattern#1{#2}
 {\etb@dbg@info{pat}%
 \etb@dbg@info{pos}\@firstoftwo}
 {\etb@dbg@fail{pat}\@secondoftwo}}
 {\etb@dbg@fail{hsh}\@secondoftwo}}
 {\etb@dbg@fail{tok}\@secondoftwo}}
 {\etb@dbg@fail{mac}\@secondoftwo}}}

\long\def\etb@ifpatchable@i#1{%
 \endgroup
 \etb@dbg@init#1%
 \ifundef{#1}
 {\etb@dbg@fail{def}\@secondoftwo}
 {\etb@dbg@info{def}%
 \ifdefmacro{#1}
 {\etb@dbg@info{mac}%
 \ifdefparam{#1}
 {\etb@dbg@info{prm}%
 \etb@ifscanable{#1}
 {\etb@dbg@info{tok}%
 \etb@dbg@info{pos}\@firstoftwo}
 {\etb@dbg@fail{tok}\@secondoftwo}}
 {\etb@dbg@info{prl}%
 \ifdefprotected{#1}
 {\etb@dbg@info{pro}}
 {}%
 \etb@dbg@info{pos}\@firstoftwo}}
 {\etb@dbg@fail{mac}\@secondoftwo}}}

% [<prefix>]{<cstoken>}{<search>}{<replace>}{<success>}{<failure>}

\newrobustcmd*{\patchcmd}{%
 \etb@dbg@trce\patchcmd
 \begingroup
 \@makeother\#%
 \etb@patchcmd}

\newcommand{\etb@patchcmd}[4][########1]{%
 \etb@ifpatchable#2{#3}
 {\etb@dbg@succ{ret}%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{macro:}####2->####3&{%
 #1\def\string\etb@resrvda\space####2{\noexpand\etb@resrvdb####3&}}%
 \def\noexpand\etb@resrvdb####1\detokenize{#3}####2&{%
 ####1\detokenize{#4}####2}%
 \edef\noexpand\etb@resrvda{%
 \noexpand\etb@resrvda\meaning#2&}}%
 \etb@resrvda
 \etb@patchcmd@scantoks\etb@resrvda
 \let#2\etb@resrvda
 \undef\etb@resrvda
 \@firstoftwo}
 {\@secondoftwo}}

\def\etb@patchcmd@scantoks#1{%
 \edef\etb@resrvda{\endgroup
 \unexpanded{\makeatletter\scantokens}{#1}%
 \catcode\number`\@=\the\catcode`\@\relax}%
 \etb@resrvda}

% {<cstoken>}{<code>}{<success>}{<failure>}

\newrobustcmd*{\apptocmd}{%
 \etb@dbg@trce\apptocmd
 \begingroup
 \@makeother\#%
 \etb@hooktocmd\etb@append}

\newrobustcmd*{\pretocmd}{%
 \etb@dbg@trce\pretocmd
 \begingroup
 \@makeother\#%
 \etb@hooktocmd\etb@prepend}

\long\def\etb@hooktocmd#1#2#3{%
 \endgroup
 \etb@dbg@init#2%
 \ifundef{#2}
 {\etb@dbg@fail{def}\@secondoftwo}
 {\etb@dbg@info{def}%
 \ifdefmacro{#2}
 {\etb@dbg@info{mac}%
 \ifdefparam{#2}
 {\etb@dbg@info{prm}%
 \etb@ifscanable{#2}
 {\etb@ifhashcheck{#3}
 {\etb@dbg@info{tok}%
 \etb@dbg@succ{ret}%
 \etb@hooktocmd@i#1#2{#3}%
 \@firstoftwo}
 {\etb@dbg@fail{hsh}\@secondoftwo}}
 {\etb@dbg@fail{tok}\@secondoftwo}}
 {\etb@dbg@info{prl}%
 \ifdefprotected{#2}
 {\etb@dbg@info{pro}%
 \etb@dbg@succ{red}%
 \protected}
 {\etb@dbg@succ{red}}%
 \edef#2{#1{\expandonce#2}{\unexpanded{#3}}}%
 \@firstoftwo}}
 {\etb@dbg@fail{mac}\@secondoftwo}}}

\long\def\etb@hooktocmd@i#1#2#3{%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{macro}:####2->####3&{%
 ####1\def\string\etb@resrvda\space####2{#1{####3}{\detokenize{#3}}}}%
 \edef\noexpand\etb@resrvda{%
 \noexpand\etb@resrvda\meaning#2&}}%
 \etb@resrvda
 \etb@patchcmd@scantoks\etb@resrvda
 \let#2\etb@resrvda
 \undef\etb@resrvda}

\long\def\etb@append#1#2{#1#2}
\long\def\etb@prepend#1#2{#2#1}

\newrobustcmd*{\tracingpatches}{%
 \etb@info{Enabling tracing}%
 \input{etoolbox.def}%
 \global\let\tracingpatches\relax}
\@onlypreamble\tracingpatches

\let\etb@dbg@trce\@gobble
\let\etb@dbg@init\@gobble
\let\etb@dbg@info\@gobble
\let\etb@dbg@succ\@gobble
\let\etb@dbg@fail\@gobble

% {<numeral>}

\newcommand{\rmntonum}[1]{%
 \ifblank{#1}
 {}
 {\expandafter\etb@rti@end\number\numexpr
 \expandafter\etb@rti@prs\detokenize{#1}&\relax}}

\def\etb@rti@prs#1#2{%
 \ifx%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {#1#2}
 {\ifx%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {\etb@rti@chk#1+\etb@rti@num#1#2}
 {\etb@rti@chk#1\etb@rti@chk#2%
 \ifnum\etb@rti@num#1<\etb@rti@num#2 %
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {+\etb@rti@num#2-\etb@rti@num#1\etb@rti@prs}
 {+\etb@rti@num#1\etb@rti@prs#2}}}}

\def\etb@rti@chk#1{%
 \ifcsname etb@rmn@#1\endcsname
 \else
 \expandafter\etb@rti@brk
 \fi}

\def\etb@rti@brk#1&{+\z@&-1}
\def\etb@rti@end#1\relax{\ifblank{#2}{#1}{#2}}
\def\etb@rti@num#1{\csname etb@rmn@#1\endcsname}

\chardef\etb@rmn@i=1
\chardef\etb@rmn@I=1
\chardef\etb@rmn@v=5
\chardef\etb@rmn@V=5
\chardef\etb@rmn@x=10
\chardef\etb@rmn@X=10
\chardef\etb@rmn@l=50
\chardef\etb@rmn@L=50
\chardef\etb@rmn@c=100
\chardef\etb@rmn@C=100
\mathchardef\etb@rmn@d=500
\mathchardef\etb@rmn@D=500
\mathchardef\etb@rmn@m=1000
\mathchardef\etb@rmn@M=1000

% {<numeral>}{<true>}{<false>}

\newcommand{\ifrmnum}[1]{%
 \ifblank{#1}
 {\@secondoftwo}
 {\expandafter\etb@ifr@prs\detokenize{#1}\relax}}

\def\etb@ifr@prs#1{%
 \ifx\relax#1%
 \expandafter\@firstoftwo
 \else
 \ifcsname etb@rmn@#1\endcsname
 \expandafter\expandafter
 \expandafter\etb@ifr@prs
 \else
 \expandafter\expandafter
 \expandafter\etb@ifr@brk
 \fi
 \fi}

\def\etb@ifr@brk#1\relax{\@secondoftwo}

% <*>{<command>}{<separator>}

\newrobustcmd*{\DeclareListParser}{%
 \@ifstar
 {\etb@defparser\etb@defparser@arg}
 {\etb@defparser\etb@defparser@do}}

\def\etb@defparser#1#2#3{%
 \@ifdefinable#2{#1{#2}{#3}}}

\def\etb@defparser@do#1#2{%
 \begingroup
 \edef\@tempa{\endgroup
 \long\def\noexpand#1####1{%
 \expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
 \space####1\noexpand#2&}%
 \long\csdef{etb@lst@\expandafter\@gobble\string#1}####1\noexpand#2####2&{%
 \noexpand\etb@listitem\noexpand\do{####1}%
 \noexpand\ifblank{####2}
 {\noexpand\listbreak}
 {\expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
	 \space####2}&}}%
 \@tempa}

\def\etb@defparser@arg#1#2{%
 \begingroup
 \edef\@tempa{\endgroup
 \long\def\noexpand#1####1####2{%
 \expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
 {####1}\space####2\noexpand#2&}%
 \long\csdef{etb@lst@\expandafter\@gobble\string#1}####1####2\noexpand#2####3&{%
 \noexpand\etb@listitem{####1}{####2}%
 \noexpand\ifblank{####3}
 {\noexpand\listbreak}
 {\expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
	 {####1}\space####3}&}}%
 \@tempa}

\long\def\etb@listitem#1#2{%
 \ifblank{#2}
 {}
 {\expandafter\etb@listitem@i
 \expandafter{\@firstofone#2}{#1}}}
\long\def\etb@listitem@i#1#2{#2{#1}}

\newcommand*{\listbreak}{}
\long\def\listbreak#1&{}

% {<item1>,<item2>,...} => \do{<item1>}\do{<item2>}...

\DeclareListParser{\docsvlist}{,}

% {<handler>}{<item1>,<item2>,...} => <handler>{<item1>}<handler>{<item2>}...

\DeclareListParser*{\forcsvlist}{,}

% {<listmacro>}{<string>}

\newrobustcmd{\listadd}[2]{%
 \ifblank{#2}{}{\appto#1{#2|}}}
\newrobustcmd{\listeadd}[2]{%
 \begingroup
 \edef\etb@tempa{\endgroup\noexpand\ifblank{#2}}%
 \etb@tempa{}{\eappto#1{#2|}}}
\newrobustcmd{\listgadd}[2]{%
 \ifblank{#2}{}{\gappto#1{#2|}}}
\newrobustcmd{\listxadd}[2]{%
 \begingroup
 \edef\etb@tempa{\endgroup\noexpand\ifblank{#2}}%
 \etb@tempa{}{\xappto#1{#2|}}}

% {<listcsname>}{<string>}

\newrobustcmd{\listcsadd}[1]{%
 \expandafter\listadd\csname#1\endcsname}
\newrobustcmd{\listcseadd}[1]{%
 \expandafter\listeadd\csname#1\endcsname}
\newrobustcmd{\listcsgadd}[1]{%
 \expandafter\listgadd\csname#1\endcsname}
\newrobustcmd{\listcsxadd}[1]{%
 \expandafter\listxadd\csname#1\endcsname}

% {<string>}{<listmacro>}{<true>}{<false>}

\newrobustcmd{\ifinlist}[2]{%
 \begingroup
 \def\etb@tempa##1|#1|##2&{\endgroup
 \ifblank{##2}\@secondoftwo\@firstoftwo}%
 \expandafter\etb@tempa\expandafter|#2|#1|&}

\newrobustcmd{\xifinlist}[1]{%
 \begingroup
 \edef\etb@tempa{\endgroup\ifinlist{#1}}%
 \etb@tempa}

% {<string>}{<listcsname>}{<true>}{<false>}

\newrobustcmd{\ifinlistcs}[2]{%
 \expandafter\etb@ifinlistcs@i\csname #2\endcsname{#1}}
\long\def\etb@ifinlistcs@i#1#2{\ifinlist{#2}{#1}}

\newrobustcmd{\xifinlistcs}[1]{%
 \begingroup
 \edef\etb@tempa{\endgroup\ifinlistcs{#1}}%
 \etb@tempa}

% {<handler>}{<listmacro>} => <handler>{<item1>}<handler>{<item2>}...

\newcommand*{\forlistloop}[2]{%
 \expandafter\etb@forlistloop\expandafter{#2}{#1}}

\long\def\etb@forlistloop#1#2{\etb@forlistloop@i{#2}#1|&}

\long\def\etb@forlistloop@i#1#2|#3&{%
 \ifblank{#2}
 {}
 {#1{#2}}%
 \ifblank{#3}
 {\listbreak}
 {\etb@forlistloop@i{#1}#3}%
 &}

% {<handler>}{<listcsname>} => <handler>{<item1>}<handler>{<item2>}...

\newcommand*{\forlistcsloop}[2]{%
 \expandafter\expandafter\expandafter\etb@forlistloop
 \expandafter\expandafter\expandafter{\csname#2\endcsname}{#1}}

% {<listmacro>} => \do{<item1>}\do{<item2>}...

\newcommand*{\dolistloop}{\forlistloop\do}

% {<listcsname>} => \do{<item1>}\do{<item2>}...

\newcommand*{\dolistcsloop}{\forlistcsloop\do}

% {<code>}

\newrobustcmd*{\AtEndPreamble}{\gappto\@endpreamblehook}
\newcommand*{\@endpreamblehook}{}

\preto\document{%
 \endgroup
 \let\AtEndPreamble\@firstofone
 \@endpreamblehook
 \protected\def\AtEndPreamble{\@notprerr\@gobble}%
 \undef\@endpreamblehook
 \begingroup}

% {<code>}

\newrobustcmd*{\AfterPreamble}{\AtBeginDocument}
\AtEndPreamble{\let\AfterPreamble\@firstofone}

% {<code>}

\newrobustcmd*{\AfterEndPreamble}{\gappto\@afterendpreamblehook}
\newcommand*{\@afterendpreamblehook}{}

\appto\document{%
 \let\AfterEndPreamble\@firstofone
 \@afterendpreamblehook
 \protected\def\AfterEndPreamble{\@notprerr\@gobble}%
 \undef\@afterendpreamblehook
 \ignorespaces}

\AtEndDocument{\let\AfterEndPreamble\@gobble}

% {<code>}

\newrobustcmd*{\AfterEndDocument}{\gappto\@afterenddocumenthook}
\newcommand*{\@afterenddocumenthook}{}

\patchcmd\enddocument
 {\deadcycles}
 {\let\AfterEndDocument\@firstofone
 \@afterenddocumenthook
 \deadcycles}
 {}
 {\let\etb@@end\@@end
 \def\@@end{%
 \let\AfterEndDocument\@firstofone
 \@afterenddocumenthook
 \etb@@end}}

% {<environment>}{<code>}

\newrobustcmd{\AtBeginEnvironment}[1]{%
 \csgappto{@begin@#1@hook}}

\patchcmd\begin
 {\csname #1\endcsname}
 {\csuse{@begin@#1@hook}%
 \csname #1\endcsname}
 {}
 {\etb@warning{%
 Patching '\string\begin' failed!\MessageBreak
 '\string\AtBeginEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\AtEndEnvironment}[1]{%
 \csgappto{@end@#1@hook}}

\patchcmd\end
 {\csname end#1\endcsname}
 {\csuse{@end@#1@hook}%
 \csname end#1\endcsname}
 {}
 {\etb@warning{%
 Patching '\string\end' failed!\MessageBreak
 '\string\AtEndEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\BeforeBeginEnvironment}[1]{%
 \csgappto{@beforebegin@#1@hook}}

\pretocmd\begin
 {\csuse{@beforebegin@#1@hook}}
 {}
 {\etb@warning{%
 Patching '\string\begin' failed!\MessageBreak
 '\string\BeforeBeginEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\AfterEndEnvironment}[1]{%
 \csgappto{@afterend@#1@hook}}

\patchcmd\end
 {\if@ignore}
 {\csuse{@afterend@#1@hook}%
 \if@ignore}
 {}
 {\etb@warning{%
 Patching '\string\end' failed!\MessageBreak
 '\string\AfterEndEnvironment' will not work\@gobble}}

\endinput

main/mdframed.sty

%%==%%
%%========Is based on the idea of framed.sty========%%
%%==%%
%%===== Currently the package has a beta-Status ====%%
%%==%%
%% WITH THANKS TO (alphabetically):
%% ROLF NIEPRASCHK
%% HEIKO OBERDIEK
%% HERBERT VOSS

%% Copyright (c) 2010 Marco Daniel
%
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.
%%
%%
%%==%%
%% Erstellung eines Rahmens, der am Seitenende keine
%% horizontale Linie einfuegt
%%>>>%%
%% _______________ %%
%% | page 1 | %%
%% | Text | %%
%% | __Text__ | %%
%% | | Text | | %%
%% P A G E B R E A K %%
%% | | Text | | %%
%% | |_Text_| | %%
%% | Text | %%
%% |____page 2___| %%
%% %%
%%>>>%%

%%$Id: mdframed.sty 103 2010-12-22 16:46:10Z marco $
%%$Rev: 103 $
%%$Author: marco $
%%$Date: 2010-12-22 17:46:10 +0100 (Mi, 22. Dez 2010) $

%% Allgemeine Angaben
\def\mdversion{v0.6a}
\def\mdframedpackagename{mdframed}
\def\md@maindate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mdframed}[\md@maindate@svn$Id: mdframed.sty 103 2010-12-22 16:46:10Z marco $ \mdversion: \mdframedpackagename]

%%==%%
%%=============== Benoetigte Pakete ================%%
%%==%%

\newcommand*\md@PackageWarning[1]{\PackageWarning{\mdframedpackagename}{#1}}
\newcommand*\md@PackageInfo[1]{\PackageInfo{\mdframedpackagename}{#1}}
\newcommand*\md@LoadFile@IfExist[1]{%
 \IfFileExists{#1.sty}{%
 \RequirePackage{#1}%
 }{%
 \md@PackageWarning{The package #1 does not exist\MessageBreak
 but it is required by \mdframedpackagename}%
 }
}
\md@LoadFile@IfExist{kvoptions}

\md@LoadFile@IfExist{etex}

\md@LoadFile@IfExist{calc}

\md@LoadFile@IfExist{color}

%Eingearbeitet in Optionen
%\md@LoadFile@IfExist{pstricks}
%\md@LoadFile@IfExist{pstricks}

\md@LoadFile@IfExist{etoolbox}

\SetupKeyvalOptions{family=mdf,prefix=mdf@}

%%==%%
%%========Hilfsmakro zur Bestimmung ob Laenge=======%%
%%============= IDEE: Martin Scharrer ==============%%
%%==%%

%%%\md@iflength{<EINGABE>}{<IST LAENGE>}{<IST KEINE LAENGE>}
\newlength{\md@templength}
\def\md@iflength#1{%
 \afterassignment\md@iflength@check%
 \md@templength=#1\mdf@defaultunit\relax\relax
 \expandafter\endgroup\next
}
\def\md@iflength@check#1{%
 \begingroup
 \ifx\relax#1\@empty
 \def\next{\@secondoftwo}
 \else
 \def\next{\@firstoftwo}
 \expandafter\md@iflength@cleanup
 \fi
}
\def\md@iflength@cleanup#1\relax{}

%%\def\md@@iflength#1{
%% \begingroup
%% \def\@tempa{#1}
%% \md@iflength{\@tempa}{%
%% \expandafter\global\expandafter%
%% \edef\csname #1\endcsname{\the\md@templength}%
%% }{%
%% \expandafter\global\expandafter%
%% \edef\csname #1\endcsname{\the\md@templength}%
%% }%
%% \endgroup%
%%}

%%==%%
%%==================== Optionen ====================%%
%%==%%

%Festlegung welcher Stildatei
%% 0 := tex-Kommandos -- rule
%% 1 := tikz
%% 2 := tikz-erweitert
%% 3 := pstricks-einfach
%% 4 := pstricks-erweitert

\DeclareStringOption[0]{style}

\define@key{mdf}{globalstyle}[\mdf@style]{%
 \renewcommand*{\do}[1]{%
 \def\@tempa{##1}
 \ifcase\number\@tempa\relax
 %0 <- kein Grafikpaket
 \or
 \md@LoadFile@IfExist{tikz}
 %1 <- tikz wird benoetigt
 \or
 \md@LoadFile@IfExist{tikz}
 %2 <- tikz wird benoetigt
 \or
 \md@LoadFile@IfExist{pstricks-add}
 %3 <- pstricks wird benoetigt
 \or
 \md@LoadFile@IfExist{pstricks-add}
 %4 <- pstricks wird benoetigt
 \else
 \md@PackageWarning{Unknown global style \@tempa}
 \fi
 }%
 \docsvlist{\mdf@style,#1}%
 }

%%%%Optionen mit Laengen

\newcommand*\mdf@skipabove{\z@}
\newcommand*\mdfl@skipabove{}
\newlength\mdf@skipabove@length
\deflength\mdf@skipabove@length{\z@}
\define@key{mdf}{skipabove}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@skipabove{\the\md@templength}}%
 {\global\edef\mdfl@skipabove{\the\md@templength}}
\let\mdf@skipabove\mdfl@skipabove
\setlength\mdf@skipabove@length{\mdf@skipabove}
}

\newcommand*\mdf@skipbelow{\z@}
\newcommand*\mdfl@skipbelow{}
\newlength\mdf@skipbelow@length
\deflength\mdf@skipbelow@length{\z@}
\define@key{mdf}{skipbelow}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@skipbelow{\the\md@templength}}%
 {\global\edef\mdfl@skipbelow{\the\md@templength}}
\let\mdf@skipbelow\mdfl@skipbelow
\setlength\mdf@skipbelow@length{\mdf@skipbelow}
}

\newcommand*\mdf@leftmargin{\z@}
\newcommand*\mdfl@leftmargin{}
\newlength\mdf@leftmargin@length
\deflength\mdf@leftmargin@length{\z@}
\define@key{mdf}{leftmargin}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@leftmargin{\the\md@templength}}%
 {\global\edef\mdfl@leftmargin{\the\md@templength}}
\let\mdf@leftmargin\mdfl@leftmargin
\setlength\mdf@leftmargin@length{\mdf@leftmargin}
}

\newcommand*\mdf@rightmargin{\z@}
\newcommand*\mdfl@rightmargin{}
\newlength\mdf@rightmargin@length
\deflength\mdf@rightmargin@length{\z@}
\define@key{mdf}{rightmargin}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@rightmargin{\the\md@templength}}%
 {\global\edef\mdfl@rightmargin{\the\md@templength}}
\let\mdf@rightmargin\mdfl@rightmargin
\setlength\mdf@rightmargin@length{\mdf@rightmargin}
}

\newcommand*\mdf@margin{20pt}
\newcommand*\mdfl@margin{}
\newlength\mdf@margin@length
\deflength\mdf@margin@length{20pt}
\define@key{mdf}{margin}[20pt]{%
 \md@PackageWarning{The option margin is obsolote and no longer used\MessageBreak
 use instead innerleftmargin and innerrightmargin\MessageBreak
 For more details look at the documentation \mdframedpackagename}%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@margin{\the\md@templength}}%
 {\global\edef\mdfl@margin{\the\md@templength}}
\let\mdf@margin\mdfl@margin
\setlength\mdf@margin@length{\mdf@margin}
}

\newcommand*\mdf@innerleftmargin{10pt}
\newcommand*\mdfl@innerleftmargin{}
\newlength\mdf@innerleftmargin@length
\deflength\mdf@innerleftmargin@length{10pt}
\define@key{mdf}{innerleftmargin}[10pt]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerleftmargin{\the\md@templength}}%
 {\global\edef\mdfl@innerleftmargin{\the\md@templength}}
\let\mdf@innerleftmargin\mdfl@innerleftmargin
\setlength\mdf@innerleftmargin@length{\mdf@innerleftmargin}
}

\newcommand*\mdf@innerrightmargin{10pt}
\newcommand*\mdfl@innerrightmargin{}
\newlength\mdf@innerrightmargin@length
\deflength\mdf@innerrightmargin@length{10pt}
\define@key{mdf}{innerrightmargin}[10pt]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerrightmargin{\the\md@templength}}%
 {\global\edef\mdfl@innerrightmargin{\the\md@templength}}
\let\mdf@innerrightmargin\mdfl@innerrightmargin
\setlength\mdf@innerrightmargin@length{\mdf@innerrightmargin}
}

\newcommand*\mdf@innertopmargin{0.4\baselineskip}
\newcommand*\mdfl@innertopmargin{}
\newlength\mdf@innertopmargin@length
\deflength\mdf@innertopmargin@length{0.4\baselineskip}
\define@key{mdf}{innertopmargin}[0.4\baselineskip]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innertopmargin{\the\md@templength}}%
 {\global\edef\mdfl@innertopmargin{\the\md@templength}}
\let\mdf@innertopmargin\mdfl@innertopmargin
\setlength\mdf@innertopmargin@length{\mdf@innertopmargin}
}

\newcommand*\mdf@innerbottommargin{0.4\baselineskip}
\newcommand*\mdfl@innerbottommargin{}
\newlength\mdf@innerbottommargin@length
\deflength\mdf@innerbottommargin@length{0.4\baselineskip}
\define@key{mdf}{innerbottommargin}[0.4\baselineskip]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerbottommargin{\the\md@templength}}%
 {\global\edef\mdfl@innerbottommargin{\the\md@templength}}
\let\mdf@innerbottommargin\mdfl@innerbottommargin
\setlength\mdf@innerbottommargin@length{\mdf@innerbottommargin}
}

\newcommand*\mdf@splittopskip{\z@}
\newcommand*\mdfl@splittopskip{}
\newlength\mdf@splittopskip@length
\deflength\mdf@splittopskip@length{\z@}
\define@key{mdf}{splittopskip}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@splittopskip{\the\md@templength}}%
 {\global\edef\mdfl@splittopskip{\the\md@templength}}
\let\mdf@splittopskip\mdfl@splittopskip
\setlength\mdf@splittopskip@length{\mdf@splittopskip}
}

\newcommand*\mdf@splitbottomskip{\z@}
\newcommand*\mdfl@splitbottomskip{}
\newlength\mdf@splitbottomskip@length
\deflength\mdf@splitbottomskip@length{\z@}
\define@key{mdf}{splitbottomskip}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@splitbottomskip{\the\md@templength}}%
 {\global\edef\mdfl@splitbottomskip{\the\md@templength}}
\let\mdf@splitbottomskip\mdfl@splitbottomskip
\setlength\mdf@splitbottomskip@length{\mdf@splitbottomskip}
}

%% Linienstaerken
\newcommand*\mdf@linewidth{0.4pt}
\newcommand*\mdfl@linewidth{}
\newlength\mdf@linewidth@length
\deflength\mdf@linewidth@length{0.4pt}
\define@key{mdf}{linewidth}[0.4pt]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@linewidth{\the\md@templength}}%
 {\global\edef\mdfl@linewidth{\the\md@templength}}
\let\mdf@linewidth\mdfl@linewidth
\setlength\mdf@linewidth@length{\mdf@linewidth}%
\ifnumequal{\mdf@style}{1}{%
\deflength\mdf@middlelinewidth@length{\mdf@linewidth@length}%
}{}%
}

\newcommand*\mdf@innerlinewidth{\z@}
\newcommand*\mdfl@innerlinewidth{}
\newlength\mdf@innerlinewidth@length
\deflength\mdf@innerlinewidth@length{\z@}
\define@key{mdf}{innerlinewidth}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerlinewidth{\the\md@templength}}%
 {\global\edef\mdfl@innerlinewidth{\the\md@templength}}
\let\mdf@innerlinewidth\mdfl@innerlinewidth
\setlength\mdf@innerlinewidth@length{\mdf@innerlinewidth}
}

\newcommand*\mdf@middlelinewidth{\mdf@linewidth}
\newcommand*\mdfl@middlelinewidth{}
\newlength\mdf@middlelinewidth@length
\deflength\mdf@middlelinewidth@length{\mdf@linewidth@length}
\define@key{mdf}{middlelinewidth}[\mdf@linewidth]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@middlelinewidth{\the\md@templength}}%
 {\global\edef\mdfl@middlelinewidth{\the\md@templength}}
\let\mdf@middlelinewidth\mdfl@middlelinewidth
\setlength\mdf@middlelinewidth@length{\mdf@middlelinewidth}
}

\newcommand*\mdf@outerlinewidth{\z@}
\newcommand*\mdfl@outerlinewidth{}
\newlength\mdf@outerlinewidth@length
\deflength\mdf@outerlinewidth@length{\z@}
\define@key{mdf}{outerlinewidth}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@outerlinewidth{\the\md@templength}}%
 {\global\edef\mdfl@outerlinewidth{\the\md@templength}}
\let\mdf@outerlinewidth\mdfl@outerlinewidth
\setlength\mdf@outerlinewidth@length{\mdf@outerlinewidth}
}

\newcommand*\mdf@roundcorner{\z@}
\newcommand*\mdfl@roundcorner{}
\newlength\mdf@roundcorner@length
\deflength\mdf@roundcorner@length{\z@}
\define@key{mdf}{roundcorner}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@roundcorner{\the\md@templength}}%
 {\global\edef\mdfl@roundcorner{\the\md@templength}}
\let\mdf@roundcorner\mdfl@roundcorner
\setlength\mdf@roundcorner@length{\mdf@roundcorner}
}

%Unterstuetzung der Optionen fuer pstricks
\def\mdf@psset@local{}
\define@key{mdf}{pstrickssetting}{%
 \def\mdf@psset@local{#1}
}

%%Defaulunit
\DeclareStringOption[pt]{defaultunit}

%%mdframed umfasst ntheorem-Umgebung ja/nein
\DeclareBoolOption{ntheorem}

\DeclareBoolOption[true]{topline}
\DeclareBoolOption[true]{leftline}
\DeclareBoolOption[true]{bottomline}
\DeclareBoolOption[true]{rightline}

%%FARBEN
\DeclareStringOption[none]{xcolor}
\DeclareStringOption[black]{linecolor}
\DeclareStringOption[white]{backgroundcolor}
\DeclareStringOption[black]{fontcolor}
\DeclareStringOption[\mdf@linecolor]{innerlinecolor}
\DeclareStringOption[\mdf@linecolor]{outerlinecolor}
\DeclareStringOption[\mdf@backgroundcolor]{middlelinecolor}

\DeclareDefaultOption{%
 \md@PackageWarning{Unknown Option '\CurrentOption' for mdframed}}

%%==%%
%%========== ENDE DER OPTIONENDEKLARATION ==========%%
%%==%%

\ProcessKeyvalOptions*
\newcommand*{\mdfsetup}{\setkeys{mdf}}
\mdfsetup{globalstyle=0}

%%==%%
%%========Sicherstellen der key-value-Syntax========%%
%%==%%
\AtBeginDocument{
 \@ifpackageloaded{xcolor}{%
 \let\mdf@xcolor\@empty %ignoriere die Eingabe der Optionen
 }{%
 \def\@tempa{none}
 \ifx\mdf@xcolor\@tempa
 \else
 \PassOptionsToPackage{\mdf@xcolor}{xcolor}
 \RequirePackage{xcolor}
 \fi
 }
}

%%Farbabkuerzungen:
\newcommand*\mdf@@linecolor{\color{\mdf@linecolor}}
\newcommand*\mdf@@backgroundcolor{
 \ifx\mdf@backgroundcolor\@empty
 \else
 \color{\mdf@backgroundcolor}
 \fi}
\newcommand*\mdf@@fontcolor{\color{\mdf@fontcolor}}
\newcommand*\mdf@@innerlinecolor{\color{\mdf@innerlinecolor}}
\newcommand*\mdf@@outerlinecolor{\color{\mdf@outerlinecolor}}
\newcommand*\mdf@@middlelinecolor{\color{\mdf@middlelinecolor}}

%%==%%
%%======= Laden der gewuenschten Style-Datei =======%%
%%==%%
\ifcase\mdf@style\relax%
 \input{md-frame-0.mdf}%
 \or%
 \input{md-frame-1.mdf}%
 \or%
 \md@PackageWarning{The style number\mdf@style does not exist\MessageBreak
 mdframed ues instead style=0 \mdframedpackagename}%
 \input{md-frame-1.mdf}%
 \or%
 \input{md-frame-3.mdf}%
 \else%
 \IfFileExists{md-frame-\mdf@style.mdf}{%
 \input{md-frame-\mdf@style.mdf}%
 }{%
 \input{md-frame-1.mdf}%
 \md@PackageWarning{The style number \mdf@style does not exist\MessageBreak
 mdframed ues instead style=0 \mdframedpackagename}%
 }%
\fi%

%%==%%
%%===Globale Umgebung -- noch keine Modifikation ===%%
%%==%%
\def\md@margin@startenv{% latex.ltx -> \@startsection
 \if@noskipsec \leavevmode \fi
 \par%\kern-\lastskip%
 \@tempskipa -\mdf@skipabove@length\relax
 \@afterindenttrue
 \ifdim \@tempskipa < \z@
 \@tempskipa -\@tempskipa \@afterindentfalse%
 \fi
 \if@nobreak
 \everypar{}%
 \else
 \addpenalty\@secpenalty\addvspace\@tempskipa%
 \par\kern-\ht\strutbox
 \fi%
}%

\def\mdframed{%
 \@ifnextchar[%]
 \mdframed@i\mdframed@ii}%

\def\mdframed@ii{\mdframed@i[]}%
\def\mdframed@i[#1]{% default-Umgebung
 \mdfsetup{#1}%%
 \md@margin@startenv%
 \ifmdf@ntheorem% %%% Pruefen ob ntheorem gesetzt ist
 \ifundef{\theorempreskipamount}%
 {\md@PackageWarning{You have not loaded ntheorem yet}}%
 {\setlength{\theorempreskipamount}{0pt}%
 \setlength{\theorempostskipamount}{0pt}}%
 \fi%
 \ifnumequal{\mdf@style}{0}%
 {\deflength{\mdf@innerlinewidth@length}{\z@}%
 \deflength{\mdf@middlelinewidth@length}{\mdf@linewidth@length}%
 \deflength{\mdf@outerlinewidth@length}{\z@}%
 \let\mdf@innerlinecolor\mdf@linecolor%
 \let\mdf@middlelinecolor\mdf@linecolor%
 \let\mdf@outerlinecolor\mdf@linecolor%
 }{}%
 \ifnumequal{\mdf@style}{3}%
 {\deflength{\mdf@innerlinewidth@length}{\z@}%
 \deflength{\mdf@middlelinewidth@length}{\mdf@linewidth}%
 \deflength{\mdf@outerlinewidth@length}{\z@}%
 \let\mdf@innerlinecolor\mdf@linecolor%
 }{}%
 \mdframed@global@env%
 }%

\def\endmdframed{\endmdframed@global@env\endtrivlist%
\vspace{\mdf@skipbelow@length}}%

%%==%%
%%==Deklaration diverser Eingabe und Hilfsparameter=%%
%%==%%

\newskip\md@temp@skip@a \md@temp@skip@a\z@ %% Hilfslaenge

\newlength\md@verticalmarginwhole@length

\newlength\mdf@xmargin@length%
\newlength\mdf@ymargin@length%
\newlength\mdfboxheight% %% Berechnungsvariable tikz
\newlength\mdfboxwidth% %% Berechnungsvariable tikz

\newlength\mdfboundingboxheight
\newlength\mdfboundingboxwidth
\newlength\mdfpositionx
\newlength\mdfpositiony

\providecommand*\ptTps{}

%%==%%
%%=================== Kommentare ===================%%
%%==%%

\chardef\md@arrayparboxrestore=\catcode`\| % for debug
\catcode`\|=\catcode`\% % (debug: insert space after backslash)
%% Kommentare werden im Code mit | gekennzeichnet

%%==%%
%%================= Platz auf Seite ================%%
%%==%%
\newlength\md@freevspace@length
\def\md@freepagevspace{%
 \ifdimequal{\pagegoal}{\maxdimen}%
 {%
 \setlength{\md@freevspace@length}{\vsize}%
 }{
 \setlength{\md@freevspace@length}{\pagegoal}%
 \addtolength{\md@freevspace@length}{-\pagetotal}%
 }%
}

%%==%%
%================= Breite der BOX =================%%
%%==%%

% edge-leftmargin-outerlinewith-middlelinewidth-innerlinewidth-innerleftmargin-TEXTBREITE-
% innerrightmargin-innerlinewidth-middlelinewidth-outelinewith-edge
\newlength\md@horizontalspaceofbox
\def\md@horizontalmargin@equation{%
 \setlength{\md@horizontalspaceofbox}{\hsize}
 \addtolength{\md@horizontalspaceofbox}{%
 -\mdf@leftmargin@length%
 -\mdf@outerlinewidth@length%
 -\mdf@middlelinewidth@length%
 -\mdf@innerlinewidth@length%
 -\mdf@innerleftmargin@length%
 -\mdf@innerrightmargin@length%
 -\mdf@innerlinewidth@length%
 -\mdf@middlelinewidth@length%
 -\mdf@outerlinewidth@length%
 -\mdf@rightmargin@length%
 }%
 \ifboolexpr{ test {\ifnumequal{\mdf@style}{0}} or test {\ifnumequal{\mdf@style}{3}}}%
 {
 \notbool{mdf@leftline}{\addtolength{\md@horizontalspaceofbox}{%
 \mdf@innerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@outerlinewidth@length%
 }}{}%
 \notbool{mdf@rightline}{\addtolength{\md@horizontalspaceofbox}{%
 \mdf@innerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@outerlinewidth@length%
 }}{}%
 }{}%
 \advance\md@horizontalspaceofbox by - \width\md@arrayparboxrestore%
 %%% Beruecksichtigung, dass Auszaehlung bzw. list-Umgebung enthalten
 \ifdimless{\md@horizontalspaceofbox}{3cm}{\md@PackageWarning{You have only a width of 3cm}}{}
 \hsize=\md@horizontalspaceofbox%
}

%%==%%
%%========= Seitenparameter und Strafpunkte ========%%
%%==%%
\def\md@penalty@startenv{%
 \begingroup%
 \skip@\lastskip% %%% lastskip nur ungleich null nach section, list, figure, usw.
 \if@nobreak%
 \else
 \penalty9999 % updates \page parameters <-pruefen
 \ifdim\pagefilstretch=\z@ %%% pagefilstretch ist ein internes Register fuer den
 %%% Seitenumbruch. Es entaehlt den akkumulierten (gespeicherten) fil-Anteil
 %%% auf der aktuellen Seite
 \ifdim\pagefillstretch=\z@ %%% pagefillstretch ist ein internes Register fuer den
 %%% Seitenumbruch. Es entaehlt den akkumulierten (gespeicherten) fill-Anteil
 %%% auf der aktuellen Seite
 %%% nicht unendlich dehnbar, so hier foerdern eines Seitenumbruches
 \edef\@tempa{\the\skip@}%
 \edef\@tempb{\the\z@skip}%
 \ifx\@tempa\@tempb %%% ???????
 \penalty-30%
 \else
 \vskip-\skip@%
 \penalty-30%
 \vskip\skip@%
 \fi
 \fi
 \fi
 \penalty\z@%
 % Give a stretchy breakpoint that will always be taken in preference
 % to the \penalty 9999 used to update page parameters. The cube root
 % of 10000/100 indicates a multiplier of 0.21545, but the maximum
 % calculated badness is really 8192, not 10000, so the multiplier
 % is 0.2301.
 \advance\skip@ \z@ plus-.5\baselineskip%
 \advance\skip@ \z@ plus-.231\height%
 \advance\skip@ \z@ plus-.231\skip@%
 \advance\skip@ \z@ plus-.231\topsep%
 \vskip-\skip@ \penalty 1800 \vskip\skip@%
 \fi
 \addvspace{\topsep}%
 \endgroup%
 % clear out pending page break
 \nobreak \vskip 2\baselineskip \vskip\height% %%%\@M=10000
 \penalty9999 \vskip -2\baselineskip \vskip-\height%
 \penalty9999 % updates \pagetotal
}%

%%==%%
%%============Start der globalen Umgebung===========%%
%%==%%
\newskip\md@temp@frame@hsize \md@temp@frame@hsize=0pt%
\newskip\md@temp@frame@vsize \md@temp@frame@vsize=0pt%

\def\mdframed@global@env{\relax%
 \let\width\z@%
 \let\height\z@%
 \md@penalty@startenv%
 \def\@doendpe{\@endpetrue% %%% SIEHE LATEX.ltx -- ersten Absatz ignorieren
 \def\par{\@restorepar\par\@endpefalse}%
 \everypar{{\setbox\z@\lastbox}\everypar{}\@endpefalse}%
 }%
 \md@horizontalmargin@equation%
 \setbox\@tempboxa%
 \vbox\bgroup\@doendpe%
 \begingroup% %%% zweites begingroup noetig, dass fontcolor gesetzt werden kann
 \mdf@@fontcolor% %%% Setzen der Schriftfarbe
 \textwidth\md@horizontalspaceofbox \columnwidth\md@horizontalspaceofbox%
}%

\def\endmdframed@global@env{\par%
 \kern\z@%
 \hrule\@width\md@horizontalspaceofbox\@height\z@%
 \penalty-100 % put depth into height
 \endgroup%
 \egroup%
 \begingroup%
 \mdf@@fontcolor%
 \setbox\@tempboxa\vbox{\unvbox\@tempboxa}
 \md@put@frame%
 \endgroup%
}

%%==%%
%%===========Ausgaberoutine -> Berechnung===========%%
%%==%%

%% \md@put@frame nimmt den Inhalt der \@tempboxa und packt alles oder nur einen Teil
%% auf die Seite mit dem Rahmen.
%% Es ist rekursiv, solange alles von der \@tempboxa aufgebraucht ist (\@tempboxa muss die Tiefe 0 haben.)
%% Erste Iteration: Versuche alles in einen Rahmen zu bekommen. Falls es nicht passt,
%% splitte es fuer die erste Rahmenumgebung
%% Spaetere Iteration: Versuche alles in den letzten Rahmen zu bekommen. Falls es nicht passt,
%% splitte es erneut. (Versuchsstadium -- Da bisher nur Anfang und Ende enthalten)

\def\md@put@frame{\relax%
 \md@freepagevspace
 \ifdimless{\md@freevspace@length}{1.999\baselineskip}
 {\md@PackageInfo{Not enough space on this page}%die Seite hat nur noch minimal Platz
 \clearpage%
 \md@put@frame
 }{%
 %Hier berechnung Box-Inhalt+Rahmen oben und unten
 \setlength{\md@verticalmarginwhole@length}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\md@verticalmarginwhole@length}{%
 \mdf@outerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@innerlinewidth@length%
 +\mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 +\mdf@innerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@outerlinewidth@length%
 }%
 \ifnumequal{\mdf@style}{0}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 \ifbool{mdf@bottomline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifnumequal{\mdf@style}{3}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 \ifbool{mdf@bottomline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifdimless{\md@verticalmarginwhole@length}{\md@freevspace@length}%
 {\md@putbox@single}%passt auf Seite
 {\md@put@frame@i}%passt nicht auf Seite
 }
}

\def\md@put@frame@i{%Box muss gesplittet werden -- Ausgabe der ersten Teilbox
 %Berechnung der Splittgroesse -- Linien und Abstand oben
 \md@freepagevspace
 \setlength{\dimen@}{\md@freevspace@length}%
 \addtolength{\dimen@}{%
 -\mdf@outerlinewidth@length%
 -\mdf@middlelinewidth@length%
 -\mdf@innerlinewidth@length%
 -\mdf@innertopmargin@length%
 -\mdf@splitbottomskip@length%
 }%
 \ifnumequal{\mdf@style}{0}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\dimen@}{+\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifnumequal{\mdf@style}{3}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\dimen@}{\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifdimless{\ht\@tempboxa+\dp\@tempboxa}{\dimen@}%
 {\md@PackageWarning{You got a bad break\MessageBreak
 you have to change it manually\MessageBreak
 by changing the text, the space\MessageBreak
 or something else}%
 \addtolength{\dimen@}{-1.8\baselineskip}
 }{}%
 \addtolength{\dimen@}{-\pageshrink}%Box darf nicht zu GroÃ� werden.
 \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
 \setbox\tw@\vsplit\@tempboxa to \dimen@
 \setbox\tw@\vbox{\unvbox\tw@}%
 \ifdimgreater{\ht\tw@+\dp\tw@}{\dimen@}{%Falsch gesplittet
 \setlength\dimen@i{\dimen@}
 \addtolength{\dimen@}{-\ht\tw@-\dp\tw@}
 \addtolength\dimen@i{0.5\dimen@}
 \boxmaxdepth\z@ \splittopskip\z@%
 \setbox\@tempboxa\vbox{\unvbox\tw@\unvbox\@tempboxa}
 \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
 \setbox\tw@\vsplit\@tempboxa to \dimen@i
 \setbox\tw@\vbox{\unvbox\tw@}%
 }{}%
 \setbox\@tempboxa\vbox{\unvbox\@tempboxa}%PRUEFEN!!!!
 \ifvoid\@tempboxa
 \md@PackageWarning{You got a bad break\MessageBreak
 because the splittet box is empty\MessageBreak
 You have to change the page settings\MessageBreak
 like enlargethispage or something else}%
 \fi
 \ifdimequal{\wd\tw@}{0pt}%%pruefe, ob erste Box leer ist
 {\clearpage%
 \md@put@frame}%
 {\md@putbox@first%%Groesse des Splittens passt
 \eject%\clearpage%
 \md@put@frame@ii}%
}

\def\md@put@frame@ii{%Ausgabe der mittleren Box(en) wenn vorhanden
 \setlength{\md@freevspace@length}{\vsize}%
 \setlength{\dimen@}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\dimen@}{%%Addition der Linien unten
 \mdf@outerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@innerlinewidth@length%
 +\mdf@innerbottommargin@length%
 }%
 \ifboolexpr{(bool {mdf@bottomline})
 and
 (test {\ifnumequal{\mdf@style}{0}}
 or
 test {\ifnumequal{\mdf@style}{3}}
)
 }%
 {}{\addtolength{\dimen@}{-\mdf@middlelinewidth@length}}%
 \ifdimgreater{\dimen@}{\md@freevspace@length}%
 {%
 \addtolength{\md@freevspace@length}{%%Abzug der Linien unten
 -\mdf@splitbottomskip@length%
 }%
 \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
 \setbox\tw@\vsplit\@tempboxa to \md@freevspace@length%
 \setbox\tw@\vbox{\unvbox\tw@}%PRUEFEN!!!
 \setbox\@tempboxa\vbox{\unvbox\@tempboxa}%PRUEFEN!!!!
 \ifvoid\@tempboxa\relax%
 \md@PackageWarning{You got a bad break\MessageBreak
 because the splittet box is empty\MessageBreak
 You have to change the settings}%
 \fi%
 \md@putbox@middle%
 \clearpage\md@put@frame@ii%
 }%Hier die Ausgabe der mittleren Box
 {\ifdimequal{\wd\@tempboxa}{\z@}{\md@PackageWarning{You got a bad break\MessageBreak
 because the splittet box is empty\MessageBreak
 You have to change the settings}%
 }{}%
 \md@putbox@second}%Hier kommt die Ausgabe der letzten Box
}

\catcode`\|=\md@arrayparboxrestore %%%????

% \md@arrayparboxrestore has parts of \@parboxrestore, performing a similar but
% less complete restoration of a default layout. See how it is used in the
% "settings" argument of \MakeFrame. Though not a parameter, \hsize
% should be set to the desired total line width available inside the
% frame before invoking \md@arrayparboxrestore.
\def\md@arrayparboxrestore{%
 %%%AUS ltboxes.dtx -> \@arrayparboxrestore
 \let\if@nobreak\iffalse
 \let\if@noskipsec\iffalse
 \let\-\@dischyph %%%Default \let\@dischyph=\-
 \let\'\@acci\let\`\@accii\let\=\@acciii %%%Default: \let\@acci\' \let\@accii\` \let\@acciii\= <- Sicher gehen
 %%%dass Defaultwerte erhalten sind
 %%%Scheinen Mathesymbole zu sein ???
 % Test ob Listenumgebung enthalten ist
 \ifnum \ifdim\@totalleftmargin>\z@ 1\fi %%%In latex.ltx->totalleftmargin=\z@, ausser in list-Umgebung:
 %%%\advance\@totalleftmargin \leftmargin
 \ifdim\rightmargin >\z@ 1\fi %%%Default \rightmargin=\z@, Ausnahme: quote usw.
 \ifnum\@listdepth >0 1\fi %%%Zaehler fuer Listentiefe -> Keine Liste \@listdepth=0 sonst, je Ebene +1
 0>\z@ %%%Ist ein Parameter erfuellt, dann ist es eine Listenumgebung
 \@setminipage %%%Passform rund um das Element
 % Nun wird versucht, Aenderungen der Breite von \hsize entsprechend der Listenparameter zu uebergeben.
 % Dies ist defizitaer, denn eine erweiterte Moeglichkeit, Aenderungen der Textdimension anzugegeben
 % ist (noch) nicht vorgesehen, insbesondere keine getrennte linke / rechte Einstellung.
 \advance\linewidth-\columnwidth \advance\linewidth\md@horizontalspaceofbox
 \parshape\@ne \@totalleftmargin \linewidth %%% parshape definiert das Aussehen eines Absatzes Zeile fuer Zeile.
 %%% Seine Parameterversorgung geschieht mittels der folgenden Syntax:
 %%% \parshape = n i1 l1 i2 l2 ... in ln.
 %%% Dabei gibt der Parameter n an, fuer wieviele Zeilen Definitionspaare folgen.
 %%% Jedes Definitionspaar besteht aus der Angabe i_j fuer den Einzug und
 %%% der Laengenangabe l_j fuer die entsprechende Zeile. Sind mehr als n Zeilen
 %%% vorhanden, so wird die letzte Angabe stets weiter verwendet
 \else % Not in list
 \linewidth=\md@horizontalspaceofbox
 \fi
 \sloppy
}

%%==%%
%%= Sicherstellen, dass Optionen nur global setzbar=%%
%%==%%

\DisableKeyvalOption[%
 action=warning,
 package=mdframed,
]{mdf}{globalstyle}%

\DisableKeyvalOption[%
 action=warning,
 package=mdframed,
]{mdf}{xcolor}%

\endinput
%%%
EOF
EOF
EOF

main/main.tex~

\RequirePackage{hyphsubst}
\documentclass[fontsize=11pt,paper=A4,BCOR=6mm,DIV=20,open=any,listof=totoc]{scrbook}
\input{../headers/paper}
\input{../headers/packages1}
\input{../headers/babel}
\input{../headers/svg}
\input{../headers/packages2}
\input{../headers/defaultcolors}
\input{../headers/hyphenation}
\input{../headers/commands}
\usepackage{type1ec}
\usepackage{CJKutf8}
\usepackage[overlap, CJK]{ruby}
\usepackage{CJKulem}
\input{../headers/title}
\input{../headers/options}
\input{../headers/formattings}
\input{../headers/unicodes}
\input{../headers/templates}
\input{../headers/templates-dirk}
\input{../headers/templates-chemie}
\usepackage{lmodern}
\begin{document}
\begin{CJK}{UTF8}{megafont}
\usetocstyle{standard}
\raggedbottom
\pagestyle{empty}
%\include{coverfrontpage}

%\cleardoublepage
\pagenumbering{Roman}
\pagestyle{scrheadings}

\setcounter{tocdepth}{\mytocdepth}

%\cleardoublepage
\pagenumbering{arabic}

%\include{kap-vorwort}

\label{0}
\LaTeXNullTemplate{}

\section{Zusammenfassung}
\label{1}
Betrachtet man Funktionen, die von mehreren Ortskoordinaten abhängen, so kann man sie nach jeder dieser Ortskoordinaten ableiten und das ggfs. auch mehrfach.
Einige Linearkombinationen solcher Ableitungen werden besonders häufig verwendet, z. B der Gradient, die Divergenz, der Laplace-{}Operator oder der Drehimpulsoperator.
Zusammenfassend bezeichnet man diese als Differentialoperatoren.
Man kann Ortskoordinaten in verschiedenen Koordinatensystemen angeben. Häufig verwendet werden kartesische Koordinaten, Zylinderkoordinaten und Kugelkoordinaten.
Betrachtet man dieselbe Funktion dargestellt in unterschiedlichen Koordinatensystemen, so sieht die Funktionsgleichung meist sehr unterschiedlich aus, jenachdem, in welchem Koordinatensystem man sie darstellt.
Genauso sehen die Differentialoperatoren in unterschiedlichen Koordinatensystem unterschiedlich aus. Im folgenden geben wir an, wie einige Differentialoperatoren in verschiedenen Koordinatensystem aussehen und anschließend rechnen wir die angegebenen Formeln nach.
\subsection{Divergenz}
\label{2}
Wir betrachten eine Funktion {$\mathbf{f}\colon\, \mathbb{R}^3 \to \mathbb{R}^3$}. In Komponentenschreibweise ist {\mathbb{f}} gegeben durch:

{$f= \left(\begin{matrix} f_\mathrm{x} \\ f_\mathrm{y} \\ f_\mathrm{z} \end{matrix} \right) $}

Es ist zu beachten, dass wir {\mathbf{f}} fett (bold) gesetzt haben, wobei wir {f_x} normal (regular) gesetzt haben. Hierdurch drückt man in der Regel aus, dass {\mathbf{f}} in einen mehrdimensionalen Vektorraum abbildet, bzw, dass {\mathbf{f}} mehr als eine Komponente hat oder, anders ausgedrückt, {\mathbf{f}} eine vektorwertige Funktion ist. Hingegen wird {f_x} normal gesetzt, weil es nur genau eine Komponente hat. Eine andere Möglichkeit, die Vektorwertigkeit einer Funktion auszudrücken, ist ein Pfeil über dem Funktionssymbol:

{\vec{f}}

Eine weitere Möglichkeit der Komponentenschreibweise ist:

{$f= \left(\begin{matrix} f_1 \\ f_2 \\ f_3 \end{matrix} \right) $}

Abkürzend hierfür schreibt man auch:

{$ f_i $}

Hierbei haben wir alle drei Komponenten der Funktion {\mathbf{f}} zusammenfassend durch das Symbol {f_i} ausgedrückt. Hierbei fällt auf, dass der Index {i} im Symbol {f_i} kursiv gesetzt wurde. Hingegen wurde der Index {z} im Symbol
{$f_\mathbf{z}$} normal gesetzt. Auch dies ist eine Konvention. Die Vektorwertigkeit von {f_i} wird durch die Kursivschrift des {i} ausgedrückt.

Die Divergenz in kartesischen Koordinaten ist definiert durch:

{$ \mathrm{div} f= \nabla \cdot f= \frac{\partial f_\mathrm{x}}{\partial \mathrm{x}} + \frac{\partial f_\mathrm{y}}{\partial \mathrm{y}} + \frac{\partial f_\mathrm{y}}{\partial \mathrm{z}} $}

Eine alternative Schreibweise ist:

{$ \sum_{i=1}^{3} \frac{\partial f_i}{\partial \mathrm{x}_i} $}

Diese kann man noch weiter verkürzen zu:

{$ \partial_i f_i $}
\section{Zylinderkoordinaten}
\label{3}
\subsection{Umrechnung von Zylinderkoordinaten in kartesische Koordinaten}
\label{4}
Die Zylinderkoordinaten werden durch folgende Gleichungen definiert:

{$\begin{matrix}x&=&\rho \cos(\phi) \\ y&=&\rho \sin(\phi) \\ z&=&z \end{matrix}$}
\subsection{Umrechnung von kartesischen Koordinaten in Zylinderkoordinaten}
\label{5}
Aus den Definitionsgleichungen erhält man:

{$\begin{matrix} \rho=\sqrt{x^2+y^2}&=&\left(x^2+y^2\right)^\frac{1}{2} \\ \phi&=&\mathrm{arctan}(\frac{y}{x}) \end{matrix}$}
\subsection{Ableitungen der Zylinderkoordinaten nach den kartesischen Koordinaten}
\label{6}
Leitet man die obigen Gleichungen ab, so erhält man:

{$\frac{\partial \rho}{\partial x}=\frac{1}{2}(x^2+y^2)^{-\frac{1}{2}}\cdot 2x =\frac{x}{\rho}= \cos(\phi)$}

{$\frac{\partial \rho}{\partial y}=\frac{1}{2}(x^2+y^2)^{-\frac{1}{2}}\cdot 2y =\frac{y}{\rho}=\sin(\phi)$}

{$\frac{\partial \phi}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^2} \cdot -\frac{y}{x^2}=-\frac{y}{\rho^2} =- \frac{\sin(\phi)}{\rho}$}

{$\frac{\partial \phi}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^2} \cdot \frac{1}{x}=\frac{x}{\rho^2} = \frac{\cos(\phi)}{\rho}$}
\subsection{Ableitung einer Funktion in Zylinderkoordinaten nach kartesichen Koordinaten}
\label{7}
Will man eine Funktion in Zylinderkoordinaten nach kartesischen Koordinaten ableiten so muss man die (mehrdimensionale) Kettenregel berücksichtigen und erhällt:

{$\frac{\partial}{\partial x} f(\rho,\phi,z)=\frac{\partial \rho}{\partial x}\frac{\partial}{\partial \rho} f(r,\phi,z)+\frac{\partial \phi}{\partial x}\frac{\partial}{\partial \phi} f(r,\phi,z)= \left(\cos(\phi)\frac{\partial}{\partial \rho}-\frac{\sin(\phi)}{\rho}\frac{\partial}{\partial \phi} \right) f(r,\phi,z)$}

{$\frac{\partial}{\partial y} f(\rho,\phi,z)=\frac{\partial \rho}{\partial y}\frac{\partial}{\partial \rho} f(r,\phi,z)+\frac{\partial \phi}{\partial y}\frac{\partial}{\partial \phi} f(r,\phi,z)= \left(\sin(\phi)\frac{\partial}{\partial \rho}+\frac{\cos(\phi)}{\rho}\frac{\partial}{\partial \phi} \right) f(r,\phi,z)$}
\subsection{Ableitungen der kartesischen Koordinaten nach den Zylinderkoordinaten}
\label{8}

{$\frac{\partial \mathbf{x}}{\partial \rho}=\begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ 0\end{pmatrix} \frac{\partial \mathbf{x}}{\partial \phi}=\rho \begin{pmatrix} -\sin(\phi) \\ \cos(\phi) \\ 0\end{pmatrix} \frac{\partial \mathbf{x}}{\partial z}=\rho \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$}

{$\boldsymbol{\hat{\rho}}= \frac{\frac{\partial \mathbf{x}}{\partial \rho}}{\left|\frac{\partial \mathbf{x}}{\partial \rho}\right|}=\begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ 0 \end{pmatrix}$}

{$\boldsymbol{\hat{\phi}}= \frac{\frac{\partial \mathbf{x}}{\partial \phi}}{\left|\frac{\partial \mathbf{x}}{\partial \phi}\right|}=\begin{pmatrix} -\sin(\phi) \\ \cos(\phi) \\ 0 \end{pmatrix}$}

{$\boldsymbol{\hat{z}}= \frac{\frac{\partial \mathbf{x}}{\partial z}}{\left|\frac{\partial \mathbf{x}}{\partial z}\right|}=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$}

{$\nabla f(r,\phi,z)=\left(\boldsymbol{\hat{\rho}} \frac{\partial}{\partial \rho}+\boldsymbol{\hat{\phi}}\frac{1}{\rho}\frac{\partial}{\partial \phi} + \boldsymbol{\hat{z}}\frac{\partial}{\partial z} \right) f(r,\phi,z)$}

{$\mathbf{A}:=\begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}=\begin{pmatrix} A_\rho \cos(\phi) -A_\phi \sin(\phi) \\ A_\rho \sin(\phi) + A_\phi \cos(\phi) \\ A_z \end{pmatrix}$}

{$\frac{\partial }{\partial x} A_x= \left(\frac{x}{\rho}\frac{\partial}{\partial \rho}-\frac{y}{\rho^2}\frac{\partial}{\partial \phi} \right) \left(A_\rho \cos(\phi) -A_\phi \sin(\phi) \right)= \frac{x}{\rho}\frac{\partial}{\partial \rho}A_\rho \cos(\phi)+ \frac{y}{\rho^2}\frac{\partial}{\partial \phi} A_\phi \sin(\phi) - \frac{x}{\rho}\frac{\partial}{\partial \rho} A_\phi \sin(\phi) -\frac{y}{\rho^2}\frac{\partial}{\partial \phi}A_\rho \cos(\phi) $}

{$\frac{\partial }{\partial x} A_x= \frac{x}{\rho} \cos(\phi) \frac{\partial A_\rho}{\partial \rho} + \frac{y}{\rho^2} \sin(\phi) \frac{\partial A_\phi}{\partial \phi} + \frac{y}{\rho^2} A_\phi \cos(\phi) - \frac{x}{\rho} \sin(\phi) \frac{\partial A_\phi} {\partial \rho} - \frac{y}{\rho^2}\cos(\phi) \frac{\partial A_\rho}{\partial \phi} + \frac{y}{\rho^2} A_\rho \sin(\phi) $}

{$\frac{\partial }{\partial x} A_x= \cos(\phi)^2 \frac{\partial A_\rho}{\partial \rho} + \frac{1}{\rho} \sin(\phi)^2 \frac{\partial A_\phi}{\partial \phi} + \frac{1}{\rho} A_\phi \cos(\phi)\sin(\phi) - \cos(\phi) \sin(\phi) \frac{\partial A_\phi} {\partial \rho} - \frac{1}{\rho} \sin(\phi) \cos(\phi) \frac{\partial A_\rho}{\partial \phi} + \frac{1}{\rho} A_\rho \sin(\phi)^2 $}

{$\frac{\partial }{\partial y} A_y= \left(\frac{y}{\rho}\frac{\partial}{\partial \rho}+\frac{x}{\rho^2}\frac{\partial}{\partial \phi} \right) \left(A_\rho \sin(\phi) +A_\phi \cos(\phi) \right)= \frac{y}{\rho}\frac{\partial}{\partial \rho}A_\rho \sin(\phi)+ \frac{x}{\rho^2}\frac{\partial}{\partial \phi} A_\phi \cos(\phi) + \frac{y}{\rho}\frac{\partial}{\partial \rho} A_\phi \cos(\phi) +\frac{x}{\rho^2}\frac{\partial}{\partial \phi}A_\rho \sin(\phi) $}

{$\frac{\partial }{\partial y} A_y= \frac{y}{\rho} \sin(\phi) \frac{\partial A_\rho}{\partial \rho} - \frac{x}{\rho^2} A_\phi \sin(\phi) + \frac{x}{\rho^2}\cos(\phi) \frac{\partial A_\phi}{\partial \phi} + \frac{y}{\rho}\cos(\phi) \frac{\partial A_\phi }{\partial \rho} + \frac{x}{\rho^2} \sin(\phi) \frac{\partial A_\rho }{\partial \phi}+ \frac{x}{\rho^2} A_\rho \cos(\phi) $}

{$\frac{\partial }{\partial y} A_y= \sin(\phi)^2 \frac{\partial A_\rho}{\partial \rho} - \frac{1}{\rho} A_\phi \cos(\phi)\sin(\phi) + \frac{1}{\rho}\cos(\phi)^2 \frac{\partial A_\phi}{\partial \phi} + \cos(\phi) \sin(\phi) \frac{\partial A_\phi }{\partial \rho} + \frac{1}{\rho} \cos(\phi) \sin(\phi) \frac{\partial A_\rho }{\partial \phi}+ \frac{1}{\rho} A_\rho \cos(\phi)^2 $}

{$ \frac{\partial }{\partial x} A_x +\frac{\partial }{\partial y} A_y = \frac{\partial A_\rho}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_\phi}{\partial \phi} + \frac{1}{\rho} A_\rho = \frac{1} {\rho} \frac{\partial}{\partial \rho} \rho A_\rho + \frac{1}{\rho} \frac{\partial A_\phi}{\partial \phi} $}

{$ \nabla \cdot \mathbf{A} = \frac{1} {\rho} \frac{\partial}{\partial \rho} \rho A_\rho + \frac{1}{\rho} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{ \partial z}$}
\section{Sphärische Koordinaten}
\label{9}
{$\begin{matrix}x&=&r \sin(\Theta) \cos(\phi) \\ y&=&r \sin(\Theta) \sin(\phi) \\ z&=&r \cos(\Theta) \end{matrix}$}

{$\begin{matrix} r&=&\sqrt{x^2+y^2+z^2}=\left(x^2+y^2+z^2\right)^\frac{1}{2} \\ \phi&=&\mathrm{arctan}(\frac{y}{x}) \\ \Theta&=&\mathrm{arctan}(\frac{\sqrt{x^2+y^2}}{z}) \end{matrix}$}

{$\frac{\partial r}{\partial x}=\frac{1}{2}(x^2+y^2+z^2)^{-\frac{1}{2}}\cdot 2x =\frac{x}{r}=\sin(\Theta) \cos(\phi)$}

{$\frac{\partial r}{\partial y}=\frac{y}{r}=\sin(\Theta) \sin(\phi)$}

{$\frac{\partial r}{\partial z}=\frac{z}{r}=\cos(\Theta) $}

{$\rho:=\sqrt{x^2+y^2}= r \sin(\Theta)$}

{$\frac{\partial \phi}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^2} \cdot -\frac{y}{x^2}=-\frac{y}{\rho^2}=-\frac{\sin(\phi)}{\rho} =-\frac{\sin(\phi)}{r \sin(\Theta)}$}

{$\frac{\partial \phi}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^2} \cdot \frac{1}{x}=\frac{x}{\rho^2}=\frac{\cos(\phi)}{\rho}= \frac{\cos(\phi)}{r \sin(\Theta)} $}

{$\frac{\partial \phi}{\partial z}=0$}

{$\frac{\partial \Theta}{\partial x}=\frac{1}{1+\frac{x^2+y^2}{z^2}}\cdot \frac{2x}{2 z\sqrt{x^2+y^2}}=\frac{z}{r^2}\cdot \cos(\phi)= \frac{1}{r}\cdot \cos(\Theta) \cos(\phi)$}

{$\frac{\partial \Theta}{\partial y}=\frac{1}{1+\frac{x^2+y^2}{z^2}}\cdot \frac{2y}{2 z\sqrt{x^2+y^2}}=\frac{z}{r^2}\cdot \sin(\phi)= \frac{1}{r}\cdot \cos(\Theta) \sin(\phi)$}

{$\frac{\partial \Theta}{\partial z}=\frac{1}{1+\frac{x^2+y^2}{z^2}}\cdot \frac{-\sqrt{x^2+y^2}}{z^2}=-\frac{\rho}{r^2}=-\frac{\sin(\Theta)}{r}$}

{$\frac{\partial \mathbf{x}}{\partial r}=\begin{pmatrix} \sin(\Theta) \cos(\phi) \\ \sin(\Theta) \sin(\phi) \\ \cos(\Theta) \end{pmatrix}$}

{$\frac{\partial \mathbf{x}}{\partial \phi}=\begin{pmatrix} - r \sin(\Theta) \sin(\phi) \\ r \sin(\Theta) \cos(\phi) \\ 0 \end{pmatrix}$}

{$\frac{\partial \mathbf{x}}{\partial \Theta}= \begin{pmatrix} r \cos(\Theta) \cos(\phi) \\ r \cos(\Theta) \sin(\phi) \\ -r \sin(\Theta) \end{pmatrix} $}

{$ \boldsymbol{\hat{r}}=\frac{\frac{\partial \mathbf{x}}{\partial r}}{|\frac{\partial \mathbf{x}}{\partial r}|}=\begin{pmatrix} \sin(\Theta) \cos(\phi) \\ \sin(\Theta) \sin(\phi) \\ \cos(\Theta) \end{pmatrix}$}

{$ \boldsymbol{\hat{\phi}}=\frac{\frac{\partial \mathbf{x}}{\partial \phi}}{|\frac{\partial \mathbf{x}}{\partial \phi}|}=\begin{pmatrix} - \sin(\phi) \\ \cos(\phi) \\ 0 \end{pmatrix} $}

{$ \boldsymbol{\hat{\Theta}}=\frac{\frac{\partial \mathbf{x}}{\partial \Theta}}{|\frac{\partial \mathbf{x}}{\partial \Theta}|}= \begin{pmatrix} \cos(\Theta) \cos(\phi) \\ \cos(\Theta) \sin(\phi) \\ - \sin(\Theta) \end{pmatrix}$}

{$\frac{\partial }{\partial x} f(r,\Theta,\phi) = \left(\frac{\partial r}{\partial x}\frac{\partial }{\partial r}+ \frac{\partial \phi}{\partial x}\frac{\partial }{\partial \phi}+ \frac{\partial \Theta}{\partial x}\frac{\partial }{\partial \Theta} \right) f(r,\Theta,\phi)= \left(\sin(\Theta) \cos(\phi)\frac{\partial }{\partial r}- \frac{\sin(\phi)}{r \sin(\Theta)}\frac{\partial }{\partial \phi}+ \frac{1}{r}\cdot \cos(\Theta) \cos(\phi)\frac{\partial }{\partial \Theta} \right) f(r,\Theta,\phi) $}

{$\frac{\partial }{\partial y} f(r,\Theta,\phi) = \left(\frac{\partial r}{\partial y}\frac{\partial }{\partial r}+ \frac{\partial \phi}{\partial y}\frac{\partial }{\partial \phi}+ \frac{\partial \Theta}{\partial y}\frac{\partial }{\partial \Theta} \right) f(r,\Theta,\phi)= \left(\sin(\Theta) \sin(\phi)\frac{\partial }{\partial r}+ \frac{\cos(\phi)}{r \sin(\Theta)}\frac{\partial }{\partial \phi}+ \frac{1}{r}\cdot \cos(\Theta) \sin(\phi)\frac{\partial }{\partial \Theta} \right) f(r,\Theta,\phi) $}

{$\frac{\partial }{\partial z} f(r,\Theta,\phi) = \left(\frac{\partial r}{\partial z}\frac{\partial }{\partial r}+ \frac{\partial \phi}{\partial z}\frac{\partial }{\partial \phi}+ \frac{\partial \Theta}{\partial z}\frac{\partial }{\partial \Theta} \right) f(r,\Theta,\phi)= \left(\cos(\Theta)\frac{\partial }{\partial r}- \frac{1}{r}\cdot \sin(\Theta) \frac{\partial }{\partial \Theta} \right) f(r,\Theta,\phi) $}

{$\nabla f(r,\Theta,\phi) = \boldsymbol{\hat{r}} \frac{\partial }{\partial r} + \frac{1}{r \sin(\Theta)}\boldsymbol{\hat{\phi}} \frac{\partial }{\partial \phi}+ \frac{1}{r} \boldsymbol{\hat{\Theta}} \frac{\partial }{\partial \Theta} $}

{$\mathbf{A}(r,\Theta,\phi)=\begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}=A_r\boldsymbol{\hat{r}} +A_\Theta\boldsymbol{\hat{\Theta}}+A_\phi\boldsymbol{\hat{\phi}} =\begin{pmatrix} A_r\sin(\Theta) \cos(\phi)+A_\Theta \cos(\Theta) \cos(\phi)-A_\phi \sin(\phi) \\ A_r\sin(\Theta) \sin(\phi)+A_\Theta\cos(\Theta) \sin(\phi) + A_\phi \cos(\phi)\\ A_r\cos(\Theta) - A_\Theta\sin(\Theta) \end{pmatrix}$}

{$\begin{matrix} \frac{\partial A_x}{\partial x} &=& \left(\sin(\Theta) \cos(\phi)\frac{\partial }{\partial r}- \frac{\sin(\phi)}{r \sin(\Theta)}\frac{\partial }{\partial \phi}+ \frac{1}{r}\cdot \cos(\Theta) \cos(\phi)\frac{\partial }{\partial \Theta} \right)\left(A_r\sin(\Theta) \cos(\phi)+A_\Theta \cos(\Theta) \cos(\phi)-A_\phi \sin(\phi) \right) \\ &=& \sin^2(\Theta) \cos^2(\phi)\frac{\partial A_r}{\partial r}+ \sin(\Theta) \cos(\Theta)\cos^2(\phi)\frac{\partial A_\Theta}{\partial r}- \sin(\Theta) \cos(\phi)\sin(\phi)\frac{\partial A_\phi}{\partial r} \\ & & - \frac{\sin(\phi)\cos(\phi)}{r} \frac{\partial A_r}{\partial \phi}+A_r\frac{\sin^2(\phi)}{r}- \frac{\sin(\phi)\cos(\phi)\cos(\Theta)}{r \sin(\Theta)} \frac{\partial A_\Theta}{\partial \phi} + A_\Theta \frac{\sin^2(\phi)\cos(\Theta)}{r \sin(\Theta)} + \frac{\sin^2(\phi)}{r \sin(\Theta)} \frac{\partial A_\phi}{\partial \phi} + A_\phi \frac{\sin(\phi)\cos(\phi)}{r \sin(\Theta)} \\ & & + \frac{1}{r}\cos(\Theta)\sin(\Theta) \cos^2(\phi) \frac{\partial A_r}{\partial \Theta} + \frac{1}{r} A_r \cos^2(\Theta) \cos^2(\phi)\\ & & + \frac{1}{r}\cos^2(\Theta) \cos^2(\phi) \frac{\partial A_\Theta}{\partial \Theta} - \frac{1}{r} A_\Theta \cos(\Theta)\sin(\Theta) \cos^2(\phi) - \frac{1}{r} \cos(\Theta)\cos(\phi)\sin(\phi) \frac{\partial A_\phi}{\partial \Theta} \end{matrix}$}

{$\begin{matrix} \frac{\partial A_y}{\partial y} &=& \left(\sin(\Theta) \sin(\phi)\frac{\partial }{\partial r}+ \frac{\cos(\phi)}{r \sin(\Theta)}\frac{\partial }{\partial \phi}+ \frac{1}{r}\cdot \cos(\Theta) \sin(\phi)\frac{\partial }{\partial \Theta} \right)\left(A_r\sin(\Theta) \sin(\phi)+A_\Theta \cos(\Theta) \sin(\phi)+A_\phi \cos(\phi) \right) \\ &=& \sin^2(\Theta) \sin^2(\phi)\frac{\partial A_r}{\partial r}+ \sin(\Theta) \cos(\Theta)\sin^2(\phi)\frac{\partial A_\Theta}{\partial r}+ \sin(\Theta) \cos(\phi)\sin(\phi)\frac{\partial A_\phi}{\partial r} \\ & & + \frac{\sin(\phi)\cos(\phi)}{r} \frac{\partial A_r}{\partial \phi} + A_r\frac{\cos^2(\phi)}{r}+ \frac{\sin(\phi)\cos(\phi)\cos(\Theta)}{r \sin(\Theta)} \frac{\partial A_\Theta}{\partial \phi} + A_\Theta \frac{\cos^2(\phi)\cos(\Theta)}{r \sin(\Theta)} + \frac{\cos^2(\phi)}{r \sin(\Theta)} \frac{\partial A_\phi}{\partial \phi} - A_\phi \frac{\sin(\phi)\cos(\phi)}{r \sin(\Theta)} \\ & & + \frac{1}{r}\cos(\Theta)\sin(\Theta) \sin^2(\phi) \frac{\partial A_r}{\partial \Theta} + \frac{1}{r} A_r \cos^2(\Theta) \sin^2(\phi)\\ & & + \frac{1}{r}\cos^2(\Theta) \sin^2(\phi) \frac{\partial A_\Theta}{\partial \Theta} - \frac{1}{r} A_\Theta \cos(\Theta)\sin(\Theta) \sin^2(\phi) + \frac{1}{r} \cos(\Theta)\sin(\phi)\cos(\phi) \frac{\partial A_\phi}{\partial \Theta} \end{matrix}$}

{$\begin{matrix}\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}&=& \sin^2(\Theta)\frac{\partial A_r}{\partial r}+ \sin(\Theta) \cos(\Theta) \frac{ \partial A_\Theta}{\partial r}+ \frac{A_r}{r}+ \frac{A_\Theta \cos(\Theta)}{r \sin (\Theta)} + \frac{1}{r \sin(\Theta)}\frac{\partial A_\phi}{\partial \phi}\\ & & + \frac{1}{r} \sin(\Theta) \cos(\Theta)\frac{\partial A_r}{\partial \Theta}+ \frac{1}{r} \cos^2(\Theta) A_r+\frac{1}{r} \cos^2(\Theta) \frac{\partial A_\Theta}{\partial \Theta}- \frac{1}{r}\sin(\Theta) \cos(\Theta) A_\Theta \end{matrix} $}

{$ \begin{matrix} \frac{\partial A_z}{\partial z}&=& \left(\cos(\Theta)\frac{\partial }{\partial r}- \frac{1}{r}\cdot \sin(\Theta) \frac{\partial }{\partial \Theta} \right) \left(A_r\cos(\Theta) - A_\Theta\sin(\Theta) \right) \\ &=& \cos^2{\Theta}\frac{\partial A_r}{\partial r}- \sin(\Theta) \cos(\Theta)\frac{\partial A_\Theta}{\partial r} -\frac{1}{r} \sin(\Theta) \cos(\Theta) \frac{\partial A_r}{\partial \Theta } + \frac{1}{r} A_r \sin^2(\Theta)+\frac{1}{r} A_\Theta \sin(\Theta) \cos(\Theta)+ \frac{1}{r} \sin^2(\Theta) \frac{\partial A_\Theta}{\partial \Theta} \end{matrix}$}

{$\nabla \cdot \mathbf{A}=\frac{\partial A_r}{\partial r} + \frac{A_r}{r} + \frac{A_\Theta \cos(\Theta)}{r \sin (\Theta)} +\frac{1}{r \sin(\Theta)}\frac{\partial A_\phi}{\partial \phi}+\frac{A_r}{r} + \frac{1}{r}\frac{\partial A_\Theta}{\partial \Theta}= \frac{1}{r^2}\frac{\partial r^2 A_r}{\partial r}+ \frac{1}{r \sin(\Theta)}\frac{\partial}{\partial \Theta} A_\Theta \sin(\Theta) +\frac{1}{r \sin(\Theta)}\frac{\partial A_\phi}{\partial \phi} $}

{$\Delta f(r,\Theta,\phi) = \nabla \cdot (\nabla f(r,\Theta,\phi))=\nabla \cdot \left(\boldsymbol{\hat{r}} \frac{\partial }{\partial r} + \frac{1}{r \sin(\Theta)}\boldsymbol{\hat{\phi}} \frac{\partial }{\partial \phi}+ \frac{1}{r} \boldsymbol{\hat{\Theta}} \frac{\partial }{\partial \Theta} \right) f(r,\Theta,\phi)$}

{$\Delta f(r,\Theta,\phi) = \left(\frac{1}{r^2}\frac{\partial }{\partial r} r^2 \frac{\partial }{\partial r} + \frac{1}{r^2 \sin(\Theta)}\frac{\partial}{\partial \Theta} \sin(\Theta) \frac{\partial}{\partial \Theta} +\frac{1}{r^2 \sin(\Theta)^2}\frac{\partial^2}{\partial \phi^2} \right) f(r,\Theta,\phi)$}

\LaTeXNullTemplate{}

\section{Autoren}
\label{Contributors}
\begin{longtable}{rp{0.6\linewidth}}
\textbf{Edits}&\textbf{User}\\
10& \myhref{http://de.wikibooks.org/w/index.php?title=Benutzer:Dirk_Huenniger}{Dirk Huenniger}\\
1& \myhref{http://de.wikibooks.org/w/index.php?title=Benutzer:Heuler06}{Heuler06}\\
\end{longtable}
\end{CJK}
\end{document}

headers/options.tex~

% Festlegungen für minitoc
% \renewcommand{\myminitoc}{\minitoc}
% \renewcommand{\mtctitle}{Überblick}
% \setcounter{minitocdepth}{1}
% \dominitoc % diese Zeile aktiviert das Erstellen der minitocs, sie muss vor \tableofcontents kommen

% Seitenformat
% ------------
%\KOMAoption{paper}{A5} % zulässig: letter, legal, executive; A-, B-, C-, D-Reihen
\KOMAoption{open}{right}			% zulässig: right (jedes Kapitel beginnt rechts), left, any
\KOMAoption{numbers}{auto}
% Satzspiegel jetzt neu berechnen, damit er bei Kopf- und Fußzeilen beachtet wird
\KOMAoptions{DIV=13}

% Kopf- und Fusszeilen
% --------------------
% Breite und Trennlinie
%\setheadwidth[-6mm]{textwithmarginpar}
%\setheadsepline[textwithmarginpar]{0.4pt}
\setheadwidth{text}
\setheadsepline[text]{0.4pt}

% Variante 1: Kopf: links Kapitel, rechts Abschnitt (ohne Nummer); Fuß: außen die Seitenzahl
\ohead{\headmark}
\renewcommand{\chaptermark}[1]{\markleft{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{#1}{}}
\ofoot[\pagemark]{\pagemark}

% Variante 2: Kopf außen die Seitenzahl, Fuß nichts
%\ohead{\pagemark}
%\ofoot{}

% Standardschriften
% -----------------
%\KOMAoption{fontsize}{18pt}
\addtokomafont{disposition}{\rmfamily}
\addtokomafont{title}{\rmfamily}
\setkomafont{pageheadfoot}{\normalfont\rmfamily\mdseries}

% vertikaler Ausgleich
% --------------------
% nein -> \raggedbottom
% ja -> \flushbottom aber ungeeignet bei Fußnoten
%\raggedbottom
\flushbottom

% Tiefe des Inhaltsverzeichnisses bestimmen
% ---
% -1 nur \part{}
% 0 bis \chapter{}
% 1 bis \section{}
% 2 bis \subsection{} usw.
\newcommand{\mytocdepth}{1}

% mypart - Teile des Buches und Inhaltsverzeichnis
% --
% Standard: nur im Inhaltsverzeichnis, zusätzlicher Eintrag ohne Seitenzahl
% Variante: nur im Inhaltsverzeichnis, zusätzlicher Eintrag mit Seitenzahl
%\renewcommand{\mypart}[1]{\addcontentsline{toc}{part}{#1}}
% Variante: mit eigener Seite vor dem ersten Kapitel, mit Eintrag und Seitenzahl im Inhaltsverzeichnis
\renewcommand{\mypart}[1]{\part{#1}}

% maketitle
% ---
% Bestandteile des Innentitels
%\title{Einführung in SQL}
%\author{Jürgen Thomas}
%\subtitle{Datenbanken bearbeiten}
\date{}
% Bestandteile von Impressum und CR
% Bestandteile von Impressum und CR

\uppertitleback{
%Detaillierte Daten zu dieser Publikation sind bei Wikibooks zu erhalten:\newline{} \url{http://de.wikibooks.org/}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet zu erhalten: \newline{}\url{https://portal.d-nb.de/opac.htm?method=showSearchForm#top}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet unter der Katalog-Nr. 1008575860 zu erhalten: \newline{}\url{http://d-nb.info/1008575860}

%Namen von Programmen und Produkten sowie sonstige Angaben sind häufig geschützt. Da es auch freie Bezeichnungen gibt, wird das Symbol \textregistered{} nicht verwendet.

%Erstellt am
\today{}
}

\lowertitleback{
{\footnotesize
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page \pageref{ListOfFigures}. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page \pageref{Contributors}. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page \pageref{Licenses}, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page \pageref{ListOfFigures}. This PDF was generated by the \LaTeX{} typesetting software. The \LaTeX{} source code is included as an attachment ({\tt source.7z.txt}) in this PDF file. To extract the source from the PDF file, we recommend the use of \url{http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/} utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting {\tt Save Attachment}. After extracting it from the PDF file you have to rename it to {\tt source.7z}. To uncompress the resulting archive we recommend the use of \url{http://www.7-zip.org/}. The \LaTeX{} source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from \url{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}. This distribution also contains a configured version of the {\tt pdflatex
} compiler with all necessary packages and fonts needed to compile the \LaTeX{} source included in this PDF file. Click on the Icon below to save the attached latex source. \attachfile{source.7z.txt}

}}

\renewcommand{\mysubtitle}[1]{}
\renewcommand{\mymaintitle}[1]{}
\renewcommand{\myauthor}[1]{}

\newenvironment{myshaded}{%
 \def\FrameCommand{ \hskip-2pt \fboxsep=\FrameSep \colorbox{shadecolor}}%
 \MakeFramed {\advance\hsize-\width \FrameRestore}}%
 {\endMakeFramed}

headers/packages1.tex~

% Standard für Formatierung
%\usepackage[utf8]{inputenc} % use \usepackage[utf8]{inputenc} for tex4ht
\usepackage[usenames]{color}
\usepackage{textcomp}
\usepackage{alltt}
\usepackage{syntax}
\usepackage{parskip}
\usepackage[normalem]{ulem}
\usepackage[pdftex,unicode=true]{hyperref}
\usepackage{tocstyle}
\usepackage[defblank]{paralist}
\usepackage{trace}
%\usepackage{bigstrut}
% Minitoc
%\usepackage{minitoc}

% Keystroke
\usepackage{keystroke}
\usepackage{supertabular}

\usepackage{wrapfig}
%\newcommand{\bigs}{\bigstrut{}}

headers/packages2.tex~

% für Zeichensätze

%replacemnt for pslatex
\usepackage{mathptmx}
\usepackage[scaled=.92]{helvet}
\usepackage{courier}

\usepackage[T1]{fontenc} % disable this line for tex4ht

% für Tabellen
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array,ragged2e}
\usepackage{longtable}

% für Kopf- und Fußzeilen, Fußnoten
\usepackage{scrpage2}
\usepackage{footnote}

% für Rahmen
\usepackage{verbatim}
\usepackage{framed}
\usepackage{mdframed}
\usepackage{listings}
\usepackage{lineno}

% für Symbole
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}

\usepackage{pifont}
\usepackage{marvosym}
\let\Cross\undefined
\usepackage{fourier-orns} % disable this line for tex4ht % für weitere Logos, z.B. \danger

% für Grafik-Einbindung
\usepackage[pdftex]{graphicx}
\usepackage{wasysym}
\let\Square\undefined

% unklare Verwendung
\usepackage{bbm}
\usepackage{skull}

%arabtex
\usepackage[T1]{tipa} % disable this line for tex4ht

\usepackage{fancyvrb}
\usepackage{bbding}
\usepackage{textcomp}
\usepackage[table]{xcolor}
\usepackage{microtype}
\usepackage{lscape}
\usepackage{amsthm}

headers/templates.tex~

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newcommand{\CPPAuthorsTemplate}[4]{
\LaTeXZeroBoxTemplate{
The following people are authors to this book:

#3

You can verify who has contributed to this book by examining the history logs at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like #1, as from the authors #2.

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. In short: you are free to share and to make derivatives of this work under the conditions that you appropriately attribute it, and that you only distribute it under the same, similar or a compatible license. Any of the above conditions can be waived if you get permission from the copyright holder.
Unless otherwise noted, #4 used in this book have their own copyright, may use different licenses than the one used here, and were not created by the above authors. The authors, contributors, and licenses used should be acknowledged separately.}
}

\newcommand{\tlTemplate}[1]{{\{\{{\ttfamily #1}\}\}}}

\newcommand{\matrixdimTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
{\bfseries Matrix Dimensions: }\\
A: $p \times p$ \\
B: $p \times q$\\
C: $r \times p$\\
D: $r \times q$\\
\end{myshaded}
}

\newcommand{\matlabTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This operation can be performed using this MATLAB command:
{\ttfamily #1}
\end{myshaded}}

\newcommand{\PrintUnitPage}[3]{\pagebreak
\begin{flushleft}
{\bfseries \Large #1}
\end{flushleft}

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}>{\RaggedRight}p{0.5\linewidth}}
& #2
\end{longtable}}

\newcommand{\LaTeXCodeTipTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
#1 \\
#2 \\
#3
\end{myshaded}
}

\newcommand{\DisassemblySyntax}[1]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This code example uses #1 Syntax
\end{myshaded}}

\newcommand{\LaTeXDeutschTemplate}[1]{ {\bfseries deutsch:} #1 }

\newcommand{\LaTeXNullTemplate}[1]{}
\newcommand{\LatexSymbol}[1]{\LaTeX}

\newcommand{\LaTeXDoubleBoxTemplate}[2]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}
\end{minipage}

}

\newcommand{\LaTeXSimpleBoxTemplate}[2]{
{\bfseries #1} \\
#2
}

\newcommand{\SolutionBoxTemplate}[2]{
#2
}

\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}

\newcommand{\LaTeXLatinExcerciseTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Excercise: #1} \\
#2 \\
{\bfseries Solution}
#3
\end{myshaded}

}

\newcommand{\LaTeXShadedColorBoxTemplate}[2]{
{\linewidth}#1\begin{myshaded}
#2
\end{myshaded}
}

\newcommand{\PGP}[1]{PGP:#1}

\newcommand{\DETAILS}[1]{For more details on this topic, see #1}

\newcommand{\ADAFile}[1]{\LaTeXZeroBoxTemplate{File: #1}}
\newcommand{\ADASample}[1]{\LaTeXZeroBoxTemplate{This code sample is also available in #1}}

\newcommand{\LaTeXZeroBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\LaTeXZeroBoxOpenTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
}

\newcommand{\PDFLink}[1]{
\textbf{PDF} #1
}

\newcommand{\Lysippos}[1]{Lysippos}

\newcommand{\SonnensystemFakten}[3]{
#1 \\
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #2} \\
#3 \\
\end{myshaded}
}

\newcommand{\VorlageReferenzenEintrag}[3]{
\begin{longtable}{p{0.2\linewidth}p{0.8\linewidth}}

{[\bfseries #1]} & {\itshape #2} #3 \\
\end{longtable}

}

\newcommand{\MBOX}[2]{\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
\begin{longtable}{p{0.2\linewidth}p{0.7\linewidth}}
#1 & #2 \\
\end{longtable}
\end{myshaded}}

\newcommand{\LaTeXIdentityTemplate}[1]{#1
}

\newcommand{\AdaRM}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaEightThreeRM}[2]{\myfnhref{http://archive.adaic.com/standards/83lrm/html/lrm-#1.html}{Annex #1: #2}}

\newcommand{\AdaRMThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaRMAThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{Annex #1.#2.#3 #4}}

\newcommand{\AdaRMATwo}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2.html}{Annex #1.#2 #3}}

\newcommand{\AdaNiveFiveRMThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaSGThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaSGTwo}[3]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaSGOne}[2]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/}{Chapter #1: #2}}

\newcommand{\AdaSGOne}[2]{\myfnhref{_#1/}{Chapter #1: #2}}

\newcommand{\AdaRMNineFive}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaRMCiteFive}[7]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{ISO/IEC 8652:2007. #1.#2.#3 #4 (#5). Ada 2005 Reference Manual. #7 }}

\newcommand{\AdaTwentyZeroFive}[1]{{\itshape This language feature is only available in Ada 2005}}

\newcommand{\ADANFAI}[2]{\myfnhref{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00#1.TXT}{AI95-00#1-01 #2}}

\newcommand{\ADARMAONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1.html}{Annex #1 #2}}

\newcommand{\ADARMONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1.html}{Section #1: #2}}
\newcommand{\ADANiveFiveRMONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1.html}{Section #1: #2}}

\newcommand{\AdaNiveFiveRMAThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2-#3.html}{Annex #1.#2-#3 #4}}

\newcommand{\AdaNiveFiveRMATwo}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2.html}{Annex #1.#2 #3}}

\newcommand{\AdaNiveFiveR}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95rat/rat95html/rat95-p#3-#1.html}{#1 #2}}

\newcommand{\AdaNiveFiveRTwo}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95rat/rat95html/rat95-p#4-#1.html}{#1.#2 #3}}

\newcommand{\AdaPragma}[1]{\LaTeXTTBF{pragma} }

\newcommand{\TychoBrahe}[1]{Tycho Brahe}

\newcommand{\LaTeXPlainBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\Hinweis}[1]{
\begin{TemplateInfo}{{\Huge \textcircled{\LARGE !}}}{Hinweis}
#1
\end{TemplateInfo}}

\newcommand{\LaTexInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}}

\newcommand{\EqnTemplate}[1]{
\begin{flushright}
\textbf{[#1]}
\end{flushright}}

\newcommand{\RefTemplate}[1]{[#1]}

\newcommand{\LaTeXGCCTakeTemplate}[1]{
\LaTeXDoubleBoxTemplate{Take home:}{#1}
}

\newcommand{\LaTeXEditorNote}[1]{\LaTeXDoubleBoxTemplate{Editor's note}{#1}}

\newcommand{\BNPForVersion}[1]{
\LaTeXInfoTemplateOne{Applicable Blender version: #1}
}

\newcommand{\LaTeXInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}
}

\newcommand{\LaTexHelpFulHintTemplate}[1]{
\LaTeXDoubleBoxTemplate{Helpful Hint:}{#1}
}

\newcommand{\MyLaTeXTemplate}[3]{
\LaTeXDoubleBoxTemplate{MyLaTeXTemplate1:}{#1 \\ #2 \\ #3}
}

\newcommand{\TemplatePreformat}[1]{
\par
\begin{scriptsize}
%\setlength{\baselineskip}{0.9\baselineskip}
\ttfamily
#1
\par
\end{scriptsize}
}

\newcommand{\TemplateSpaceIndent}[1]{
\begin{scriptsize}
\begin{framed}
\ttfamily
#1
\end{framed}
\end{scriptsize}
}

\newcommand{\GenericColorBox}[2]
{
\newline
\begin{tabular}[t]{p{0.6cm}p{4cm}}
#1\\
\end{tabular}
}

\newcommand{\legendNamedColorBox}[2]
{
 \GenericColorBox{
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{#1}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

\newcommand{\legendColorBox}[2]
{
 \GenericColorBox{
 \definecolor{tempColor}{rgb}{#1}
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{tempColor}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

%\newcommand{\ubung} {{\LARGE \triangleright}}
\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}\,}

\newcommand{\TemplateSource}[1]
{
%\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{true}
\begin{scriptsize}
\begin{myshaded}\ttfamily
#1
\end{myshaded}
\end{scriptsize}
%\end{TemplateCodeInside}
}

\newenvironment{TemplateInfo}[2]
% no more parameters
%**
% Template Info
% Kasten mit Logo, Titelzeile, Text
% kann für folgende Wiki-Vorlagen benutzt werden:
% Vorlage:merke, Vorlage:Achtung u.ä.
%
% #1 Logo (optional) default: \Info
% #2 Titel (optional) default: Information; könnte theoretisch auch leer sein,
% das ist aber wegen des Logos nicht sinnvoll
%**
{
% Definition des Kastens mit Standardwerten
% u.U. ist linewidth=1pt erorderlich
\begin{mdframed}[skipabove=\baselineskip, skipbelow=\baselineskip,
linewidth=1pt,
innertopmargin=0, innerbottommargin=0]
% linksbündig ist besser, weil es in der Regel wenige Zeilen sind, die teilweise kurz sind
\begin{flushleft}
% Überschrift größer darstellen
\begin{Large}
% #1 wird als Logo verwendet, Vorgabe ist \Info aus marvosym
% für andere Logos muss ggf. das Package eingebunden werden
% das Logo kann auch mit einer Größe verbunden werden, z.B. \LARGE\danger als #1
{#1 } \
% #2 wird als Titelzeile verwendet, Vorgabe ist 'Information'
{\bfseries #2}
\medskip \end{Large} \\
} % Ende der begin-Anweisungen, es folgenden die end-Anweisungen
{ \end{flushleft}\end{mdframed} }

\newcommand{\TemplateHeaderExercise}[3]
% no more parameters
%**
% Template Header Exercise
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
% ist gedacht für folgende Wiki-Vorlage:
% Vorlage:Übung4
% kann genauso für den Aufgaben-Teil folgender Vorlagen verwendet werden:
% Vorlage:Übung (wird zz. nur einmal benutzt)
% Vorlage:Übung2 (wird zz. gar nicht benutzt)
% Vorlage:Übung3 (wird zz. in 2 Büchern häufig benutzt)
% C++-Programmierung/ Vorlage:Aufgabe (wird zz. nur selten benutzt,
% ist in LatexRenderer.hs schon erledigt)
%
% #1 Text (optional) 'Aufgabe' oder 'Übung', kann auch leer sein
% #2 Nummer (Pflicht) könnte theoretisch auch leer sein, aber dann sieht die Zeile
% seltsam aus; oder die if-Abfragen wären unnötig komplex
% #3 Titel (optional) Inhaltsangabe der Aufgabe, kann auch leer sein
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateHeaderSolution}[3]
% no more parameters
%**
% Template Header Solution
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
%
% ist gedacht für den Lösungen-Teil der Vorlagen und wird genauso
% verwendet wie \TemplateHeaderExercise
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, Lösung zu #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateUbungDrei}[4]
{
\TemplateHeaderExercise{Übung}{#1}{#2}
#3
\TemplateHeaderSolution{Übung}{#1}{#2}
#4
}

\newcommand{\Mywrapfigure}[2]
{
\begin{wrapfigure}{r}{#1\textwidth}
\begin{center}
#2
\end{center}
\end{wrapfigure}
}

\newcommand{\Mymakebox}[2]
{
\begin{minipage}{#1\textwidth}
#2
\end{minipage}
}

\newcommand{\MyBlau}[1]{
\textcolor{darkblue}{#1}
}
\newcommand{\MyRot}[1]{
\textcolor{red}{#1}
}
\newcommand{\MyGrun}[1]{
\textcolor{mydarkgreen}{#1}
}
\newcommand{\MyBg}[2]{
\fcolorbox{#1}{#1}{#2}
}

\newcommand{\BNPModule}[1]{
the "#1" module
}

\newcommand{\LaTeXMerkeZweiTemplate}[1]{\LaTeXDoubleBoxTemplate{Merke}{#1}}

\newcommand{\LaTeXDefinitionTemplate}[1]{\LaTeXDoubleBoxTemplate{Definition}{#1}}

\newcommand{\LaTeXAnorganischeChemieFuerSchuelerVorlageMerksatzTemplate}[1]{\LaTeXDoubleBoxTemplate{Merksatz}{#1}}

\newcommand{\LaTeXTextTemplate}[1]{\LaTeXDoubleBoxTemplate{}{#1}}

\newcommand{\LaTeXExampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXexampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXPTPBoxTemplate}[1]{\LaTeXDoubleBoxTemplate{Points to ponder:}{#1}}

\newcommand{\LaTeXNOTETemplate}[2]{\LaTeXDoubleBoxTemplate{Note:}{#1 #2}}

\newcommand{\LaTeXNotizTemplate}[1]{\LaTeXDoubleBoxTemplate{Notiz:}{#1}}

\newcommand{\LaTeXbodynoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXcquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXCquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXSideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXsideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXExercisesTemplate}[1]{\LaTeXDoubleBoxTemplate{Exercises:}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageTippTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}

\newcommand{\LaTeXTipTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}
\newcommand{\LaTeXUnknownTemplate}[1]{unknown}

\newcommand{\LaTeXCppProgrammierungVorlageHinweisTemplate}[1]{\LaTeXDoubleBoxTemplate{Hinweis}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageSpaeterImBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Thema wird später näher erläutert...}{#1}}

\newcommand{\SGreen}[1]{This page uses material from Dr. Sheldon Green's Hypertext Help with LaTeX.}
\newcommand{\ARoberts}[1]{This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.}

\newcommand{\LaTeXCppProgrammierungVorlageAnderesBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Buchempfehlung}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageNichtNaeherBeschriebenTemplate}[1]{\LaTeXDoubleBoxTemplate{Nicht Thema dieses Buches...}{#1}}

\newcommand{\LaTeXPythonUnterLinuxVorlagenVorlageDetailsTemplate}[1]{\LaTeXDoubleBoxTemplate{Details}{#1}}

\newcommand{\LaTeXChapterTemplate}[1]{\chapter{#1}
\myminitoc
}

\newcommand{\Sample}[2]{
\begin{longtable}{|p{\linewidth}|}
\hline
#1 \\ \hline
#2 \\ \hline
\end{longtable}
}

\newcommand{\Syntax}[1]{
\LaTeXDoubleBoxTemplate{Syntax}{#1}}

\newcommand{\LaTeXTT}[1]{{\ttfamily #1}}
\newcommand{\LaTeXBF}[1]{{\bfseries #1}}
\newcommand{\ADAPK}[3]{{#1.#2}}
\newcommand{\LaTeXTTBF}[1]{{\bfseries \ttfamily #1}}
\newcommand{\LaTeXIT}[1]{{\itshape #1}}
\newcommand{\ADACOM}[1]{{\itshape -{}-#1}}

\newcommand{\LaTeXCenter}[1]{
\begin{center}
#1
\end{center}}

\newcommand{\BNPManual}[2]{The Blender Manual page on #1 at \url{http://wiki.blender.org/index.php/Doc:Manual/#1}}
\newcommand{\BNPWeb}[2]{#1 at \url{#2}}

\newcommand{\Noframecenter}[2]{
\begin{tablular}{p{\linewidth}}
#2\\
#1
\end{tabluar}
}

\newcommand{\LaTeXTTUlineTemplate}[1]{{\ttfamily \uline{#1}}
}

\newcommand{\PythonUnterLinuxDenulltails}[1]{
\begin{tabular}{|p{\linewidth}|}\hline
\textbf{Denulltails} \\ \hline
#1 \\ \hline
\end{tabular}}

\newcommand{\GNURTip}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
\textbf{Tip} \\ \hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlUebung}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlNotiz}[1]{
\begin{table}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{table}}

\newcommand{\ACFSZusatz}[1]{\textbf{ Zusatzinformation }}
\newcommand{\ACFSVorlageB}[1]{\textbf{ Beobachtung }}
\newcommand{\ACFSVorlageV}[1]{\textbf{ Versuchsbeschreibung }}
\newcommand{\TemplateHeaderSolutionUebung}[2]{\TemplateHeaderSolution{Übung}{#1}{#2}}
\newcommand{\TemplateHeaderExerciseUebung}[2]{\TemplateHeaderExercise{Übung}{#1}{#2}}

\newcommand{\ChemTemplate}[9]{\texttt{
#1#2#3#4#5#6#7#8#9}}

\newcommand{\WaningTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warning}
#1
\end{TemplateInfo}}

\newcommand{\WarnungTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warnung}
#1
\end{TemplateInfo}}

\newcommand{\BlenderAlignedToViewIssue}[1]{
\begin{TemplateInfo}{\danger}{Blender3d Aligned to view issue}
This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (\url{http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}) to view issue to understand the settings that need to be changed.
\end{TemplateInfo}}

\newcommand{\BlenderVersion}[1]{
{\itshape Diese Seite bezieht sich auf }{\bfseries \quad Blender Version #1}}

\newcommand{\Literal}[1]{{\itshape #1}}

\newcommand{\JavaIllustration}[3]{
\begin{tablular}
{Figure #1: #2}
\\
#3
\end{ltablular}
}

\newcommand{\PDFLink}[1]{#1 PDF}

\newcommand{\Ja}[1]{\Checkmark {\bfseries Ja}}
\newcommand{\Nein}[1]{\XSolidBrush {\bfseries Nein}}

\newcommand{\SVGVersions}[8]{
{\scriptsize
\begin{tabular}{|p{0.45\linewidth}|p{0.13\linewidth}|}\hline
Squiggle (Batik) & #1 \\ \hline
Opera (Presto) & #2 \\ \hline
Firefox (Gecko; auch SeaMonkey, Iceape, Iceweasel etc) & #3 \\ \hline
Konqueror (KSVG) & #4 \\ \hline
Safari (Webkit) & #5 \\ \hline
Chrome (Webkit) & #6 \\ \hline
Microsoft Internet Explorer (Trident) & #7 \\ \hline
librsvg & #8 \\\hline
\end{tabular}}

}

\theoremstyle{plain}
\newtheorem{satz}{Satz}
\newtheorem{beweis}{Beweis}
\newtheorem{beispiel}{Beispiel}

\theoremstyle{definition}
\newtheorem{mydef}{Definition}

\newcommand{\NFSatz}[2]{\begin{satz}#1\end{satz}#2}

\newcommand{\NFDef}[2]{\begin{mydef}#1\end{mydef}#2}

\newcommand{\NFBeweis}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFBeispiel}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFFrage}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{#1}: #2} \\
#3
\end{myshaded}

}

\newcommand{\NFFrageB}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{Frage}: #1} \\
#2
\end{myshaded}

}

\newcommand{\NFVertiefung}[1]{
{\bfseries Vertiefung:} \\
Der Inhalt des folgenden Abschnitts ist eine Vertiefung des Stoffes. Für die nächsten Kapitel ist es nicht notwendig, dass du dieses Kapitel gelesen hast.

}

headers/title.tex~

\publishers{Wikibooks.org}
\title{Serial Programming/Complete Wikibook}

main/main.toc

\select@language {english}
\contentsline {chapter}{\numberline {1}Basic Ada}{3}{chapter.1}
\contentsline {section}{\numberline {1.1}\char 34\relax Hello, world!\char 34\relax programs}{3}{section.1.1}
\contentsline {subsection}{\numberline {1.1.1}\char 34\relax Hello, world!\char 34\relax }{3}{subsection.1.1.1}
\contentsline {subsection}{\numberline {1.1.2}\char 34\relax Hello, world!\char 34\relax with renames}{4}{subsection.1.1.2}
\contentsline {subsection}{\numberline {1.1.3}\char 34\relax Hello, world!\char 34\relax with use}{4}{subsection.1.1.3}
\contentsline {section}{\numberline {1.2}Compiling the \char 34\relax Hello, world!\char 34\relax program}{5}{section.1.2}
\contentsline {subsection}{\numberline {1.2.1}FAQ: Why is \char 34\relax Hello, world!\char 34\relax so big?}{5}{subsection.1.2.1}
\contentsline {section}{\numberline {1.3}Things to look out for}{6}{section.1.3}
\contentsline {subsection}{\numberline {1.3.1}Comb Format}{6}{subsection.1.3.1}
\contentsline {subsection}{\numberline {1.3.2}Type and subtype}{7}{subsection.1.3.2}
\contentsline {subsection}{\numberline {1.3.3}Constrained types and unconstrained types}{7}{subsection.1.3.3}
\contentsline {subsection}{\numberline {1.3.4}Dynamic types}{8}{subsection.1.3.4}
\contentsline {subsection}{\numberline {1.3.5}Separation of concerns}{8}{subsection.1.3.5}
\contentsline {section}{\numberline {1.4}Where to ask for help}{8}{section.1.4}
\contentsline {section}{\numberline {1.5}Notes}{8}{section.1.5}
\contentsline {chapter}{\numberline {2}Installing}{9}{chapter.2}
\contentsline {section}{\numberline {2.1}AdaMagic from SofCheck}{9}{section.2.1}
\contentsline {section}{\numberline {2.2}AdaMULTI from Green Hills Software}{9}{section.2.2}
\contentsline {section}{\numberline {2.3}DEC Ada from HP}{10}{section.2.3}
\contentsline {section}{\numberline {2.4}GNAT, the GNU Ada Compiler from AdaCore and the Free Software Foundation}{10}{section.2.4}
\contentsline {subsection}{\numberline {2.4.1}GNAT GPL Edition}{11}{subsection.2.4.1}
\contentsline {subsection}{\numberline {2.4.2}GNAT Modified GPL releases}{11}{subsection.2.4.2}
\contentsline {subsubsection}{GNAT 3.15p}{12}{section*.2}
\contentsline {subsubsection}{GNAT Pro}{12}{section*.3}
\contentsline {subsubsection}{GCC}{13}{section*.4}
\contentsline {subsection}{\numberline {2.4.3}The GNU Ada Project}{14}{subsection.2.4.3}
\contentsline {subsection}{\numberline {2.4.4}A\# (A-{}Sharp, a.k.a. Ada for .NET)}{14}{subsection.2.4.4}
\contentsline {subsection}{\numberline {2.4.5}GNAT for AVR microcontrollers}{15}{subsection.2.4.5}
\contentsline {subsection}{\numberline {2.4.6}GNAT for LEON}{15}{subsection.2.4.6}
\contentsline {subsection}{\numberline {2.4.7}GNAT for Macintosh (Mac OS X)}{16}{subsection.2.4.7}
\contentsline {subsection}{\numberline {2.4.8}Prebuilt packages as part of larger distributions}{16}{subsection.2.4.8}
\contentsline {subsubsection}{AIDE (for Microsoft Windows)}{16}{section*.5}
\contentsline {subsubsection}{Blastwave (for Solaris on SPARC and x86)}{17}{section*.6}
\contentsline {subsubsection}{OpenCSW (for Solaris on SPARC and x86)}{17}{section*.7}
\contentsline {subsubsection}{Cygwin (for Microsoft Windows)}{18}{section*.8}
\contentsline {subsubsection}{Debian (GNU/Linux and GNU/kFreeBSD)}{18}{section*.9}
\contentsline {subsubsection}{DJGPP (for MS-{}DOS)}{22}{section*.10}
\contentsline {subsubsection}{FreeBSD}{22}{section*.11}
\contentsline {subsubsection}{Gentoo GNU/Linux}{23}{section*.12}
\contentsline {subsubsection}{Mandriva Linux}{23}{section*.13}
\contentsline {subsubsection}{MinGW (for Microsoft Windows)}{23}{section*.14}
\contentsline {paragraph}{old instructions}{24}{section*.15}
\contentsline {subsubsection}{SuSE Linux}{24}{section*.16}
\contentsline {subsubsection}{Ubuntu}{25}{section*.17}
\contentsline {section}{\numberline {2.5}ICC from Irvine Compiler Corporation}{25}{section.2.5}
\contentsline {section}{\numberline {2.6}Janus/Ada{\unhbox \voidb@x \hbox {$~$}}83 and 95 from RR Software}{25}{section.2.6}
\contentsline {section}{\numberline {2.7}MAXAda from Concurrent}{25}{section.2.7}
\contentsline {section}{\numberline {2.8}ObjectAda from Atego (formerly Aonix)}{26}{section.2.8}
\contentsline {section}{\numberline {2.9}PowerAda from OC Systems}{26}{section.2.9}
\contentsline {section}{\numberline {2.10}Rational Apex from Atego (formerly IBM Rational\let \reserved@d =[\def \par }{26}{section.2.10}
\contentsline {section}{\numberline {2.11}SCORE from DDC-{}I}{27}{section.2.11}
\contentsline {section}{\numberline {2.12}XD Ada from SWEP-{}EDS}{27}{section.2.12}
\contentsline {section}{\numberline {2.13}XGC Ada from XGC Software}{27}{section.2.13}
\contentsline {section}{\numberline {2.14}References}{28}{section.2.14}
\contentsline {chapter}{\numberline {3}Building}{29}{chapter.3}
\contentsline {section}{\numberline {3.1}Building with various compilers}{29}{section.3.1}
\contentsline {subsection}{\numberline {3.1.1}GNAT}{29}{subsection.3.1.1}
\contentsline {subsubsection}{GNAT command line}{29}{section*.18}
\contentsline {subsubsection}{GNAT IDE}{30}{section*.19}
\contentsline {subsubsection}{GNAT with Xcode}{30}{section*.20}
\contentsline {subsection}{\numberline {3.1.2}Rational APEX}{31}{subsection.3.1.2}
\contentsline {subsection}{\numberline {3.1.3}ObjectAda}{32}{subsection.3.1.3}
\contentsline {subsection}{\numberline {3.1.4}DEC Ada for VMS}{32}{subsection.3.1.4}
\contentsline {subsubsection}{DEC Ada IDE}{33}{section*.21}
\contentsline {section}{\numberline {3.2}Compiling our Demo Source}{33}{section.3.2}
\contentsline {subsection}{\numberline {3.2.1}GNAT}{34}{subsection.3.2.1}
\contentsline {subsection}{\numberline {3.2.2}Rational APEX}{35}{subsection.3.2.2}
\contentsline {subsection}{\numberline {3.2.3}ObjectAda}{35}{subsection.3.2.3}
\contentsline {subsubsection}{ObjectAda command-{}line}{35}{section*.22}
\contentsline {section}{\numberline {3.3}External links}{36}{section.3.3}
\contentsline {chapter}{\numberline {4}Control Statements}{37}{chapter.4}
\contentsline {section}{\numberline {4.1}Conditionals}{37}{section.4.1}
\contentsline {subsection}{\numberline {4.1.1}{\itshape if}-{}{\itshape else}}{37}{subsection.4.1.1}
\contentsline {subsection}{\numberline {4.1.2}Optimizing hints}{38}{subsection.4.1.2}
\contentsline {subsection}{\numberline {4.1.3}\itshape case}{39}{subsection.4.1.3}
\contentsline {section}{\numberline {4.2}Unconditionals}{39}{section.4.2}
\contentsline {subsection}{\numberline {4.2.1}\itshape return}{39}{subsection.4.2.1}
\contentsline {subsection}{\numberline {4.2.2}\itshape goto}{40}{subsection.4.2.2}
\contentsline {subsubsection}{Isn\textquotesingle {}t {\itshape goto} evil?}{40}{section*.23}
\contentsline {section}{\numberline {4.3}Loops}{41}{section.4.3}
\contentsline {subsection}{\numberline {4.3.1}Endless Loop}{41}{subsection.4.3.1}
\contentsline {subsection}{\numberline {4.3.2}Loop with condition at the beginning}{41}{subsection.4.3.2}
\contentsline {subsection}{\numberline {4.3.3}Loop with condition at the end}{42}{subsection.4.3.3}
\contentsline {subsection}{\numberline {4.3.4}Loop with condition in the middle}{42}{subsection.4.3.4}
\contentsline {subsection}{\numberline {4.3.5}{\itshape for} loop}{42}{subsection.4.3.5}
\contentsline {subsubsection}{{\itshape for} loop on arrays}{43}{section*.24}
\contentsline {subsubsection}{Working Demo}{43}{section*.25}
\contentsline {section}{\numberline {4.4}See also}{44}{section.4.4}
\contentsline {subsection}{\numberline {4.4.1}Wikibook}{44}{subsection.4.4.1}
\contentsline {subsection}{\numberline {4.4.2}Ada Reference Manual}{44}{subsection.4.4.2}
\contentsline {chapter}{\numberline {5}Type System}{45}{chapter.5}
\contentsline {section}{\numberline {5.1}Predefined types}{45}{section.5.1}
\contentsline {section}{\numberline {5.2}The Type Hierarchy}{47}{section.5.2}
\contentsline {subsection}{\numberline {5.2.1}Classification of Types}{49}{subsection.5.2.1}
\contentsline {section}{\numberline {5.3}Concurrency Types}{50}{section.5.3}
\contentsline {section}{\numberline {5.4}Limited Types}{50}{section.5.4}
\contentsline {section}{\numberline {5.5}Defining new types and subtypes}{51}{section.5.5}
\contentsline {subsection}{\numberline {5.5.1}Creating subtypes}{51}{subsection.5.5.1}
\contentsline {subsection}{\numberline {5.5.2}Derived types}{52}{subsection.5.5.2}
\contentsline {section}{\numberline {5.6}Subtype categories}{54}{section.5.6}
\contentsline {subsection}{\numberline {5.6.1}Anonymous subtype}{54}{subsection.5.6.1}
\contentsline {subsection}{\numberline {5.6.2}Base type}{54}{subsection.5.6.2}
\contentsline {subsection}{\numberline {5.6.3}Constrained subtype}{55}{subsection.5.6.3}
\contentsline {subsection}{\numberline {5.6.4}Definite subtype}{55}{subsection.5.6.4}
\contentsline {subsection}{\numberline {5.6.5}Indefinite subtype}{55}{subsection.5.6.5}
\contentsline {subsection}{\numberline {5.6.6}Named subtype}{56}{subsection.5.6.6}
\contentsline {subsection}{\numberline {5.6.7}Unconstrained subtype}{56}{subsection.5.6.7}
\contentsline {section}{\numberline {5.7}Qualified expressions}{57}{section.5.7}
\contentsline {section}{\numberline {5.8}Type conversions}{58}{section.5.8}
\contentsline {subsection}{\numberline {5.8.1}Explicit type conversion}{58}{subsection.5.8.1}
\contentsline {subsection}{\numberline {5.8.2}Change of Representation}{60}{subsection.5.8.2}
\contentsline {subsection}{\numberline {5.8.3}Checked conversion for non-{}numeric types}{60}{subsection.5.8.3}
\contentsline {subsection}{\numberline {5.8.4}View conversion, in object-{}oriented programming}{61}{subsection.5.8.4}
\contentsline {subsubsection}{View renaming}{62}{section*.26}
\contentsline {subsection}{\numberline {5.8.5}Address conversion}{63}{subsection.5.8.5}
\contentsline {subsection}{\numberline {5.8.6}Unchecked conversion}{63}{subsection.5.8.6}
\contentsline {subsection}{\numberline {5.8.7}Overlays}{64}{subsection.5.8.7}
\contentsline {subsection}{\numberline {5.8.8}Export / Import}{65}{subsection.5.8.8}
\contentsline {section}{\numberline {5.9}Elaborated Discussion of Types for Signed Integer Types}{65}{section.5.9}
\contentsline {section}{\numberline {5.10}Relations between types}{67}{section.5.10}
\contentsline {section}{\numberline {5.11}See also}{67}{section.5.11}
\contentsline {subsection}{\numberline {5.11.1}Wikibook}{67}{subsection.5.11.1}
\contentsline {subsection}{\numberline {5.11.2}Ada Reference Manual}{67}{subsection.5.11.2}
\contentsline {chapter}{\numberline {6}Integer types}{69}{chapter.6}
\contentsline {section}{\numberline {6.1}Working demo}{69}{section.6.1}
\contentsline {section}{\numberline {6.2}See also}{70}{section.6.2}
\contentsline {subsection}{\numberline {6.2.1}Wikibook}{70}{subsection.6.2.1}
\contentsline {subsection}{\numberline {6.2.2}Ada Reference Manual}{70}{subsection.6.2.2}
\contentsline {chapter}{\numberline {7}Unsigned integer types}{71}{chapter.7}
\contentsline {section}{\numberline {7.1}Description}{71}{section.7.1}
\contentsline {section}{\numberline {7.2}See also}{72}{section.7.2}
\contentsline {subsection}{\numberline {7.2.1}Wikibook}{72}{subsection.7.2.1}
\contentsline {subsection}{\numberline {7.2.2}Ada Reference Manual}{72}{subsection.7.2.2}
\contentsline {chapter}{\numberline {8}Enumerations}{73}{chapter.8}
\contentsline {section}{\numberline {8.1}Operators and attributes}{73}{section.8.1}
\contentsline {section}{\numberline {8.2}Enumeration literals}{74}{section.8.2}
\contentsline {subsection}{\numberline {8.2.1}Characters as enumeration literals}{74}{subsection.8.2.1}
\contentsline {subsection}{\numberline {8.2.2}Booleans as enumeration literals}{75}{subsection.8.2.2}
\contentsline {section}{\numberline {8.3}Enumeration subtypes}{75}{section.8.3}
\contentsline {section}{\numberline {8.4}See also}{76}{section.8.4}
\contentsline {subsection}{\numberline {8.4.1}Wikibook}{76}{subsection.8.4.1}
\contentsline {subsection}{\numberline {8.4.2}Ada Reference Manual}{76}{subsection.8.4.2}
\contentsline {chapter}{\numberline {9}Floating point types}{77}{chapter.9}
\contentsline {section}{\numberline {9.1}Description}{77}{section.9.1}
\contentsline {section}{\numberline {9.2}See also}{77}{section.9.2}
\contentsline {subsection}{\numberline {9.2.1}Wikibook}{77}{subsection.9.2.1}
\contentsline {subsection}{\numberline {9.2.2}Ada Reference Manual}{78}{subsection.9.2.2}
\contentsline {chapter}{\numberline {10}Fixed point types}{79}{chapter.10}
\contentsline {section}{\numberline {10.1}Description}{79}{section.10.1}
\contentsline {section}{\numberline {10.2}Ordinary Fixed Point}{79}{section.10.2}
\contentsline {section}{\numberline {10.3}Decimal Fixed Point}{80}{section.10.3}
\contentsline {section}{\numberline {10.4}Differences between Ordinary and Decimal Fixed Point Types}{80}{section.10.4}
\contentsline {section}{\numberline {10.5}See also}{82}{section.10.5}
\contentsline {subsection}{\numberline {10.5.1}Wikibook}{82}{subsection.10.5.1}
\contentsline {subsection}{\numberline {10.5.2}Ada 95 Reference Manual}{82}{subsection.10.5.2}
\contentsline {subsection}{\numberline {10.5.3}Ada 2005 Reference Manual}{82}{subsection.10.5.3}
\contentsline {chapter}{\numberline {11}Arrays}{83}{chapter.11}
\contentsline {section}{\numberline {11.1}Declaring arrays}{83}{section.11.1}
\contentsline {subsection}{\numberline {11.1.1}Basic syntax}{83}{subsection.11.1.1}
\contentsline {subsection}{\numberline {11.1.2}With known subrange}{84}{subsection.11.1.2}
\contentsline {subsection}{\numberline {11.1.3}With unknown subrange}{84}{subsection.11.1.3}
\contentsline {subsection}{\numberline {11.1.4}With aliased elements}{85}{subsection.11.1.4}
\contentsline {subsection}{\numberline {11.1.5}Arrays with more than one dimension}{85}{subsection.11.1.5}
\contentsline {section}{\numberline {11.2}Using arrays}{87}{section.11.2}
\contentsline {subsection}{\numberline {11.2.1}Assignment}{87}{subsection.11.2.1}
\contentsline {subsection}{\numberline {11.2.2}Concatenate}{87}{subsection.11.2.2}
\contentsline {subsection}{\numberline {11.2.3}Array Attributes}{87}{subsection.11.2.3}
\contentsline {subsection}{\numberline {11.2.4}Empty or Null Arrays}{88}{subsection.11.2.4}
\contentsline {section}{\numberline {11.3}See also}{88}{section.11.3}
\contentsline {subsection}{\numberline {11.3.1}Wikibook}{88}{subsection.11.3.1}
\contentsline {subsection}{\numberline {11.3.2}Ada 95 Reference Manual}{89}{subsection.11.3.2}
\contentsline {subsection}{\numberline {11.3.3}Ada 2005 Reference Manual}{89}{subsection.11.3.3}
\contentsline {subsection}{\numberline {11.3.4}Ada Quality and Style Guide}{89}{subsection.11.3.4}
\contentsline {chapter}{\numberline {12}Records}{91}{chapter.12}
\contentsline {section}{\numberline {12.1}Basic record}{91}{section.12.1}
\contentsline {section}{\numberline {12.2}Null record}{91}{section.12.2}
\contentsline {section}{\numberline {12.3}Record Values}{91}{section.12.3}
\contentsline {section}{\numberline {12.4}Discriminated record}{93}{section.12.4}
\contentsline {section}{\numberline {12.5}Variant record}{93}{section.12.5}
\contentsline {subsection}{\numberline {12.5.1}Mutable and immutable variant records}{93}{subsection.12.5.1}
\contentsline {section}{\numberline {12.6}Union}{95}{section.12.6}
\contentsline {section}{\numberline {12.7}Tagged record}{95}{section.12.7}
\contentsline {section}{\numberline {12.8}Abstract tagged record}{96}{section.12.8}
\contentsline {section}{\numberline {12.9}With aliased elements}{96}{section.12.9}
\contentsline {section}{\numberline {12.10}Limited Records}{97}{section.12.10}
\contentsline {section}{\numberline {12.11}See also}{97}{section.12.11}
\contentsline {subsection}{\numberline {12.11.1}Wikibook}{97}{subsection.12.11.1}
\contentsline {subsection}{\numberline {12.11.2}Ada Reference Manual}{97}{subsection.12.11.2}
\contentsline {subsubsection}{Ada 95}{97}{section*.27}
\contentsline {subsubsection}{Ada 2005}{97}{section*.28}
\contentsline {subsubsection}{Ada Issues}{98}{section*.29}
\contentsline {chapter}{\numberline {13}Access types}{99}{chapter.13}
\contentsline {section}{\numberline {13.1}What\textquotesingle {}s an Access Type?}{99}{section.13.1}
\contentsline {section}{\numberline {13.2}Pool access}{99}{section.13.2}
\contentsline {subsection}{\numberline {13.2.1}Deleting objects from a storage pool}{101}{subsection.13.2.1}
\contentsline {subsection}{\numberline {13.2.2}Constructing Reference Counting Pointers}{102}{subsection.13.2.2}
\contentsline {section}{\numberline {13.3}General access}{102}{section.13.3}
\contentsline {subsection}{\numberline {13.3.1}Access to Variable}{102}{subsection.13.3.1}
\contentsline {subsection}{\numberline {13.3.2}Access to Constant}{103}{subsection.13.3.2}
\contentsline {subsection}{\numberline {13.3.3}Some examples}{103}{subsection.13.3.3}
\contentsline {section}{\numberline {13.4}Anonymous access}{103}{section.13.4}
\contentsline {section}{\numberline {13.5}Implicit Dereference}{104}{section.13.5}
\contentsline {section}{\numberline {13.6}Null exclusions}{105}{section.13.6}
\contentsline {section}{\numberline {13.7}Access to Subprogram}{106}{section.13.7}
\contentsline {subsection}{\numberline {13.7.1}Anonymous access to Subprogram}{106}{subsection.13.7.1}
\contentsline {section}{\numberline {13.8}Access FAQ}{106}{section.13.8}
\contentsline {subsection}{\numberline {13.8.1}Access vs. access all}{107}{subsection.13.8.1}
\contentsline {subsection}{\numberline {13.8.2}Access vs. System.Address}{107}{subsection.13.8.2}
\contentsline {subsection}{\numberline {13.8.3}C compatible pointer}{107}{subsection.13.8.3}
\contentsline {subsection}{\numberline {13.8.4}Where is void*?}{108}{subsection.13.8.4}
\contentsline {section}{\numberline {13.9}Thin and Fat Access Types}{109}{section.13.9}
\contentsline {subsection}{\numberline {13.9.1}Thin Pointers}{109}{subsection.13.9.1}
\contentsline {subsection}{\numberline {13.9.2}Fat Pointers}{109}{subsection.13.9.2}
\contentsline {subsection}{\numberline {13.9.3}Example}{110}{subsection.13.9.3}
\contentsline {section}{\numberline {13.10}See also}{110}{section.13.10}
\contentsline {subsection}{\numberline {13.10.1}Wikibook}{110}{subsection.13.10.1}
\contentsline {subsection}{\numberline {13.10.2}Ada Reference Manual}{111}{subsection.13.10.2}
\contentsline {subsubsection}{Ada 95}{111}{section*.30}
\contentsline {subsubsection}{Ada 2005}{111}{section*.31}
\contentsline {subsection}{\numberline {13.10.3}Ada Quality and Style Guide}{111}{subsection.13.10.3}
\contentsline {chapter}{\numberline {14}Limited types}{113}{chapter.14}
\contentsline {section}{\numberline {14.1}Limited Types}{113}{section.14.1}
\contentsline {section}{\numberline {14.2}Initialising Limited Types}{115}{section.14.2}
\contentsline {section}{\numberline {14.3}See also}{116}{section.14.3}
\contentsline {subsection}{\numberline {14.3.1}Ada 95 Reference Manual}{116}{subsection.14.3.1}
\contentsline {subsection}{\numberline {14.3.2}Ada 2005 Reference Manual}{117}{subsection.14.3.2}
\contentsline {subsection}{\numberline {14.3.3}Ada Quality and Style Guide}{117}{subsection.14.3.3}
\contentsline {section}{\numberline {14.4}References}{117}{section.14.4}
\contentsline {chapter}{\numberline {15}Strings}{119}{chapter.15}
\contentsline {section}{\numberline {15.1}Fixed-{}length string handling}{119}{section.15.1}
\contentsline {section}{\numberline {15.2}Bounded-{}length string handling}{120}{section.15.2}
\contentsline {section}{\numberline {15.3}Unbounded-{}length string handling}{122}{section.15.3}
\contentsline {section}{\numberline {15.4}See also}{123}{section.15.4}
\contentsline {subsection}{\numberline {15.4.1}Wikibook}{123}{subsection.15.4.1}
\contentsline {subsection}{\numberline {15.4.2}Ada 95 Reference Manual}{123}{subsection.15.4.2}
\contentsline {subsection}{\numberline {15.4.3}Ada 2005 Reference Manual}{123}{subsection.15.4.3}
\contentsline {chapter}{\numberline {16}Subprograms}{125}{chapter.16}
\contentsline {section}{\numberline {16.1}Procedures}{126}{section.16.1}
\contentsline {section}{\numberline {16.2}Functions}{127}{section.16.2}
\contentsline {section}{\numberline {16.3}Named parameters}{129}{section.16.3}
\contentsline {section}{\numberline {16.4}Default parameters}{129}{section.16.4}
\contentsline {section}{\numberline {16.5}Renaming}{130}{section.16.5}
\contentsline {section}{\numberline {16.6}See also}{131}{section.16.6}
\contentsline {subsection}{\numberline {16.6.1}Wikibook}{131}{subsection.16.6.1}
\contentsline {subsection}{\numberline {16.6.2}Ada 95 Reference Manual}{131}{subsection.16.6.2}
\contentsline {subsection}{\numberline {16.6.3}Ada 2005 Reference Manual}{131}{subsection.16.6.3}
\contentsline {subsection}{\numberline {16.6.4}Ada Quality and Style Guide}{132}{subsection.16.6.4}
\contentsline {chapter}{\numberline {17}Packages}{133}{chapter.17}
\contentsline {section}{\numberline {17.1}Separate compilation}{133}{section.17.1}
\contentsline {section}{\numberline {17.2}Parts of a package}{134}{section.17.2}
\contentsline {subsection}{\numberline {17.2.1}The package specification {\unhbox \voidb@x \hbox {$\text {---}$}} the visible part}{135}{subsection.17.2.1}
\contentsline {subsection}{\numberline {17.2.2}The private part}{135}{subsection.17.2.2}
\contentsline {subsection}{\numberline {17.2.3}The package body}{135}{subsection.17.2.3}
\contentsline {subsection}{\numberline {17.2.4}Two Flavors of Package}{136}{subsection.17.2.4}
\contentsline {section}{\numberline {17.3}Using packages}{137}{section.17.3}
\contentsline {subsection}{\numberline {17.3.1}Standard with}{137}{subsection.17.3.1}
\contentsline {subsection}{\numberline {17.3.2}Private with}{138}{subsection.17.3.2}
\contentsline {subsection}{\numberline {17.3.3}Limited with}{138}{subsection.17.3.3}
\contentsline {subsection}{\numberline {17.3.4}Making operators visible}{139}{subsection.17.3.4}
\contentsline {section}{\numberline {17.4}Package organisation}{141}{section.17.4}
\contentsline {subsection}{\numberline {17.4.1}Nested packages}{141}{subsection.17.4.1}
\contentsline {subsection}{\numberline {17.4.2}Child packages}{143}{subsection.17.4.2}
\contentsline {subsection}{\numberline {17.4.3}Subunits}{144}{subsection.17.4.3}
\contentsline {section}{\numberline {17.5}Notes}{145}{section.17.5}
\contentsline {section}{\numberline {17.6}See also}{145}{section.17.6}
\contentsline {subsection}{\numberline {17.6.1}Wikibook}{145}{subsection.17.6.1}
\contentsline {subsection}{\numberline {17.6.2}Wikipedia}{145}{subsection.17.6.2}
\contentsline {subsection}{\numberline {17.6.3}Ada 95 Reference Manual}{145}{subsection.17.6.3}
\contentsline {subsection}{\numberline {17.6.4}Ada 2005 Reference Manual}{145}{subsection.17.6.4}
\contentsline {chapter}{\numberline {18}Input Output}{147}{chapter.18}
\contentsline {section}{\numberline {18.1}Overview}{147}{section.18.1}
\contentsline {section}{\numberline {18.2}Text I/O}{148}{section.18.2}
\contentsline {section}{\numberline {18.3}Direct I/O}{148}{section.18.3}
\contentsline {section}{\numberline {18.4}Sequential I/O}{149}{section.18.4}
\contentsline {section}{\numberline {18.5}Stream I/O}{149}{section.18.5}
\contentsline {section}{\numberline {18.6}See also}{150}{section.18.6}
\contentsline {subsection}{\numberline {18.6.1}Wikibook}{150}{subsection.18.6.1}
\contentsline {subsection}{\numberline {18.6.2}Ada Reference Manual}{151}{subsection.18.6.2}
\contentsline {subsection}{\numberline {18.6.3}Ada 95 Quality and Style Guide}{152}{subsection.18.6.3}
\contentsline {chapter}{\numberline {19}Exceptions}{153}{chapter.19}
\contentsline {section}{\numberline {19.1}Robustness}{153}{section.19.1}
\contentsline {section}{\numberline {19.2}Modules, preconditions and postconditions}{153}{section.19.2}
\contentsline {section}{\numberline {19.3}Predefined exceptions}{154}{section.19.3}
\contentsline {section}{\numberline {19.4}Input-{}output exceptions}{156}{section.19.4}
\contentsline {section}{\numberline {19.5}Exception declarations}{156}{section.19.5}
\contentsline {section}{\numberline {19.6}Raising exceptions}{157}{section.19.6}
\contentsline {section}{\numberline {19.7}Exception handling and propagation}{157}{section.19.7}
\contentsline {section}{\numberline {19.8}Information about an exception occurrence}{158}{section.19.8}
\contentsline {section}{\numberline {19.9}See also}{159}{section.19.9}
\contentsline {subsection}{\numberline {19.9.1}Wikibook}{159}{subsection.19.9.1}
\contentsline {subsection}{\numberline {19.9.2}Ada 95 Reference Manual}{160}{subsection.19.9.2}
\contentsline {subsection}{\numberline {19.9.3}Ada 2005 Reference Manual}{160}{subsection.19.9.3}
\contentsline {subsection}{\numberline {19.9.4}Ada Quality and Style Guide}{160}{subsection.19.9.4}
\contentsline {chapter}{\numberline {20}Generics}{161}{chapter.20}
\contentsline {section}{\numberline {20.1}Parametric polymorphism (generic units)}{161}{section.20.1}
\contentsline {section}{\numberline {20.2}Generic parameters}{162}{section.20.2}
\contentsline {subsection}{\numberline {20.2.1}Generic formal objects}{162}{subsection.20.2.1}
\contentsline {subsection}{\numberline {20.2.2}Generic formal types}{163}{subsection.20.2.2}
\contentsline {subsection}{\numberline {20.2.3}Generic formal subprograms}{165}{subsection.20.2.3}
\contentsline {subsection}{\numberline {20.2.4}Generic instances of other generic packages}{167}{subsection.20.2.4}
\contentsline {section}{\numberline {20.3}Instantiating generics}{168}{section.20.3}
\contentsline {section}{\numberline {20.4}Advanced generics}{168}{section.20.4}
\contentsline {subsection}{\numberline {20.4.1}Generics and nesting}{168}{subsection.20.4.1}
\contentsline {subsection}{\numberline {20.4.2}Generics and child units}{170}{subsection.20.4.2}
\contentsline {section}{\numberline {20.5}See also}{172}{section.20.5}
\contentsline {subsection}{\numberline {20.5.1}Wikibook}{172}{subsection.20.5.1}
\contentsline {subsection}{\numberline {20.5.2}Wikipedia}{172}{subsection.20.5.2}
\contentsline {subsection}{\numberline {20.5.3}Ada Reference Manual}{172}{subsection.20.5.3}
\contentsline {chapter}{\numberline {21}Tasking}{173}{chapter.21}
\contentsline {section}{\numberline {21.1}Tasks}{173}{section.21.1}
\contentsline {subsection}{\numberline {21.1.1}Rendezvous}{174}{subsection.21.1.1}
\contentsline {subsection}{\numberline {21.1.2}Selective Wait}{175}{subsection.21.1.2}
\contentsline {subsection}{\numberline {21.1.3}Guards}{176}{subsection.21.1.3}
\contentsline {section}{\numberline {21.2}Protected types}{177}{section.21.2}
\contentsline {section}{\numberline {21.3}Entry families}{180}{section.21.3}
\contentsline {section}{\numberline {21.4}Termination}{180}{section.21.4}
\contentsline {section}{\numberline {21.5}Timeout}{181}{section.21.5}
\contentsline {section}{\numberline {21.6}Conditional entry calls}{183}{section.21.6}
\contentsline {section}{\numberline {21.7}Requeue statements}{183}{section.21.7}
\contentsline {section}{\numberline {21.8}Scheduling}{184}{section.21.8}
\contentsline {section}{\numberline {21.9}Interfaces}{184}{section.21.9}
\contentsline {section}{\numberline {21.10}See also}{184}{section.21.10}
\contentsline {subsection}{\numberline {21.10.1}Wikibook}{184}{subsection.21.10.1}
\contentsline {subsection}{\numberline {21.10.2}Ada Reference Manual}{184}{subsection.21.10.2}
\contentsline {subsubsection}{Ada 95}{184}{section*.32}
\contentsline {subsubsection}{Ada 2005}{184}{section*.33}
\contentsline {section}{\numberline {21.11}Ada Quality and Style Guide}{185}{section.21.11}
\contentsline {chapter}{\numberline {22}Object Orientation}{187}{chapter.22}
\contentsline {section}{\numberline {22.1}Object orientation in Ada}{187}{section.22.1}
\contentsline {subsection}{\numberline {22.1.1}The simplest object: the Singleton}{188}{subsection.22.1.1}
\contentsline {subsection}{\numberline {22.1.2}Primitive operations}{188}{subsection.22.1.2}
\contentsline {subsection}{\numberline {22.1.3}Derived types}{188}{subsection.22.1.3}
\contentsline {subsection}{\numberline {22.1.4}Type extensions}{189}{subsection.22.1.4}
\contentsline {subsection}{\numberline {22.1.5}Overriding}{191}{subsection.22.1.5}
\contentsline {subsection}{\numberline {22.1.6}Polymorphism, class-{}wide programming and dynamic dispatching}{192}{subsection.22.1.6}
\contentsline {subsubsection}{Advanced topic: How dynamic dispatching works}{193}{section*.34}
\contentsline {subsubsection}{Redispatching}{194}{section*.35}
\contentsline {subsubsection}{Run-{}time type identification}{195}{section*.36}
\contentsline {subsection}{\numberline {22.1.7}Creating Objects}{195}{subsection.22.1.7}
\contentsline {subsection}{\numberline {22.1.8}More details on primitive operations}{197}{subsection.22.1.8}
\contentsline {subsubsection}{Advanced topic: Freezing rules}{199}{section*.37}
\contentsline {subsection}{\numberline {22.1.9}New features of Ada 2005}{200}{subsection.22.1.9}
\contentsline {subsubsection}{Overriding indicators}{200}{section*.38}
\contentsline {subsubsection}{Object.Method notation}{201}{section*.39}
\contentsline {subsection}{\numberline {22.1.10}Abstract types}{201}{subsection.22.1.10}
\contentsline {subsection}{\numberline {22.1.11}Multiple Inheritance via Interfaces}{202}{subsection.22.1.11}
\contentsline {subsection}{\numberline {22.1.12}Multiple Inheritance via Mix-{}in}{203}{subsection.22.1.12}
\contentsline {section}{\numberline {22.2}Class names}{206}{section.22.2}
\contentsline {subsection}{\numberline {22.2.1}Classes/Class}{206}{subsection.22.2.1}
\contentsline {subsection}{\numberline {22.2.2}Class/Object}{206}{subsection.22.2.2}
\contentsline {subsection}{\numberline {22.2.3}Class/Class\@uscore .Type}{207}{subsection.22.2.3}
\contentsline {section}{\numberline {22.3}Object-{}Oriented Ada for C++ programmers}{207}{section.22.3}
\contentsline {subsection}{\numberline {22.3.1}Static dispatching}{207}{subsection.22.3.1}
\contentsline {subsection}{\numberline {22.3.2}Dynamic dispatching}{208}{subsection.22.3.2}
\contentsline {subsection}{\numberline {22.3.3}Class-{}wide and specific types}{209}{subsection.22.3.3}
\contentsline {subsection}{\numberline {22.3.4}Constructors}{209}{subsection.22.3.4}
\contentsline {subsection}{\numberline {22.3.5}Destructors}{211}{subsection.22.3.5}
\contentsline {subsection}{\numberline {22.3.6}Encapsulation: public, private and protected members}{212}{subsection.22.3.6}
\contentsline {subsection}{\numberline {22.3.7}De-{}encapsulation: friends and stream input-{}output}{215}{subsection.22.3.7}
\contentsline {subsection}{\numberline {22.3.8}Terminology}{217}{subsection.22.3.8}
\contentsline {section}{\numberline {22.4}See also}{217}{section.22.4}
\contentsline {subsection}{\numberline {22.4.1}Wikibook}{217}{subsection.22.4.1}
\contentsline {subsection}{\numberline {22.4.2}Wikipedia}{217}{subsection.22.4.2}
\contentsline {subsection}{\numberline {22.4.3}Ada Reference Manual}{218}{subsection.22.4.3}
\contentsline {subsubsection}{Ada 95}{218}{section*.40}
\contentsline {subsubsection}{Ada 2005}{218}{section*.41}
\contentsline {subsection}{\numberline {22.4.4}Ada Quality and Style Guide}{218}{subsection.22.4.4}
\contentsline {chapter}{\numberline {23}New in Ada 2005}{219}{chapter.23}
\contentsline {section}{\numberline {23.1}Language features}{219}{section.23.1}
\contentsline {subsection}{\numberline {23.1.1}Character set}{219}{subsection.23.1.1}
\contentsline {subsection}{\numberline {23.1.2}Interfaces}{220}{subsection.23.1.2}
\contentsline {subsection}{\numberline {23.1.3}Union}{220}{subsection.23.1.3}
\contentsline {subsection}{\numberline {23.1.4}With}{221}{subsection.23.1.4}
\contentsline {subsection}{\numberline {23.1.5}Access types}{221}{subsection.23.1.5}
\contentsline {subsubsection}{Not null access}{221}{section*.42}
\contentsline {subsubsection}{Anonymous access}{221}{section*.43}
\contentsline {section}{\numberline {23.2}Language library}{222}{section.23.2}
\contentsline {subsection}{\numberline {23.2.1}Containers}{222}{subsection.23.2.1}
\contentsline {subsection}{\numberline {23.2.2}Scan Filesystem Directories and Environment Variables}{222}{subsection.23.2.2}
\contentsline {subsection}{\numberline {23.2.3}Numerics}{223}{subsection.23.2.3}
\contentsline {section}{\numberline {23.3}Real-{}Time and High Integrity Systems}{223}{section.23.3}
\contentsline {subsection}{\numberline {23.3.1}Ravenscar profile}{223}{subsection.23.3.1}
\contentsline {subsection}{\numberline {23.3.2}New scheduling policies}{224}{subsection.23.3.2}
\contentsline {subsection}{\numberline {23.3.3}Dynamic priorities for protected objects}{224}{subsection.23.3.3}
\contentsline {section}{\numberline {23.4}Summary of what\textquotesingle {}s new}{224}{section.23.4}
\contentsline {subsection}{\numberline {23.4.1}New keywords}{224}{subsection.23.4.1}
\contentsline {subsection}{\numberline {23.4.2}New pragmas}{224}{subsection.23.4.2}
\contentsline {subsection}{\numberline {23.4.3}New attributes}{225}{subsection.23.4.3}
\contentsline {subsection}{\numberline {23.4.4}New packages}{225}{subsection.23.4.4}
\contentsline {section}{\numberline {23.5}See also}{227}{section.23.5}
\contentsline {subsection}{\numberline {23.5.1}Wikibook}{227}{subsection.23.5.1}
\contentsline {subsection}{\numberline {23.5.2}Pages in the category Ada 2005}{227}{subsection.23.5.2}
\contentsline {section}{\numberline {23.6}External links}{228}{section.23.6}
\contentsline {subsection}{\numberline {23.6.1}Papers and presentations}{228}{subsection.23.6.1}
\contentsline {subsection}{\numberline {23.6.2}Rationale}{228}{subsection.23.6.2}
\contentsline {subsection}{\numberline {23.6.3}Language Requirements}{228}{subsection.23.6.3}
\contentsline {subsection}{\numberline {23.6.4}Ada Reference Manual}{228}{subsection.23.6.4}
\contentsline {subsection}{\numberline {23.6.5}Ada Issues}{229}{subsection.23.6.5}
\contentsline {chapter}{\numberline {24}Containers}{231}{chapter.24}
\contentsline {subsubsection}{First Example: Maps}{231}{section*.44}
\contentsline {subsubsection}{A slight variation: picking an element}{233}{section*.45}
\contentsline {subsubsection}{Second Example: Vectors and Maps}{234}{section*.46}
\contentsline {subsubsection}{All In Just One Map!}{237}{section*.47}
\contentsline {section}{\numberline {24.1}See also}{240}{section.24.1}
\contentsline {subsection}{\numberline {24.1.1}Wikibook}{240}{subsection.24.1.1}
\contentsline {subsection}{\numberline {24.1.2}Ada 2005 Reference Manual}{241}{subsection.24.1.2}
\contentsline {chapter}{\numberline {25}Interfacing}{243}{chapter.25}
\contentsline {section}{\numberline {25.1}Interfacing}{243}{section.25.1}
\contentsline {section}{\numberline {25.2}Other programming languages}{243}{section.25.2}
\contentsline {section}{\numberline {25.3}Hardware devices}{243}{section.25.3}
\contentsline {section}{\numberline {25.4}See also}{244}{section.25.4}
\contentsline {subsection}{\numberline {25.4.1}Wikibook}{244}{subsection.25.4.1}
\contentsline {subsection}{\numberline {25.4.2}Ada Reference Manual}{244}{subsection.25.4.2}
\contentsline {subsection}{\numberline {25.4.3}Ada 95 Rationale}{244}{subsection.25.4.3}
\contentsline {subsection}{\numberline {25.4.4}Ada Quality and Style Guide}{244}{subsection.25.4.4}
\contentsline {chapter}{\numberline {26}Coding Standards}{245}{chapter.26}
\contentsline {section}{\numberline {26.1}Introduction}{245}{section.26.1}
\contentsline {section}{\numberline {26.2}Tools}{245}{section.26.2}
\contentsline {section}{\numberline {26.3}Coding guidelines}{246}{section.26.3}
\contentsline {section}{\numberline {26.4}See also}{246}{section.26.4}
\contentsline {subsection}{\numberline {26.4.1}Other wikibooks}{246}{subsection.26.4.1}
\contentsline {subsection}{\numberline {26.4.2}Wikibook}{247}{subsection.26.4.2}
\contentsline {subsection}{\numberline {26.4.3}Ada Quality and Style Guide}{247}{subsection.26.4.3}
\contentsline {section}{\numberline {26.5}External links}{247}{section.26.5}
\contentsline {chapter}{\numberline {27}Tips}{249}{chapter.27}
\contentsline {section}{\numberline {27.1}Full declaration of a type can be deferred to the unit\textquotesingle {}s body}{249}{section.27.1}
\contentsline {section}{\numberline {27.2}Lambda calculus through generics}{250}{section.27.2}
\contentsline {section}{\numberline {27.3}Compiler Messages}{250}{section.27.3}
\contentsline {section}{\numberline {27.4}Universal integers}{251}{section.27.4}
\contentsline {section}{\numberline {27.5}I/O}{253}{section.27.5}
\contentsline {subsection}{\numberline {27.5.1}Text\@uscore .IO Issues}{253}{subsection.27.5.1}
\contentsline {section}{\numberline {27.6}Quirks}{253}{section.27.6}
\contentsline {subsection}{\numberline {27.6.1}Stack Size}{253}{subsection.27.6.1}
\contentsline {section}{\numberline {27.7}References}{254}{section.27.7}
\contentsline {section}{\numberline {27.8}See also}{254}{section.27.8}
\contentsline {subsection}{\numberline {27.8.1}Wikibook}{254}{subsection.27.8.1}
\contentsline {subsection}{\numberline {27.8.2}Ada Reference Manual}{254}{subsection.27.8.2}
\contentsline {chapter}{\numberline {28}Common Errors}{255}{chapter.28}
\contentsline {section}{\numberline {28.1}pragma Atomic \& Volatile}{255}{section.28.1}
\contentsline {section}{\numberline {28.2}References}{256}{section.28.2}
\contentsline {section}{\numberline {28.3}pragma Pack}{256}{section.28.3}
\contentsline {subsection}{\numberline {28.3.1}Exact data representation}{256}{subsection.28.3.1}
\contentsline {subsection}{\numberline {28.3.2}Bit-{}wise operations}{257}{subsection.28.3.2}
\contentsline {section}{\numberline {28.4}\textquotesingle {}Bit\@uscore .Order attribute}{257}{section.28.4}
\contentsline {section}{\numberline {28.5}\textquotesingle {}Size attribute}{257}{section.28.5}
\contentsline {section}{\numberline {28.6}See also}{258}{section.28.6}
\contentsline {subsection}{\numberline {28.6.1}Wikibook}{258}{subsection.28.6.1}
\contentsline {section}{\numberline {28.7}References}{258}{section.28.7}
\contentsline {chapter}{\numberline {29}Algorithms}{259}{chapter.29}
\contentsline {section}{\numberline {29.1}Introduction}{259}{section.29.1}
\contentsline {section}{\numberline {29.2}Chapter 1: Introduction}{259}{section.29.2}
\contentsline {subsection}{\numberline {29.2.1}To Lower}{259}{subsection.29.2.1}
\contentsline {subsection}{\numberline {29.2.2}Equal Ignore Case}{260}{subsection.29.2.2}
\contentsline {section}{\numberline {29.3}Chapter 6: Dynamic Programming}{261}{section.29.3}
\contentsline {subsection}{\numberline {29.3.1}Fibonacci numbers}{261}{subsection.29.3.1}
\contentsline {subsubsection}{Simple Implementation}{261}{section*.48}
\contentsline {subsubsection}{Cached Implementation}{261}{section*.49}
\contentsline {subsubsection}{Memory Optimized Implementation}{265}{section*.50}
\contentsline {subsubsection}{No 64 bit integers}{265}{section*.51}
\contentsline {chapter}{\numberline {30}Function overloading}{267}{chapter.30}
\contentsline {section}{\numberline {30.1}Function overloading in Ada}{267}{section.30.1}
\contentsline {section}{\numberline {30.2}See also}{268}{section.30.2}
\contentsline {subsection}{\numberline {30.2.1}Wikibook}{268}{subsection.30.2.1}
\contentsline {subsection}{\numberline {30.2.2}Ada 95 Reference Manual}{268}{subsection.30.2.2}
\contentsline {subsection}{\numberline {30.2.3}Ada 2005 Reference Manual}{268}{subsection.30.2.3}
\contentsline {chapter}{\numberline {31}Mathematical calculations}{269}{chapter.31}
\contentsline {section}{\numberline {31.1}Simple calculations}{269}{section.31.1}
\contentsline {subsection}{\numberline {31.1.1}Addition}{269}{subsection.31.1.1}
\contentsline {subsection}{\numberline {31.1.2}Subtraction}{270}{subsection.31.1.2}
\contentsline {subsection}{\numberline {31.1.3}Multiplication}{271}{subsection.31.1.3}
\contentsline {subsection}{\numberline {31.1.4}Division}{271}{subsection.31.1.4}
\contentsline {section}{\numberline {31.2}Exponential calculations}{272}{section.31.2}
\contentsline {subsection}{\numberline {31.2.1}Power of}{272}{subsection.31.2.1}
\contentsline {subsection}{\numberline {31.2.2}Root}{273}{subsection.31.2.2}
\contentsline {subsection}{\numberline {31.2.3}Logarithm}{273}{subsection.31.2.3}
\contentsline {subsection}{\numberline {31.2.4}Demonstration}{273}{subsection.31.2.4}
\contentsline {section}{\numberline {31.3}Higher math}{275}{section.31.3}
\contentsline {subsection}{\numberline {31.3.1}Trigonometric calculations}{275}{subsection.31.3.1}
\contentsline {subsection}{\numberline {31.3.2}Hyperbolic calculations}{277}{subsection.31.3.2}
\contentsline {subsection}{\numberline {31.3.3}Complex arithmethic}{278}{subsection.31.3.3}
\contentsline {subsection}{\numberline {31.3.4}Vector and Matrix Arithmetic}{280}{subsection.31.3.4}
\contentsline {section}{\numberline {31.4}See also}{280}{section.31.4}
\contentsline {subsection}{\numberline {31.4.1}Wikibook}{280}{subsection.31.4.1}
\contentsline {subsection}{\numberline {31.4.2}Ada 95 Reference Manual}{281}{subsection.31.4.2}
\contentsline {subsection}{\numberline {31.4.3}Ada 2005 Reference Manual}{281}{subsection.31.4.3}
\contentsline {chapter}{\numberline {32}Statements}{283}{chapter.32}
\contentsline {chapter}{\numberline {33}Variables}{285}{chapter.33}
\contentsline {section}{\numberline {33.1}Assignment statements}{285}{section.33.1}
\contentsline {section}{\numberline {33.2}Uses}{285}{section.33.2}
\contentsline {section}{\numberline {33.3}See also}{286}{section.33.3}
\contentsline {subsection}{\numberline {33.3.1}Ada Reference Manual}{286}{subsection.33.3.1}
\contentsline {chapter}{\numberline {34}Lexical elements}{287}{chapter.34}
\contentsline {section}{\numberline {34.1}Character set}{287}{section.34.1}
\contentsline {section}{\numberline {34.2}Lexical elements}{287}{section.34.2}
\contentsline {subsection}{\numberline {34.2.1}Identifiers}{288}{subsection.34.2.1}
\contentsline {subsection}{\numberline {34.2.2}Numbers}{288}{subsection.34.2.2}
\contentsline {subsection}{\numberline {34.2.3}Character literals}{289}{subsection.34.2.3}
\contentsline {subsection}{\numberline {34.2.4}String literals}{289}{subsection.34.2.4}
\contentsline {subsection}{\numberline {34.2.5}Delimiters}{289}{subsection.34.2.5}
\contentsline {subsection}{\numberline {34.2.6}Comments}{289}{subsection.34.2.6}
\contentsline {subsection}{\numberline {34.2.7}Reserved words}{290}{subsection.34.2.7}
\contentsline {section}{\numberline {34.3}See also}{291}{section.34.3}
\contentsline {subsection}{\numberline {34.3.1}Wikibook}{291}{subsection.34.3.1}
\contentsline {subsection}{\numberline {34.3.2}Ada Reference Manual}{291}{subsection.34.3.2}
\contentsline {chapter}{\numberline {35}Keywords}{293}{chapter.35}
\contentsline {section}{\numberline {35.1}Language summary keywords}{293}{section.35.1}
\contentsline {section}{\numberline {35.2}List of keywords}{293}{section.35.2}
\contentsline {section}{\numberline {35.3}See also}{294}{section.35.3}
\contentsline {subsection}{\numberline {35.3.1}Wikibook}{294}{subsection.35.3.1}
\contentsline {subsection}{\numberline {35.3.2}Ada Reference Manual}{295}{subsection.35.3.2}
\contentsline {subsubsection}{Ada 83}{295}{section*.52}
\contentsline {subsubsection}{Ada 95}{295}{section*.53}
\contentsline {subsubsection}{Ada 2005}{295}{section*.54}
\contentsline {subsubsection}{Ada 2012}{295}{section*.55}
\contentsline {subsection}{\numberline {35.3.3}Ada Quality and Style Guide}{295}{subsection.35.3.3}
\contentsline {chapter}{\numberline {36}Delimiters}{297}{chapter.36}
\contentsline {section}{\numberline {36.1}Single character delimiters}{297}{section.36.1}
\contentsline {section}{\numberline {36.2}Compound character delimiters}{298}{section.36.2}
\contentsline {section}{\numberline {36.3}Others}{299}{section.36.3}
\contentsline {section}{\numberline {36.4}See also}{299}{section.36.4}
\contentsline {subsection}{\numberline {36.4.1}Wikibook}{299}{subsection.36.4.1}
\contentsline {subsection}{\numberline {36.4.2}Ada 95 Reference Manual}{299}{subsection.36.4.2}
\contentsline {subsection}{\numberline {36.4.3}Ada 2005 Reference Manual}{299}{subsection.36.4.3}
\contentsline {chapter}{\numberline {37}Operators}{301}{chapter.37}
\contentsline {section}{\numberline {37.1}Standard operators}{301}{section.37.1}
\contentsline {subsection}{\numberline {37.1.1}Logical operators}{301}{subsection.37.1.1}
\contentsline {subsection}{\numberline {37.1.2}Relational operators}{301}{subsection.37.1.2}
\contentsline {subsection}{\numberline {37.1.3}Binary adding operators}{302}{subsection.37.1.3}
\contentsline {subsection}{\numberline {37.1.4}Unary adding operators}{302}{subsection.37.1.4}
\contentsline {subsection}{\numberline {37.1.5}Multiplying operator}{302}{subsection.37.1.5}
\contentsline {subsection}{\numberline {37.1.6}Highest precedence operator}{303}{subsection.37.1.6}
\contentsline {section}{\numberline {37.2}Short-{}circuit control forms}{303}{section.37.2}
\contentsline {section}{\numberline {37.3}Membership tests}{303}{section.37.3}
\contentsline {subsection}{\numberline {37.3.1}Range membership test}{304}{subsection.37.3.1}
\contentsline {subsection}{\numberline {37.3.2}Subtype membership test}{304}{subsection.37.3.2}
\contentsline {subsection}{\numberline {37.3.3}Class membership test}{304}{subsection.37.3.3}
\contentsline {section}{\numberline {37.4}See also}{304}{section.37.4}
\contentsline {subsection}{\numberline {37.4.1}Wikibook}{304}{subsection.37.4.1}
\contentsline {subsection}{\numberline {37.4.2}Ada 95 Reference Manual}{304}{subsection.37.4.2}
\contentsline {subsection}{\numberline {37.4.3}Ada 2005 Reference Manual}{304}{subsection.37.4.3}
\contentsline {subsection}{\numberline {37.4.4}Ada Quality and Style Guide}{304}{subsection.37.4.4}
\contentsline {chapter}{\numberline {38}Attributes}{305}{chapter.38}
\contentsline {section}{\numberline {38.1}Language summary attributes}{305}{section.38.1}
\contentsline {section}{\numberline {38.2}List of language defined attributes}{305}{section.38.2}
\contentsline {subsection}{\numberline {38.2.1}A {\unhbox \voidb@x \hbox {$-$}} B}{306}{subsection.38.2.1}
\contentsline {subsection}{\numberline {38.2.2}C}{306}{subsection.38.2.2}
\contentsline {subsection}{\numberline {38.2.3}D {\unhbox \voidb@x \hbox {$-$}} F}{306}{subsection.38.2.3}
\contentsline {subsection}{\numberline {38.2.4}G {\unhbox \voidb@x \hbox {$-$}} L}{307}{subsection.38.2.4}
\contentsline {subsection}{\numberline {38.2.5}M}{307}{subsection.38.2.5}
\contentsline {subsection}{\numberline {38.2.6}O {\unhbox \voidb@x \hbox {$-$}} R}{308}{subsection.38.2.6}
\contentsline {subsection}{\numberline {38.2.7}S}{309}{subsection.38.2.7}
\contentsline {subsection}{\numberline {38.2.8}T {\unhbox \voidb@x \hbox {$-$}} V}{309}{subsection.38.2.8}
\contentsline {subsection}{\numberline {38.2.9}W {\unhbox \voidb@x \hbox {$-$}} Z}{310}{subsection.38.2.9}
\contentsline {section}{\numberline {38.3}List of implementation defined attributes}{310}{section.38.3}
\contentsline {subsection}{\numberline {38.3.1}A {\unhbox \voidb@x \hbox {$-$}} D}{311}{subsection.38.3.1}
\contentsline {subsection}{\numberline {38.3.2}E {\unhbox \voidb@x \hbox {$-$}} H}{312}{subsection.38.3.2}
\contentsline {subsection}{\numberline {38.3.3}I {\unhbox \voidb@x \hbox {$-$}} N}{313}{subsection.38.3.3}
\contentsline {subsection}{\numberline {38.3.4}O {\unhbox \voidb@x \hbox {$-$}} T}{313}{subsection.38.3.4}
\contentsline {subsection}{\numberline {38.3.5}U {\unhbox \voidb@x \hbox {$-$}} Z}{314}{subsection.38.3.5}
\contentsline {section}{\numberline {38.4}See also}{314}{section.38.4}
\contentsline {subsection}{\numberline {38.4.1}Wikibook}{314}{subsection.38.4.1}
\contentsline {subsection}{\numberline {38.4.2}Ada Reference Manual}{315}{subsection.38.4.2}
\contentsline {subsubsection}{Ada 83}{315}{section*.56}
\contentsline {subsubsection}{Ada 95}{315}{section*.57}
\contentsline {subsubsection}{Ada 2005}{315}{section*.58}
\contentsline {subsubsection}{Ada 2012}{315}{section*.59}
\contentsline {section}{\numberline {38.5}References}{315}{section.38.5}
\contentsline {chapter}{\numberline {39}Pragmas}{317}{chapter.39}
\contentsline {section}{\numberline {39.1}Description}{317}{section.39.1}
\contentsline {section}{\numberline {39.2}List of language defined pragmas}{317}{section.39.2}
\contentsline {subsection}{\numberline {39.2.1}A {\unhbox \voidb@x \hbox {$-$}} H}{317}{subsection.39.2.1}
\contentsline {subsection}{\numberline {39.2.2}I {\unhbox \voidb@x \hbox {$-$}} O}{318}{subsection.39.2.2}
\contentsline {subsection}{\numberline {39.2.3}P {\unhbox \voidb@x \hbox {$-$}} R}{319}{subsection.39.2.3}
\contentsline {subsection}{\numberline {39.2.4}S {\unhbox \voidb@x \hbox {$-$}} Z}{319}{subsection.39.2.4}
\contentsline {section}{\numberline {39.3}List of implementation defined pragmas}{320}{section.39.3}
\contentsline {subsection}{\numberline {39.3.1}A {\unhbox \voidb@x \hbox {$-$}} C}{320}{subsection.39.3.1}
\contentsline {subsection}{\numberline {39.3.2}D {\unhbox \voidb@x \hbox {$-$}} H}{322}{subsection.39.3.2}
\contentsline {subsection}{\numberline {39.3.3}I {\unhbox \voidb@x \hbox {$-$}} L}{323}{subsection.39.3.3}
\contentsline {subsection}{\numberline {39.3.4}M {\unhbox \voidb@x \hbox {$-$}} P}{324}{subsection.39.3.4}
\contentsline {subsection}{\numberline {39.3.5}R {\unhbox \voidb@x \hbox {$-$}} S}{326}{subsection.39.3.5}
\contentsline {subsection}{\numberline {39.3.6}T {\unhbox \voidb@x \hbox {$-$}} Z}{327}{subsection.39.3.6}
\contentsline {section}{\numberline {39.4}See also}{328}{section.39.4}
\contentsline {subsection}{\numberline {39.4.1}Wikibook}{328}{subsection.39.4.1}
\contentsline {subsection}{\numberline {39.4.2}Ada Reference Manual}{328}{subsection.39.4.2}
\contentsline {subsubsection}{Ada 83}{328}{section*.60}
\contentsline {subsubsection}{Ada 95}{328}{section*.61}
\contentsline {subsubsection}{Ada 2005}{329}{section*.62}
\contentsline {subsubsection}{Ada 2012}{329}{section*.63}
\contentsline {section}{\numberline {39.5}References}{329}{section.39.5}
\contentsline {chapter}{\numberline {40}Libraries}{331}{chapter.40}
\contentsline {section}{\numberline {40.1}Predefined Language Libraries}{331}{section.40.1}
\contentsline {section}{\numberline {40.2}Other Language Libraries}{331}{section.40.2}
\contentsline {section}{\numberline {40.3}See also}{332}{section.40.3}
\contentsline {subsection}{\numberline {40.3.1}Wikibook}{332}{subsection.40.3.1}
\contentsline {subsection}{\numberline {40.3.2}Ada Reference Manual}{332}{subsection.40.3.2}
\contentsline {subsection}{\numberline {40.3.3}Resources}{332}{subsection.40.3.3}
\contentsline {chapter}{\numberline {41}Libraries: Standard}{333}{chapter.41}
\contentsline {section}{\numberline {41.1}Implementation}{333}{section.41.1}
\contentsline {section}{\numberline {41.2}Portability}{333}{section.41.2}
\contentsline {section}{\numberline {41.3}See also}{334}{section.41.3}
\contentsline {subsection}{\numberline {41.3.1}Wikibook}{334}{subsection.41.3.1}
\contentsline {subsection}{\numberline {41.3.2}Ada Reference Manual}{334}{subsection.41.3.2}
\contentsline {subsection}{\numberline {41.3.3}Ada Quality and Style Guide}{335}{subsection.41.3.3}
\contentsline {chapter}{\numberline {42}Libraries: Ada}{337}{chapter.42}
\contentsline {section}{\numberline {42.1}List of language defined child units}{337}{section.42.1}
\contentsline {subsection}{\numberline {42.1.1}A {\unhbox \voidb@x \hbox {$-$}} C}{337}{subsection.42.1.1}
\contentsline {subsection}{\numberline {42.1.2}D {\unhbox \voidb@x \hbox {$-$}} F}{338}{subsection.42.1.2}
\contentsline {subsection}{\numberline {42.1.3}G {\unhbox \voidb@x \hbox {$-$}} R}{339}{subsection.42.1.3}
\contentsline {subsection}{\numberline {42.1.4}R {\unhbox \voidb@x \hbox {$-$}} S}{340}{subsection.42.1.4}
\contentsline {subsection}{\numberline {42.1.5}T {\unhbox \voidb@x \hbox {$-$}} U}{342}{subsection.42.1.5}
\contentsline {subsection}{\numberline {42.1.6}W {\unhbox \voidb@x \hbox {$-$}} Z}{343}{subsection.42.1.6}
\contentsline {section}{\numberline {42.2}List of implementation defined child units}{344}{section.42.2}
\contentsline {subsection}{\numberline {42.2.1}A {\unhbox \voidb@x \hbox {$-$}} K}{345}{subsection.42.2.1}
\contentsline {subsection}{\numberline {42.2.2}L {\unhbox \voidb@x \hbox {$-$}} Q}{345}{subsection.42.2.2}
\contentsline {subsection}{\numberline {42.2.3}R {\unhbox \voidb@x \hbox {$-$}} Z}{346}{subsection.42.2.3}
\contentsline {section}{\numberline {42.3}See also}{347}{section.42.3}
\contentsline {subsection}{\numberline {42.3.1}Wikibook}{347}{subsection.42.3.1}
\contentsline {subsection}{\numberline {42.3.2}Ada Reference Manual}{347}{subsection.42.3.2}
\contentsline {chapter}{\numberline {43}Libraries: Interfaces}{349}{chapter.43}
\contentsline {section}{\numberline {43.1}Child Packages}{349}{section.43.1}
\contentsline {section}{\numberline {43.2}See also}{350}{section.43.2}
\contentsline {subsection}{\numberline {43.2.1}Wikibook}{350}{subsection.43.2.1}
\contentsline {subsection}{\numberline {43.2.2}Ada Reference Manual}{350}{subsection.43.2.2}
\contentsline {subsubsection}{Ada 95}{350}{section*.64}
\contentsline {subsubsection}{Ada 2005}{350}{section*.65}
\contentsline {chapter}{\numberline {44}Libraries: System}{351}{chapter.44}
\contentsline {chapter}{\numberline {45}Libraries: GNAT}{353}{chapter.45}
\contentsline {section}{\numberline {45.1}Child packages}{353}{section.45.1}
\contentsline {section}{\numberline {45.2}See also}{356}{section.45.2}
\contentsline {subsection}{\numberline {45.2.1}External links}{356}{subsection.45.2.1}
\contentsline {subsection}{\numberline {45.2.2}Wikibook}{356}{subsection.45.2.2}
\contentsline {chapter}{\numberline {46}Libraries: Multi-{}Purpose}{357}{chapter.46}
\contentsline {section}{\numberline {46.1}See also}{357}{section.46.1}
\contentsline {subsection}{\numberline {46.1.1}Wikibook}{357}{subsection.46.1.1}
\contentsline {subsection}{\numberline {46.1.2}Ada Reference Manual}{357}{subsection.46.1.2}
\contentsline {subsection}{\numberline {46.1.3}References}{357}{subsection.46.1.3}
\contentsline {chapter}{\numberline {47}Libraries: Container}{359}{chapter.47}
\contentsline {section}{\numberline {47.1}See also}{359}{section.47.1}
\contentsline {subsection}{\numberline {47.1.1}Wikibook}{359}{subsection.47.1.1}
\contentsline {subsection}{\numberline {47.1.2}Ada Reference Manual}{359}{subsection.47.1.2}
\contentsline {chapter}{\numberline {48}Libraries: GUI}{361}{chapter.48}
\contentsline {section}{\numberline {48.1}See also}{361}{section.48.1}
\contentsline {subsection}{\numberline {48.1.1}Wikibook}{361}{subsection.48.1.1}
\contentsline {subsection}{\numberline {48.1.2}Ada Reference Manual}{361}{subsection.48.1.2}
\contentsline {subsection}{\numberline {48.1.3}External Links}{362}{subsection.48.1.3}
\contentsline {chapter}{\numberline {49}Libraries: Distributed Systems}{363}{chapter.49}
\contentsline {section}{\numberline {49.1}See also}{363}{section.49.1}
\contentsline {subsection}{\numberline {49.1.1}Wikibook}{363}{subsection.49.1.1}
\contentsline {subsection}{\numberline {49.1.2}Ada Reference Manual}{363}{subsection.49.1.2}
\contentsline {chapter}{\numberline {50}Libraries: Databases}{365}{chapter.50}
\contentsline {chapter}{\numberline {51}Libraries: Web}{371}{chapter.51}
\contentsline {section}{\numberline {51.1}See also}{371}{section.51.1}
\contentsline {subsection}{\numberline {51.1.1}Wikibook}{371}{subsection.51.1.1}
\contentsline {subsection}{\numberline {51.1.2}Ada Reference Manual}{371}{subsection.51.1.2}
\contentsline {chapter}{\numberline {52}Libraries: Input Output}{373}{chapter.52}
\contentsline {section}{\numberline {52.1}See also}{373}{section.52.1}
\contentsline {subsection}{\numberline {52.1.1}Wikibook}{373}{subsection.52.1.1}
\contentsline {subsection}{\numberline {52.1.2}Ada Reference Manual}{373}{subsection.52.1.2}
\contentsline {chapter}{\numberline {53}Platform Support}{375}{chapter.53}
\contentsline {section}{\numberline {53.1}See also}{375}{section.53.1}
\contentsline {subsection}{\numberline {53.1.1}Wikibook}{375}{subsection.53.1.1}
\contentsline {subsection}{\numberline {53.1.2}Ada Reference Manual}{375}{subsection.53.1.2}
\contentsline {subsection}{\numberline {53.1.3}Ada Quality and Style Guide}{375}{subsection.53.1.3}
\contentsline {chapter}{\numberline {54}Platform: Linux}{377}{chapter.54}
\contentsline {section}{\numberline {54.1}See also}{377}{section.54.1}
\contentsline {subsection}{\numberline {54.1.1}Wikibook}{377}{subsection.54.1.1}
\contentsline {subsection}{\numberline {54.1.2}Ada Reference Manual}{377}{subsection.54.1.2}
\contentsline {subsection}{\numberline {54.1.3}External resources}{377}{subsection.54.1.3}
\contentsline {chapter}{\numberline {55}Platform: Windows}{379}{chapter.55}
\contentsline {section}{\numberline {55.1}See also}{379}{section.55.1}
\contentsline {subsection}{\numberline {55.1.1}Wikibook}{379}{subsection.55.1.1}
\contentsline {subsection}{\numberline {55.1.2}Ada Reference Manual}{379}{subsection.55.1.2}
\contentsline {chapter}{\numberline {56}Platform: Virtual Machines}{381}{chapter.56}
\contentsline {section}{\numberline {56.1}See also}{381}{section.56.1}
\contentsline {subsection}{\numberline {56.1.1}Wikibook}{381}{subsection.56.1.1}
\contentsline {subsection}{\numberline {56.1.2}Ada Reference Manual}{381}{subsection.56.1.2}
\contentsline {chapter}{\numberline {57}Portals}{383}{chapter.57}
\contentsline {section}{\numberline {57.1}Forges of open-{}source projects}{383}{section.57.1}
\contentsline {section}{\numberline {57.2}Directories of freely available tools and libraries}{383}{section.57.2}
\contentsline {section}{\numberline {57.3}Collections of Ada source code}{384}{section.57.3}
\contentsline {section}{\numberline {57.4}See also}{384}{section.57.4}
\contentsline {subsection}{\numberline {57.4.1}Wikibook}{384}{subsection.57.4.1}
\contentsline {subsection}{\numberline {57.4.2}Ada Reference Manual}{384}{subsection.57.4.2}
\contentsline {subsection}{\numberline {57.4.3}Ada Quality and Style Guide}{385}{subsection.57.4.3}
\contentsline {chapter}{\numberline {58}Tutorials}{387}{chapter.58}
\contentsline {chapter}{\numberline {59}Web 2.0}{389}{chapter.59}
\contentsline {subsection}{\numberline {59.0.4}News \& Blogs}{389}{subsection.59.0.4}
\contentsline {subsection}{\numberline {59.0.5}Forums \& developer rings}{389}{subsection.59.0.5}
\contentsline {subsection}{\numberline {59.0.6}General Info}{390}{subsection.59.0.6}
\contentsline {subsection}{\numberline {59.0.7}Wikimedia projects}{390}{subsection.59.0.7}
\contentsline {subsection}{\numberline {59.0.8}Source code}{391}{subsection.59.0.8}
\contentsline {subsection}{\numberline {59.0.9}Projects}{391}{subsection.59.0.9}
\contentsline {chapter}{\numberline {60}Contributors}{393}{chapter.60}
\contentsline {chapter}{List of Figures}{397}{chapter*.66}
\contentsline {chapter}{\numberline {61}Licenses}{399}{chapter.61}
\contentsline {section}{\numberline {61.1}GNU GENERAL PUBLIC LICENSE}{399}{section.61.1}
\contentsline {section}{\numberline {61.2}GNU Free Documentation License}{400}{section.61.2}
\contentsline {section}{\numberline {61.3}GNU Lesser General Public License}{401}{section.61.3}

images/trans.dict

